| //created by Victoria Zhislina, the Senior Application Engineer, Intel Corporation, [email protected] |
| |
| //*** Copyright (C) 2012-2018 Intel Corporation. All rights reserved. |
| |
| //IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| |
| //By downloading, copying, installing or using the software you agree to this license. |
| //If you do not agree to this license, do not download, install, copy or use the software. |
| |
| // License Agreement |
| //Redistribution and use in source and binary forms, with or without modification, |
| //are permitted provided that the following conditions are met: |
| |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| |
| // * The name of the copyright holders may not be used to endorse or promote products |
| // derived from this software without specific prior written permission. |
| |
| //This software is provided by the copyright holders and contributors "as is" and |
| //any express or implied warranties, including, but not limited to, the implied |
| //warranties of merchantability and fitness for a particular purpose are disclaimed. |
| //In no event shall the Intel Corporation or contributors be liable for any direct, |
| //indirect, incidental, special, exemplary, or consequential damages |
| //(including, but not limited to, procurement of substitute goods or services; |
| //loss of use, data, or profits; or business interruption) however caused |
| //and on any theory of liability, whether in contract, strict liability, |
| //or tort (including negligence or otherwise) arising in any way out of |
| //the use of this software, even if advised of the possibility of such damage. |
| |
| //***************************************************************************************** |
| // This file is intended to simplify ARM->IA32 porting |
| // It makes the correspondence between ARM NEON intrinsics (as defined in "arm_neon.h") |
| // and x86 SSE(up to SSE4.2) intrinsic functions as defined in headers files below |
| //MMX instruction set is not used due to non availability on x64 systems, |
| //performance overhead and the necessity to use the EMMS instruction (_mm_empty())for mmx-x87 floating point switching |
| //***************************************************************************************** |
| |
| //!!!!!!!!!!!!!! To use this file just include it in your project that uses ARM NEON intinsics instead of "arm_neon.h" and compile it as usual |
| //!!!!!!!!!!!!!! but please pay attention at #define USE_SSE4 below - you might need to define it manualy for newest Intel Atom or any Intel Core platforms for greater performance. |
| |
| #ifndef NEON2SSE_H |
| #define NEON2SSE_H |
| |
| /*********************************************************************************************************************/ |
| //!!!!!!!!!!!!!! |
| //if USE_SSE4 is defined, some functions use SSE4 instructions instead of earlier SSE versions, when undefined - SIMD up to SSSE3 are used |
| //For older devices without SSE4 support it should be undefined, for newer devices - defined, probably manualy if your compiler doesn't set __SSE4_2__ predefine |
| #ifndef USE_SSE4 |
| # if defined(__SSE4_2__) |
| # define USE_SSE4 |
| # endif |
| #endif |
| /*********************************************************************************************************************/ |
| |
| #include <xmmintrin.h> //SSE |
| #include <emmintrin.h> //SSE2 |
| #include <pmmintrin.h> //SSE3 |
| #include <tmmintrin.h> //SSSE3 |
| #ifdef USE_SSE4 |
| # include <smmintrin.h> //SSE4.1 |
| # include <nmmintrin.h> //SSE4.2 |
| #endif |
| |
| #include <math.h> |
| |
| //*************** functions and data attributes, compiler dependent ********************************* |
| //*********************************************************************************** |
| #ifdef __GNUC__ |
| # define _GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) |
| # define _NEON2SSESTORAGE static |
| # define _NEON2SSE_ALIGN_16 __attribute__((aligned(16))) |
| # define _NEON2SSE_INLINE _NEON2SSESTORAGE inline __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| # ifndef NEON2SSE_DISABLE_PERFORMANCE_WARNING |
| # if _GCC_VERSION < 40500 |
| # define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) __attribute__((deprecated)) function |
| # else |
| # define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) __attribute__((deprecated(explanation))) function |
| # endif |
| # else |
| # define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) function |
| # endif |
| # if defined(__x86_64__) |
| # define _NEON2SSE_64BIT __x86_64__ |
| # endif |
| #else |
| # define _NEON2SSESTORAGE static |
| # define _NEON2SSE_ALIGN_16 __declspec(align(16)) |
| # define _NEON2SSE_INLINE _NEON2SSESTORAGE __inline |
| # if (defined(_MSC_VER) || defined (__INTEL_COMPILER)) && !defined(NEON2SSE_DISABLE_PERFORMANCE_WARNING) |
| # define _NEON2SSE_PERFORMANCE_WARNING(function, EXPLANATION) __declspec(deprecated(EXPLANATION)) function |
| # if defined(_M_X64) |
| # define _NEON2SSE_64BIT _M_X64 |
| # endif |
| # else |
| # define _NEON2SSE_PERFORMANCE_WARNING(function, explanation) function |
| # endif |
| #endif |
| |
| #if defined (_NEON2SSE_64BIT) && defined (USE_SSE4) |
| # define _NEON2SSE_64BIT_SSE4 |
| #endif |
| |
| /*********************************************************************************************************************/ |
| // data types conversion |
| /*********************************************************************************************************************/ |
| #if defined(_MSC_VER) && (_MSC_VER < 1300) |
| typedef signed char int8_t; |
| typedef unsigned char uint8_t; |
| typedef signed short int16_t; |
| typedef unsigned short uint16_t; |
| typedef signed int int32_t; |
| typedef unsigned int uint32_t; |
| typedef signed long long int64_t; |
| typedef unsigned long long uint64_t; |
| #elif defined(_MSC_VER) |
| typedef signed __int8 int8_t; |
| typedef unsigned __int8 uint8_t; |
| typedef signed __int16 int16_t; |
| typedef unsigned __int16 uint16_t; |
| typedef signed __int32 int32_t; |
| typedef unsigned __int32 uint32_t; |
| |
| typedef signed long long int64_t; |
| typedef unsigned long long uint64_t; |
| #else |
| # include <stdint.h> |
| # include <limits.h> |
| #endif |
| |
| typedef union __m64_128 { |
| uint64_t m64_u64[1]; |
| float m64_f32[2]; |
| int8_t m64_i8[8]; |
| int16_t m64_i16[4]; |
| int32_t m64_i32[2]; |
| int64_t m64_i64[1]; |
| uint8_t m64_u8[8]; |
| uint16_t m64_u16[4]; |
| uint32_t m64_u32[2]; |
| } __m64_128; |
| |
| typedef __m64_128 int8x8_t; |
| typedef __m64_128 uint8x8_t; |
| typedef __m64_128 int16x4_t; |
| typedef __m64_128 uint16x4_t; |
| typedef __m64_128 int32x2_t; |
| typedef __m64_128 uint32x2_t; |
| typedef __m64_128 int64x1_t; |
| typedef __m64_128 uint64x1_t; |
| typedef __m64_128 poly8x8_t; |
| typedef __m64_128 poly16x4_t; |
| |
| typedef __m64_128 float32x2_t; |
| typedef __m128 float32x4_t; |
| |
| typedef __m128 float16x4_t; //not supported by IA, for compartibility |
| typedef __m128 float16x8_t; //not supported by IA, for compartibility |
| |
| typedef __m64_128 float64x1_t; |
| typedef __m128d float64x2_t; |
| |
| typedef __m128i int8x16_t; |
| typedef __m128i int16x8_t; |
| typedef __m128i int32x4_t; |
| typedef __m128i int64x2_t; |
| typedef __m128i uint8x16_t; |
| typedef __m128i uint16x8_t; |
| typedef __m128i uint32x4_t; |
| typedef __m128i uint64x2_t; |
| typedef __m128i poly8x16_t; |
| typedef __m128i poly16x8_t; |
| |
| #if defined(_MSC_VER) |
| # define SINT_MIN (-2147483647 - 1) /* min signed int value */ |
| # define SINT_MAX 2147483647 /* max signed int value */ |
| #else |
| # define SINT_MIN INT_MIN /* min signed int value */ |
| # define SINT_MAX INT_MAX /* max signed int value */ |
| #endif |
| |
| typedef float float32_t; |
| #if !defined(__clang__) |
| typedef float __fp16; |
| #endif |
| |
| typedef double float64_t; |
| |
| |
| typedef uint8_t poly8_t; |
| typedef uint16_t poly16_t; |
| |
| |
| //MSVC compilers (tested up to 2012 VS version) doesn't allow using structures or arrays of __m128x type as functions arguments resulting in |
| //error C2719: 'src': formal parameter with __declspec(align('16')) won't be aligned. To avoid it we need the special trick for functions that use these types |
| struct int8x16x2_t { |
| int8x16_t val[2]; |
| }; |
| struct int16x8x2_t { |
| int16x8_t val[2]; |
| }; |
| struct int32x4x2_t { |
| int32x4_t val[2]; |
| }; |
| struct int64x2x2_t { |
| int64x2_t val[2]; |
| }; |
| //Unfortunately we are unable to merge two 64-bits in on 128 bit register because user should be able to access val[n] members explicitly!!! |
| struct int8x8x2_t { |
| int8x8_t val[2]; |
| }; |
| struct int16x4x2_t { |
| int16x4_t val[2]; |
| }; |
| struct int32x2x2_t { |
| int32x2_t val[2]; |
| }; |
| struct int64x1x2_t { |
| int64x1_t val[2]; |
| }; |
| |
| typedef struct int8x16x2_t int8x16x2_t; //for C compilers to make them happy |
| typedef struct int16x8x2_t int16x8x2_t; //for C compilers to make them happy |
| typedef struct int32x4x2_t int32x4x2_t; //for C compilers to make them happy |
| typedef struct int64x2x2_t int64x2x2_t; //for C compilers to make them happy |
| |
| typedef struct int8x8x2_t int8x8x2_t; //for C compilers to make them happy |
| typedef struct int16x4x2_t int16x4x2_t; //for C compilers to make them happy |
| typedef struct int32x2x2_t int32x2x2_t; //for C compilers to make them happy |
| typedef struct int64x1x2_t int64x1x2_t; //for C compilers to make them happy |
| |
| /* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers structures above */ |
| typedef struct int8x16x2_t uint8x16x2_t; |
| typedef struct int16x8x2_t uint16x8x2_t; |
| typedef struct int32x4x2_t uint32x4x2_t; |
| typedef struct int64x2x2_t uint64x2x2_t; |
| typedef struct int8x16x2_t poly8x16x2_t; |
| typedef struct int16x8x2_t poly16x8x2_t; |
| |
| typedef struct int8x8x2_t uint8x8x2_t; |
| typedef struct int16x4x2_t uint16x4x2_t; |
| typedef struct int32x2x2_t uint32x2x2_t; |
| typedef struct int64x1x2_t uint64x1x2_t; |
| typedef struct int8x8x2_t poly8x8x2_t; |
| typedef struct int16x4x2_t poly16x4x2_t; |
| |
| //float |
| struct float32x4x2_t { |
| float32x4_t val[2]; |
| }; |
| struct float16x8x2_t { |
| float16x8_t val[2]; |
| }; |
| struct float32x2x2_t { |
| float32x2_t val[2]; |
| }; |
| |
| typedef struct float32x4x2_t float32x4x2_t; //for C compilers to make them happy |
| typedef struct float16x8x2_t float16x8x2_t; //for C compilers to make them happy |
| typedef struct float32x2x2_t float32x2x2_t; //for C compilers to make them happy |
| typedef float16x8x2_t float16x4x2_t; |
| |
| //4 |
| struct int8x16x4_t { |
| int8x16_t val[4]; |
| }; |
| struct int16x8x4_t { |
| int16x8_t val[4]; |
| }; |
| struct int32x4x4_t { |
| int32x4_t val[4]; |
| }; |
| struct int64x2x4_t { |
| int64x2_t val[4]; |
| }; |
| |
| struct int8x8x4_t { |
| int8x8_t val[4]; |
| }; |
| struct int16x4x4_t { |
| int16x4_t val[4]; |
| }; |
| struct int32x2x4_t { |
| int32x2_t val[4]; |
| }; |
| struct int64x1x4_t { |
| int64x1_t val[4]; |
| }; |
| |
| typedef struct int8x16x4_t int8x16x4_t; //for C compilers to make them happy |
| typedef struct int16x8x4_t int16x8x4_t; //for C compilers to make them happy |
| typedef struct int32x4x4_t int32x4x4_t; //for C compilers to make them happy |
| typedef struct int64x2x4_t int64x2x4_t; //for C compilers to make them happy |
| |
| typedef struct int8x8x4_t int8x8x4_t; //for C compilers to make them happy |
| typedef struct int16x4x4_t int16x4x4_t; //for C compilers to make them happy |
| typedef struct int32x2x4_t int32x2x4_t; //for C compilers to make them happy |
| typedef struct int64x1x4_t int64x1x4_t; //for C compilers to make them happy |
| |
| /* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers dealing structures above:*/ |
| typedef struct int8x8x4_t uint8x8x4_t; |
| typedef struct int16x4x4_t uint16x4x4_t; |
| typedef struct int32x2x4_t uint32x2x4_t; |
| typedef struct int64x1x4_t uint64x1x4_t; |
| typedef struct int8x8x4_t poly8x8x4_t; |
| typedef struct int16x4x4_t poly16x4x4_t; |
| |
| typedef struct int8x16x4_t uint8x16x4_t; |
| typedef struct int16x8x4_t uint16x8x4_t; |
| typedef struct int32x4x4_t uint32x4x4_t; |
| typedef struct int64x2x4_t uint64x2x4_t; |
| typedef struct int8x16x4_t poly8x16x4_t; |
| typedef struct int16x8x4_t poly16x8x4_t; |
| |
| struct float32x4x4_t { |
| float32x4_t val[4]; |
| }; |
| struct float16x8x4_t { |
| float16x8_t val[4]; |
| }; |
| struct float32x2x4_t { |
| float32x2_t val[4]; |
| }; |
| |
| typedef struct float32x4x4_t float32x4x4_t; //for C compilers to make them happy |
| typedef struct float16x8x4_t float16x8x4_t; //for C compilers to make them happy |
| typedef struct float32x2x4_t float32x2x4_t; //for C compilers to make them happy |
| typedef float16x8x4_t float16x4x4_t; |
| |
| //3 |
| struct int16x8x3_t { |
| int16x8_t val[3]; |
| }; |
| struct int32x4x3_t { |
| int32x4_t val[3]; |
| }; |
| struct int64x2x3_t { |
| int64x2_t val[3]; |
| }; |
| struct int8x16x3_t { |
| int8x16_t val[3]; |
| }; |
| |
| struct int16x4x3_t { |
| int16x4_t val[3]; |
| }; |
| struct int32x2x3_t { |
| int32x2_t val[3]; |
| }; |
| struct int64x1x3_t { |
| int64x1_t val[3]; |
| }; |
| struct int8x8x3_t { |
| int8x8_t val[3]; |
| }; |
| typedef struct int16x8x3_t int16x8x3_t; //for C compilers to make them happy |
| typedef struct int32x4x3_t int32x4x3_t; //for C compilers to make them happy |
| typedef struct int64x2x3_t int64x2x3_t; //for C compilers to make them happy |
| typedef struct int8x16x3_t int8x16x3_t; //for C compilers to make them happy |
| |
| typedef struct int8x8x3_t int8x8x3_t; //for C compilers to make them happy |
| typedef struct int16x4x3_t int16x4x3_t; //for C compilers to make them happy |
| typedef struct int32x2x3_t int32x2x3_t; //for C compilers to make them happy |
| typedef struct int64x1x3_t int64x1x3_t; //for C compilers to make them happy |
| |
| |
| /* to avoid pointer conversions the following unsigned integers structures are defined via the corresponding signed integers dealing structures above:*/ |
| typedef struct int8x16x3_t uint8x16x3_t; |
| typedef struct int16x8x3_t uint16x8x3_t; |
| typedef struct int32x4x3_t uint32x4x3_t; |
| typedef struct int64x2x3_t uint64x2x3_t; |
| typedef struct int8x16x3_t poly8x16x3_t; |
| typedef struct int16x8x3_t poly16x8x3_t; |
| typedef struct int8x8x3_t uint8x8x3_t; |
| typedef struct int16x4x3_t uint16x4x3_t; |
| typedef struct int32x2x3_t uint32x2x3_t; |
| typedef struct int64x1x3_t uint64x1x3_t; |
| typedef struct int8x8x3_t poly8x8x3_t; |
| typedef struct int16x4x3_t poly16x4x3_t; |
| |
| //float |
| struct float32x4x3_t { |
| float32x4_t val[3]; |
| }; |
| struct float32x2x3_t { |
| float32x2_t val[3]; |
| }; |
| struct float16x8x3_t { |
| float16x8_t val[3]; |
| }; |
| |
| typedef struct float32x4x3_t float32x4x3_t; //for C compilers to make them happy |
| typedef struct float16x8x3_t float16x8x3_t; //for C compilers to make them happy |
| typedef struct float32x2x3_t float32x2x3_t; //for C compilers to make them happy |
| typedef float16x8x3_t float16x4x3_t; |
| |
| |
| //**************************************************************************** |
| //****** Porting auxiliary macros ******************************************** |
| |
| //** floating point related macros ** |
| #define _M128i(a) _mm_castps_si128(a) |
| #define _M128(a) _mm_castsi128_ps(a) |
| //here the most performance effective implementation is compiler and 32/64 bits build dependent |
| #if defined (_NEON2SSE_64BIT) || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1500) ) |
| # define _pM128i(a) _mm_cvtsi64_si128(*(int64_t*)(&(a))) |
| # define _M64(out, inp) out.m64_i64[0] = _mm_cvtsi128_si64 (inp); |
| # define _M64f(out, inp) out.m64_i64[0] = _mm_cvtsi128_si64 (_M128i(inp)); |
| #else |
| //for 32bit gcc and Microsoft compilers builds |
| # define _pM128i(a) _mm_loadl_epi64((__m128i*)&(a)) |
| # define _M64(out, inp) _mm_storel_epi64 ((__m128i*)&(out), inp) |
| # define _M64f(out, inp) _mm_storel_epi64 ((__m128i*)&(out), _M128i(inp)) |
| #endif |
| #define _pM128(a) _mm_castsi128_ps(_pM128i(a)) |
| |
| #define return64(a) _M64(res64,a); return res64; |
| #define return64f(a) _M64f(res64,a); return res64; |
| |
| #define _Ui64(a) (*(uint64_t*)&(a)) |
| #define _UNSIGNED_T(a) u ## a |
| |
| #define _SIGNBIT64 ((uint64_t)1 << 63) |
| #define _SWAP_HI_LOW32 (2 | (3 << 2) | (0 << 4) | (1 << 6)) |
| #define _INSERTPS_NDX(srcField, dstField) (((srcField) << 6) | ((dstField) << 4) ) |
| |
| #define _NEON2SSE_REASON_SLOW_SERIAL "The function may be very slow due to the serial implementation, please try to avoid it" |
| #define _NEON2SSE_REASON_SLOW_UNEFFECTIVE "The function may be slow due to inefficient x86 SIMD implementation, please try to avoid it" |
| |
| //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| #define __constrange(min,max) const |
| #define __transfersize(size) |
| //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| |
| //&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& mask constants used in porting &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_16_even_odd[16] = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_32_even_odd[16] = { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 }; |
| //&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |
| |
| //************************************************************************* |
| //************************************************************************* |
| //********* Functions declarations as declared in original arm_neon.h ***** |
| //************************************************************************* |
| //Vector add: vadd -> Vr[i]:=Va[i]+Vb[i], Vr, Va, Vb have equal lane sizes. |
| _NEON2SSESTORAGE int8x8_t vadd_s8(int8x8_t a, int8x8_t b); // VADD.I8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vadd_s16(int16x4_t a, int16x4_t b); // VADD.I16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vadd_s32(int32x2_t a, int32x2_t b); // VADD.I32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vadd_s64(int64x1_t a, int64x1_t b); // VADD.I64 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vadd_f32(float32x2_t a, float32x2_t b); // VADD.F32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vadd_u8(uint8x8_t a, uint8x8_t b); // VADD.I8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vadd_u16(uint16x4_t a, uint16x4_t b); // VADD.I16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vadd_u32(uint32x2_t a, uint32x2_t b); // VADD.I32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vadd_u64(uint64x1_t a, uint64x1_t b); // VADD.I64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vaddq_s8(int8x16_t a, int8x16_t b); // VADD.I8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vaddq_s16(int16x8_t a, int16x8_t b); // VADD.I16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vaddq_s32(int32x4_t a, int32x4_t b); // VADD.I32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vaddq_s64(int64x2_t a, int64x2_t b); // VADD.I64 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vaddq_f32(float32x4_t a, float32x4_t b); // VADD.F32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vaddq_u8(uint8x16_t a, uint8x16_t b); // VADD.I8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vaddq_u16(uint16x8_t a, uint16x8_t b); // VADD.I16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b); // VADD.I32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vaddq_u64(uint64x2_t a, uint64x2_t b); // VADD.I64 q0,q0,q0 |
| //Vector long add: vaddl -> Vr[i]:=Va[i]+Vb[i], Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width. |
| _NEON2SSESTORAGE int16x8_t vaddl_s8(int8x8_t a, int8x8_t b); // VADDL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vaddl_s16(int16x4_t a, int16x4_t b); // VADDL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vaddl_s32(int32x2_t a, int32x2_t b); // VADDL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b); // VADDL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vaddl_u16(uint16x4_t a, uint16x4_t b); // VADDL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vaddl_u32(uint32x2_t a, uint32x2_t b); // VADDL.U32 q0,d0,d0 |
| //Vector wide addw: vadd -> Vr[i]:=Va[i]+Vb[i] |
| _NEON2SSESTORAGE int16x8_t vaddw_s8(int16x8_t a, int8x8_t b); // VADDW.S8 q0,q0,d0 |
| _NEON2SSESTORAGE int32x4_t vaddw_s16(int32x4_t a, int16x4_t b); // VADDW.S16 q0,q0,d0 |
| _NEON2SSESTORAGE int64x2_t vaddw_s32(int64x2_t a, int32x2_t b); // VADDW.S32 q0,q0,d0 |
| _NEON2SSESTORAGE uint16x8_t vaddw_u8(uint16x8_t a, uint8x8_t b); // VADDW.U8 q0,q0,d0 |
| _NEON2SSESTORAGE uint32x4_t vaddw_u16(uint32x4_t a, uint16x4_t b); // VADDW.U16 q0,q0,d0 |
| _NEON2SSESTORAGE uint64x2_t vaddw_u32(uint64x2_t a, uint32x2_t b); // VADDW.U32 q0,q0,d0 |
| //Vector halving add: vhadd -> Vr[i]:=(Va[i]+Vb[i])>>1 |
| _NEON2SSESTORAGE int8x8_t vhadd_s8(int8x8_t a, int8x8_t b); // VHADD.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vhadd_s16(int16x4_t a, int16x4_t b); // VHADD.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vhadd_s32(int32x2_t a, int32x2_t b); // VHADD.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vhadd_u8(uint8x8_t a, uint8x8_t b); // VHADD.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vhadd_u16(uint16x4_t a, uint16x4_t b); // VHADD.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vhadd_u32(uint32x2_t a, uint32x2_t b); // VHADD.U32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b); // VHADD.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b); // VHADD.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b); // VHADD.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b); // VHADD.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b); // VHADD.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b); // VHADD.U32 q0,q0,q0 |
| //Vector rounding halving add: vrhadd -> Vr[i]:=(Va[i]+Vb[i]+1)>>1 |
| _NEON2SSESTORAGE int8x8_t vrhadd_s8(int8x8_t a, int8x8_t b); // VRHADD.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vrhadd_s16(int16x4_t a, int16x4_t b); // VRHADD.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vrhadd_s32(int32x2_t a, int32x2_t b); // VRHADD.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vrhadd_u8(uint8x8_t a, uint8x8_t b); // VRHADD.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vrhadd_u16(uint16x4_t a, uint16x4_t b); // VRHADD.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vrhadd_u32(uint32x2_t a, uint32x2_t b); // VRHADD.U32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b); // VRHADD.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b); // VRHADD.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b); // VRHADD.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vrhaddq_u8(uint8x16_t a, uint8x16_t b); // VRHADD.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vrhaddq_u16(uint16x8_t a, uint16x8_t b); // VRHADD.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b); // VRHADD.U32 q0,q0,q0 |
| //Vector saturating add: vqadd -> Vr[i]:=sat<size>(Va[i]+Vb[i]) |
| _NEON2SSESTORAGE int8x8_t vqadd_s8(int8x8_t a, int8x8_t b); // VQADD.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vqadd_s16(int16x4_t a, int16x4_t b); // VQADD.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqadd_s32(int32x2_t a, int32x2_t b); // VQADD.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vqadd_s64(int64x1_t a, int64x1_t b); // VQADD.S64 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vqadd_u8(uint8x8_t a, uint8x8_t b); // VQADD.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vqadd_u16(uint16x4_t a, uint16x4_t b); // VQADD.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vqadd_u32(uint32x2_t a, uint32x2_t b); // VQADD.U32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vqadd_u64(uint64x1_t a, uint64x1_t b); // VQADD.U64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vqaddq_s8(int8x16_t a, int8x16_t b); // VQADD.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vqaddq_s16(int16x8_t a, int16x8_t b); // VQADD.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b); // VQADD.S32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b); // VQADD.S64 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vqaddq_u8(uint8x16_t a, uint8x16_t b); // VQADD.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vqaddq_u16(uint16x8_t a, uint16x8_t b); // VQADD.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b); // VQADD.U32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b); // VQADD.U64 q0,q0,q0 |
| //Vector add high half: vaddhn-> Vr[i]:=Va[i]+Vb[i] |
| _NEON2SSESTORAGE int8x8_t vaddhn_s16(int16x8_t a, int16x8_t b); // VADDHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE int16x4_t vaddhn_s32(int32x4_t a, int32x4_t b); // VADDHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE int32x2_t vaddhn_s64(int64x2_t a, int64x2_t b); // VADDHN.I64 d0,q0,q0 |
| _NEON2SSESTORAGE uint8x8_t vaddhn_u16(uint16x8_t a, uint16x8_t b); // VADDHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE uint16x4_t vaddhn_u32(uint32x4_t a, uint32x4_t b); // VADDHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE uint32x2_t vaddhn_u64(uint64x2_t a, uint64x2_t b); // VADDHN.I64 d0,q0,q0 |
| //Vector rounding add high half: vraddhn |
| _NEON2SSESTORAGE int8x8_t vraddhn_s16(int16x8_t a, int16x8_t b); // VRADDHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE int16x4_t vraddhn_s32(int32x4_t a, int32x4_t b); // VRADDHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE int32x2_t vraddhn_s64(int64x2_t a, int64x2_t b); // VRADDHN.I64 d0,q0,q0 |
| _NEON2SSESTORAGE uint8x8_t vraddhn_u16(uint16x8_t a, uint16x8_t b); // VRADDHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE uint16x4_t vraddhn_u32(uint32x4_t a, uint32x4_t b); // VRADDHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE uint32x2_t vraddhn_u64(uint64x2_t a, uint64x2_t b); // VRADDHN.I64 d0,q0,q0 |
| //Multiplication |
| //Vector multiply: vmul -> Vr[i] := Va[i] * Vb[i] |
| _NEON2SSESTORAGE int8x8_t vmul_s8(int8x8_t a, int8x8_t b); // VMUL.I8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vmul_s16(int16x4_t a, int16x4_t b); // VMUL.I16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vmul_s32(int32x2_t a, int32x2_t b); // VMUL.I32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vmul_f32(float32x2_t a, float32x2_t b); // VMUL.F32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vmul_u8(uint8x8_t a, uint8x8_t b); // VMUL.I8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vmul_u16(uint16x4_t a, uint16x4_t b); // VMUL.I16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vmul_u32(uint32x2_t a, uint32x2_t b); // VMUL.I32 d0,d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vmul_p8(poly8x8_t a, poly8x8_t b); // VMUL.P8 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vmulq_s8(int8x16_t a, int8x16_t b); // VMUL.I8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vmulq_s16(int16x8_t a, int16x8_t b); // VMUL.I16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vmulq_s32(int32x4_t a, int32x4_t b); // VMUL.I32 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vmulq_f32(float32x4_t a, float32x4_t b); // VMUL.F32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b); // VMUL.I8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vmulq_u16(uint16x8_t a, uint16x8_t b); // VMUL.I16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vmulq_u32(uint32x4_t a, uint32x4_t b); // VMUL.I32 q0,q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b); // VMUL.P8 q0,q0,q0 |
