| /* |
| "A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964) |
| "Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001) |
| "An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004) |
| |
| approximation method: |
| |
| (x - 0.5) S(x) |
| Gamma(x) = (x + g - 0.5) * ---------------- |
| exp(x + g - 0.5) |
| |
| with |
| a1 a2 a3 aN |
| S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ] |
| x + 1 x + 2 x + 3 x + N |
| |
| with a0, a1, a2, a3,.. aN constants which depend on g. |
| |
| for x < 0 the following reflection formula is used: |
| |
| Gamma(x)*Gamma(-x) = -pi/(x sin(pi x)) |
| |
| most ideas and constants are from boost and python |
| */ |
| #include "libm.h" |
| |
| static const double pi = 3.141592653589793238462643383279502884; |
| |
| /* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */ |
| static double sinpi(double x) |
| { |
| int n; |
| |
| /* argument reduction: x = |x| mod 2 */ |
| /* spurious inexact when x is odd int */ |
| x = x * 0.5; |
| x = 2 * (x - floor(x)); |
| |
| /* reduce x into [-.25,.25] */ |
| n = 4 * x; |
| n = (n+1)/2; |
| x -= n * 0.5; |
| |
| x *= pi; |
| switch (n) { |
| default: /* case 4 */ |
| case 0: |
| return __sin(x, 0, 0); |
| case 1: |
| return __cos(x, 0); |
| case 2: |
| return __sin(-x, 0, 0); |
| case 3: |
| return -__cos(x, 0); |
| } |
| } |
| |
| #define N 12 |
| //static const double g = 6.024680040776729583740234375; |
| static const double gmhalf = 5.524680040776729583740234375; |
| static const double Snum[N+1] = { |
| 23531376880.410759688572007674451636754734846804940, |
| 42919803642.649098768957899047001988850926355848959, |
| 35711959237.355668049440185451547166705960488635843, |
| 17921034426.037209699919755754458931112671403265390, |
| 6039542586.3520280050642916443072979210699388420708, |
| 1439720407.3117216736632230727949123939715485786772, |
| 248874557.86205415651146038641322942321632125127801, |
| 31426415.585400194380614231628318205362874684987640, |
| 2876370.6289353724412254090516208496135991145378768, |
| 186056.26539522349504029498971604569928220784236328, |
| 8071.6720023658162106380029022722506138218516325024, |
| 210.82427775157934587250973392071336271166969580291, |
| 2.5066282746310002701649081771338373386264310793408, |
| }; |
| static const double Sden[N+1] = { |
| 0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535, |
| 2637558, 357423, 32670, 1925, 66, 1, |
| }; |
| /* n! for small integer n */ |
| static const double fact[] = { |
| 1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0, |
| 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0, |
| 355687428096000.0, 6402373705728000.0, 121645100408832000.0, |
| 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0, |
| }; |
| |
| /* S(x) rational function for positive x */ |
| static double S(double x) |
| { |
| double_t num = 0, den = 0; |
| int i; |
| |
| /* to avoid overflow handle large x differently */ |
| if (x < 8) |
| for (i = N; i >= 0; i--) { |
| num = num * x + Snum[i]; |
| den = den * x + Sden[i]; |
| } |
| else |
| for (i = 0; i <= N; i++) { |
| num = num / x + Snum[i]; |
| den = den / x + Sden[i]; |
| } |
| return num/den; |
| } |
| |
| double tgamma(double x) |
| { |
| union {double f; uint64_t i;} u = {x}; |
| double absx, y; |
| double_t dy, z, r; |
| uint32_t ix = u.i>>32 & 0x7fffffff; |
| int sign = u.i>>63; |
| |
| /* special cases */ |
| if (ix >= 0x7ff00000) |
| /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */ |
| return x + INFINITY; |
| if (ix < (0x3ff-54)<<20) |
| /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */ |
| return 1/x; |
| |
| /* integer arguments */ |
| /* raise inexact when non-integer */ |
| if (x == floor(x)) { |
| if (sign) |
| return 0/0.0; |
| if (x <= sizeof fact/sizeof *fact) |
| return fact[(int)x - 1]; |
| } |
| |
| /* x >= 172: tgamma(x)=inf with overflow */ |
| /* x =< -184: tgamma(x)=+-0 with underflow */ |
| if (ix >= 0x40670000) { /* |x| >= 184 */ |
| if (sign) { |
| FORCE_EVAL((float)(0x1p-126/x)); |
| if (floor(x) * 0.5 == floor(x * 0.5)) |
| return 0; |
| return -0.0; |
| } |
| x *= 0x1p1023; |
| return x; |
| } |
| |
| absx = sign ? -x : x; |
| |
| /* handle the error of x + g - 0.5 */ |
| y = absx + gmhalf; |
| if (absx > gmhalf) { |
| dy = y - absx; |
| dy -= gmhalf; |
| } else { |
| dy = y - gmhalf; |
| dy -= absx; |
| } |
| |
| z = absx - 0.5; |
| r = S(absx) * exp(-y); |
| if (x < 0) { |
| /* reflection formula for negative x */ |
| /* sinpi(absx) is not 0, integers are already handled */ |
| r = -pi / (sinpi(absx) * absx * r); |
| dy = -dy; |
| z = -z; |
| } |
| r += dy * (gmhalf+0.5) * r / y; |
| z = pow(y, 0.5*z); |
| y = r * z * z; |
| return y; |
| } |
| |
| #if 0 |
| double __lgamma_r(double x, int *sign) |
| { |
| double r, absx; |
| |
| *sign = 1; |
| |
| /* special cases */ |
| if (!isfinite(x)) |
| /* lgamma(nan)=nan, lgamma(+-inf)=inf */ |
| return x*x; |
| |
| /* integer arguments */ |
| if (x == floor(x) && x <= 2) { |
| /* n <= 0: lgamma(n)=inf with divbyzero */ |
| /* n == 1,2: lgamma(n)=0 */ |
| if (x <= 0) |
| return 1/0.0; |
| return 0; |
| } |
| |
| absx = fabs(x); |
| |
| /* lgamma(x) ~ -log(|x|) for tiny |x| */ |
| if (absx < 0x1p-54) { |
| *sign = 1 - 2*!!signbit(x); |
| return -log(absx); |
| } |
| |
| /* use tgamma for smaller |x| */ |
| if (absx < 128) { |
| x = tgamma(x); |
| *sign = 1 - 2*!!signbit(x); |
| return log(fabs(x)); |
| } |
| |
| /* second term (log(S)-g) could be more precise here.. */ |
| /* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */ |
| r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5)); |
| if (x < 0) { |
| /* reflection formula for negative x */ |
| x = sinpi(absx); |
| *sign = 2*!!signbit(x) - 1; |
| r = log(pi/(fabs(x)*absx)) - r; |
| } |
| return r; |
| } |
| |
| weak_alias(__lgamma_r, lgamma_r); |
| #endif |