| //multiply lane |
| _NEON2SSESTORAGE int16x4_t vmul_lane_s16 (int16x4_t a, int16x4_t b, __constrange(0,3) int c); |
| _NEON2SSESTORAGE int32x2_t vmul_lane_s32 (int32x2_t a, int32x2_t b, __constrange(0,1) int c); |
| _NEON2SSESTORAGE float32x2_t vmul_lane_f32 (float32x2_t a, float32x2_t b, __constrange(0,1) int c); |
| _NEON2SSESTORAGE uint16x4_t vmul_lane_u16 (uint16x4_t a, uint16x4_t b, __constrange(0,3) int c); |
| _NEON2SSESTORAGE uint32x2_t vmul_lane_u32 (uint32x2_t a, uint32x2_t b, __constrange(0,1) int c); |
| _NEON2SSESTORAGE int16x8_t vmulq_lane_s16 (int16x8_t a, int16x4_t b, __constrange(0,3) int c); |
| _NEON2SSESTORAGE int32x4_t vmulq_lane_s32 (int32x4_t a, int32x2_t b, __constrange(0,1) int c); |
| _NEON2SSESTORAGE float32x4_t vmulq_lane_f32 (float32x4_t a, float32x2_t b, __constrange(0,1) int c); |
| _NEON2SSESTORAGE uint16x8_t vmulq_lane_u16 (uint16x8_t a, uint16x4_t b, __constrange(0,3) int c); |
| _NEON2SSESTORAGE uint32x4_t vmulq_lane_u32 (uint32x4_t a, uint32x2_t b, __constrange(0,1) int c); |
| //Vector multiply accumulate: vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i] |
| _NEON2SSESTORAGE int8x8_t vmla_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLA.I8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vmla_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VMLA.I16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vmla_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLA.I32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vmla_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLA.F32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vmla_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLA.I8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vmla_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VMLA.I16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vmla_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VMLA.I32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLA.I8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLA.I16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLA.I32 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLA.F32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLA.I8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vmlaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLA.I16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vmlaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLA.I32 q0,q0,q0 |
| //Vector multiply accumulate long: vmlal -> Vr[i] := Va[i] + Vb[i] * Vc[i] |
| _NEON2SSESTORAGE int16x8_t vmlal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLAL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLAL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLAL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vmlal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLAL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vmlal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLAL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vmlal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLAL.U32 q0,d0,d0 |
| //Vector multiply subtract: vmls -> Vr[i] := Va[i] - Vb[i] * Vc[i] |
| _NEON2SSESTORAGE int8x8_t vmls_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLS.I8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vmls_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VMLS.I16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vmls_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLS.I32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vmls_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLS.F32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vmls_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLS.I8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vmls_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VMLS.I16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vmls_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VMLS.I32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLS.I8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLS.I16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLS.I32 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLS.F32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLS.I8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vmlsq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLS.I16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vmlsq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLS.I32 q0,q0,q0 |
| //Vector multiply subtract long |
| _NEON2SSESTORAGE int16x8_t vmlsl_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLSL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLSL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLSL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vmlsl_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLSL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vmlsl_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLSL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vmlsl_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLSL.U32 q0,d0,d0 |
| //Vector saturating doubling multiply high |
| _NEON2SSESTORAGE int16x4_t vqdmulh_s16(int16x4_t a, int16x4_t b); // VQDMULH.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqdmulh_s32(int32x2_t a, int32x2_t b); // VQDMULH.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b); // VQDMULH.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b); // VQDMULH.S32 q0,q0,q0 |
| //Vector saturating rounding doubling multiply high |
| _NEON2SSESTORAGE int16x4_t vqrdmulh_s16(int16x4_t a, int16x4_t b); // VQRDMULH.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqrdmulh_s32(int32x2_t a, int32x2_t b); // VQRDMULH.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b); // VQRDMULH.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b); // VQRDMULH.S32 q0,q0,q0 |
| //Vector saturating doubling multiply accumulate long |
| _NEON2SSESTORAGE int32x4_t vqdmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLAL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vqdmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLAL.S32 q0,d0,d0 |
| //Vector saturating doubling multiply subtract long |
| _NEON2SSESTORAGE int32x4_t vqdmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLSL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vqdmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLSL.S32 q0,d0,d0 |
| //Vector long multiply |
| _NEON2SSESTORAGE int16x8_t vmull_s8(int8x8_t a, int8x8_t b); // VMULL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vmull_s16(int16x4_t a, int16x4_t b); // VMULL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vmull_s32(int32x2_t a, int32x2_t b); // VMULL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vmull_u8(uint8x8_t a, uint8x8_t b); // VMULL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vmull_u16(uint16x4_t a, uint16x4_t b); // VMULL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vmull_u32(uint32x2_t a, uint32x2_t b); // VMULL.U32 q0,d0,d0 |
| _NEON2SSESTORAGE poly16x8_t vmull_p8(poly8x8_t a, poly8x8_t b); // VMULL.P8 q0,d0,d0 |
| //Vector saturating doubling long multiply |
| _NEON2SSESTORAGE int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b); // VQDMULL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vqdmull_s32(int32x2_t a, int32x2_t b); // VQDMULL.S32 q0,d0,d0 |
| //Subtraction |
| //Vector subtract |
| _NEON2SSESTORAGE int8x8_t vsub_s8(int8x8_t a, int8x8_t b); // VSUB.I8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vsub_s16(int16x4_t a, int16x4_t b); // VSUB.I16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vsub_s32(int32x2_t a, int32x2_t b); // VSUB.I32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vsub_s64(int64x1_t a, int64x1_t b); // VSUB.I64 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vsub_f32(float32x2_t a, float32x2_t b); // VSUB.F32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vsub_u8(uint8x8_t a, uint8x8_t b); // VSUB.I8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vsub_u16(uint16x4_t a, uint16x4_t b); // VSUB.I16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vsub_u32(uint32x2_t a, uint32x2_t b); // VSUB.I32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vsub_u64(uint64x1_t a, uint64x1_t b); // VSUB.I64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vsubq_s8(int8x16_t a, int8x16_t b); // VSUB.I8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vsubq_s16(int16x8_t a, int16x8_t b); // VSUB.I16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vsubq_s32(int32x4_t a, int32x4_t b); // VSUB.I32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vsubq_s64(int64x2_t a, int64x2_t b); // VSUB.I64 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vsubq_f32(float32x4_t a, float32x4_t b); // VSUB.F32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vsubq_u8(uint8x16_t a, uint8x16_t b); // VSUB.I8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vsubq_u16(uint16x8_t a, uint16x8_t b); // VSUB.I16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vsubq_u32(uint32x4_t a, uint32x4_t b); // VSUB.I32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vsubq_u64(uint64x2_t a, uint64x2_t b); // VSUB.I64 q0,q0,q0 |
| //Vector long subtract: vsub -> Vr[i]:=Va[i]+Vb[i] |
| _NEON2SSESTORAGE int16x8_t vsubl_s8(int8x8_t a, int8x8_t b); // VSUBL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vsubl_s16(int16x4_t a, int16x4_t b); // VSUBL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vsubl_s32(int32x2_t a, int32x2_t b); // VSUBL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vsubl_u8(uint8x8_t a, uint8x8_t b); // VSUBL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vsubl_u16(uint16x4_t a, uint16x4_t b); // VSUBL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vsubl_u32(uint32x2_t a, uint32x2_t b); // VSUBL.U32 q0,d0,d0 |
| //Vector wide subtract: vsub -> Vr[i]:=Va[i]+Vb[i] |
| _NEON2SSESTORAGE int16x8_t vsubw_s8(int16x8_t a, int8x8_t b); // VSUBW.S8 q0,q0,d0 |
| _NEON2SSESTORAGE int32x4_t vsubw_s16(int32x4_t a, int16x4_t b); // VSUBW.S16 q0,q0,d0 |
| _NEON2SSESTORAGE int64x2_t vsubw_s32(int64x2_t a, int32x2_t b); // VSUBW.S32 q0,q0,d0 |
| _NEON2SSESTORAGE uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b); // VSUBW.U8 q0,q0,d0 |
| _NEON2SSESTORAGE uint32x4_t vsubw_u16(uint32x4_t a, uint16x4_t b); // VSUBW.U16 q0,q0,d0 |
| _NEON2SSESTORAGE uint64x2_t vsubw_u32(uint64x2_t a, uint32x2_t b); // VSUBW.U32 q0,q0,d0 |
| //Vector saturating subtract |
| _NEON2SSESTORAGE int8x8_t vqsub_s8(int8x8_t a, int8x8_t b); // VQSUB.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vqsub_s16(int16x4_t a, int16x4_t b); // VQSUB.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqsub_s32(int32x2_t a, int32x2_t b); // VQSUB.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vqsub_s64(int64x1_t a, int64x1_t b); // VQSUB.S64 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vqsub_u8(uint8x8_t a, uint8x8_t b); // VQSUB.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vqsub_u16(uint16x4_t a, uint16x4_t b); // VQSUB.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vqsub_u32(uint32x2_t a, uint32x2_t b); // VQSUB.U32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vqsub_u64(uint64x1_t a, uint64x1_t b); // VQSUB.U64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vqsubq_s8(int8x16_t a, int8x16_t b); // VQSUB.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vqsubq_s16(int16x8_t a, int16x8_t b); // VQSUB.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b); // VQSUB.S32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b); // VQSUB.S64 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vqsubq_u8(uint8x16_t a, uint8x16_t b); // VQSUB.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vqsubq_u16(uint16x8_t a, uint16x8_t b); // VQSUB.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b); // VQSUB.U32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b); // VQSUB.U64 q0,q0,q0 |
| //Vector halving subtract |
| _NEON2SSESTORAGE int8x8_t vhsub_s8(int8x8_t a, int8x8_t b); // VHSUB.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vhsub_s16(int16x4_t a, int16x4_t b); // VHSUB.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vhsub_s32(int32x2_t a, int32x2_t b); // VHSUB.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vhsub_u8(uint8x8_t a, uint8x8_t b); // VHSUB.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vhsub_u16(uint16x4_t a, uint16x4_t b); // VHSUB.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vhsub_u32(uint32x2_t a, uint32x2_t b); // VHSUB.U32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b); // VHSUB.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b); // VHSUB.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b); // VHSUB.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b); // VHSUB.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b); // VHSUB.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b); // VHSUB.U32 q0,q0,q0 |
| //Vector subtract high half |
| _NEON2SSESTORAGE int8x8_t vsubhn_s16(int16x8_t a, int16x8_t b); // VSUBHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE int16x4_t vsubhn_s32(int32x4_t a, int32x4_t b); // VSUBHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE int32x2_t vsubhn_s64(int64x2_t a, int64x2_t b); // VSUBHN.I64 d0,q0,q0 |
| _NEON2SSESTORAGE uint8x8_t vsubhn_u16(uint16x8_t a, uint16x8_t b); // VSUBHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE uint16x4_t vsubhn_u32(uint32x4_t a, uint32x4_t b); // VSUBHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE uint32x2_t vsubhn_u64(uint64x2_t a, uint64x2_t b); // VSUBHN.I64 d0,q0,q0 |
| //Vector rounding subtract high half |
| _NEON2SSESTORAGE int8x8_t vrsubhn_s16(int16x8_t a, int16x8_t b); // VRSUBHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE int16x4_t vrsubhn_s32(int32x4_t a, int32x4_t b); // VRSUBHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE int32x2_t vrsubhn_s64(int64x2_t a, int64x2_t b); // VRSUBHN.I64 d0,q0,q0 |
| _NEON2SSESTORAGE uint8x8_t vrsubhn_u16(uint16x8_t a, uint16x8_t b); // VRSUBHN.I16 d0,q0,q0 |
| _NEON2SSESTORAGE uint16x4_t vrsubhn_u32(uint32x4_t a, uint32x4_t b); // VRSUBHN.I32 d0,q0,q0 |
| _NEON2SSESTORAGE uint32x2_t vrsubhn_u64(uint64x2_t a, uint64x2_t b); // VRSUBHN.I64 d0,q0,q0 |
| //Comparison |
| //Vector compare equal |
| _NEON2SSESTORAGE uint8x8_t vceq_s8(int8x8_t a, int8x8_t b); // VCEQ.I8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vceq_s16(int16x4_t a, int16x4_t b); // VCEQ.I16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vceq_s32(int32x2_t a, int32x2_t b); // VCEQ.I32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vceq_f32(float32x2_t a, float32x2_t b); // VCEQ.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vceq_u8(uint8x8_t a, uint8x8_t b); // VCEQ.I8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vceq_u16(uint16x4_t a, uint16x4_t b); // VCEQ.I16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vceq_u32(uint32x2_t a, uint32x2_t b); // VCEQ.I32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vceq_p8(poly8x8_t a, poly8x8_t b); // VCEQ.I8 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x16_t vceqq_s8(int8x16_t a, int8x16_t b); // VCEQ.I8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vceqq_s16(int16x8_t a, int16x8_t b); // VCEQ.I16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vceqq_s32(int32x4_t a, int32x4_t b); // VCEQ.I32 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b); // VCEQ.F32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vceqq_u8(uint8x16_t a, uint8x16_t b); // VCEQ.I8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vceqq_u16(uint16x8_t a, uint16x8_t b); // VCEQ.I16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vceqq_u32(uint32x4_t a, uint32x4_t b); // VCEQ.I32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vceqq_p8(poly8x16_t a, poly8x16_t b); // VCEQ.I8 q0, q0, q0 |
| //Vector compare greater-than or equal |
| _NEON2SSESTORAGE uint8x8_t vcge_s8(int8x8_t a, int8x8_t b); // VCGE.S8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vcge_s16(int16x4_t a, int16x4_t b); // VCGE.S16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcge_s32(int32x2_t a, int32x2_t b); // VCGE.S32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcge_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vcge_u8(uint8x8_t a, uint8x8_t b); // VCGE.U8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vcge_u16(uint16x4_t a, uint16x4_t b); // VCGE.U16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcge_u32(uint32x2_t a, uint32x2_t b); // VCGE.U32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b); // VCGE.U16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 |
| //Vector compare less-than or equal |
| _NEON2SSESTORAGE uint8x8_t vcle_s8(int8x8_t a, int8x8_t b); // VCGE.S8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vcle_s16(int16x4_t a, int16x4_t b); // VCGE.S16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcle_s32(int32x2_t a, int32x2_t b); // VCGE.S32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcle_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vcle_u8(uint8x8_t a, uint8x8_t b); // VCGE.U8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vcle_u16(uint16x4_t a, uint16x4_t b); // VCGE.U16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcle_u32(uint32x2_t a, uint32x2_t b); // VCGE.U32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b); // VCGE.U16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 |
| //Vector compare greater-than |
| _NEON2SSESTORAGE uint8x8_t vcgt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vcgt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcgt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcgt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vcgt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vcgt_u16(uint16x4_t a, uint16x4_t b); // VCGT.U16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcgt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x16_t vcgtq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcgtq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcgtq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b); // VCGT.U16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 |
| //Vector compare less-than |
| _NEON2SSESTORAGE uint8x8_t vclt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vclt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vclt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vclt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vclt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vclt_u16(uint16x4_t a, uint16x4_t b); // VCGT.U16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vclt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x16_t vcltq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcltq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcltq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcltq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vcltq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vcltq_u16(uint16x8_t a, uint16x8_t b); // VCGT.U16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcltq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 |
| //Vector compare absolute greater-than or equal |
| _NEON2SSESTORAGE uint32x2_t vcage_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 |
| //Vector compare absolute less-than or equal |
| _NEON2SSESTORAGE uint32x2_t vcale_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 |
| //Vector compare absolute greater-than |
| _NEON2SSESTORAGE uint32x2_t vcagt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 |
| //Vector compare absolute less-than |
| _NEON2SSESTORAGE uint32x2_t vcalt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 |
| //Vector test bits |
| _NEON2SSESTORAGE uint8x8_t vtst_s8(int8x8_t a, int8x8_t b); // VTST.8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vtst_s16(int16x4_t a, int16x4_t b); // VTST.16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vtst_s32(int32x2_t a, int32x2_t b); // VTST.32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vtst_u8(uint8x8_t a, uint8x8_t b); // VTST.8 d0, d0, d0 |
| _NEON2SSESTORAGE uint16x4_t vtst_u16(uint16x4_t a, uint16x4_t b); // VTST.16 d0, d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vtst_u32(uint32x2_t a, uint32x2_t b); // VTST.32 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x8_t vtst_p8(poly8x8_t a, poly8x8_t b); // VTST.8 d0, d0, d0 |
| _NEON2SSESTORAGE uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b); // VTST.8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b); // VTST.16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b); // VTST.32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vtstq_u8(uint8x16_t a, uint8x16_t b); // VTST.8 q0, q0, q0 |
| _NEON2SSESTORAGE uint16x8_t vtstq_u16(uint16x8_t a, uint16x8_t b); // VTST.16 q0, q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vtstq_u32(uint32x4_t a, uint32x4_t b); // VTST.32 q0, q0, q0 |
| _NEON2SSESTORAGE uint8x16_t vtstq_p8(poly8x16_t a, poly8x16_t b); // VTST.8 q0, q0, q0 |
| //Absolute difference |
| //Absolute difference between the arguments: Vr[i] = | Va[i] - Vb[i] | |
| _NEON2SSESTORAGE int8x8_t vabd_s8(int8x8_t a, int8x8_t b); // VABD.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vabd_s16(int16x4_t a, int16x4_t b); // VABD.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vabd_s32(int32x2_t a, int32x2_t b); // VABD.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vabd_u8(uint8x8_t a, uint8x8_t b); // VABD.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vabd_u16(uint16x4_t a, uint16x4_t b); // VABD.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vabd_u32(uint32x2_t a, uint32x2_t b); // VABD.U32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vabd_f32(float32x2_t a, float32x2_t b); // VABD.F32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vabdq_s8(int8x16_t a, int8x16_t b); // VABD.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vabdq_s16(int16x8_t a, int16x8_t b); // VABD.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vabdq_s32(int32x4_t a, int32x4_t b); // VABD.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b); // VABD.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b); // VABD.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b); // VABD.U32 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vabdq_f32(float32x4_t a, float32x4_t b); // VABD.F32 q0,q0,q0 |
| //Absolute difference - long |
| _NEON2SSESTORAGE int16x8_t vabdl_s8(int8x8_t a, int8x8_t b); // VABDL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vabdl_s16(int16x4_t a, int16x4_t b); // VABDL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vabdl_s32(int32x2_t a, int32x2_t b); // VABDL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vabdl_u8(uint8x8_t a, uint8x8_t b); // VABDL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vabdl_u16(uint16x4_t a, uint16x4_t b); // VABDL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vabdl_u32(uint32x2_t a, uint32x2_t b); // VABDL.U32 q0,d0,d0 |
| //Absolute difference and accumulate: Vr[i] = Va[i] + | Vb[i] - Vc[i] | |
| _NEON2SSESTORAGE int8x8_t vaba_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VABA.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vaba_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VABA.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vaba_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VABA.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vaba_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VABA.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vaba_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VABA.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vaba_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VABA.U32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VABA.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VABA.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VABA.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VABA.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VABA.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VABA.U32 q0,q0,q0 |
| //Absolute difference and accumulate - long |
| _NEON2SSESTORAGE int16x8_t vabal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VABAL.S8 q0,d0,d0 |
| _NEON2SSESTORAGE int32x4_t vabal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VABAL.S16 q0,d0,d0 |
| _NEON2SSESTORAGE int64x2_t vabal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VABAL.S32 q0,d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vabal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VABAL.U8 q0,d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vabal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VABAL.U16 q0,d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vabal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VABAL.U32 q0,d0,d0 |
| //Max/Min |
| //vmax -> Vr[i] := (Va[i] >= Vb[i]) ? Va[i] : Vb[i] |
| _NEON2SSESTORAGE int8x8_t vmax_s8(int8x8_t a, int8x8_t b); // VMAX.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vmax_s16(int16x4_t a, int16x4_t b); // VMAX.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vmax_s32(int32x2_t a, int32x2_t b); // VMAX.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vmax_u8(uint8x8_t a, uint8x8_t b); // VMAX.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vmax_u16(uint16x4_t a, uint16x4_t b); // VMAX.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vmax_u32(uint32x2_t a, uint32x2_t b); // VMAX.U32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vmax_f32(float32x2_t a, float32x2_t b); // VMAX.F32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vmaxq_s8(int8x16_t a, int8x16_t b); // VMAX.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vmaxq_s16(int16x8_t a, int16x8_t b); // VMAX.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vmaxq_s32(int32x4_t a, int32x4_t b); // VMAX.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vmaxq_u8(uint8x16_t a, uint8x16_t b); // VMAX.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vmaxq_u16(uint16x8_t a, uint16x8_t b); // VMAX.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vmaxq_u32(uint32x4_t a, uint32x4_t b); // VMAX.U32 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vmaxq_f32(float32x4_t a, float32x4_t b); // VMAX.F32 q0,q0,q0 |
| |
| _NEON2SSESTORAGE float64x2_t vmaxq_f64(float64x2_t a, float64x2_t b); // VMAX.F64 q0,q0,q0 |
| |
| //vmin -> Vr[i] := (Va[i] >= Vb[i]) ? Vb[i] : Va[i] |
| _NEON2SSESTORAGE int8x8_t vmin_s8(int8x8_t a, int8x8_t b); // VMIN.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vmin_s16(int16x4_t a, int16x4_t b); // VMIN.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vmin_s32(int32x2_t a, int32x2_t b); // VMIN.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vmin_u8(uint8x8_t a, uint8x8_t b); // VMIN.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vmin_u16(uint16x4_t a, uint16x4_t b); // VMIN.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vmin_u32(uint32x2_t a, uint32x2_t b); // VMIN.U32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vmin_f32(float32x2_t a, float32x2_t b); // VMIN.F32 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vminq_s8(int8x16_t a, int8x16_t b); // VMIN.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vminq_s16(int16x8_t a, int16x8_t b); // VMIN.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vminq_s32(int32x4_t a, int32x4_t b); // VMIN.S32 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vminq_u8(uint8x16_t a, uint8x16_t b); // VMIN.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vminq_u16(uint16x8_t a, uint16x8_t b); // VMIN.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vminq_u32(uint32x4_t a, uint32x4_t b); // VMIN.U32 q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vminq_f32(float32x4_t a, float32x4_t b); // VMIN.F32 q0,q0,q0 |
| |
| _NEON2SSESTORAGE float64x2_t vminq_f64(float64x2_t a, float64x2_t b); // VMIN.F64 q0,q0,q0 |
| |
| //Pairwise addition |
| //Pairwise add |
| _NEON2SSESTORAGE int8x8_t vpadd_s8(int8x8_t a, int8x8_t b); // VPADD.I8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vpadd_s16(int16x4_t a, int16x4_t b); // VPADD.I16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vpadd_s32(int32x2_t a, int32x2_t b); // VPADD.I32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vpadd_u8(uint8x8_t a, uint8x8_t b); // VPADD.I8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vpadd_u16(uint16x4_t a, uint16x4_t b); // VPADD.I16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vpadd_u32(uint32x2_t a, uint32x2_t b); // VPADD.I32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vpadd_f32(float32x2_t a, float32x2_t b); // VPADD.F32 d0,d0,d0 |
| //Long pairwise add |
| _NEON2SSESTORAGE int16x4_t vpaddl_s8(int8x8_t a); // VPADDL.S8 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vpaddl_s16(int16x4_t a); // VPADDL.S16 d0,d0 |
| _NEON2SSESTORAGE int64x1_t vpaddl_s32(int32x2_t a); // VPADDL.S32 d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vpaddl_u8(uint8x8_t a); // VPADDL.U8 d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vpaddl_u16(uint16x4_t a); // VPADDL.U16 d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vpaddl_u32(uint32x2_t a); // VPADDL.U32 d0,d0 |
| _NEON2SSESTORAGE int16x8_t vpaddlq_s8(int8x16_t a); // VPADDL.S8 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vpaddlq_s16(int16x8_t a); // VPADDL.S16 q0,q0 |
| _NEON2SSESTORAGE int64x2_t vpaddlq_s32(int32x4_t a); // VPADDL.S32 q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vpaddlq_u8(uint8x16_t a); // VPADDL.U8 q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vpaddlq_u16(uint16x8_t a); // VPADDL.U16 q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vpaddlq_u32(uint32x4_t a); // VPADDL.U32 q0,q0 |
| //Long pairwise add and accumulate |
| _NEON2SSESTORAGE int16x4_t vpadal_s8(int16x4_t a, int8x8_t b); // VPADAL.S8 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vpadal_s16(int32x2_t a, int16x4_t b); // VPADAL.S16 d0,d0 |
| _NEON2SSESTORAGE int64x1_t vpadal_s32(int64x1_t a, int32x2_t b); // VPADAL.S32 d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vpadal_u8(uint16x4_t a, uint8x8_t b); // VPADAL.U8 d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vpadal_u16(uint32x2_t a, uint16x4_t b); // VPADAL.U16 d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vpadal_u32(uint64x1_t a, uint32x2_t b); // VPADAL.U32 d0,d0 |
| _NEON2SSESTORAGE int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b); // VPADAL.S8 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b); // VPADAL.S16 q0,q0 |
| _NEON2SSESTORAGE int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b); // VPADAL.S32 q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b); // VPADAL.U8 q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b); // VPADAL.U16 q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b); // VPADAL.U32 q0,q0 |
| //Folding maximum vpmax -> takes maximum of adjacent pairs |
| _NEON2SSESTORAGE int8x8_t vpmax_s8(int8x8_t a, int8x8_t b); // VPMAX.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vpmax_s16(int16x4_t a, int16x4_t b); // VPMAX.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vpmax_s32(int32x2_t a, int32x2_t b); // VPMAX.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vpmax_u8(uint8x8_t a, uint8x8_t b); // VPMAX.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vpmax_u16(uint16x4_t a, uint16x4_t b); // VPMAX.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vpmax_u32(uint32x2_t a, uint32x2_t b); // VPMAX.U32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vpmax_f32(float32x2_t a, float32x2_t b); // VPMAX.F32 d0,d0,d0 |
| //Folding minimum vpmin -> takes minimum of adjacent pairs |
| _NEON2SSESTORAGE int8x8_t vpmin_s8(int8x8_t a, int8x8_t b); // VPMIN.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vpmin_s16(int16x4_t a, int16x4_t b); // VPMIN.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vpmin_s32(int32x2_t a, int32x2_t b); // VPMIN.S32 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vpmin_u8(uint8x8_t a, uint8x8_t b); // VPMIN.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vpmin_u16(uint16x4_t a, uint16x4_t b); // VPMIN.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vpmin_u32(uint32x2_t a, uint32x2_t b); // VPMIN.U32 d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vpmin_f32(float32x2_t a, float32x2_t b); // VPMIN.F32 d0,d0,d0 |
| //Reciprocal/Sqrt |
| _NEON2SSESTORAGE float32x2_t vrecps_f32(float32x2_t a, float32x2_t b); // VRECPS.F32 d0, d0, d0 |
| _NEON2SSESTORAGE float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b); // VRECPS.F32 q0, q0, q0 |
| _NEON2SSESTORAGE float32x2_t vrsqrts_f32(float32x2_t a, float32x2_t b); // VRSQRTS.F32 d0, d0, d0 |
| _NEON2SSESTORAGE float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b); // VRSQRTS.F32 q0, q0, q0 |
| //Shifts by signed variable |
| //Vector shift left: Vr[i] := Va[i] << Vb[i] (negative values shift right) |
| _NEON2SSESTORAGE int8x8_t vshl_s8(int8x8_t a, int8x8_t b); // VSHL.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vshl_s16(int16x4_t a, int16x4_t b); // VSHL.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vshl_s32(int32x2_t a, int32x2_t b); // VSHL.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vshl_s64(int64x1_t a, int64x1_t b); // VSHL.S64 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vshl_u8(uint8x8_t a, int8x8_t b); // VSHL.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vshl_u16(uint16x4_t a, int16x4_t b); // VSHL.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vshl_u32(uint32x2_t a, int32x2_t b); // VSHL.U32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vshl_u64(uint64x1_t a, int64x1_t b); // VSHL.U64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vshlq_s8(int8x16_t a, int8x16_t b); // VSHL.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vshlq_s16(int16x8_t a, int16x8_t b); // VSHL.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vshlq_s32(int32x4_t a, int32x4_t b); // VSHL.S32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vshlq_s64(int64x2_t a, int64x2_t b); // VSHL.S64 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b); // VSHL.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b); // VSHL.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b); // VSHL.U32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b); // VSHL.U64 q0,q0,q0 |
| //Vector saturating shift left: (negative values shift right) |
| _NEON2SSESTORAGE int8x8_t vqshl_s8(int8x8_t a, int8x8_t b); // VQSHL.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vqshl_s16(int16x4_t a, int16x4_t b); // VQSHL.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqshl_s32(int32x2_t a, int32x2_t b); // VQSHL.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vqshl_s64(int64x1_t a, int64x1_t b); // VQSHL.S64 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vqshl_u8(uint8x8_t a, int8x8_t b); // VQSHL.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vqshl_u16(uint16x4_t a, int16x4_t b); // VQSHL.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vqshl_u32(uint32x2_t a, int32x2_t b); // VQSHL.U32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vqshl_u64(uint64x1_t a, int64x1_t b); // VQSHL.U64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b); // VQSHL.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b); // VQSHL.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b); // VQSHL.S32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b); // VQSHL.S64 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b); // VQSHL.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b); // VQSHL.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b); // VQSHL.U32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b); // VQSHL.U64 q0,q0,q0 |
| //Vector rounding shift left: (negative values shift right) |
| _NEON2SSESTORAGE int8x8_t vrshl_s8(int8x8_t a, int8x8_t b); // VRSHL.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vrshl_s16(int16x4_t a, int16x4_t b); // VRSHL.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vrshl_s32(int32x2_t a, int32x2_t b); // VRSHL.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vrshl_s64(int64x1_t a, int64x1_t b); // VRSHL.S64 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vrshl_u8(uint8x8_t a, int8x8_t b); // VRSHL.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vrshl_u16(uint16x4_t a, int16x4_t b); // VRSHL.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vrshl_u32(uint32x2_t a, int32x2_t b); // VRSHL.U32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vrshl_u64(uint64x1_t a, int64x1_t b); // VRSHL.U64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b); // VRSHL.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b); // VRSHL.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b); // VRSHL.S32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b); // VRSHL.S64 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b); // VRSHL.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b); // VRSHL.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b); // VRSHL.U32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b); // VRSHL.U64 q0,q0,q0 |
| //Vector saturating rounding shift left: (negative values shift right) |
| _NEON2SSESTORAGE int8x8_t vqrshl_s8(int8x8_t a, int8x8_t b); // VQRSHL.S8 d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vqrshl_s16(int16x4_t a, int16x4_t b); // VQRSHL.S16 d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqrshl_s32(int32x2_t a, int32x2_t b); // VQRSHL.S32 d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vqrshl_s64(int64x1_t a, int64x1_t b); // VQRSHL.S64 d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vqrshl_u8(uint8x8_t a, int8x8_t b); // VQRSHL.U8 d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vqrshl_u16(uint16x4_t a, int16x4_t b); // VQRSHL.U16 d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vqrshl_u32(uint32x2_t a, int32x2_t b); // VQRSHL.U32 d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vqrshl_u64(uint64x1_t a, int64x1_t b); // VQRSHL.U64 d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b); // VQRSHL.S8 q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b); // VQRSHL.S16 q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b); // VQRSHL.S32 q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b); // VQRSHL.S64 q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b); // VQRSHL.U8 q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b); // VQRSHL.U16 q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b); // VQRSHL.U32 q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b); // VQRSHL.U64 q0,q0,q0 |
| //Shifts by a constant |
| //Vector shift right by constant |
| _NEON2SSESTORAGE int8x8_t vshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VSHR.S8 d0,d0,#8 |
| _NEON2SSESTORAGE int16x4_t vshr_n_s16(int16x4_t a, __constrange(1,16) int b); // VSHR.S16 d0,d0,#16 |
| _NEON2SSESTORAGE int32x2_t vshr_n_s32(int32x2_t a, __constrange(1,32) int b); // VSHR.S32 d0,d0,#32 |
| _NEON2SSESTORAGE int64x1_t vshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VSHR.S64 d0,d0,#64 |
| _NEON2SSESTORAGE uint8x8_t vshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VSHR.U8 d0,d0,#8 |
| _NEON2SSESTORAGE uint16x4_t vshr_n_u16(uint16x4_t a, __constrange(1,16) int b); // VSHR.U16 d0,d0,#16 |
| _NEON2SSESTORAGE uint32x2_t vshr_n_u32(uint32x2_t a, __constrange(1,32) int b); // VSHR.U32 d0,d0,#32 |
| _NEON2SSESTORAGE uint64x1_t vshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VSHR.U64 d0,d0,#64 |
| _NEON2SSESTORAGE int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VSHR.S8 q0,q0,#8 |
| _NEON2SSESTORAGE int16x8_t vshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VSHR.S16 q0,q0,#16 |
| _NEON2SSESTORAGE int32x4_t vshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VSHR.S32 q0,q0,#32 |
| _NEON2SSESTORAGE int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VSHR.S64 q0,q0,#64 |
| _NEON2SSESTORAGE uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VSHR.U8 q0,q0,#8 |
| _NEON2SSESTORAGE uint16x8_t vshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VSHR.U16 q0,q0,#16 |
| _NEON2SSESTORAGE uint32x4_t vshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VSHR.U32 q0,q0,#32 |
| _NEON2SSESTORAGE uint64x2_t vshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VSHR.U64 q0,q0,#64 |
| //Vector shift left by constant |
| _NEON2SSESTORAGE int8x8_t vshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0 |
| _NEON2SSESTORAGE int16x4_t vshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VSHL.I16 d0,d0,#0 |
| _NEON2SSESTORAGE int32x2_t vshl_n_s32(int32x2_t a, __constrange(0,31) int b); // VSHL.I32 d0,d0,#0 |
| _NEON2SSESTORAGE int64x1_t vshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0 |
| _NEON2SSESTORAGE uint8x8_t vshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0 |
| _NEON2SSESTORAGE uint16x4_t vshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VSHL.I16 d0,d0,#0 |
| _NEON2SSESTORAGE uint32x2_t vshl_n_u32(uint32x2_t a, __constrange(0,31) int b); // VSHL.I32 d0,d0,#0 |
| _NEON2SSESTORAGE uint64x1_t vshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0 |
| _NEON2SSESTORAGE int8x16_t vshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 |
| _NEON2SSESTORAGE int16x8_t vshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 |
| _NEON2SSESTORAGE int32x4_t vshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 |
| _NEON2SSESTORAGE int64x2_t vshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 |
| _NEON2SSESTORAGE uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 |
| _NEON2SSESTORAGE uint16x8_t vshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 |
| _NEON2SSESTORAGE uint32x4_t vshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 |
| _NEON2SSESTORAGE uint64x2_t vshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 |
| //Vector rounding shift right by constant |
| _NEON2SSESTORAGE int8x8_t vrshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VRSHR.S8 d0,d0,#8 |
| _NEON2SSESTORAGE int16x4_t vrshr_n_s16(int16x4_t a, __constrange(1,16) int b); // VRSHR.S16 d0,d0,#16 |
| _NEON2SSESTORAGE int32x2_t vrshr_n_s32(int32x2_t a, __constrange(1,32) int b); // VRSHR.S32 d0,d0,#32 |
| _NEON2SSESTORAGE int64x1_t vrshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VRSHR.S64 d0,d0,#64 |
| _NEON2SSESTORAGE uint8x8_t vrshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VRSHR.U8 d0,d0,#8 |
| _NEON2SSESTORAGE uint16x4_t vrshr_n_u16(uint16x4_t a, __constrange(1,16) int b); // VRSHR.U16 d0,d0,#16 |
| _NEON2SSESTORAGE uint32x2_t vrshr_n_u32(uint32x2_t a, __constrange(1,32) int b); // VRSHR.U32 d0,d0,#32 |
| _NEON2SSESTORAGE uint64x1_t vrshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VRSHR.U64 d0,d0,#64 |
| _NEON2SSESTORAGE int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VRSHR.S8 q0,q0,#8 |
| _NEON2SSESTORAGE int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VRSHR.S16 q0,q0,#16 |
| _NEON2SSESTORAGE int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VRSHR.S32 q0,q0,#32 |
| _NEON2SSESTORAGE int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VRSHR.S64 q0,q0,#64 |
| _NEON2SSESTORAGE uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VRSHR.U8 q0,q0,#8 |
| _NEON2SSESTORAGE uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VRSHR.U16 q0,q0,#16 |
| _NEON2SSESTORAGE uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VRSHR.U32 q0,q0,#32 |
| _NEON2SSESTORAGE uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VRSHR.U64 q0,q0,#64 |
| //Vector shift right by constant and accumulate |
| _NEON2SSESTORAGE int8x8_t vsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRA.S8 d0,d0,#8 |
| _NEON2SSESTORAGE int16x4_t vsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRA.S16 d0,d0,#16 |
| _NEON2SSESTORAGE int32x2_t vsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRA.S32 d0,d0,#32 |
| _NEON2SSESTORAGE int64x1_t vsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRA.S64 d0,d0,#64 |
| _NEON2SSESTORAGE uint8x8_t vsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRA.U8 d0,d0,#8 |
| _NEON2SSESTORAGE uint16x4_t vsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRA.U16 d0,d0,#16 |
| _NEON2SSESTORAGE uint32x2_t vsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRA.U32 d0,d0,#32 |
| _NEON2SSESTORAGE uint64x1_t vsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRA.U64 d0,d0,#64 |
| _NEON2SSESTORAGE int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRA.S8 q0,q0,#8 |
| _NEON2SSESTORAGE int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRA.S16 q0,q0,#16 |
| _NEON2SSESTORAGE int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRA.S32 q0,q0,#32 |
| _NEON2SSESTORAGE int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRA.S64 q0,q0,#64 |
| _NEON2SSESTORAGE uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRA.U8 q0,q0,#8 |
| _NEON2SSESTORAGE uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRA.U16 q0,q0,#16 |
| _NEON2SSESTORAGE uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRA.U32 q0,q0,#32 |
| _NEON2SSESTORAGE uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRA.U64 q0,q0,#64 |
| //Vector rounding shift right by constant and accumulate |
| _NEON2SSESTORAGE int8x8_t vrsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VRSRA.S8 d0,d0,#8 |
| _NEON2SSESTORAGE int16x4_t vrsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VRSRA.S16 d0,d0,#16 |
| _NEON2SSESTORAGE int32x2_t vrsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VRSRA.S32 d0,d0,#32 |
| _NEON2SSESTORAGE int64x1_t vrsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VRSRA.S64 d0,d0,#64 |
| _NEON2SSESTORAGE uint8x8_t vrsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VRSRA.U8 d0,d0,#8 |
| _NEON2SSESTORAGE uint16x4_t vrsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VRSRA.U16 d0,d0,#16 |
| _NEON2SSESTORAGE uint32x2_t vrsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VRSRA.U32 d0,d0,#32 |
| _NEON2SSESTORAGE uint64x1_t vrsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VRSRA.U64 d0,d0,#64 |
| _NEON2SSESTORAGE int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VRSRA.S8 q0,q0,#8 |
| _NEON2SSESTORAGE int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VRSRA.S16 q0,q0,#16 |
| _NEON2SSESTORAGE int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VRSRA.S32 q0,q0,#32 |
| _NEON2SSESTORAGE int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VRSRA.S64 q0,q0,#64 |
| _NEON2SSESTORAGE uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VRSRA.U8 q0,q0,#8 |
| _NEON2SSESTORAGE uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VRSRA.U16 q0,q0,#16 |
| _NEON2SSESTORAGE uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VRSRA.U32 q0,q0,#32 |
| _NEON2SSESTORAGE uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VRSRA.U64 q0,q0,#64 |
| //Vector saturating shift left by constant |
| _NEON2SSESTORAGE int8x8_t vqshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHL.S8 d0,d0,#0 |
| _NEON2SSESTORAGE int16x4_t vqshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHL.S16 d0,d0,#0 |
| _NEON2SSESTORAGE int32x2_t vqshl_n_s32(int32x2_t a, __constrange(0,31) int b); // VQSHL.S32 d0,d0,#0 |
| _NEON2SSESTORAGE int64x1_t vqshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHL.S64 d0,d0,#0 |
| _NEON2SSESTORAGE uint8x8_t vqshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VQSHL.U8 d0,d0,#0 |
| _NEON2SSESTORAGE uint16x4_t vqshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VQSHL.U16 d0,d0,#0 |
| _NEON2SSESTORAGE uint32x2_t vqshl_n_u32(uint32x2_t a, __constrange(0,31) int b); // VQSHL.U32 d0,d0,#0 |
| _NEON2SSESTORAGE uint64x1_t vqshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VQSHL.U64 d0,d0,#0 |
| _NEON2SSESTORAGE int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHL.S8 q0,q0,#0 |
| _NEON2SSESTORAGE int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHL.S16 q0,q0,#0 |
| _NEON2SSESTORAGE int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHL.S32 q0,q0,#0 |
| _NEON2SSESTORAGE int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHL.S64 q0,q0,#0 |
| _NEON2SSESTORAGE uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VQSHL.U8 q0,q0,#0 |
| _NEON2SSESTORAGE uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VQSHL.U16 q0,q0,#0 |
| _NEON2SSESTORAGE uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VQSHL.U32 q0,q0,#0 |
| _NEON2SSESTORAGE uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VQSHL.U64 q0,q0,#0 |
| //Vector signed->unsigned saturating shift left by constant |
| _NEON2SSESTORAGE uint8x8_t vqshlu_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHLU.S8 d0,d0,#0 |
| _NEON2SSESTORAGE uint16x4_t vqshlu_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHLU.S16 d0,d0,#0 |
| _NEON2SSESTORAGE uint32x2_t vqshlu_n_s32(int32x2_t a, __constrange(0,31) int b); // VQSHLU.S32 d0,d0,#0 |
| _NEON2SSESTORAGE uint64x1_t vqshlu_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHLU.S64 d0,d0,#0 |
| _NEON2SSESTORAGE uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHLU.S8 q0,q0,#0 |
| _NEON2SSESTORAGE uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHLU.S16 q0,q0,#0 |
| _NEON2SSESTORAGE uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHLU.S32 q0,q0,#0 |
| _NEON2SSESTORAGE uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHLU.S64 q0,q0,#0 |
| //Vector narrowing shift right by constant |
| _NEON2SSESTORAGE int8x8_t vshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8 |
| _NEON2SSESTORAGE int16x4_t vshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16 |
| _NEON2SSESTORAGE int32x2_t vshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32 |
| _NEON2SSESTORAGE uint8x8_t vshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8 |
| _NEON2SSESTORAGE uint16x4_t vshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16 |
| _NEON2SSESTORAGE uint32x2_t vshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32 |
| //Vector signed->unsigned narrowing saturating shift right by constant |
| _NEON2SSESTORAGE uint8x8_t vqshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRUN.S16 d0,q0,#8 |
| _NEON2SSESTORAGE uint16x4_t vqshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRUN.S32 d0,q0,#16 |
| _NEON2SSESTORAGE uint32x2_t vqshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRUN.S64 d0,q0,#32 |
| //Vector signed->unsigned rounding narrowing saturating shift right by constant |
| _NEON2SSESTORAGE uint8x8_t vqrshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRUN.S16 d0,q0,#8 |
| _NEON2SSESTORAGE uint16x4_t vqrshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRUN.S32 d0,q0,#16 |
| _NEON2SSESTORAGE uint32x2_t vqrshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRUN.S64 d0,q0,#32 |
| //Vector narrowing saturating shift right by constant |
| _NEON2SSESTORAGE int8x8_t vqshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRN.S16 d0,q0,#8 |
| _NEON2SSESTORAGE int16x4_t vqshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRN.S32 d0,q0,#16 |
| _NEON2SSESTORAGE int32x2_t vqshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRN.S64 d0,q0,#32 |
| _NEON2SSESTORAGE uint8x8_t vqshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQSHRN.U16 d0,q0,#8 |
| _NEON2SSESTORAGE uint16x4_t vqshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQSHRN.U32 d0,q0,#16 |
| _NEON2SSESTORAGE uint32x2_t vqshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQSHRN.U64 d0,q0,#32 |
| //Vector rounding narrowing shift right by constant |
| _NEON2SSESTORAGE int8x8_t vrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8 |
| _NEON2SSESTORAGE int16x4_t vrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16 |
| _NEON2SSESTORAGE int32x2_t vrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32 |
| _NEON2SSESTORAGE uint8x8_t vrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8 |
| _NEON2SSESTORAGE uint16x4_t vrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16 |
| _NEON2SSESTORAGE uint32x2_t vrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32 |
| //Vector rounding narrowing saturating shift right by constant |
| _NEON2SSESTORAGE int8x8_t vqrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRN.S16 d0,q0,#8 |
| _NEON2SSESTORAGE int16x4_t vqrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRN.S32 d0,q0,#16 |
| _NEON2SSESTORAGE int32x2_t vqrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRN.S64 d0,q0,#32 |
| _NEON2SSESTORAGE uint8x8_t vqrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQRSHRN.U16 d0,q0,#8 |
| _NEON2SSESTORAGE uint16x4_t vqrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQRSHRN.U32 d0,q0,#16 |
| _NEON2SSESTORAGE uint32x2_t vqrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQRSHRN.U64 d0,q0,#32 |
| //Vector widening shift left by constant |
| _NEON2SSESTORAGE int16x8_t vshll_n_s8(int8x8_t a, __constrange(0,8) int b); // VSHLL.S8 q0,d0,#0 |
| _NEON2SSESTORAGE int32x4_t vshll_n_s16(int16x4_t a, __constrange(0,16) int b); // VSHLL.S16 q0,d0,#0 |
| _NEON2SSESTORAGE int64x2_t vshll_n_s32(int32x2_t a, __constrange(0,32) int b); // VSHLL.S32 q0,d0,#0 |
| _NEON2SSESTORAGE uint16x8_t vshll_n_u8(uint8x8_t a, __constrange(0,8) int b); // VSHLL.U8 q0,d0,#0 |
| _NEON2SSESTORAGE uint32x4_t vshll_n_u16(uint16x4_t a, __constrange(0,16) int b); // VSHLL.U16 q0,d0,#0 |
| _NEON2SSESTORAGE uint64x2_t vshll_n_u32(uint32x2_t a, __constrange(0,32) int b); // VSHLL.U32 q0,d0,#0 |
| //Shifts with insert |
| //Vector shift right and insert |
| _NEON2SSESTORAGE int8x8_t vsri_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8 |
| _NEON2SSESTORAGE int16x4_t vsri_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16 |
| _NEON2SSESTORAGE int32x2_t vsri_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32 |
| _NEON2SSESTORAGE int64x1_t vsri_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64 |
| _NEON2SSESTORAGE uint8x8_t vsri_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8 |
| _NEON2SSESTORAGE uint16x4_t vsri_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16 |
| _NEON2SSESTORAGE uint32x2_t vsri_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32 |
| _NEON2SSESTORAGE uint64x1_t vsri_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64 |
| _NEON2SSESTORAGE poly8x8_t vsri_n_p8(poly8x8_t a, poly8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8 |
| _NEON2SSESTORAGE poly16x4_t vsri_n_p16(poly16x4_t a, poly16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16 |
| _NEON2SSESTORAGE int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 |
| _NEON2SSESTORAGE int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 |
| _NEON2SSESTORAGE int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 |
| _NEON2SSESTORAGE int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 |
| _NEON2SSESTORAGE uint8x16_t vsriq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 |
| _NEON2SSESTORAGE uint16x8_t vsriq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 |
| _NEON2SSESTORAGE uint32x4_t vsriq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 |
| _NEON2SSESTORAGE uint64x2_t vsriq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 |
| _NEON2SSESTORAGE poly8x16_t vsriq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 |
| _NEON2SSESTORAGE poly16x8_t vsriq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 |
| //Vector shift left and insert |
| _NEON2SSESTORAGE int8x8_t vsli_n_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0 |
| _NEON2SSESTORAGE int16x4_t vsli_n_s16(int16x4_t a, int16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0 |
| _NEON2SSESTORAGE int32x2_t vsli_n_s32(int32x2_t a, int32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0 |
| _NEON2SSESTORAGE int64x1_t vsli_n_s64(int64x1_t a, int64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0 |
| _NEON2SSESTORAGE uint8x8_t vsli_n_u8(uint8x8_t a, uint8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0 |
| _NEON2SSESTORAGE uint16x4_t vsli_n_u16(uint16x4_t a, uint16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0 |
| _NEON2SSESTORAGE uint32x2_t vsli_n_u32(uint32x2_t a, uint32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0 |
| _NEON2SSESTORAGE uint64x1_t vsli_n_u64(uint64x1_t a, uint64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0 |
| _NEON2SSESTORAGE poly8x8_t vsli_n_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0 |
| _NEON2SSESTORAGE poly16x4_t vsli_n_p16(poly16x4_t a, poly16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0 |
| _NEON2SSESTORAGE int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 |
| _NEON2SSESTORAGE int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 |
| _NEON2SSESTORAGE int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 |
| _NEON2SSESTORAGE int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 |
| _NEON2SSESTORAGE uint8x16_t vsliq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 |
| _NEON2SSESTORAGE uint16x8_t vsliq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 |
| _NEON2SSESTORAGE uint32x4_t vsliq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 |
| _NEON2SSESTORAGE uint64x2_t vsliq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 |
| _NEON2SSESTORAGE poly8x16_t vsliq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 |
| _NEON2SSESTORAGE poly16x8_t vsliq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 |
| //Loads of a single vector or lane. Perform loads and stores of a single vector of some type. |
| //Load a single vector from memory |
| _NEON2SSESTORAGE uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr); // VLD1.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr); // VLD1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr); // VLD1.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr); // VLD1.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr); // VLD1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr); // VLD1.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr); // VLD1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr); // VLD1.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr); // VLD1.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr); // VLD1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint8x8_t vld1_u8(__transfersize(8) uint8_t const * ptr); // VLD1.8 {d0}, [r0] |
| _NEON2SSESTORAGE uint16x4_t vld1_u16(__transfersize(4) uint16_t const * ptr); // VLD1.16 {d0}, [r0] |
| _NEON2SSESTORAGE uint32x2_t vld1_u32(__transfersize(2) uint32_t const * ptr); // VLD1.32 {d0}, [r0] |
| _NEON2SSESTORAGE uint64x1_t vld1_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE int8x8_t vld1_s8(__transfersize(8) int8_t const * ptr); // VLD1.8 {d0}, [r0] |
| _NEON2SSESTORAGE int16x4_t vld1_s16(__transfersize(4) int16_t const * ptr); // VLD1.16 {d0}, [r0] |
| _NEON2SSESTORAGE int32x2_t vld1_s32(__transfersize(2) int32_t const * ptr); // VLD1.32 {d0}, [r0] |
| _NEON2SSESTORAGE int64x1_t vld1_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE float16x4_t vld1_f16(__transfersize(4) __fp16 const * ptr); // VLD1.16 {d0}, [r0] |
| _NEON2SSESTORAGE float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr); // VLD1.32 {d0}, [r0] |
| _NEON2SSESTORAGE poly8x8_t vld1_p8(__transfersize(8) poly8_t const * ptr); // VLD1.8 {d0}, [r0] |
| _NEON2SSESTORAGE poly16x4_t vld1_p16(__transfersize(4) poly16_t const * ptr); // VLD1.16 {d0}, [r0] |
| |
| _NEON2SSESTORAGE float64x2_t vld1q_f64(__transfersize(4) float64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| |
| //Load a single lane from memory |
| _NEON2SSESTORAGE uint8x16_t vld1q_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint16x8_t vld1q_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint32x4_t vld1q_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint64x2_t vld1q_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE int8x16_t vld1q_lane_s8(__transfersize(1) int8_t const * ptr, int8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0] |
| _NEON2SSESTORAGE int16x8_t vld1q_lane_s16(__transfersize(1) int16_t const * ptr, int16x8_t vec, __constrange(0,7) int lane); //VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE int32x4_t vld1q_lane_s32(__transfersize(1) int32_t const * ptr, int32x4_t vec, __constrange(0,3) int lane); //VLD1.32 {d0[0]}, [r0] |
| _NEON2SSESTORAGE float16x8_t vld1q_lane_f16(__transfersize(1) __fp16 const * ptr, float16x8_t vec, __constrange(0,7) int lane); //VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] |
| _NEON2SSESTORAGE int64x2_t vld1q_lane_s64(__transfersize(1) int64_t const * ptr, int64x2_t vec, __constrange(0,1) int lane); //VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE poly8x16_t vld1q_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x16_t vec, __constrange(0,15) int lane); //VLD1.8 {d0[0]}, [r0] |
| _NEON2SSESTORAGE poly16x8_t vld1q_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint8x8_t vld1_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x8_t vec, __constrange(0,7) int lane); //VLD1.8 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint16x4_t vld1_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint32x2_t vld1_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x2_t vec, __constrange(0,1) int lane); //VLD1.32 {d0[0]}, [r0] |
| _NEON2SSESTORAGE uint64x1_t vld1_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x1_t vec, __constrange(0,0) int lane); //VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE int8x8_t vld1_lane_s8(__transfersize(1) int8_t const * ptr, int8x8_t vec, __constrange(0,7) int lane); // VLD1.8{d0[0]}, [r0] |
| _NEON2SSESTORAGE int16x4_t vld1_lane_s16(__transfersize(1) int16_t const * ptr, int16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE int32x2_t vld1_lane_s32(__transfersize(1) int32_t const * ptr, int32x2_t vec, __constrange(0,1) int lane); //VLD1.32 {d0[0]}, [r0] |
| _NEON2SSESTORAGE float16x4_t vld1q_lane_f16(__transfersize(1) __fp16 const * ptr, float16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0] |
| _NEON2SSESTORAGE float32x2_t vld1_lane_f32(__transfersize(1) float32_t const * ptr, float32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0] |
| _NEON2SSESTORAGE int64x1_t vld1_lane_s64(__transfersize(1) int64_t const * ptr, int64x1_t vec, __constrange(0,0) int lane); //VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE poly8x8_t vld1_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x8_t vec, __constrange(0,7) int lane); //VLD1.8 {d0[0]}, [r0] |
| _NEON2SSESTORAGE poly16x4_t vld1_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x4_t vec, __constrange(0,3) int lane); //VLD1.16 {d0[0]}, [r0] |
| //Load all lanes of vector with same value from memory |
| _NEON2SSESTORAGE uint8x16_t vld1q_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint16x8_t vld1q_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint32x4_t vld1q_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE int8x16_t vld1q_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSESTORAGE int16x8_t vld1q_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE int32x4_t vld1q_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSESTORAGE int64x2_t vld1q_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE float16x8_t vld1q_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE float32x4_t vld1q_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSESTORAGE poly8x16_t vld1q_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSESTORAGE poly16x8_t vld1q_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint8x8_t vld1_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint16x4_t vld1_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint32x2_t vld1_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSESTORAGE uint64x1_t vld1_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE int8x8_t vld1_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSESTORAGE int16x4_t vld1_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE int32x2_t vld1_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSESTORAGE int64x1_t vld1_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSESTORAGE float16x4_t vld1_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSESTORAGE float32x2_t vld1_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSESTORAGE poly8x8_t vld1_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSESTORAGE poly16x4_t vld1_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| //Store a single vector or lane. Stores all lanes or a single lane of a vector. |
| //Store a single vector into memory |
| _NEON2SSESTORAGE void vst1q_u8(__transfersize(16) uint8_t * ptr, uint8x16_t val); // VST1.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_u16(__transfersize(8) uint16_t * ptr, uint16x8_t val); // VST1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_u32(__transfersize(4) uint32_t * ptr, uint32x4_t val); // VST1.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_u64(__transfersize(2) uint64_t * ptr, uint64x2_t val); // VST1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_s8(__transfersize(16) int8_t * ptr, int8x16_t val); // VST1.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_s16(__transfersize(8) int16_t * ptr, int16x8_t val); // VST1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_s32(__transfersize(4) int32_t * ptr, int32x4_t val); // VST1.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_s64(__transfersize(2) int64_t * ptr, int64x2_t val); // VST1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_f16(__transfersize(8) __fp16 * ptr, float16x8_t val); // VST1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val); // VST1.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_p8(__transfersize(16) poly8_t * ptr, poly8x16_t val); // VST1.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1q_p16(__transfersize(8) poly16_t * ptr, poly16x8_t val); // VST1.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst1_u8(__transfersize(8) uint8_t * ptr, uint8x8_t val); // VST1.8 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_u16(__transfersize(4) uint16_t * ptr, uint16x4_t val); // VST1.16 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_u32(__transfersize(2) uint32_t * ptr, uint32x2_t val); // VST1.32 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val); // VST1.64 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_s8(__transfersize(8) int8_t * ptr, int8x8_t val); // VST1.8 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_s16(__transfersize(4) int16_t * ptr, int16x4_t val); // VST1.16 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_s32(__transfersize(2) int32_t * ptr, int32x2_t val); // VST1.32 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_s64(__transfersize(1) int64_t * ptr, int64x1_t val); // VST1.64 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_f16(__transfersize(4) __fp16 * ptr, float16x4_t val); // VST1.16 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_f32(__transfersize(2) float32_t * ptr, float32x2_t val); // VST1.32 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_p8(__transfersize(8) poly8_t * ptr, poly8x8_t val); // VST1.8 {d0}, [r0] |
| _NEON2SSESTORAGE void vst1_p16(__transfersize(4) poly16_t * ptr, poly16x4_t val); // VST1.16 {d0}, [r0] |
| //Store a lane of a vector into memory |
| //Loads of an N-element structure |
| //Load N-element structure from memory |
| _NEON2SSESTORAGE uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr); // VLD2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr); // VLD2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr); // VLD2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE int8x16x2_t vld2q_s8(__transfersize(32) int8_t const * ptr); // VLD2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE int16x8x2_t vld2q_s16(__transfersize(16) int16_t const * ptr); // VLD2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE int32x4x2_t vld2q_s32(__transfersize(8) int32_t const * ptr); // VLD2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE float16x8x2_t vld2q_f16(__transfersize(16) __fp16 const * ptr); // VLD2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr); // VLD2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE poly8x16x2_t vld2q_p8(__transfersize(32) poly8_t const * ptr); // VLD2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE poly16x8x2_t vld2q_p16(__transfersize(16) poly16_t const * ptr); // VLD2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr); // VLD2.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr); // VLD2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr); // VLD2.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int8x8x2_t vld2_s8(__transfersize(16) int8_t const * ptr); // VLD2.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int16x4x2_t vld2_s16(__transfersize(8) int16_t const * ptr); // VLD2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int32x2x2_t vld2_s32(__transfersize(4) int32_t const * ptr); // VLD2.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int64x1x2_t vld2_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| //float16x4x2_t vld2_f16(__transfersize(8) __fp16 const * ptr); // VLD2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr); // VLD2.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE poly8x8x2_t vld2_p8(__transfersize(16) poly8_t const * ptr); // VLD2.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE poly16x4x2_t vld2_p16(__transfersize(8) poly16_t const * ptr); // VLD2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE int8x16x3_t vld3q_s8(__transfersize(48) int8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE int16x8x3_t vld3q_s16(__transfersize(24) int16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE int32x4x3_t vld3q_s32(__transfersize(12) int32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE float16x8x3_t vld3q_f16(__transfersize(24) __fp16 const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] |
| poly8x16x3_t vld3q_p8(__transfersize(48) poly8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE poly16x8x3_t vld3q_p16(__transfersize(24) poly16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE int8x8x3_t vld3_s8(__transfersize(24) int8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE int16x4x3_t vld3_s16(__transfersize(12) int16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE int32x2x3_t vld3_s32(__transfersize(6) int32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] |
| int64x1x3_t vld3_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE float16x4x3_t vld3_f16(__transfersize(12) __fp16 const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE poly8x8x3_t vld3_p8(__transfersize(24) poly8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE poly16x4x3_t vld3_p16(__transfersize(12) poly16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE int8x16x4_t vld4q_s8(__transfersize(64) int8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE int16x8x4_t vld4q_s16(__transfersize(32) int16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE int32x4x4_t vld4q_s32(__transfersize(16) int32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE float16x8x4_t vld4q_f16(__transfersize(32) __fp16 const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE poly8x16x4_t vld4q_p8(__transfersize(64) poly8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE poly16x8x4_t vld4q_p16(__transfersize(32) poly16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE int8x8x4_t vld4_s8(__transfersize(32) int8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE int16x4x4_t vld4_s16(__transfersize(16) int16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE int32x2x4_t vld4_s32(__transfersize(8) int32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] |
| int64x1x4_t vld4_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE float16x4x4_t vld4_f16(__transfersize(16) __fp16 const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE poly8x8x4_t vld4_p8(__transfersize(32) poly8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE poly16x4x4_t vld4_p16(__transfersize(16) poly16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| //Load all lanes of N-element structure with same value from memory |
| _NEON2SSESTORAGE uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE uint64x1x2_t vld2_dup_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE int8x8x2_t vld2_dup_s8(__transfersize(2) int8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE int16x4x2_t vld2_dup_s16(__transfersize(2) int16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE int32x2x2_t vld2_dup_s32(__transfersize(2) int32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE int64x1x2_t vld2_dup_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| //float16x4x2_t vld2_dup_f16(__transfersize(2) __fp16 const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE poly8x8x2_t vld2_dup_p8(__transfersize(2) poly8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE poly16x4x2_t vld2_dup_p16(__transfersize(2) poly16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| _NEON2SSESTORAGE uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE int8x8x3_t vld3_dup_s8(__transfersize(3) int8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE int16x4x3_t vld3_dup_s16(__transfersize(3) int16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE int32x2x3_t vld3_dup_s32(__transfersize(3) int32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| int64x1x3_t vld3_dup_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE float16x4x3_t vld3_dup_f16(__transfersize(3) __fp16 const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE poly8x8x3_t vld3_dup_p8(__transfersize(3) poly8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE poly16x4x3_t vld3_dup_p16(__transfersize(3) poly16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSESTORAGE uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE int8x8x4_t vld4_dup_s8(__transfersize(4) int8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE int16x4x4_t vld4_dup_s16(__transfersize(4) int16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE int32x2x4_t vld4_dup_s32(__transfersize(4) int32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| int64x1x4_t vld4_dup_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE float16x4x4_t vld4_dup_f16(__transfersize(4) __fp16 const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE poly8x8x4_t vld4_dup_p8(__transfersize(4) poly8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSESTORAGE poly16x4x4_t vld4_dup_p16(__transfersize(4) poly16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| //Load a single lane of N-element structure from memory |
| //the functions below are modified to deal with the error C2719: 'src': formal parameter with __declspec(align('16')) won't be aligned |
| _NEON2SSESTORAGE uint16x8x2_t vld2q_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE uint32x4x2_t vld2q_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE int16x8x2_t vld2q_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE int32x4x2_t vld2q_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE float16x8x2_t vld2q_lane_f16_ptr(__transfersize(2) __fp16 const * ptr, float16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t * src, __constrange(0,3) int lane); // VLD2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE poly16x8x2_t vld2q_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x8x2_t * src, __constrange(0,7) int lane); // VLD2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE uint8x8x2_t vld2_lane_u8(__transfersize(2) uint8_t const * ptr, uint8x8x2_t src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE uint16x4x2_t vld2_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x4x2_t src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE uint32x2x2_t vld2_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x2x2_t src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE int8x8x2_t vld2_lane_s8(__transfersize(2) int8_t const * ptr, int8x8x2_t src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE int16x4x2_t vld2_lane_s16(__transfersize(2) int16_t const * ptr, int16x4x2_t src, __constrange(0,3) int lane); //VLD2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE int32x2x2_t vld2_lane_s32(__transfersize(2) int32_t const * ptr, int32x2x2_t src, __constrange(0,1) int lane); //VLD2.32 {d0[0], d1[0]}, [r0] |
| //float16x4x2_t vld2_lane_f16_ptr(__transfersize(2) __fp16 const * ptr, float16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE float32x2x2_t vld2_lane_f32(__transfersize(2) float32_t const * ptr, float32x2x2_t src, __constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE poly8x8x2_t vld2_lane_p8(__transfersize(2) poly8_t const * ptr, poly8x8x2_t src, __constrange(0,7) int lane); //VLD2.8 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE poly16x4x2_t vld2_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x4x2_t src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE uint16x8x3_t vld3q_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE uint32x4x3_t vld3q_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE int16x8x3_t vld3q_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE int32x4x3_t vld3q_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE float16x8x3_t vld3q_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE float32x4x3_t vld3q_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x4x3_t * src, __constrange(0,3) int lane); // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE poly16x8x3_t vld3q_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE uint8x8x3_t vld3_lane_u8(__transfersize(3) uint8_t const * ptr, uint8x8x3_t src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE uint16x4x3_t vld3_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x4x3_t src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE uint32x2x3_t vld3_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x2x3_t src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE int8x8x3_t vld3_lane_s8(__transfersize(3) int8_t const * ptr, int8x8x3_t src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE int16x4x3_t vld3_lane_s16(__transfersize(3) int16_t const * ptr, int16x4x3_t src, __constrange(0,3) int lane); //VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE int32x2x3_t vld3_lane_s32(__transfersize(3) int32_t const * ptr, int32x2x3_t src, __constrange(0,1) int lane); //VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE float16x4x3_t vld3_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE float32x2x3_t vld3_lane_f32(__transfersize(3) float32_t const * ptr, float32x2x3_t src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE poly8x8x3_t vld3_lane_p8(__transfersize(3) poly8_t const * ptr, poly8x8x3_t src, __constrange(0,7) int lane); //VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE poly16x4x3_t vld3_lane_p16(__transfersize(3) poly16_t const * ptr, poly16x4x3_t src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE uint16x8x4_t vld4q_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE uint32x4x4_t vld4q_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE int16x8x4_t vld4q_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE int32x4x4_t vld4q_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE float16x8x4_t vld4q_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE float32x4x4_t vld4q_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE poly16x8x4_t vld4q_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE uint8x8x4_t vld4_lane_u8(__transfersize(4) uint8_t const * ptr, uint8x8x4_t src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE uint16x4x4_t vld4_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x4x4_t src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE uint32x2x4_t vld4_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x2x4_t src, __constrange(0,1) int lane); // VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE int8x8x4_t vld4_lane_s8(__transfersize(4) int8_t const * ptr, int8x8x4_t src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE int16x4x4_t vld4_lane_s16(__transfersize(4) int16_t const * ptr, int16x4x4_t src, __constrange(0,3) int lane); //VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE int32x2x4_t vld4_lane_s32(__transfersize(4) int32_t const * ptr, int32x2x4_t src, __constrange(0,1) int lane); //VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE float16x4x4_t vld4_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x4x4_t * src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE float32x2x4_t vld4_lane_f32(__transfersize(4) float32_t const * ptr, float32x2x4_t src, __constrange(0,1) int lane); // VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE poly8x8x4_t vld4_lane_p8(__transfersize(4) poly8_t const * ptr, poly8x8x4_t src, __constrange(0,7) int lane); //VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE poly16x4x4_t vld4_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x4x4_t src, __constrange(0,3) int lane); // VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| //Store N-element structure to memory |
| _NEON2SSESTORAGE void vst2q_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x16x2_t * val); // VST2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x8x2_t * val); // VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_u32_ptr(__transfersize(8) uint32_t * ptr, uint32x4x2_t * val); // VST2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_s8_ptr(__transfersize(32) int8_t * ptr, int8x16x2_t * val); // VST2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_s16_ptr(__transfersize(16) int16_t * ptr, int16x8x2_t * val); // VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_s32_ptr(__transfersize(8) int32_t * ptr, int32x4x2_t * val); // VST2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_f16_ptr(__transfersize(16) __fp16 * ptr, float16x8x2_t * val); // VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_f32_ptr(__transfersize(8) float32_t * ptr, float32x4x2_t * val); // VST2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x16x2_t * val); // VST2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x8x2_t * val); // VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2_u8(__transfersize(16) uint8_t * ptr, uint8x8x2_t val); // VST2.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_u16(__transfersize(8) uint16_t * ptr, uint16x4x2_t val); // VST2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_u32(__transfersize(4) uint32_t * ptr, uint32x2x2_t val); // VST2.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_u64(__transfersize(2) uint64_t * ptr, uint64x1x2_t val); // VST1.64 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_s8(__transfersize(16) int8_t * ptr, int8x8x2_t val); // VST2.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_s16(__transfersize(8) int16_t * ptr, int16x4x2_t val); // VST2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_s32(__transfersize(4) int32_t * ptr, int32x2x2_t val); // VST2.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_s64(__transfersize(2) int64_t * ptr, int64x1x2_t val); // VST1.64 {d0, d1}, [r0] |
| //void vst2_f16_ptr(__transfersize(8) __fp16 * ptr, float16x4x2_t * val); // VST2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_f32_ptr(__transfersize(4) float32_t * ptr, float32x2x2_t * val); // VST2.32 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_p8(__transfersize(16) poly8_t * ptr, poly8x8x2_t val); // VST2.8 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst2_p16(__transfersize(8) poly16_t * ptr, poly16x4x2_t val); // VST2.16 {d0, d1}, [r0] |
| _NEON2SSESTORAGE void vst3q_u8_ptr(__transfersize(48) uint8_t * ptr, uint8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_u16_ptr(__transfersize(24) uint16_t * ptr, uint16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_u32_ptr(__transfersize(12) uint32_t * ptr, uint32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_s8_ptr(__transfersize(48) int8_t * ptr, int8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_s16_ptr(__transfersize(24) int16_t * ptr, int16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_s32_ptr(__transfersize(12) int32_t * ptr, int32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_f16_ptr(__transfersize(24) __fp16 * ptr, float16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_f32_ptr(__transfersize(12) float32_t * ptr, float32x4x3_t * val); // VST3.32 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_p8_ptr(__transfersize(48) poly8_t * ptr, poly8x16x3_t * val); // VST3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_p16_ptr(__transfersize(24) poly16_t * ptr, poly16x8x3_t * val); // VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3_u8(__transfersize(24) uint8_t * ptr, uint8x8x3_t val); // VST3.8 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_u16(__transfersize(12) uint16_t * ptr, uint16x4x3_t val); // VST3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_u32(__transfersize(6) uint32_t * ptr, uint32x2x3_t val); // VST3.32 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_u64(__transfersize(3) uint64_t * ptr, uint64x1x3_t val); // VST1.64 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_s8(__transfersize(24) int8_t * ptr, int8x8x3_t val); // VST3.8 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_s16(__transfersize(12) int16_t * ptr, int16x4x3_t val); // VST3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_s32(__transfersize(6) int32_t * ptr, int32x2x3_t val); // VST3.32 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_s64(__transfersize(3) int64_t * ptr, int64x1x3_t val); // VST1.64 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_f16_ptr(__transfersize(12) __fp16 * ptr, float16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_f32(__transfersize(6) float32_t * ptr, float32x2x3_t val); // VST3.32 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_p8(__transfersize(24) poly8_t * ptr, poly8x8x3_t val); // VST3.8 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_p16(__transfersize(12) poly16_t * ptr, poly16x4x3_t val); // VST3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst4q_u8_ptr(__transfersize(64) uint8_t * ptr, uint8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_u16_ptr(__transfersize(32) uint16_t * ptr, uint16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_u32_ptr(__transfersize(16) uint32_t * ptr, uint32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_s8_ptr(__transfersize(64) int8_t * ptr, int8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_s16_ptr(__transfersize(32) int16_t * ptr, int16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_s32_ptr(__transfersize(16) int32_t * ptr, int32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_f16_ptr(__transfersize(32) __fp16 * ptr, float16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_f32_ptr(__transfersize(16) float32_t * ptr, float32x4x4_t * val); // VST4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_p8_ptr(__transfersize(64) poly8_t * ptr, poly8x16x4_t * val); // VST4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_p16_ptr(__transfersize(32) poly16_t * ptr, poly16x8x4_t * val); // VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4_u8(__transfersize(32) uint8_t * ptr, uint8x8x4_t val); // VST4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_u16(__transfersize(16) uint16_t * ptr, uint16x4x4_t val); // VST4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_u32(__transfersize(8) uint32_t * ptr, uint32x2x4_t val); // VST4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_u64(__transfersize(4) uint64_t * ptr, uint64x1x4_t val); // VST1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_s8(__transfersize(32) int8_t * ptr, int8x8x4_t val); // VST4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_s16(__transfersize(16) int16_t * ptr, int16x4x4_t val); // VST4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_s32(__transfersize(8) int32_t * ptr, int32x2x4_t val); // VST4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_s64(__transfersize(4) int64_t * ptr, int64x1x4_t val); // VST1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_f16_ptr(__transfersize(16) __fp16 * ptr, float16x4x4_t * val); // VST4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_f32(__transfersize(8) float32_t * ptr, float32x2x4_t val); // VST4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_p8(__transfersize(32) poly8_t * ptr, poly8x8x4_t val); // VST4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_p16(__transfersize(16) poly16_t * ptr, poly16x4x4_t val); // VST4.16 {d0, d1, d2, d3}, [r0] |
| //Store a single lane of N-element structure to memory |
| _NEON2SSESTORAGE void vst2q_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_u32_ptr(__transfersize(2) uint32_t * ptr, uint32x4x2_t * val, __constrange(0,3) int lane); // VST2.32{d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x4x2_t * val, __constrange(0,3) int lane); // VST2.32{d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_f32_ptr(__transfersize(2) float32_t * ptr, float32x4x2_t * val, __constrange(0,3) int lane); //VST2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x8x2_t * val, __constrange(0,7) int lane); // VST2.16{d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_u8(__transfersize(2) uint8_t * ptr, uint8x8x2_t val, __constrange(0,7) int lane); // VST2.8{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_u16(__transfersize(2) uint16_t * ptr, uint16x4x2_t val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_u32(__transfersize(2) uint32_t * ptr, uint32x2x2_t val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_s8(__transfersize(2) int8_t * ptr, int8x8x2_t val, __constrange(0,7) int lane); // VST2.8 {d0[0],d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_s16(__transfersize(2) int16_t * ptr, int16x4x2_t val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_s32(__transfersize(2) int32_t * ptr, int32x2x2_t val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x4x2_t * val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_f32(__transfersize(2) float32_t * ptr, float32x2x2_t val, __constrange(0,1) int lane); // VST2.32{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_p8(__transfersize(2) poly8_t * ptr, poly8x8x2_t val, __constrange(0,7) int lane); // VST2.8{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst2_lane_p16(__transfersize(2) poly16_t * ptr, poly16x4x2_t val, __constrange(0,3) int lane); // VST2.16{d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x4x3_t * val, __constrange(0,3) int lane); // VST3.32{d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x4x3_t * val, __constrange(0,3) int lane); // VST3.32{d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x4x3_t * val, __constrange(0,3) int lane); //VST3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x8x3_t * val, __constrange(0,7) int lane); // VST3.16{d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_u8(__transfersize(3) uint8_t * ptr, uint8x8x3_t val, __constrange(0,7) int lane); // VST3.8{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_u16(__transfersize(3) uint16_t * ptr, uint16x4x3_t val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_u32(__transfersize(3) uint32_t * ptr, uint32x2x3_t val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_s8(__transfersize(3) int8_t * ptr, int8x8x3_t val, __constrange(0,7) int lane); // VST3.8 {d0[0],d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_s16(__transfersize(3) int16_t * ptr, int16x4x3_t val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_s32(__transfersize(3) int32_t * ptr, int32x2x3_t val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x4x3_t * val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_f32(__transfersize(3) float32_t * ptr, float32x2x3_t val, __constrange(0,1) int lane); // VST3.32{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_p8(__transfersize(3) poly8_t * ptr, poly8x8x3_t val, __constrange(0,7) int lane); // VST3.8{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_p16(__transfersize(3) poly16_t * ptr, poly16x4x3_t val, __constrange(0,3) int lane); // VST3.16{d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x4x4_t * val, __constrange(0,3) int lane); // VST4.32{d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x4x4_t * val, __constrange(0,3) int lane); // VST4.32{d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x4x4_t * val, __constrange(0,3) int lane); //VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x8x4_t * val, __constrange(0,7) int lane); // VST4.16{d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_u8(__transfersize(4) uint8_t * ptr, uint8x8x4_t val, __constrange(0,7) int lane); // VST4.8{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_u16(__transfersize(4) uint16_t * ptr, uint16x4x4_t val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_u32(__transfersize(4) uint32_t * ptr, uint32x2x4_t val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_s8(__transfersize(4) int8_t * ptr, int8x8x4_t val, __constrange(0,7) int lane); // VST4.8 {d0[0],d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_s16(__transfersize(4) int16_t * ptr, int16x4x4_t val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_s32(__transfersize(4) int32_t * ptr, int32x2x4_t val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x4x4_t * val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_f32(__transfersize(4) float32_t * ptr, float32x2x4_t val, __constrange(0,1) int lane); // VST4.32{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_p8(__transfersize(4) poly8_t * ptr, poly8x8x4_t val, __constrange(0,7) int lane); // VST4.8{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_p16(__transfersize(4) poly16_t * ptr, poly16x4x4_t val, __constrange(0,3) int lane); // VST4.16{d0[0], d1[0], d2[0], d3[0]}, [r0] |
| //Extract lanes from a vector and put into a register. These intrinsics extract a single lane (element) from a vector. |
| _NEON2SSESTORAGE uint8_t vget_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0] |
| _NEON2SSESTORAGE uint16_t vget_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VMOV.U16 r0, d0[0] |
| _NEON2SSESTORAGE uint32_t vget_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSESTORAGE int8_t vget_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VMOV.S8 r0, d0[0] |
| _NEON2SSESTORAGE int16_t vget_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VMOV.S16 r0, d0[0] |
| _NEON2SSESTORAGE int32_t vget_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSESTORAGE poly8_t vget_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0] |
| _NEON2SSESTORAGE poly16_t vget_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VMOV.U16 r0, d0[0] |
| _NEON2SSESTORAGE float32_t vget_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSESTORAGE uint8_t vgetq_lane_u8(uint8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] |
| _NEON2SSESTORAGE uint16_t vgetq_lane_u16(uint16x8_t vec, __constrange(0,7) int lane); // VMOV.U16 r0, d0[0] |
| _NEON2SSESTORAGE uint32_t vgetq_lane_u32(uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSESTORAGE int8_t vgetq_lane_s8(int8x16_t vec, __constrange(0,15) int lane); // VMOV.S8 r0, d0[0] |
| _NEON2SSESTORAGE int16_t vgetq_lane_s16(int16x8_t vec, __constrange(0,7) int lane); // VMOV.S16 r0, d0[0] |
| _NEON2SSESTORAGE int32_t vgetq_lane_s32(int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSESTORAGE poly8_t vgetq_lane_p8(poly8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] |
| _NEON2SSESTORAGE poly16_t vgetq_lane_p16(poly16x8_t vec, __constrange(0,7) int lane); // VMOV.U16 r0, d0[0] |
| _NEON2SSESTORAGE float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSESTORAGE int64_t vget_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0 |
| _NEON2SSESTORAGE uint64_t vget_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0 |
| _NEON2SSESTORAGE int64_t vgetq_lane_s64(int64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 |
| _NEON2SSESTORAGE uint64_t vgetq_lane_u64(uint64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 |
| //Load a single lane of a vector from a literal. These intrinsics set a single lane (element) within a vector. |
| _NEON2SSESTORAGE uint8x8_t vset_lane_u8(uint8_t value, uint8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSESTORAGE uint16x4_t vset_lane_u16(uint16_t value, uint16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSESTORAGE uint32x2_t vset_lane_u32(uint32_t value, uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSESTORAGE int8x8_t vset_lane_s8(int8_t value, int8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSESTORAGE int16x4_t vset_lane_s16(int16_t value, int16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSESTORAGE int32x2_t vset_lane_s32(int32_t value, int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSESTORAGE poly8x8_t vset_lane_p8(poly8_t value, poly8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSESTORAGE poly16x4_t vset_lane_p16(poly16_t value, poly16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSESTORAGE float32x2_t vset_lane_f32(float32_t value, float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSESTORAGE uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSESTORAGE uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSESTORAGE uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSESTORAGE int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSESTORAGE int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSESTORAGE int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSESTORAGE poly8x16_t vsetq_lane_p8(poly8_t value, poly8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSESTORAGE poly16x8_t vsetq_lane_p16(poly16_t value, poly16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSESTORAGE float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSESTORAGE int64x1_t vset_lane_s64(int64_t value, int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x1_t vset_lane_u64(uint64_t value, uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x2_t vsetq_lane_u64(uint64_t value, uint64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 |
| //Initialize a vector from a literal bit pattern. |
| _NEON2SSESTORAGE int8x8_t vcreate_s8(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE int16x4_t vcreate_s16(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE int32x2_t vcreate_s32(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE float16x4_t vcreate_f16(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE float32x2_t vcreate_f32(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint8x8_t vcreate_u8(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint16x4_t vcreate_u16(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint32x2_t vcreate_u32(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x1_t vcreate_u64(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE poly8x8_t vcreate_p8(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE poly16x4_t vcreate_p16(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE int64x1_t vcreate_s64(uint64_t a); // VMOV d0,r0,r0 |
| //Set all lanes to same value |
| //Load all lanes of vector to the same literal value |
| _NEON2SSESTORAGE uint8x8_t vdup_n_u8(uint8_t value); // VDUP.8 d0,r0 |
| _NEON2SSESTORAGE uint16x4_t vdup_n_u16(uint16_t value); // VDUP.16 d0,r0 |
| _NEON2SSESTORAGE uint32x2_t vdup_n_u32(uint32_t value); // VDUP.32 d0,r0 |
| _NEON2SSESTORAGE int8x8_t vdup_n_s8(int8_t value); // VDUP.8 d0,r0 |
| _NEON2SSESTORAGE int16x4_t vdup_n_s16(int16_t value); // VDUP.16 d0,r0 |
| _NEON2SSESTORAGE int32x2_t vdup_n_s32(int32_t value); // VDUP.32 d0,r0 |
| _NEON2SSESTORAGE poly8x8_t vdup_n_p8(poly8_t value); // VDUP.8 d0,r0 |
| _NEON2SSESTORAGE poly16x4_t vdup_n_p16(poly16_t value); // VDUP.16 d0,r0 |
| _NEON2SSESTORAGE float32x2_t vdup_n_f32(float32_t value); // VDUP.32 d0,r0 |
| _NEON2SSESTORAGE uint8x16_t vdupq_n_u8(uint8_t value); // VDUP.8 q0,r0 |
| _NEON2SSESTORAGE uint16x8_t vdupq_n_u16(uint16_t value); // VDUP.16 q0,r0 |
| _NEON2SSESTORAGE uint32x4_t vdupq_n_u32(uint32_t value); // VDUP.32 q0,r0 |
| _NEON2SSESTORAGE int8x16_t vdupq_n_s8(int8_t value); // VDUP.8 q0,r0 |
| _NEON2SSESTORAGE int16x8_t vdupq_n_s16(int16_t value); // VDUP.16 q0,r0 |
| _NEON2SSESTORAGE int32x4_t vdupq_n_s32(int32_t value); // VDUP.32 q0,r0 |
| _NEON2SSESTORAGE poly8x16_t vdupq_n_p8(poly8_t value); // VDUP.8 q0,r0 |
| _NEON2SSESTORAGE poly16x8_t vdupq_n_p16(poly16_t value); // VDUP.16 q0,r0 |
| _NEON2SSESTORAGE float32x4_t vdupq_n_f32(float32_t value); // VDUP.32 q0,r0 |
| _NEON2SSESTORAGE int64x1_t vdup_n_s64(int64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x1_t vdup_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE int64x2_t vdupq_n_s64(int64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x2_t vdupq_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint8x8_t vmov_n_u8(uint8_t value); // VDUP.8 d0,r0 |
| _NEON2SSESTORAGE uint16x4_t vmov_n_u16(uint16_t value); // VDUP.16 d0,r0 |
| _NEON2SSESTORAGE uint32x2_t vmov_n_u32(uint32_t value); // VDUP.32 d0,r0 |
| _NEON2SSESTORAGE int8x8_t vmov_n_s8(int8_t value); // VDUP.8 d0,r0 |
| _NEON2SSESTORAGE int16x4_t vmov_n_s16(int16_t value); // VDUP.16 d0,r0 |
| _NEON2SSESTORAGE int32x2_t vmov_n_s32(int32_t value); // VDUP.32 d0,r0 |
| _NEON2SSESTORAGE poly8x8_t vmov_n_p8(poly8_t value); // VDUP.8 d0,r0 |
| _NEON2SSESTORAGE poly16x4_t vmov_n_p16(poly16_t value); // VDUP.16 d0,r0 |
| _NEON2SSESTORAGE float32x2_t vmov_n_f32(float32_t value); // VDUP.32 d0,r0 |
| _NEON2SSESTORAGE uint8x16_t vmovq_n_u8(uint8_t value); // VDUP.8 q0,r0 |
| _NEON2SSESTORAGE uint16x8_t vmovq_n_u16(uint16_t value); // VDUP.16 q0,r0 |
| _NEON2SSESTORAGE uint32x4_t vmovq_n_u32(uint32_t value); // VDUP.32 q0,r0 |
| _NEON2SSESTORAGE int8x16_t vmovq_n_s8(int8_t value); // VDUP.8 q0,r0 |
| _NEON2SSESTORAGE int16x8_t vmovq_n_s16(int16_t value); // VDUP.16 q0,r0 |
| _NEON2SSESTORAGE int32x4_t vmovq_n_s32(int32_t value); // VDUP.32 q0,r0 |
| _NEON2SSESTORAGE poly8x16_t vmovq_n_p8(poly8_t value); // VDUP.8 q0,r0 |
| _NEON2SSESTORAGE poly16x8_t vmovq_n_p16(poly16_t value); // VDUP.16 q0,r0 |
| _NEON2SSESTORAGE float32x4_t vmovq_n_f32(float32_t value); // VDUP.32 q0,r0 |
| _NEON2SSESTORAGE int64x1_t vmov_n_s64(int64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x1_t vmov_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE int64x2_t vmovq_n_s64(int64_t value); // VMOV d0,r0,r0 |
| _NEON2SSESTORAGE uint64x2_t vmovq_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| //Load all lanes of the vector to the value of a lane of a vector |
| _NEON2SSESTORAGE uint8x8_t vdup_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0] |
| _NEON2SSESTORAGE uint16x4_t vdup_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0] |
| _NEON2SSESTORAGE uint32x2_t vdup_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0] |
| _NEON2SSESTORAGE int8x8_t vdup_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0] |
| _NEON2SSESTORAGE int16x4_t vdup_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vdup_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0] |
| _NEON2SSESTORAGE poly8x8_t vdup_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0] |
| _NEON2SSESTORAGE poly16x4_t vdup_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0] |
| _NEON2SSESTORAGE float32x2_t vdup_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0] |
| _NEON2SSESTORAGE uint8x16_t vdupq_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0] |
| _NEON2SSESTORAGE uint16x8_t vdupq_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0] |
| _NEON2SSESTORAGE uint32x4_t vdupq_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0] |
| _NEON2SSESTORAGE int8x16_t vdupq_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0] |
| _NEON2SSESTORAGE int16x8_t vdupq_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vdupq_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0] |
| _NEON2SSESTORAGE poly8x16_t vdupq_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0] |
| _NEON2SSESTORAGE poly16x8_t vdupq_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0] |
| _NEON2SSESTORAGE float32x4_t vdupq_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0] |
| _NEON2SSESTORAGE int64x1_t vdup_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vdup_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0 |
| _NEON2SSESTORAGE int64x2_t vdupq_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vdupq_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0 |
| //Combining vectors. These intrinsics join two 64 bit vectors into a single 128bit vector. |
| _NEON2SSESTORAGE int8x16_t vcombine_s8(int8x8_t low, int8x8_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE int16x8_t vcombine_s16(int16x4_t low, int16x4_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE int32x4_t vcombine_s32(int32x2_t low, int32x2_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE int64x2_t vcombine_s64(int64x1_t low, int64x1_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE float16x8_t vcombine_f16(float16x4_t low, float16x4_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE float32x4_t vcombine_f32(float32x2_t low, float32x2_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint8x16_t vcombine_u8(uint8x8_t low, uint8x8_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint16x8_t vcombine_u16(uint16x4_t low, uint16x4_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint32x4_t vcombine_u32(uint32x2_t low, uint32x2_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint64x2_t vcombine_u64(uint64x1_t low, uint64x1_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE poly8x16_t vcombine_p8(poly8x8_t low, poly8x8_t high); // VMOV d0,d0 |
| _NEON2SSESTORAGE poly16x8_t vcombine_p16(poly16x4_t low, poly16x4_t high); // VMOV d0,d0 |
| //Splitting vectors. These intrinsics split a 128 bit vector into 2 component 64 bit vectors |
| _NEON2SSESTORAGE int8x8_t vget_high_s8(int8x16_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int16x4_t vget_high_s16(int16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int32x2_t vget_high_s32(int32x4_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int64x1_t vget_high_s64(int64x2_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE float16x4_t vget_high_f16(float16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE float32x2_t vget_high_f32(float32x4_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vget_high_u8(uint8x16_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vget_high_u16(uint16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vget_high_u32(uint32x4_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vget_high_u64(uint64x2_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vget_high_p8(poly8x16_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE poly16x4_t vget_high_p16(poly16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int8x8_t vget_low_s8(int8x16_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int16x4_t vget_low_s16(int16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int32x2_t vget_low_s32(int32x4_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE int64x1_t vget_low_s64(int64x2_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE float16x4_t vget_low_f16(float16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE float32x2_t vget_low_f32(float32x4_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vget_low_u8(uint8x16_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vget_low_u16(uint16x8_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vget_low_u32(uint32x4_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vget_low_u64(uint64x2_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vget_low_p8(poly8x16_t a); // VMOV d0,d0 |
| _NEON2SSESTORAGE poly16x4_t vget_low_p16(poly16x8_t a); // VMOV d0,d0 |
| //Converting vectors. These intrinsics are used to convert vectors. |
| //Convert from float |
| _NEON2SSESTORAGE int32x2_t vcvt_s32_f32(float32x2_t a); // VCVT.S32.F32 d0, d0 |
| _NEON2SSESTORAGE uint32x2_t vcvt_u32_f32(float32x2_t a); // VCVT.U32.F32 d0, d0 |
| _NEON2SSESTORAGE int32x4_t vcvtq_s32_f32(float32x4_t a); // VCVT.S32.F32 q0, q0 |
| _NEON2SSESTORAGE uint32x4_t vcvtq_u32_f32(float32x4_t a); // VCVT.U32.F32 q0, q0 |
| _NEON2SSESTORAGE int32x2_t vcvt_n_s32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.S32.F32 d0, d0, #32 |
| _NEON2SSESTORAGE uint32x2_t vcvt_n_u32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.U32.F32 d0, d0, #32 |
| _NEON2SSESTORAGE int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.S32.F32 q0, q0, #32 |
| _NEON2SSESTORAGE uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.U32.F32 q0, q0, #32 |
| _NEON2SSESTORAGE int32x4_t vcvtnq_s32_f32(float32x4_t a); // VCVTN.S32.F32 q0, q0 |
| //Convert to float |
| _NEON2SSESTORAGE float32x2_t vcvt_f32_s32(int32x2_t a); // VCVT.F32.S32 d0, d0 |
| _NEON2SSESTORAGE float32x2_t vcvt_f32_u32(uint32x2_t a); // VCVT.F32.U32 d0, d0 |
| _NEON2SSESTORAGE float32x4_t vcvtq_f32_s32(int32x4_t a); // VCVT.F32.S32 q0, q0 |
| _NEON2SSESTORAGE float32x4_t vcvtq_f32_u32(uint32x4_t a); // VCVT.F32.U32 q0, q0 |
| _NEON2SSESTORAGE float32x2_t vcvt_n_f32_s32(int32x2_t a, __constrange(1,32) int b); // VCVT.F32.S32 d0, d0, #32 |
| _NEON2SSESTORAGE float32x2_t vcvt_n_f32_u32(uint32x2_t a, __constrange(1,32) int b); // VCVT.F32.U32 d0, d0, #32 |
| _NEON2SSESTORAGE float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b); // VCVT.F32.S32 q0, q0, #32 |
| _NEON2SSESTORAGE float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b); // VCVT.F32.U32 q0, q0, #32 |
| //Convert between floats |
| _NEON2SSESTORAGE float16x4_t vcvt_f16_f32(float32x4_t a); // VCVT.F16.F32 d0, q0 |
| _NEON2SSESTORAGE float32x4_t vcvt_f32_f16(float16x4_t a); // VCVT.F32.F16 q0, d0 |
| //Vector narrow integer |
| _NEON2SSESTORAGE int8x8_t vmovn_s16(int16x8_t a); // VMOVN.I16 d0,q0 |
| _NEON2SSESTORAGE int16x4_t vmovn_s32(int32x4_t a); // VMOVN.I32 d0,q0 |
| _NEON2SSESTORAGE int32x2_t vmovn_s64(int64x2_t a); // VMOVN.I64 d0,q0 |
| _NEON2SSESTORAGE uint8x8_t vmovn_u16(uint16x8_t a); // VMOVN.I16 d0,q0 |
| _NEON2SSESTORAGE uint16x4_t vmovn_u32(uint32x4_t a); // VMOVN.I32 d0,q0 |
| _NEON2SSESTORAGE uint32x2_t vmovn_u64(uint64x2_t a); // VMOVN.I64 d0,q0 |
| //Vector long move |
| _NEON2SSESTORAGE int16x8_t vmovl_s8(int8x8_t a); // VMOVL.S8 q0,d0 |
| _NEON2SSESTORAGE int32x4_t vmovl_s16(int16x4_t a); // VMOVL.S16 q0,d0 |
| _NEON2SSESTORAGE int64x2_t vmovl_s32(int32x2_t a); // VMOVL.S32 q0,d0 |
| _NEON2SSESTORAGE uint16x8_t vmovl_u8(uint8x8_t a); // VMOVL.U8 q0,d0 |
| _NEON2SSESTORAGE uint32x4_t vmovl_u16(uint16x4_t a); // VMOVL.U16 q0,d0 |
| _NEON2SSESTORAGE uint64x2_t vmovl_u32(uint32x2_t a); // VMOVL.U32 q0,d0 |
| //Vector saturating narrow integer |
| _NEON2SSESTORAGE int8x8_t vqmovn_s16(int16x8_t a); // VQMOVN.S16 d0,q0 |
| _NEON2SSESTORAGE int16x4_t vqmovn_s32(int32x4_t a); // VQMOVN.S32 d0,q0 |
| _NEON2SSESTORAGE int32x2_t vqmovn_s64(int64x2_t a); // VQMOVN.S64 d0,q0 |
| _NEON2SSESTORAGE uint8x8_t vqmovn_u16(uint16x8_t a); // VQMOVN.U16 d0,q0 |
| _NEON2SSESTORAGE uint16x4_t vqmovn_u32(uint32x4_t a); // VQMOVN.U32 d0,q0 |
| _NEON2SSESTORAGE uint32x2_t vqmovn_u64(uint64x2_t a); // VQMOVN.U64 d0,q0 |
| //Vector saturating narrow integer signed->unsigned |
| _NEON2SSESTORAGE uint8x8_t vqmovun_s16(int16x8_t a); // VQMOVUN.S16 d0,q0 |
| _NEON2SSESTORAGE uint16x4_t vqmovun_s32(int32x4_t a); // VQMOVUN.S32 d0,q0 |
| _NEON2SSESTORAGE uint32x2_t vqmovun_s64(int64x2_t a); // VQMOVUN.S64 d0,q0 |
| //Table look up |
| _NEON2SSESTORAGE uint8x8_t vtbl1_u8(uint8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0 |
| _NEON2SSESTORAGE int8x8_t vtbl1_s8(int8x8_t a, int8x8_t b); // VTBL.8 d0, {d0}, d0 |
| _NEON2SSESTORAGE poly8x8_t vtbl1_p8(poly8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0 |
| //Extended table look up intrinsics |
| _NEON2SSESTORAGE uint8x8_t vtbx1_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0 |
| _NEON2SSESTORAGE int8x8_t vtbx1_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VTBX.8 d0, {d0}, d0 |
| _NEON2SSESTORAGE poly8x8_t vtbx1_p8(poly8x8_t a, poly8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0 |
| _NEON2SSESTORAGE uint8x8_t vtbx2_u8(uint8x8_t a, uint8x8x2_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0 |
| _NEON2SSESTORAGE int8x8_t vtbx2_s8(int8x8_t a, int8x8x2_t b, int8x8_t c); // VTBX.8 d0, {d0, d1}, d0 |
| _NEON2SSESTORAGE poly8x8_t vtbx2_p8(poly8x8_t a, poly8x8x2_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0 |
| _NEON2SSESTORAGE uint8x8_t vtbx3_u8(uint8x8_t a, uint8x8x3_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0 |
| _NEON2SSESTORAGE int8x8_t vtbx3_s8(int8x8_t a, int8x8x3_t b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0 |
| _NEON2SSESTORAGE poly8x8_t vtbx3_p8(poly8x8_t a, poly8x8x3_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0 |
| _NEON2SSESTORAGE uint8x8_t vtbx4_u8(uint8x8_t a, uint8x8x4_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0 |
| _NEON2SSESTORAGE int8x8_t vtbx4_s8(int8x8_t a, int8x8x4_t b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0 |
| _NEON2SSESTORAGE poly8x8_t vtbx4_p8(poly8x8_t a, poly8x8x4_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0 |
| //Operations with a scalar value |
| //Vector multiply accumulate with scalar |
| _NEON2SSESTORAGE int16x4_t vmla_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vmla_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0,d0[0] |
| _NEON2SSESTORAGE uint16x4_t vmla_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0,d0[0] |
| _NEON2SSESTORAGE uint32x2_t vmla_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0,d0[0] |
| _NEON2SSESTORAGE float32x2_t vmla_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 d0,d0, d0[0] |
| _NEON2SSESTORAGE int16x8_t vmlaq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vmlaq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0,d0[0] |
| _NEON2SSESTORAGE uint16x8_t vmlaq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0,q0, d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlaq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0,q0, d0[0] |
| _NEON2SSESTORAGE float32x4_t vmlaq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 q0,q0, d0[0] |
| //Vector widening multiply accumulate with scalar |
| _NEON2SSESTORAGE int32x4_t vmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); //VMLAL.S16 q0, d0,d0[0] |
| _NEON2SSESTORAGE int64x2_t vmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); //VMLAL.S32 q0, d0,d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlal_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLAL.U16 q0,d0, d0[0] |
| _NEON2SSESTORAGE uint64x2_t vmlal_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLAL.U32 q0,d0, d0[0] |
| //Vector widening saturating doubling multiply accumulate with scalar |
| _NEON2SSESTORAGE int32x4_t vqdmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLAL.S16 q0,d0, d0[0] |
| _NEON2SSESTORAGE int64x2_t vqdmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLAL.S32 q0,d0, d0[0] |
| //Vector multiply subtract with scalar |
| _NEON2SSESTORAGE int16x4_t vmls_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vmls_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0,d0[0] |
| _NEON2SSESTORAGE uint16x4_t vmls_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0,d0[0] |
| _NEON2SSESTORAGE uint32x2_t vmls_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0,d0[0] |
| _NEON2SSESTORAGE float32x2_t vmls_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLS.F32 d0,d0, d0[0] |
| _NEON2SSESTORAGE int16x8_t vmlsq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 q0, q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vmlsq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 q0, q0,d0[0] |
| _NEON2SSESTORAGE uint16x8_t vmlsq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLS.I16 q0,q0, d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlsq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLS.I32 q0,q0, d0[0] |
| _NEON2SSESTORAGE float32x4_t vmlsq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLS.F32 q0,q0, d0[0] |
| //Vector widening multiply subtract with scalar |
| _NEON2SSESTORAGE int32x4_t vmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLSL.S16 q0, d0,d0[0] |
| _NEON2SSESTORAGE int64x2_t vmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLSL.S32 q0, d0,d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlsl_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLSL.U16 q0,d0, d0[0] |
| _NEON2SSESTORAGE uint64x2_t vmlsl_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLSL.U32 q0,d0, d0[0] |
| //Vector widening saturating doubling multiply subtract with scalar |
| _NEON2SSESTORAGE int32x4_t vqdmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLSL.S16 q0,d0, d0[0] |
| _NEON2SSESTORAGE int64x2_t vqdmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLSL.S32 q0,d0, d0[0] |
| //Vector multiply by scalar |
| _NEON2SSESTORAGE int16x4_t vmul_n_s16(int16x4_t a, int16_t b); // VMUL.I16 d0,d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vmul_n_s32(int32x2_t a, int32_t b); // VMUL.I32 d0,d0,d0[0] |
| _NEON2SSESTORAGE float32x2_t vmul_n_f32(float32x2_t a, float32_t b); // VMUL.F32 d0,d0,d0[0] |
| _NEON2SSESTORAGE uint16x4_t vmul_n_u16(uint16x4_t a, uint16_t b); // VMUL.I16 d0,d0,d0[0] |
| _NEON2SSESTORAGE uint32x2_t vmul_n_u32(uint32x2_t a, uint32_t b); // VMUL.I32 d0,d0,d0[0] |
| _NEON2SSESTORAGE int16x8_t vmulq_n_s16(int16x8_t a, int16_t b); // VMUL.I16 q0,q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vmulq_n_s32(int32x4_t a, int32_t b); // VMUL.I32 q0,q0,d0[0] |
| _NEON2SSESTORAGE float32x4_t vmulq_n_f32(float32x4_t a, float32_t b); // VMUL.F32 q0,q0,d0[0] |
| _NEON2SSESTORAGE uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b); // VMUL.I16 q0,q0,d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b); // VMUL.I32 q0,q0,d0[0] |
| //Vector long multiply with scalar |
| _NEON2SSESTORAGE int32x4_t vmull_n_s16(int16x4_t vec1, int16_t val2); // VMULL.S16 q0,d0,d0[0] |
| _NEON2SSESTORAGE int64x2_t vmull_n_s32(int32x2_t vec1, int32_t val2); // VMULL.S32 q0,d0,d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmull_n_u16(uint16x4_t vec1, uint16_t val2); // VMULL.U16 q0,d0,d0[0] |
| _NEON2SSESTORAGE uint64x2_t vmull_n_u32(uint32x2_t vec1, uint32_t val2); // VMULL.U32 q0,d0,d0[0] |
| //Vector long multiply by scalar |
| _NEON2SSESTORAGE int32x4_t vmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VMULL.S16 q0,d0,d0[0] |
| _NEON2SSESTORAGE int64x2_t vmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VMULL.S32 q0,d0,d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmull_lane_u16(uint16x4_t vec1, uint16x4_t val2, __constrange(0, 3) int val3); // VMULL.U16 q0,d0,d0[0] |
| _NEON2SSESTORAGE uint64x2_t vmull_lane_u32(uint32x2_t vec1, uint32x2_t val2, __constrange(0, 1) int val3); // VMULL.U32 q0,d0,d0[0] |
| //Vector saturating doubling long multiply with scalar |
| _NEON2SSESTORAGE int32x4_t vqdmull_n_s16(int16x4_t vec1, int16_t val2); // VQDMULL.S16 q0,d0,d0[0] |
| _NEON2SSESTORAGE int64x2_t vqdmull_n_s32(int32x2_t vec1, int32_t val2); // VQDMULL.S32 q0,d0,d0[0] |
| //Vector saturating doubling long multiply by scalar |
| _NEON2SSESTORAGE int32x4_t vqdmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULL.S16 q0,d0,d0[0] |
| _NEON2SSESTORAGE int64x2_t vqdmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULL.S32 q0,d0,d0[0] |
| //Vector saturating doubling multiply high with scalar |
| _NEON2SSESTORAGE int16x4_t vqdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQDMULH.S16 d0,d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vqdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQDMULH.S32 d0,d0,d0[0] |
| _NEON2SSESTORAGE int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQDMULH.S16 q0,q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQDMULH.S32 q0,q0,d0[0] |
| //Vector saturating doubling multiply high by scalar |
| _NEON2SSESTORAGE int16x4_t vqdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULH.S16 d0,d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vqdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULH.S32 d0,d0,d0[0] |
| _NEON2SSESTORAGE int16x8_t vqdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULH.S16 q0,q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vqdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULH.S32 q0,q0,d0[0] |
| //Vector saturating rounding doubling multiply high with scalar |
| _NEON2SSESTORAGE int16x4_t vqrdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQRDMULH.S16 d0,d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vqrdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQRDMULH.S32 d0,d0,d0[0] |
| _NEON2SSESTORAGE int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQRDMULH.S16 q0,q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQRDMULH.S32 q0,q0,d0[0] |
| //Vector rounding saturating doubling multiply high by scalar |
| _NEON2SSESTORAGE int16x4_t vqrdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 d0,d0,d0[0] |
| _NEON2SSESTORAGE int32x2_t vqrdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 d0,d0,d0[0] |
| _NEON2SSESTORAGE int16x8_t vqrdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 q0,q0,d0[0] |
| _NEON2SSESTORAGE int32x4_t vqrdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 q0,q0,d0[0] |
| //Vector multiply accumulate with scalar |
| _NEON2SSESTORAGE int16x4_t vmla_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLA.I16 d0, d0, d0[0] |
| _NEON2SSESTORAGE int32x2_t vmla_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLA.I32 d0, d0, d0[0] |
| _NEON2SSESTORAGE uint16x4_t vmla_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLA.I16 d0, d0, d0[0] |
| _NEON2SSESTORAGE uint32x2_t vmla_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLA.I32 d0, d0, d0[0] |
| _NEON2SSESTORAGE float32x2_t vmla_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLA.F32 d0, d0, d0[0] |
| _NEON2SSESTORAGE int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLA.I16 q0, q0, d0[0] |
| _NEON2SSESTORAGE int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLA.I32 q0, q0, d0[0] |
| _NEON2SSESTORAGE uint16x8_t vmlaq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLA.I16 q0, q0, d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlaq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLA.I32 q0, q0, d0[0] |
| _NEON2SSESTORAGE float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLA.F32 q0, q0, d0[0] |
| //Vector widening multiply accumulate with scalar |
| _NEON2SSESTORAGE int32x4_t vmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLAL.S16 q0, d0, d0[0] |
| _NEON2SSESTORAGE int64x2_t vmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLAL.S32 q0, d0, d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlal_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLAL.U16 q0, d0, d0[0] |
| _NEON2SSESTORAGE uint64x2_t vmlal_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLAL.U32 q0, d0, d0[0] |
| //Vector widening saturating doubling multiply accumulate with scalar |
| _NEON2SSESTORAGE int32x4_t vqdmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLAL.S16 q0, d0, d0[0] |
| _NEON2SSESTORAGE int64x2_t vqdmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLAL.S32 q0, d0, d0[0] |
| //Vector multiply subtract with scalar |
| _NEON2SSESTORAGE int16x4_t vmls_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLS.I16 d0, d0, d0[0] |
| _NEON2SSESTORAGE int32x2_t vmls_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLS.I32 d0, d0, d0[0] |
| _NEON2SSESTORAGE uint16x4_t vmls_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLS.I16 d0, d0, d0[0] |
| _NEON2SSESTORAGE uint32x2_t vmls_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLS.I32 d0, d0, d0[0] |
| _NEON2SSESTORAGE float32x2_t vmls_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLS.F32 d0, d0, d0[0] |
| _NEON2SSESTORAGE int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLS.I16 q0, q0, d0[0] |
| _NEON2SSESTORAGE int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLS.I32 q0, q0, d0[0] |
| _NEON2SSESTORAGE uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLS.I16 q0, q0, d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLS.I32 q0, q0, d0[0] |
| _NEON2SSESTORAGE float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLS.F32 q0, q0, d0[0] |
| //Vector widening multiply subtract with scalar |
| _NEON2SSESTORAGE int32x4_t vmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLSL.S16 q0, d0, d0[0] |
| _NEON2SSESTORAGE int64x2_t vmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLSL.S32 q0, d0, d0[0] |
| _NEON2SSESTORAGE uint32x4_t vmlsl_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLSL.U16 q0, d0, d0[0] |
| _NEON2SSESTORAGE uint64x2_t vmlsl_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLSL.U32 q0, d0, d0[0] |
| //Vector widening saturating doubling multiply subtract with scalar |
| _NEON2SSESTORAGE int32x4_t vqdmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLSL.S16 q0, d0, d0[0] |
| _NEON2SSESTORAGE int64x2_t vqdmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLSL.S32 q0, d0, d0[0] |
| //Vector extract |
| _NEON2SSESTORAGE int8x8_t vext_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0 |
| _NEON2SSESTORAGE uint8x8_t vext_u8(uint8x8_t a, uint8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0 |
| _NEON2SSESTORAGE poly8x8_t vext_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0 |
| _NEON2SSESTORAGE int16x4_t vext_s16(int16x4_t a, int16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0 |
| _NEON2SSESTORAGE uint16x4_t vext_u16(uint16x4_t a, uint16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0 |
| _NEON2SSESTORAGE poly16x4_t vext_p16(poly16x4_t a, poly16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0 |
| _NEON2SSESTORAGE int32x2_t vext_s32(int32x2_t a, int32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0 |
| _NEON2SSESTORAGE uint32x2_t vext_u32(uint32x2_t a, uint32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0 |
| _NEON2SSESTORAGE int64x1_t vext_s64(int64x1_t a, int64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0 |
| _NEON2SSESTORAGE uint64x1_t vext_u64(uint64x1_t a, uint64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0 |
| _NEON2SSESTORAGE float32x2_t vext_f32(float32x2_t a, float32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0 |
| _NEON2SSESTORAGE int8x16_t vextq_s8(int8x16_t a, int8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 |
| _NEON2SSESTORAGE uint8x16_t vextq_u8(uint8x16_t a, uint8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 |
| _NEON2SSESTORAGE poly8x16_t vextq_p8(poly8x16_t a, poly8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 |
| _NEON2SSESTORAGE int16x8_t vextq_s16(int16x8_t a, int16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 |
| _NEON2SSESTORAGE uint16x8_t vextq_u16(uint16x8_t a, uint16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 |
| _NEON2SSESTORAGE poly16x8_t vextq_p16(poly16x8_t a, poly16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 |
| _NEON2SSESTORAGE int32x4_t vextq_s32(int32x4_t a, int32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 |
| _NEON2SSESTORAGE uint32x4_t vextq_u32(uint32x4_t a, uint32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 |
| _NEON2SSESTORAGE int64x2_t vextq_s64(int64x2_t a, int64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 |
| _NEON2SSESTORAGE uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 |
| _NEON2SSESTORAGE float32x4_t vextq_f32(float32x4_t a, float32x4_t b, __constrange(0,3) float c); // VEXT.32 q0,q0,q0,#0 |
| //Reverse vector elements (swap endianness). VREVn.m reverses the order of the m-bit lanes within a set that is n bits wide. |
| _NEON2SSESTORAGE int8x8_t vrev64_s8(int8x8_t vec); // VREV64.8 d0,d0 |
| _NEON2SSESTORAGE int16x4_t vrev64_s16(int16x4_t vec); // VREV64.16 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vrev64_s32(int32x2_t vec); // VREV64.32 d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vrev64_u8(uint8x8_t vec); // VREV64.8 d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vrev64_u16(uint16x4_t vec); // VREV64.16 d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vrev64_u32(uint32x2_t vec); // VREV64.32 d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vrev64_p8(poly8x8_t vec); // VREV64.8 d0,d0 |
| _NEON2SSESTORAGE poly16x4_t vrev64_p16(poly16x4_t vec); // VREV64.16 d0,d0 |
| _NEON2SSESTORAGE float32x2_t vrev64_f32(float32x2_t vec); // VREV64.32 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vrev64q_s8(int8x16_t vec); // VREV64.8 q0,q0 |
| _NEON2SSESTORAGE int16x8_t vrev64q_s16(int16x8_t vec); // VREV64.16 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vrev64q_s32(int32x4_t vec); // VREV64.32 q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vrev64q_u8(uint8x16_t vec); // VREV64.8 q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vrev64q_u16(uint16x8_t vec); // VREV64.16 q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vrev64q_u32(uint32x4_t vec); // VREV64.32 q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vrev64q_p8(poly8x16_t vec); // VREV64.8 q0,q0 |
| _NEON2SSESTORAGE poly16x8_t vrev64q_p16(poly16x8_t vec); // VREV64.16 q0,q0 |
| _NEON2SSESTORAGE float32x4_t vrev64q_f32(float32x4_t vec); // VREV64.32 q0,q0 |
| _NEON2SSESTORAGE int8x8_t vrev32_s8(int8x8_t vec); // VREV32.8 d0,d0 |
| _NEON2SSESTORAGE int16x4_t vrev32_s16(int16x4_t vec); // VREV32.16 d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vrev32_u8(uint8x8_t vec); // VREV32.8 d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vrev32_u16(uint16x4_t vec); // VREV32.16 d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vrev32_p8(poly8x8_t vec); // VREV32.8 d0,d0 |
| _NEON2SSESTORAGE poly16x4_t vrev32_p16(poly16x4_t vec); // VREV32.16 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vrev32q_s8(int8x16_t vec); // VREV32.8 q0,q0 |
| _NEON2SSESTORAGE int16x8_t vrev32q_s16(int16x8_t vec); // VREV32.16 q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vrev32q_u8(uint8x16_t vec); // VREV32.8 q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vrev32q_u16(uint16x8_t vec); // VREV32.16 q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vrev32q_p8(poly8x16_t vec); // VREV32.8 q0,q0 |
| _NEON2SSESTORAGE poly16x8_t vrev32q_p16(poly16x8_t vec); // VREV32.16 q0,q0 |
| _NEON2SSESTORAGE int8x8_t vrev16_s8(int8x8_t vec); // VREV16.8 d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vrev16_u8(uint8x8_t vec); // VREV16.8 d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vrev16_p8(poly8x8_t vec); // VREV16.8 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vrev16q_s8(int8x16_t vec); // VREV16.8 q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vrev16q_u8(uint8x16_t vec); // VREV16.8 q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vrev16q_p8(poly8x16_t vec); // VREV16.8 q0,q0 |
| //Other single operand arithmetic |
| //Absolute: Vd[i] = |Va[i]| |
| _NEON2SSESTORAGE int8x8_t vabs_s8(int8x8_t a); // VABS.S8 d0,d0 |
| _NEON2SSESTORAGE int16x4_t vabs_s16(int16x4_t a); // VABS.S16 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vabs_s32(int32x2_t a); // VABS.S32 d0,d0 |
| _NEON2SSESTORAGE float32x2_t vabs_f32(float32x2_t a); // VABS.F32 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vabsq_s8(int8x16_t a); // VABS.S8 q0,q0 |
| _NEON2SSESTORAGE int16x8_t vabsq_s16(int16x8_t a); // VABS.S16 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vabsq_s32(int32x4_t a); // VABS.S32 q0,q0 |
| _NEON2SSESTORAGE float32x4_t vabsq_f32(float32x4_t a); // VABS.F32 q0,q0 |
| |
| _NEON2SSESTORAGE int64x2_t vabsq_s64(int64x2_t a); // VABS.S64 q0,q0 |
| _NEON2SSESTORAGE float64x2_t vabsq_f64(float64x2_t a); // VABS.F64 q0,q0 |
| |
| //Saturating absolute: Vd[i] = sat(|Va[i]|) |
| _NEON2SSESTORAGE int8x8_t vqabs_s8(int8x8_t a); // VQABS.S8 d0,d0 |
| _NEON2SSESTORAGE int16x4_t vqabs_s16(int16x4_t a); // VQABS.S16 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqabs_s32(int32x2_t a); // VQABS.S32 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vqabsq_s8(int8x16_t a); // VQABS.S8 q0,q0 |
| _NEON2SSESTORAGE int16x8_t vqabsq_s16(int16x8_t a); // VQABS.S16 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqabsq_s32(int32x4_t a); // VQABS.S32 q0,q0 |
| //Negate: Vd[i] = - Va[i] |
| _NEON2SSESTORAGE int8x8_t vneg_s8(int8x8_t a); // VNE//d0,d0 |
| _NEON2SSESTORAGE int16x4_t vneg_s16(int16x4_t a); // VNE//d0,d0 |
| _NEON2SSESTORAGE int32x2_t vneg_s32(int32x2_t a); // VNE//d0,d0 |
| _NEON2SSESTORAGE float32x2_t vneg_f32(float32x2_t a); // VNE//d0,d0 |
| _NEON2SSESTORAGE int8x16_t vnegq_s8(int8x16_t a); // VNE//q0,q0 |
| _NEON2SSESTORAGE int16x8_t vnegq_s16(int16x8_t a); // VNE//q0,q0 |
| _NEON2SSESTORAGE int32x4_t vnegq_s32(int32x4_t a); // VNE//q0,q0 |
| _NEON2SSESTORAGE float32x4_t vnegq_f32(float32x4_t a); // VNE//q0,q0 |
| //Saturating Negate: sat(Vd[i] = - Va[i]) |
| _NEON2SSESTORAGE int8x8_t vqneg_s8(int8x8_t a); // VQNE//d0,d0 |
| _NEON2SSESTORAGE int16x4_t vqneg_s16(int16x4_t a); // VQNE//d0,d0 |
| _NEON2SSESTORAGE int32x2_t vqneg_s32(int32x2_t a); // VQNE//d0,d0 |
| _NEON2SSESTORAGE int8x16_t vqnegq_s8(int8x16_t a); // VQNE//q0,q0 |
| _NEON2SSESTORAGE int16x8_t vqnegq_s16(int16x8_t a); // VQNE//q0,q0 |
| _NEON2SSESTORAGE int32x4_t vqnegq_s32(int32x4_t a); // VQNE//q0,q0 |
| //Count leading sign bits |
| _NEON2SSESTORAGE int8x8_t vcls_s8(int8x8_t a); // VCLS.S8 d0,d0 |
| _NEON2SSESTORAGE int16x4_t vcls_s16(int16x4_t a); // VCLS.S16 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vcls_s32(int32x2_t a); // VCLS.S32 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vclsq_s8(int8x16_t a); // VCLS.S8 q0,q0 |
| _NEON2SSESTORAGE int16x8_t vclsq_s16(int16x8_t a); // VCLS.S16 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vclsq_s32(int32x4_t a); // VCLS.S32 q0,q0 |
| //Count leading zeros |
| _NEON2SSESTORAGE int8x8_t vclz_s8(int8x8_t a); // VCLZ.I8 d0,d0 |
| _NEON2SSESTORAGE int16x4_t vclz_s16(int16x4_t a); // VCLZ.I16 d0,d0 |
| _NEON2SSESTORAGE int32x2_t vclz_s32(int32x2_t a); // VCLZ.I32 d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vclz_u8(uint8x8_t a); // VCLZ.I8 d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vclz_u16(uint16x4_t a); // VCLZ.I16 d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vclz_u32(uint32x2_t a); // VCLZ.I32 d0,d0 |
| _NEON2SSESTORAGE int8x16_t vclzq_s8(int8x16_t a); // VCLZ.I8 q0,q0 |
| _NEON2SSESTORAGE int16x8_t vclzq_s16(int16x8_t a); // VCLZ.I16 q0,q0 |
| _NEON2SSESTORAGE int32x4_t vclzq_s32(int32x4_t a); // VCLZ.I32 q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vclzq_u8(uint8x16_t a); // VCLZ.I8 q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vclzq_u16(uint16x8_t a); // VCLZ.I16 q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vclzq_u32(uint32x4_t a); // VCLZ.I32 q0,q0 |
| //Count number of set bits |
| _NEON2SSESTORAGE uint8x8_t vcnt_u8(uint8x8_t a); // VCNT.8 d0,d0 |
| _NEON2SSESTORAGE int8x8_t vcnt_s8(int8x8_t a); // VCNT.8 d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vcnt_p8(poly8x8_t a); // VCNT.8 d0,d0 |
| _NEON2SSESTORAGE uint8x16_t vcntq_u8(uint8x16_t a); // VCNT.8 q0,q0 |
| _NEON2SSESTORAGE int8x16_t vcntq_s8(int8x16_t a); // VCNT.8 q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vcntq_p8(poly8x16_t a); // VCNT.8 q0,q0 |
| //Reciprocal estimate |
| _NEON2SSESTORAGE float32x2_t vrecpe_f32(float32x2_t a); // VRECPE.F32 d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vrecpe_u32(uint32x2_t a); // VRECPE.U32 d0,d0 |
| _NEON2SSESTORAGE float32x4_t vrecpeq_f32(float32x4_t a); // VRECPE.F32 q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vrecpeq_u32(uint32x4_t a); // VRECPE.U32 q0,q0 |
| //Reciprocal square root estimate |
| _NEON2SSESTORAGE float32x2_t vrsqrte_f32(float32x2_t a); // VRSQRTE.F32 d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vrsqrte_u32(uint32x2_t a); // VRSQRTE.U32 d0,d0 |
| _NEON2SSESTORAGE float32x4_t vrsqrteq_f32(float32x4_t a); // VRSQRTE.F32 q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vrsqrteq_u32(uint32x4_t a); // VRSQRTE.U32 q0,q0 |
| //Logical operations |
| //Bitwise not |
| _NEON2SSESTORAGE int8x8_t vmvn_s8(int8x8_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE int16x4_t vmvn_s16(int16x4_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE int32x2_t vmvn_s32(int32x2_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vmvn_u8(uint8x8_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vmvn_u16(uint16x4_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vmvn_u32(uint32x2_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vmvn_p8(poly8x8_t a); // VMVN d0,d0 |
| _NEON2SSESTORAGE int8x16_t vmvnq_s8(int8x16_t a); // VMVN q0,q0 |
| _NEON2SSESTORAGE int16x8_t vmvnq_s16(int16x8_t a); // VMVN q0,q0 |
| _NEON2SSESTORAGE int32x4_t vmvnq_s32(int32x4_t a); // VMVN q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vmvnq_u8(uint8x16_t a); // VMVN q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vmvnq_u16(uint16x8_t a); // VMVN q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vmvnq_u32(uint32x4_t a); // VMVN q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vmvnq_p8(poly8x16_t a); // VMVN q0,q0 |
| //Bitwise and |
| _NEON2SSESTORAGE int8x8_t vand_s8(int8x8_t a, int8x8_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vand_s16(int16x4_t a, int16x4_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vand_s32(int32x2_t a, int32x2_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vand_s64(int64x1_t a, int64x1_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vand_u8(uint8x8_t a, uint8x8_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vand_u16(uint16x4_t a, uint16x4_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vand_u32(uint32x2_t a, uint32x2_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vand_u64(uint64x1_t a, uint64x1_t b); // VAND d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vandq_s8(int8x16_t a, int8x16_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vandq_s16(int16x8_t a, int16x8_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vandq_s32(int32x4_t a, int32x4_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vandq_s64(int64x2_t a, int64x2_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vandq_u8(uint8x16_t a, uint8x16_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vandq_u16(uint16x8_t a, uint16x8_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vandq_u32(uint32x4_t a, uint32x4_t b); // VAND q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vandq_u64(uint64x2_t a, uint64x2_t b); // VAND q0,q0,q0 |
| //Bitwise or |
| _NEON2SSESTORAGE int8x8_t vorr_s8(int8x8_t a, int8x8_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vorr_s16(int16x4_t a, int16x4_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vorr_s32(int32x2_t a, int32x2_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vorr_s64(int64x1_t a, int64x1_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vorr_u8(uint8x8_t a, uint8x8_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vorr_u16(uint16x4_t a, uint16x4_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vorr_u32(uint32x2_t a, uint32x2_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vorr_u64(uint64x1_t a, uint64x1_t b); // VORR d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vorrq_s8(int8x16_t a, int8x16_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vorrq_s16(int16x8_t a, int16x8_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vorrq_s32(int32x4_t a, int32x4_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vorrq_s64(int64x2_t a, int64x2_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vorrq_u8(uint8x16_t a, uint8x16_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vorrq_u16(uint16x8_t a, uint16x8_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vorrq_u32(uint32x4_t a, uint32x4_t b); // VORR q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vorrq_u64(uint64x2_t a, uint64x2_t b); // VORR q0,q0,q0 |
| //Bitwise exclusive or (EOR or XOR) |
| _NEON2SSESTORAGE int8x8_t veor_s8(int8x8_t a, int8x8_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t veor_s16(int16x4_t a, int16x4_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t veor_s32(int32x2_t a, int32x2_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t veor_s64(int64x1_t a, int64x1_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t veor_u8(uint8x8_t a, uint8x8_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t veor_u16(uint16x4_t a, uint16x4_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t veor_u32(uint32x2_t a, uint32x2_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t veor_u64(uint64x1_t a, uint64x1_t b); // VEOR d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t veorq_s8(int8x16_t a, int8x16_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t veorq_s16(int16x8_t a, int16x8_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t veorq_s32(int32x4_t a, int32x4_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t veorq_s64(int64x2_t a, int64x2_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t veorq_u8(uint8x16_t a, uint8x16_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t veorq_u16(uint16x8_t a, uint16x8_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t veorq_u32(uint32x4_t a, uint32x4_t b); // VEOR q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t veorq_u64(uint64x2_t a, uint64x2_t b); // VEOR q0,q0,q0 |
| //Bit Clear |
| _NEON2SSESTORAGE int8x8_t vbic_s8(int8x8_t a, int8x8_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vbic_s16(int16x4_t a, int16x4_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vbic_s32(int32x2_t a, int32x2_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vbic_s64(int64x1_t a, int64x1_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vbic_u8(uint8x8_t a, uint8x8_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vbic_u16(uint16x4_t a, uint16x4_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vbic_u32(uint32x2_t a, uint32x2_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vbic_u64(uint64x1_t a, uint64x1_t b); // VBIC d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vbicq_s8(int8x16_t a, int8x16_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vbicq_s16(int16x8_t a, int16x8_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vbicq_s32(int32x4_t a, int32x4_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vbicq_s64(int64x2_t a, int64x2_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vbicq_u8(uint8x16_t a, uint8x16_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vbicq_u16(uint16x8_t a, uint16x8_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vbicq_u32(uint32x4_t a, uint32x4_t b); // VBIC q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vbicq_u64(uint64x2_t a, uint64x2_t b); // VBIC q0,q0,q0 |
| //Bitwise OR complement |
| _NEON2SSESTORAGE int8x8_t vorn_s8(int8x8_t a, int8x8_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vorn_s16(int16x4_t a, int16x4_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vorn_s32(int32x2_t a, int32x2_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vorn_s64(int64x1_t a, int64x1_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vorn_u8(uint8x8_t a, uint8x8_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vorn_u16(uint16x4_t a, uint16x4_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vorn_u32(uint32x2_t a, uint32x2_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vorn_u64(uint64x1_t a, uint64x1_t b); // VORN d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vornq_s8(int8x16_t a, int8x16_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vornq_s16(int16x8_t a, int16x8_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vornq_s32(int32x4_t a, int32x4_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vornq_s64(int64x2_t a, int64x2_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b); // VORN q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vornq_u64(uint64x2_t a, uint64x2_t b); // VORN q0,q0,q0 |
| //Bitwise Select |
| _NEON2SSESTORAGE int8x8_t vbsl_s8(uint8x8_t a, int8x8_t b, int8x8_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE int16x4_t vbsl_s16(uint16x4_t a, int16x4_t b, int16x4_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE int32x2_t vbsl_s32(uint32x2_t a, int32x2_t b, int32x2_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE int64x1_t vbsl_s64(uint64x1_t a, int64x1_t b, int64x1_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE uint8x8_t vbsl_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE uint16x4_t vbsl_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE uint32x2_t vbsl_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE uint64x1_t vbsl_u64(uint64x1_t a, uint64x1_t b, uint64x1_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE float32x2_t vbsl_f32(uint32x2_t a, float32x2_t b, float32x2_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE poly8x8_t vbsl_p8(uint8x8_t a, poly8x8_t b, poly8x8_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE poly16x4_t vbsl_p16(uint16x4_t a, poly16x4_t b, poly16x4_t c); // VBSL d0,d0,d0 |
| _NEON2SSESTORAGE int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE int16x8_t vbslq_s16(uint16x8_t a, int16x8_t b, int16x8_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE int32x4_t vbslq_s32(uint32x4_t a, int32x4_t b, int32x4_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE int64x2_t vbslq_s64(uint64x2_t a, int64x2_t b, int64x2_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE uint8x16_t vbslq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE uint16x8_t vbslq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE uint32x4_t vbslq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE uint64x2_t vbslq_u64(uint64x2_t a, uint64x2_t b, uint64x2_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE poly8x16_t vbslq_p8(uint8x16_t a, poly8x16_t b, poly8x16_t c); // VBSL q0,q0,q0 |
| _NEON2SSESTORAGE poly16x8_t vbslq_p16(uint16x8_t a, poly16x8_t b, poly16x8_t c); // VBSL q0,q0,q0 |
| //Transposition operations |
| //Transpose elements |
| _NEON2SSESTORAGE int8x8x2_t vtrn_s8(int8x8_t a, int8x8_t b); // VTRN.8 d0,d0 |
| _NEON2SSESTORAGE int16x4x2_t vtrn_s16(int16x4_t a, int16x4_t b); // VTRN.16 d0,d0 |
| _NEON2SSESTORAGE int32x2x2_t vtrn_s32(int32x2_t a, int32x2_t b); // VTRN.32 d0,d0 |
| _NEON2SSESTORAGE uint8x8x2_t vtrn_u8(uint8x8_t a, uint8x8_t b); // VTRN.8 d0,d0 |
| _NEON2SSESTORAGE uint16x4x2_t vtrn_u16(uint16x4_t a, uint16x4_t b); // VTRN.16 d0,d0 |
| _NEON2SSESTORAGE uint32x2x2_t vtrn_u32(uint32x2_t a, uint32x2_t b); // VTRN.32 d0,d0 |
| _NEON2SSESTORAGE float32x2x2_t vtrn_f32(float32x2_t a, float32x2_t b); // VTRN.32 d0,d0 |
| _NEON2SSESTORAGE poly8x8x2_t vtrn_p8(poly8x8_t a, poly8x8_t b); // VTRN.8 d0,d0 |
| _NEON2SSESTORAGE poly16x4x2_t vtrn_p16(poly16x4_t a, poly16x4_t b); // VTRN.16 d0,d0 |
| _NEON2SSESTORAGE int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b); // VTRN.8 q0,q0 |
| _NEON2SSESTORAGE int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b); // VTRN.16 q0,q0 |
| _NEON2SSESTORAGE int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b); // VTRN.32 q0,q0 |
| _NEON2SSESTORAGE uint8x16x2_t vtrnq_u8(uint8x16_t a, uint8x16_t b); // VTRN.8 q0,q0 |
| _NEON2SSESTORAGE uint16x8x2_t vtrnq_u16(uint16x8_t a, uint16x8_t b); // VTRN.16 q0,q0 |
| _NEON2SSESTORAGE uint32x4x2_t vtrnq_u32(uint32x4_t a, uint32x4_t b); // VTRN.32 q0,q0 |
| _NEON2SSESTORAGE float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b); // VTRN.32 q0,q0 |
| _NEON2SSESTORAGE poly8x16x2_t vtrnq_p8(poly8x16_t a, poly8x16_t b); // VTRN.8 q0,q0 |
| _NEON2SSESTORAGE poly16x8x2_t vtrnq_p16(poly16x8_t a, poly16x8_t b); // VTRN.16 q0,q0 |
| //Interleave elements |
| _NEON2SSESTORAGE int8x8x2_t vzip_s8(int8x8_t a, int8x8_t b); // VZIP.8 d0,d0 |
| _NEON2SSESTORAGE int16x4x2_t vzip_s16(int16x4_t a, int16x4_t b); // VZIP.16 d0,d0 |
| _NEON2SSESTORAGE int32x2x2_t vzip_s32(int32x2_t a, int32x2_t b); // VZIP.32 d0,d0 |
| _NEON2SSESTORAGE uint8x8x2_t vzip_u8(uint8x8_t a, uint8x8_t b); // VZIP.8 d0,d0 |
| _NEON2SSESTORAGE uint16x4x2_t vzip_u16(uint16x4_t a, uint16x4_t b); // VZIP.16 d0,d0 |
| _NEON2SSESTORAGE uint32x2x2_t vzip_u32(uint32x2_t a, uint32x2_t b); // VZIP.32 d0,d0 |
| _NEON2SSESTORAGE float32x2x2_t vzip_f32(float32x2_t a, float32x2_t b); // VZIP.32 d0,d0 |
| _NEON2SSESTORAGE poly8x8x2_t vzip_p8(poly8x8_t a, poly8x8_t b); // VZIP.8 d0,d0 |
| _NEON2SSESTORAGE poly16x4x2_t vzip_p16(poly16x4_t a, poly16x4_t b); // VZIP.16 d0,d0 |
| _NEON2SSESTORAGE int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b); // VZIP.8 q0,q0 |
| _NEON2SSESTORAGE int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b); // VZIP.16 q0,q0 |
| _NEON2SSESTORAGE int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b); // VZIP.32 q0,q0 |
| _NEON2SSESTORAGE uint8x16x2_t vzipq_u8(uint8x16_t a, uint8x16_t b); // VZIP.8 q0,q0 |
| _NEON2SSESTORAGE uint16x8x2_t vzipq_u16(uint16x8_t a, uint16x8_t b); // VZIP.16 q0,q0 |
| _NEON2SSESTORAGE uint32x4x2_t vzipq_u32(uint32x4_t a, uint32x4_t b); // VZIP.32 q0,q0 |
| _NEON2SSESTORAGE float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b); // VZIP.32 q0,q0 |
| _NEON2SSESTORAGE poly8x16x2_t vzipq_p8(poly8x16_t a, poly8x16_t b); // VZIP.8 q0,q0 |
| _NEON2SSESTORAGE poly16x8x2_t vzipq_p16(poly16x8_t a, poly16x8_t b); // VZIP.16 q0,q0 |
| //De-Interleave elements |
| _NEON2SSESTORAGE int8x8x2_t vuzp_s8(int8x8_t a, int8x8_t b); // VUZP.8 d0,d0 |
| _NEON2SSESTORAGE int16x4x2_t vuzp_s16(int16x4_t a, int16x4_t b); // VUZP.16 d0,d0 |
| _NEON2SSESTORAGE int32x2x2_t vuzp_s32(int32x2_t a, int32x2_t b); // VUZP.32 d0,d0 |
| _NEON2SSESTORAGE uint8x8x2_t vuzp_u8(uint8x8_t a, uint8x8_t b); // VUZP.8 d0,d0 |
| _NEON2SSESTORAGE uint16x4x2_t vuzp_u16(uint16x4_t a, uint16x4_t b); // VUZP.16 d0,d0 |
| _NEON2SSESTORAGE uint32x2x2_t vuzp_u32(uint32x2_t a, uint32x2_t b); // VUZP.32 d0,d0 |
| _NEON2SSESTORAGE float32x2x2_t vuzp_f32(float32x2_t a, float32x2_t b); // VUZP.32 d0,d0 |
| _NEON2SSESTORAGE poly8x8x2_t vuzp_p8(poly8x8_t a, poly8x8_t b); // VUZP.8 d0,d0 |
| _NEON2SSESTORAGE poly16x4x2_t vuzp_p16(poly16x4_t a, poly16x4_t b); // VUZP.16 d0,d0 |
| _NEON2SSESTORAGE int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b); // VUZP.8 q0,q0 |
| _NEON2SSESTORAGE int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b); // VUZP.16 q0,q0 |
| _NEON2SSESTORAGE int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b); // VUZP.32 q0,q0 |
| _NEON2SSESTORAGE uint8x16x2_t vuzpq_u8(uint8x16_t a, uint8x16_t b); // VUZP.8 q0,q0 |
| _NEON2SSESTORAGE uint16x8x2_t vuzpq_u16(uint16x8_t a, uint16x8_t b); // VUZP.16 q0,q0 |
| _NEON2SSESTORAGE uint32x4x2_t vuzpq_u32(uint32x4_t a, uint32x4_t b); // VUZP.32 q0,q0 |
| _NEON2SSESTORAGE float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b); // VUZP.32 q0,q0 |
| _NEON2SSESTORAGE poly8x16x2_t vuzpq_p8(poly8x16_t a, poly8x16_t b); // VUZP.8 q0,q0 |
| _NEON2SSESTORAGE poly16x8x2_t vuzpq_p16(poly16x8_t a, poly16x8_t b); // VUZP.16 q0,q0 |
| |
| _NEON2SSESTORAGE float32x4_t vrndnq_f32(float32x4_t a); // VRND.F32 q0,q0 |
| |
| _NEON2SSESTORAGE float64x2_t vrndnq_f64(float64x2_t a); // VRND.F64 q0,q0 |
| |
| //Sqrt |
| _NEON2SSESTORAGE float32x4_t vsqrtq_f32(float32x4_t a); // VSQRT.F32 q0,q0 |
| |
| _NEON2SSESTORAGE float64x2_t vsqrtq_f64(float64x2_t a); // VSQRT.F64 q0,q0 |
| |
| |
| |
| //^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| // the following macros solve the problem of the "immediate parameters requirement" for some x86 intrinsics. |
| // we need it to compile the code unless the "Intrinsic parameter must be an immediate value" error is our goal |
| // |
| #if ( defined (__INTEL_COMPILER) || defined (__GNUC__) && !defined(__llvm__) ) |
| # define _MM_ALIGNR_EPI8 _mm_alignr_epi8 |
| # define _MM_EXTRACT_EPI16 (int16_t) _mm_extract_epi16 |
| # define _MM_INSERT_EPI16 _mm_insert_epi16 |
| # ifdef USE_SSE4 |
| # define _MM_EXTRACT_EPI8 _mm_extract_epi8 |
| # define _MM_EXTRACT_EPI32 _mm_extract_epi32 |
| # define _MM_EXTRACT_PS _mm_extract_ps |
| # define _MM_INSERT_EPI8 _mm_insert_epi8 |
| # define _MM_INSERT_EPI32 _mm_insert_epi32 |
| # define _MM_INSERT_PS _mm_insert_ps |
| # ifdef _NEON2SSE_64BIT |
| # define _MM_INSERT_EPI64 _mm_insert_epi64 |
| # define _MM_EXTRACT_EPI64 _mm_extract_epi64 |
| # endif |
| # endif //SSE4 |
| #else |
| # define _NEON2SSE_COMMA , |
| # define _NEON2SSE_SWITCH16(NAME, a, b, LANE) \ |
| switch(LANE) \ |
| { \ |
| case 0: return NAME(a b, 0); \ |
| case 1: return NAME(a b, 1); \ |
| case 2: return NAME(a b, 2); \ |
| case 3: return NAME(a b, 3); \ |
| case 4: return NAME(a b, 4); \ |
| case 5: return NAME(a b, 5); \ |
| case 6: return NAME(a b, 6); \ |
| case 7: return NAME(a b, 7); \ |
| case 8: return NAME(a b, 8); \ |
| case 9: return NAME(a b, 9); \ |
| case 10: return NAME(a b, 10); \ |
| case 11: return NAME(a b, 11); \ |
| case 12: return NAME(a b, 12); \ |
| case 13: return NAME(a b, 13); \ |
| case 14: return NAME(a b, 14); \ |
| case 15: return NAME(a b, 15); \ |
| default: return NAME(a b, 0); \ |
| } |
| |
| # define _NEON2SSE_SWITCH8(NAME, vec, LANE, p) \ |
| switch(LANE) \ |
| { \ |
| case 0: return NAME(vec p,0); \ |
| case 1: return NAME(vec p,1); \ |
| case 2: return NAME(vec p,2); \ |
| case 3: return NAME(vec p,3); \ |
| case 4: return NAME(vec p,4); \ |
| case 5: return NAME(vec p,5); \ |
| case 6: return NAME(vec p,6); \ |
| case 7: return NAME(vec p,7); \ |
| default: return NAME(vec p,0); \ |
| } |
| |
| # define _NEON2SSE_SWITCH4(NAME, case0, case1, case2, case3, vec, LANE, p) \ |
| switch(LANE) \ |
| { \ |
| case case0: return NAME(vec p,case0); \ |
| case case1: return NAME(vec p,case1); \ |
| case case2: return NAME(vec p,case2); \ |
| case case3: return NAME(vec p,case3); \ |
| default: return NAME(vec p,case0); \ |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_ALIGNR_EPI8(__m128i a, __m128i b, int LANE) |
| { |
| _NEON2SSE_SWITCH16(_mm_alignr_epi8, a, _NEON2SSE_COMMA b, LANE) |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI16(__m128i vec, int p, const int LANE) |
| { |
| _NEON2SSE_SWITCH8(_mm_insert_epi16, vec, LANE, _NEON2SSE_COMMA p) |
| } |
| |
| _NEON2SSE_INLINE int16_t _MM_EXTRACT_EPI16(__m128i vec, const int LANE) |
| { |
| _NEON2SSE_SWITCH8(_mm_extract_epi16, vec, LANE,) |
| } |
| |
| #ifdef USE_SSE4 |
| _NEON2SSE_INLINE int _MM_EXTRACT_EPI32(__m128i vec, const int LANE) |
| { |
| _NEON2SSE_SWITCH4(_mm_extract_epi32, 0,1,2,3, vec, LANE,) |
| } |
| |
| _NEON2SSE_INLINE int _MM_EXTRACT_PS(__m128 vec, const int LANE) |
| { |
| _NEON2SSE_SWITCH4(_mm_extract_ps, 0,1,2,3, vec, LANE,) |
| } |
| |
| _NEON2SSE_INLINE int _MM_EXTRACT_EPI8(__m128i vec, const int LANE) |
| { |
| _NEON2SSE_SWITCH16(_mm_extract_epi8, vec, , LANE) |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI32(__m128i vec, int p, const int LANE) |
| { |
| _NEON2SSE_SWITCH4(_mm_insert_epi32, 0, 1, 2, 3, vec, LANE, _NEON2SSE_COMMA p) |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI8(__m128i vec, int p, const int LANE) |
| { |
| _NEON2SSE_SWITCH16(_mm_insert_epi8, vec, _NEON2SSE_COMMA p, LANE) |
| } |
| |
| #ifdef _NEON2SSE_64BIT |
| //the special case of functions available only for SSE4 and 64-bit build. |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI64(__m128i vec, int p, const int LANE) |
| { |
| switch(LANE) { |
| case 0: |
| return _mm_insert_epi64(vec, p, 0); |
| case 1: |
| return _mm_insert_epi64(vec, p, 1); |
| default: |
| return _mm_insert_epi64(vec, p, 0); |
| } |
| } |
| |
| _NEON2SSE_INLINE int64_t _MM_EXTRACT_EPI64(__m128i val, const int LANE) |
| { |
| if (LANE ==0) return _mm_extract_epi64(val, 0); |
| else return _mm_extract_epi64(val, 1); |
| } |
| #endif |
| |
| _NEON2SSE_INLINE __m128 _MM_INSERT_PS(__m128 vec, __m128 p, const int LANE) |
| { |
| _NEON2SSE_SWITCH4(_mm_insert_ps, 0, 16, 32, 48, vec, LANE, _NEON2SSE_COMMA p) |
| } |
| |
| #endif //USE_SSE4 |
| |
| #endif //#ifdef NDEBUG |
| |
| //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| // Below are some helper functions used either for SSE4 intrinsics "emulation" for SSSE3 limited devices |
| // or for some specific commonly used operations implementation missing in SSE |
| #ifdef USE_SSE4 |
| # define _MM_CVTEPU8_EPI16 _mm_cvtepu8_epi16 |
| # define _MM_CVTEPU16_EPI32 _mm_cvtepu16_epi32 |
| # define _MM_CVTEPU32_EPI64 _mm_cvtepu32_epi64 |
| |
| # define _MM_CVTEPI8_EPI16 _mm_cvtepi8_epi16 |
| # define _MM_CVTEPI16_EPI32 _mm_cvtepi16_epi32 |
| # define _MM_CVTEPI32_EPI64 _mm_cvtepi32_epi64 |
| |
| # define _MM_MAX_EPI8 _mm_max_epi8 |
| # define _MM_MAX_EPI32 _mm_max_epi32 |
| # define _MM_MAX_EPU16 _mm_max_epu16 |
| # define _MM_MAX_EPU32 _mm_max_epu32 |
| |
| # define _MM_MIN_EPI8 _mm_min_epi8 |
| # define _MM_MIN_EPI32 _mm_min_epi32 |
| # define _MM_MIN_EPU16 _mm_min_epu16 |
| # define _MM_MIN_EPU32 _mm_min_epu32 |
| |
| # define _MM_BLENDV_EPI8 _mm_blendv_epi8 |
| # define _MM_PACKUS_EPI32 _mm_packus_epi32 |
| # define _MM_PACKUS1_EPI32(a) _mm_packus_epi32(a, a) |
| |
| # define _MM_MULLO_EPI32 _mm_mullo_epi32 |
| # define _MM_MUL_EPI32 _mm_mul_epi32 |
| |
| # define _MM_CMPEQ_EPI64 _mm_cmpeq_epi64 |
| #else //no SSE4 !!!!!! |
| _NEON2SSE_INLINE __m128i _MM_CVTEPU8_EPI16(__m128i a) |
| { |
| __m128i zero = _mm_setzero_si128(); |
| return _mm_unpacklo_epi8(a, zero); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_CVTEPU16_EPI32(__m128i a) |
| { |
| __m128i zero = _mm_setzero_si128(); |
| return _mm_unpacklo_epi16(a, zero); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_CVTEPU32_EPI64(__m128i a) |
| { |
| __m128i zero = _mm_setzero_si128(); |
| return _mm_unpacklo_epi32(a, zero); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_CVTEPI8_EPI16(__m128i a) |
| { |
| __m128i zero = _mm_setzero_si128(); |
| __m128i sign = _mm_cmpgt_epi8(zero, a); |
| return _mm_unpacklo_epi8(a, sign); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_CVTEPI16_EPI32(__m128i a) |
| { |
| __m128i zero = _mm_setzero_si128(); |
| __m128i sign = _mm_cmpgt_epi16(zero, a); |
| return _mm_unpacklo_epi16(a, sign); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_CVTEPI32_EPI64(__m128i a) |
| { |
| __m128i zero = _mm_setzero_si128(); |
| __m128i sign = _mm_cmpgt_epi32(zero, a); |
| return _mm_unpacklo_epi32(a, sign); |
| } |
| |
| _NEON2SSE_INLINE int _MM_EXTRACT_EPI32(__m128i vec, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 int32_t tmp[4]; |
| _mm_store_si128((__m128i*)tmp, vec); |
| return tmp[LANE]; |
| } |
| |
| _NEON2SSE_INLINE int _MM_EXTRACT_EPI8(__m128i vec, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 int8_t tmp[16]; |
| _mm_store_si128((__m128i*)tmp, vec); |
| return (int)tmp[LANE]; |
| } |
| |
| _NEON2SSE_INLINE int _MM_EXTRACT_PS(__m128 vec, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 int32_t tmp[4]; |
| _mm_store_si128((__m128i*)tmp, _M128i(vec)); |
| return tmp[LANE]; |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI32(__m128i vec, int p, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 int32_t pvec[4] = {0,0,0,0}; |
| _NEON2SSE_ALIGN_16 uint32_t mask[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff}; |
| __m128i vec_masked, p_masked; |
| pvec[LANE] = p; |
| mask[LANE] = 0x0; |
| vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p |
| p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec |
| return _mm_or_si128(vec_masked, p_masked); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI8(__m128i vec, int p, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 int8_t pvec[16] = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0}; |
| _NEON2SSE_ALIGN_16 uint8_t mask[16] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff}; |
| __m128i vec_masked, p_masked; |
| pvec[LANE] = (int8_t)p; |
| mask[LANE] = 0x0; |
| vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p |
| p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec |
| return _mm_or_si128(vec_masked, p_masked); |
| } |
| |
| _NEON2SSE_INLINE __m128 _MM_INSERT_PS(__m128 vec, __m128 p, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 uint32_t mask[4] = {0xffffffff,0xffffffff,0xffffffff,0xffffffff}; |
| __m128 tmp, vec_masked, p_masked; |
| mask[LANE >> 4] = 0x0; //here the LANE is not actural lane, need to deal with it |
| vec_masked = _mm_and_ps (*(__m128*)mask,vec); //ready for p |
| p_masked = _mm_andnot_ps (*(__m128*)mask, p); //ready for vec |
| tmp = _mm_or_ps(vec_masked, p_masked); |
| return tmp; |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MAX_EPI8(__m128i a, __m128i b) |
| { |
| __m128i cmp, resa, resb; |
| cmp = _mm_cmpgt_epi8 (a, b); |
| resa = _mm_and_si128 (cmp, a); |
| resb = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(resa, resb); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MAX_EPI32(__m128i a, __m128i b) |
| { |
| __m128i cmp, resa, resb; |
| cmp = _mm_cmpgt_epi32(a, b); |
| resa = _mm_and_si128 (cmp, a); |
| resb = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(resa, resb); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MAX_EPU16(__m128i a, __m128i b) |
| { |
| __m128i c8000, b_s, a_s, cmp; |
| c8000 = _mm_cmpeq_epi16 (a,a); //0xffff |
| c8000 = _mm_slli_epi16 (c8000, 15); //0x8000 |
| b_s = _mm_sub_epi16 (b, c8000); |
| a_s = _mm_sub_epi16 (a, c8000); |
| cmp = _mm_cmpgt_epi16 (a_s, b_s); //no unsigned comparison, need to go to signed |
| a_s = _mm_and_si128 (cmp,a); |
| b_s = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(a_s, b_s); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MAX_EPU32(__m128i a, __m128i b) |
| { |
| __m128i c80000000, b_s, a_s, cmp; |
| c80000000 = _mm_cmpeq_epi32 (a,a); //0xffffffff |
| c80000000 = _mm_slli_epi32 (c80000000, 31); //0x80000000 |
| b_s = _mm_sub_epi32 (b, c80000000); |
| a_s = _mm_sub_epi32 (a, c80000000); |
| cmp = _mm_cmpgt_epi32 (a_s, b_s); //no unsigned comparison, need to go to signed |
| a_s = _mm_and_si128 (cmp,a); |
| b_s = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(a_s, b_s); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MIN_EPI8(__m128i a, __m128i b) |
| { |
| __m128i cmp, resa, resb; |
| cmp = _mm_cmpgt_epi8 (b, a); |
| resa = _mm_and_si128 (cmp, a); |
| resb = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(resa, resb); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MIN_EPI32(__m128i a, __m128i b) |
| { |
| __m128i cmp, resa, resb; |
| cmp = _mm_cmpgt_epi32(b, a); |
| resa = _mm_and_si128 (cmp, a); |
| resb = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(resa, resb); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MIN_EPU16(__m128i a, __m128i b) |
| { |
| __m128i c8000, b_s, a_s, cmp; |
| c8000 = _mm_cmpeq_epi16 (a,a); //0xffff |
| c8000 = _mm_slli_epi16 (c8000, 15); //0x8000 |
| b_s = _mm_sub_epi16 (b, c8000); |
| a_s = _mm_sub_epi16 (a, c8000); |
| cmp = _mm_cmpgt_epi16 (b_s, a_s); //no unsigned comparison, need to go to signed |
| a_s = _mm_and_si128 (cmp,a); |
| b_s = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(a_s, b_s); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MIN_EPU32(__m128i a, __m128i b) |
| { |
| __m128i c80000000, b_s, a_s, cmp; |
| c80000000 = _mm_cmpeq_epi32 (a,a); //0xffffffff |
| c80000000 = _mm_slli_epi32 (c80000000, 31); //0x80000000 |
| b_s = _mm_sub_epi32 (b, c80000000); |
| a_s = _mm_sub_epi32 (a, c80000000); |
| cmp = _mm_cmpgt_epi32 (b_s, a_s); //no unsigned comparison, need to go to signed |
| a_s = _mm_and_si128 (cmp,a); |
| b_s = _mm_andnot_si128 (cmp,b); |
| return _mm_or_si128(a_s, b_s); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_BLENDV_EPI8(__m128i a, __m128i b, __m128i mask) //this is NOT exact implementation of _mm_blendv_epi8 !!!!! - please see below |
| { |
| //it assumes mask is either 0xff or 0 always (like in all usecases below) while for the original _mm_blendv_epi8 only MSB mask byte matters. |
| __m128i a_masked, b_masked; |
| b_masked = _mm_and_si128 (mask,b); //use b if mask 0xff |
| a_masked = _mm_andnot_si128 (mask,a); |
| return _mm_or_si128(a_masked, b_masked); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_PACKUS_EPI32(__m128i a, __m128i b) |
| { |
| __m128i a16, b16, res, reshi,cmp, zero; |
| zero = _mm_setzero_si128(); |
| a16 = _mm_shuffle_epi8 (a, *(__m128i*) mask8_32_even_odd); |
| b16 = _mm_shuffle_epi8 (b, *(__m128i*) mask8_32_even_odd); |
| res = _mm_unpacklo_epi64(a16, b16); //result without saturation |
| reshi = _mm_unpackhi_epi64(a16, b16); //hi part of result used for saturation |
| cmp = _mm_cmpgt_epi16(zero, reshi); //if cmp<0 the result should be zero |
| res = _mm_andnot_si128(cmp,res); //if cmp zero - do nothing, otherwise cmp <0 and the result is 0 |
| cmp = _mm_cmpgt_epi16(reshi,zero); //if cmp positive |
| return _mm_or_si128(res, cmp); //if cmp positive we are out of 16bits need to saturaate to 0xffff |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_PACKUS1_EPI32(__m128i a) |
| { |
| __m128i a16, res, reshi,cmp, zero; |
| zero = _mm_setzero_si128(); |
| a16 = _mm_shuffle_epi8 (a, *(__m128i*)mask8_32_even_odd); |
| reshi = _mm_unpackhi_epi64(a16, a16); //hi part of result used for saturation |
| cmp = _mm_cmpgt_epi16(zero, reshi); //if cmp<0 the result should be zero |
| res = _mm_andnot_si128(cmp, a16); //if cmp zero - do nothing, otherwise cmp <0 and the result is 0 |
| cmp = _mm_cmpgt_epi16(reshi,zero); //if cmp positive |
| return _mm_or_si128(res, cmp); //if cmp positive we are out of 16bits need to saturaate to 0xffff |
| } |
| |
| |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(__m128i _MM_MULLO_EPI32(__m128i a, __m128i b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 int32_t atmp[4], btmp[4], res[4]; |
| int64_t res64; |
| int i; |
| _mm_store_si128((__m128i*)atmp, a); |
| _mm_store_si128((__m128i*)btmp, b); |
| for (i = 0; i<4; i++) { |
| res64 = atmp[i] * btmp[i]; |
| res[i] = (int)(res64 & 0xffffffff); |
| } |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_MUL_EPI32(__m128i a, __m128i b) |
| { |
| __m128i sign, zero, mul_us, a_neg, b_neg, mul_us_neg; |
| sign = _mm_xor_si128 (a, b); |
| sign = _mm_srai_epi32 (sign, 31); //promote sign bit to all fields, all fff if negative and all 0 if positive |
| sign = _mm_shuffle_epi32(sign, _MM_SHUFFLE(2, 2, 0, 0)); //promote sign bit to 3 and 1st data lanes |
| zero = _mm_setzero_si128(); |
| a_neg = _mm_abs_epi32 (a); //negate a and b |
| b_neg = _mm_abs_epi32 (b); //negate a and b |
| mul_us = _mm_mul_epu32 (a_neg, b_neg); //uses 0 and 2nd data lanes, (abs), the multiplication gives 64 bit result |
| mul_us_neg = _mm_sub_epi64(zero, mul_us); |
| mul_us_neg = _mm_and_si128(sign, mul_us_neg); |
| mul_us = _mm_andnot_si128(sign, mul_us); |
| return _mm_or_si128 (mul_us, mul_us_neg); |
| } |
| |
| _NEON2SSE_INLINE __m128i _MM_CMPEQ_EPI64(__m128i a, __m128i b) |
| { |
| __m128i res; |
| res = _mm_cmpeq_epi32 (a, b); |
| return _mm_shuffle_epi32 (res, 1 | (1 << 2) | (3 << 4) | (3 << 6)); //copy the information from hi to low part of the 64 bit data |
| } |
| #endif //SSE4 |
| |
| //the special case of functions working only for 32 bits, no SSE4 |
| _NEON2SSE_INLINE __m128i _MM_INSERT_EPI64_32(__m128i vec, int p, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t pvec[2] = {0,0}; |
| _NEON2SSE_ALIGN_16 uint64_t mask[2] = {0xffffffffffffffff, 0xffffffffffffffff}; |
| __m128i vec_masked, p_masked; |
| pvec[LANE] = p; |
| mask[LANE] = 0x0; |
| vec_masked = _mm_and_si128 (*(__m128i*)mask,vec); //ready for p |
| p_masked = _mm_andnot_si128 (*(__m128i*)mask,*(__m128i*)pvec); //ready for vec |
| return _mm_or_si128(vec_masked, p_masked); |
| } |
| |
| _NEON2SSE_INLINE int64_t _MM_EXTRACT_EPI64_32(__m128i val, const int LANE) |
| { |
| _NEON2SSE_ALIGN_16 int64_t tmp[2]; |
| _mm_store_si128((__m128i*)tmp, val); |
| return tmp[LANE]; |
| } |
| |
| #ifndef _NEON2SSE_64BIT_SSE4 |
| # define _MM_INSERT_EPI64 _MM_INSERT_EPI64_32 |
| # define _MM_EXTRACT_EPI64 _MM_EXTRACT_EPI64_32 |
| #endif |
| |
| _NEON2SSESTORAGE int32x4_t vqd_s32(int32x4_t a); //Doubling saturation for signed ints |
| _NEON2SSE_INLINE int32x4_t vqd_s32(int32x4_t a) |
| { |
| //Overflow happens only if a and sum have the opposite signs |
| __m128i c7fffffff, res, res_sat, res_xor_a; |
| c7fffffff = _mm_set1_epi32(0x7fffffff); |
| res = _mm_slli_epi32 (a, 1); // res = a*2 |
| res_sat = _mm_srli_epi32(a, 31); |
| res_sat = _mm_add_epi32(res_sat, c7fffffff); |
| res_xor_a = _mm_xor_si128(res, a); |
| res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise |
| res_sat = _mm_and_si128(res_xor_a, res_sat); |
| res = _mm_andnot_si128(res_xor_a, res); |
| return _mm_or_si128(res, res_sat); |
| } |
| |
| |
| //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| //************************************************************************* |
| //************************************************************************* |
| //***************** Functions redefinition\implementatin starts here ***** |
| //************************************************************************* |
| //************************************************************************* |
| //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| |
| /*If the unified intrinsics solutions is necessary please define your SSE intrinsics wrap here like in the following sample: |
| #ifdef ARM |
| #define vector_addq_s32 _mm_add_epi32 |
| #else //if we have IA |
| #define vector_addq_s32 vadd_s32 |
| #endif |
| |
| ******************************************************************************************** |
| Functions below are organised in the following way: |
| |
| Each NEON intrinsic function has one of the following options: |
| 1. its x86 full equivalent SSE intrinsic - in this case x86 version just follows the NEON one under the corresponding #define statement |
| 2. x86 implementation using more than one x86 intrinsics. In this case it is shaped as inlined C function with return statement |
| 3. the reference to the NEON function returning the same result and implemented in x86 as above. In this case it is shaped as matching NEON function definition |
| 4. for about 5% of functions due to the corresponding x86 SIMD unavailability or inefficiency in terms of performance |
| the serial implementation is provided along with the corresponding compiler warning. If these functions are on your app critical path |
| - please consider such functions removal from your code. |
| */ |
| |
| //*********************************************************************** |
| //************************ Vector add ***************************** |
| //*********************************************************************** |
| _NEON2SSESTORAGE int8x8_t vadd_s8(int8x8_t a, int8x8_t b); // VADD.I8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vadd_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_add_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vadd_s16(int16x4_t a, int16x4_t b); // VADD.I16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vadd_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_add_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vadd_s32(int32x2_t a, int32x2_t b); // VADD.I32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vadd_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(_mm_add_epi32(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vadd_s64(int64x1_t a, int64x1_t b); // VADD.I64 d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vadd_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res64; |
| res64.m64_i64[0] = a.m64_i64[0] + b.m64_i64[0]; |
| return res64; |
| } |
| |
| |
| _NEON2SSESTORAGE float32x2_t vadd_f32(float32x2_t a, float32x2_t b); // VADD.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vadd_f32(float32x2_t a, float32x2_t b) |
| { |
| __m128 res; |
| __m64_128 res64; |
| res = _mm_add_ps(_pM128(a),_pM128(b)); //SSE, use only low 64 bits |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vadd_u8(uint8x8_t a, uint8x8_t b); // VADD.I8 d0,d0,d0 |
| #define vadd_u8 vadd_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vadd_u16(uint16x4_t a, uint16x4_t b); // VADD.I16 d0,d0,d0 |
| #define vadd_u16 vadd_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vadd_u32(uint32x2_t a, uint32x2_t b); // VADD.I32 d0,d0,d0 |
| #define vadd_u32 vadd_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vadd_u64(uint64x1_t a, uint64x1_t b); // VADD.I64 d0,d0,d0 |
| _NEON2SSE_INLINE uint64x1_t vadd_u64(uint64x1_t a, uint64x1_t b) |
| { |
| uint64x1_t res64; |
| res64.m64_u64[0] = a.m64_u64[0] + b.m64_u64[0]; |
| return res64; |
| } |
| |
| |
| _NEON2SSESTORAGE int8x16_t vaddq_s8(int8x16_t a, int8x16_t b); // VADD.I8 q0,q0,q0 |
| #define vaddq_s8 _mm_add_epi8 |
| |
| _NEON2SSESTORAGE int16x8_t vaddq_s16(int16x8_t a, int16x8_t b); // VADD.I16 q0,q0,q0 |
| #define vaddq_s16 _mm_add_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vaddq_s32(int32x4_t a, int32x4_t b); // VADD.I32 q0,q0,q0 |
| #define vaddq_s32 _mm_add_epi32 |
| |
| _NEON2SSESTORAGE int64x2_t vaddq_s64(int64x2_t a, int64x2_t b); // VADD.I64 q0,q0,q0 |
| #define vaddq_s64 _mm_add_epi64 |
| |
| _NEON2SSESTORAGE float32x4_t vaddq_f32(float32x4_t a, float32x4_t b); // VADD.F32 q0,q0,q0 |
| #define vaddq_f32 _mm_add_ps |
| |
| _NEON2SSESTORAGE uint8x16_t vaddq_u8(uint8x16_t a, uint8x16_t b); // VADD.I8 q0,q0,q0 |
| #define vaddq_u8 _mm_add_epi8 |
| |
| _NEON2SSESTORAGE uint16x8_t vaddq_u16(uint16x8_t a, uint16x8_t b); // VADD.I16 q0,q0,q0 |
| #define vaddq_u16 _mm_add_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vaddq_u32(uint32x4_t a, uint32x4_t b); // VADD.I32 q0,q0,q0 |
| #define vaddq_u32 _mm_add_epi32 |
| |
| _NEON2SSESTORAGE uint64x2_t vaddq_u64(uint64x2_t a, uint64x2_t b); // VADD.I64 q0,q0,q0 |
| #define vaddq_u64 _mm_add_epi64 |
| |
| //**************************** Vector long add *****************************: |
| //*********************************************************************** |
| //Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width. |
| _NEON2SSESTORAGE int16x8_t vaddl_s8(int8x8_t a, int8x8_t b); // VADDL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vaddl_s8(int8x8_t a, int8x8_t b) // VADDL.S8 q0,d0,d0 |
| { |
| __m128i a16, b16; |
| a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE4.1, |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1, |
| return _mm_add_epi16 (a16, b16); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vaddl_s16(int16x4_t a, int16x4_t b); // VADDL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vaddl_s16(int16x4_t a, int16x4_t b) // VADDL.S16 q0,d0,d0 |
| { |
| __m128i a32, b32; |
| a32 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE4.1 |
| b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi32 (a32, b32); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vaddl_s32(int32x2_t a, int32x2_t b); // VADDL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE int64x2_t vaddl_s32(int32x2_t a, int32x2_t b) // VADDL.S32 q0,d0,d0 |
| { |
| //may be not optimal |
| __m128i a64, b64; |
| a64 = _MM_CVTEPI32_EPI64 (_pM128i(a)); //SSE4.1 |
| b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi64 ( a64, b64); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b); // VADDL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b) // VADDL.U8 q0,d0,d0 |
| { |
| __m128i a16, b16; |
| a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE4.1 |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi16 (a16, b16); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vaddl_u16(uint16x4_t a, uint16x4_t b); // VADDL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vaddl_u16(uint16x4_t a, uint16x4_t b) // VADDL.s16 q0,d0,d0 |
| { |
| __m128i a32, b32; |
| a32 = _MM_CVTEPU16_EPI32 (_pM128i(a)); //SSE4.1 |
| b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi32 (a32, b32); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vaddl_u32(uint32x2_t a, uint32x2_t b); // VADDL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE uint64x2_t vaddl_u32(uint32x2_t a, uint32x2_t b) // VADDL.U32 q0,d0,d0 |
| { |
| //may be not optimal |
| __m128i a64, b64; |
| a64 = _MM_CVTEPU32_EPI64 (_pM128i(a)); //SSE4.1 |
| b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi64 (a64, b64); |
| } |
| |
| //*************** Vector wide add: vaddw_<type>. Vr[i]:=Va[i]+Vb[i] ****************** |
| //*************** ********************************************************************* |
| _NEON2SSESTORAGE int16x8_t vaddw_s8(int16x8_t a, int8x8_t b); // VADDW.S8 q0,q0,d0 |
| _NEON2SSE_INLINE int16x8_t vaddw_s8(int16x8_t a, int8x8_t b) // VADDW.S8 q0,q0,d0 |
| { |
| __m128i b16; |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1, |
| return _mm_add_epi16 (a, b16); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vaddw_s16(int32x4_t a, int16x4_t b); // VADDW.S16 q0,q0,d0 |
| _NEON2SSE_INLINE int32x4_t vaddw_s16(int32x4_t a, int16x4_t b) // VADDW.S16 q0,q0,d0 |
| { |
| __m128i b32; |
| b32 = _MM_CVTEPI16_EPI32(_pM128i(b)); //SSE4.1, |
| return _mm_add_epi32 (a, b32); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vaddw_s32(int64x2_t a, int32x2_t b); // VADDW.S32 q0,q0,d0 |
| _NEON2SSE_INLINE int64x2_t vaddw_s32(int64x2_t a, int32x2_t b) // VADDW.S32 q0,q0,d0 |
| { |
| __m128i b64; |
| b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi64 (a, b64); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vaddw_u8(uint16x8_t a, uint8x8_t b); // VADDW.U8 q0,q0,d0 |
| _NEON2SSE_INLINE uint16x8_t vaddw_u8(uint16x8_t a, uint8x8_t b) // VADDW.U8 q0,q0,d0 |
| { |
| __m128i b16; |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi16 (a, b16); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vaddw_u16(uint32x4_t a, uint16x4_t b); // VADDW.s16 q0,q0,d0 |
| _NEON2SSE_INLINE uint32x4_t vaddw_u16(uint32x4_t a, uint16x4_t b) // VADDW.s16 q0,q0,d0 |
| { |
| __m128i b32; |
| b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi32 (a, b32); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vaddw_u32(uint64x2_t a, uint32x2_t b); // VADDW.U32 q0,q0,d0 |
| _NEON2SSE_INLINE uint64x2_t vaddw_u32(uint64x2_t a, uint32x2_t b) // VADDW.U32 q0,q0,d0 |
| { |
| __m128i b64; |
| b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1 |
| return _mm_add_epi64 (a, b64); |
| } |
| |
| //******************************Vector halving add: vhadd -> Vr[i]:=(Va[i]+Vb[i])>>1 , result truncated ******************************* |
| //************************************************************************************************************************* |
| _NEON2SSESTORAGE int8x8_t vhadd_s8(int8x8_t a, int8x8_t b); // VHADD.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vhadd_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vhaddq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vhadd_s16(int16x4_t a, int16x4_t b); // VHADD.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vhadd_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64( vhaddq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vhadd_s32(int32x2_t a, int32x2_t b); // VHADD.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vhadd_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64( vhaddq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vhadd_u8(uint8x8_t a, uint8x8_t b); // VHADD.w d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vhadd_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64( vhaddq_u8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vhadd_u16(uint16x4_t a, uint16x4_t b); // VHADD.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vhadd_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64( vhaddq_u16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vhadd_u32(uint32x2_t a, uint32x2_t b); // VHADD.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vhadd_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64( vhaddq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b); // VHADD.S8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vhaddq_s8(int8x16_t a, int8x16_t b) |
| { |
| //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). |
| __m128i tmp1, tmp2; |
| tmp1 = _mm_and_si128(a,b); |
| tmp2 = _mm_xor_si128(a,b); |
| tmp2 = vshrq_n_s8(tmp2,1); |
| return _mm_add_epi8(tmp1,tmp2); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b); // VHADD.S1 6 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vhaddq_s16(int16x8_t a, int16x8_t b) |
| { |
| //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). |
| __m128i tmp1, tmp2; |
| tmp1 = _mm_and_si128(a,b); |
| tmp2 = _mm_xor_si128(a,b); |
| tmp2 = _mm_srai_epi16(tmp2,1); |
| return _mm_add_epi16(tmp1,tmp2); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b); // VHADD.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vhaddq_s32(int32x4_t a, int32x4_t b) // VHADD.S32 q0,q0,q0 |
| { |
| //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). |
| __m128i tmp1, tmp2; |
| tmp1 = _mm_and_si128(a,b); |
| tmp2 = _mm_xor_si128(a,b); |
| tmp2 = _mm_srai_epi32(tmp2,1); |
| return _mm_add_epi32(tmp1,tmp2); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b); // VHADD.U8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vhaddq_u8(uint8x16_t a, uint8x16_t b) // VHADD.U8 q0,q0,q0 |
| { |
| __m128i c1, sum, res; |
| c1 = _mm_set1_epi8(1); |
| sum = _mm_avg_epu8(a, b); //result is rounded, need to compensate it |
| res = _mm_xor_si128(a, b); //for rounding compensation |
| res = _mm_and_si128(res,c1); //for rounding compensation |
| return _mm_sub_epi8 (sum, res); //actual rounding compensation |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b); // VHADD.s16 q0,q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vhaddq_u16(uint16x8_t a, uint16x8_t b) // VHADD.s16 q0,q0,q0 |
| { |
| __m128i sum, res; |
| sum = _mm_avg_epu16(a, b); //result is rounded, need to compensate it |
| res = _mm_xor_si128(a, b); //for rounding compensation |
| res = _mm_slli_epi16 (res,15); //shift left then back right to |
| res = _mm_srli_epi16 (res,15); //get 1 or zero |
| return _mm_sub_epi16 (sum, res); //actual rounding compensation |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b); // VHADD.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vhaddq_u32(uint32x4_t a, uint32x4_t b) // VHADD.U32 q0,q0,q0 |
| { |
| //need to avoid internal overflow, will use the (x&y)+((x^y)>>1). |
| __m128i tmp1, tmp2; |
| tmp1 = _mm_and_si128(a,b); |
| tmp2 = _mm_xor_si128(a,b); |
| tmp2 = _mm_srli_epi32(tmp2,1); |
| return _mm_add_epi32(tmp1,tmp2); |
| } |
| |
| //************************Vector rounding halving add: vrhadd{q}_<type>. Vr[i]:=(Va[i]+Vb[i]+1)>>1 *************************** |
| //***************************************************************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vrhadd_s8(int8x8_t a, int8x8_t b); // VRHADD.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vrhadd_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vrhaddq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vrhadd_s16(int16x4_t a, int16x4_t b); // VRHADD.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vrhadd_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vrhaddq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vrhadd_s32(int32x2_t a, int32x2_t b); // VRHADD.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vrhadd_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vrhaddq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vrhadd_u8(uint8x8_t a, uint8x8_t b); // VRHADD.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vrhadd_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(_mm_avg_epu8(_pM128i(a),_pM128i(b))); //SSE, result rounding!!! |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vrhadd_u16(uint16x4_t a, uint16x4_t b); // VRHADD.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vrhadd_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_mm_avg_epu16(_pM128i(a),_pM128i(b))); //SSE, result rounding!!! |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vrhadd_u32(uint32x2_t a, uint32x2_t b); // VRHADD.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vrhadd_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(vrhaddq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b); // VRHADD.S8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vrhaddq_s8(int8x16_t a, int8x16_t b) // VRHADD.S8 q0,q0,q0 |
| { |
| //no signed average in x86 SIMD, go to unsigned |
| __m128i c128, au, bu, sum; |
| c128 = _mm_set1_epi8((int8_t)0x80); //-128 |
| au = _mm_sub_epi8(a, c128); //add 128 |
| bu = _mm_sub_epi8(b, c128); //add 128 |
| sum = _mm_avg_epu8(au, bu); |
| return _mm_add_epi8 (sum, c128); //sub 128 |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b); // VRHADD.S16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vrhaddq_s16(int16x8_t a, int16x8_t b) // VRHADD.S16 q0,q0,q0 |
| { |
| //no signed average in x86 SIMD, go to unsigned |
| __m128i cx8000, au, bu, sum; |
| cx8000 = _mm_set1_epi16((int16_t)0x8000); // - 32768 |
| au = _mm_sub_epi16(a, cx8000); //add 32768 |
| bu = _mm_sub_epi16(b, cx8000); //add 32768 |
| sum = _mm_avg_epu16(au, bu); |
| return _mm_add_epi16 (sum, cx8000); //sub 32768 |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b); // VRHADD.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vrhaddq_s32(int32x4_t a, int32x4_t b) |
| { |
| //need to avoid overflow |
| __m128i a2, b2, res, sum; |
| a2 = _mm_srai_epi32(a,1); //a2=a/2; |
| b2 = _mm_srai_epi32(b,1); // b2=b/2; |
| res = _mm_or_si128(a,b); //for rounding |
| res = _mm_slli_epi32 (res,31); //shift left then back right to |
| res = _mm_srli_epi32 (res,31); //get 1 or zero |
| sum = _mm_add_epi32(a2,b2); |
| return _mm_add_epi32(sum,res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrhaddq_u8(uint8x16_t a, uint8x16_t b); // VRHADD.U8 q0,q0,q0 |
| #define vrhaddq_u8 _mm_avg_epu8 //SSE2, results rounded |
| |
| _NEON2SSESTORAGE uint16x8_t vrhaddq_u16(uint16x8_t a, uint16x8_t b); // VRHADD.s16 q0,q0,q0 |
| #define vrhaddq_u16 _mm_avg_epu16 //SSE2, results rounded |
| |
| |
| _NEON2SSESTORAGE uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b); // VRHADD.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vrhaddq_u32(uint32x4_t a, uint32x4_t b) // VRHADD.U32 q0,q0,q0 |
| { |
| //need to avoid overflow |
| __m128i a2, b2, res, sum; |
| a2 = _mm_srli_epi32(a,1); //a2=a/2; |
| b2 = _mm_srli_epi32(b,1); // b2=b/2; |
| res = _mm_or_si128(a,b); //for rounding |
| res = _mm_slli_epi32 (res,31); //shift left then back right to |
| res = _mm_srli_epi32 (res,31); //get 1 or zero |
| sum = _mm_add_epi32(a2,b2); |
| return _mm_add_epi32(sum,res); |
| } |
| |
| //****************** VQADD: Vector saturating add ************************ |
| //************************************************************************ |
| _NEON2SSESTORAGE int8x8_t vqadd_s8(int8x8_t a, int8x8_t b); // VQADD.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vqadd_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_adds_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vqadd_s16(int16x4_t a, int16x4_t b); // VQADD.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vqadd_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_adds_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vqadd_s32(int32x2_t a, int32x2_t b); // VQADD.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vqadd_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vqaddq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vqadd_s64(int64x1_t a, int64x1_t b); // VQADD.S64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqadd_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int64x1_t res; |
| uint64_t a64, b64; |
| a64 = a.m64_u64[0]; |
| b64 = b.m64_u64[0]; |
| res.m64_u64[0] = a64 + b64; |
| a64 = (a64 >> 63) + (~_SIGNBIT64); |
| if ((int64_t)((b64 ^ a64) | ~(res.m64_u64[0] ^ b64))>=0) { |
| res.m64_u64[0] = a64; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqadd_u8(uint8x8_t a, uint8x8_t b); // VQADD.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vqadd_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(_mm_adds_epu8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vqadd_u16(uint16x4_t a, uint16x4_t b); // VQADD.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vqadd_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_mm_adds_epu16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vqadd_u32(uint32x2_t a, uint32x2_t b); // VQADD.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vqadd_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(vqaddq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vqadd_u64(uint64x1_t a, uint64x1_t b); // VQADD.U64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqadd_u64(uint64x1_t a, uint64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t a64, b64; |
| uint64x1_t res; |
| a64 = a.m64_u64[0]; |
| b64 = b.m64_u64[0]; |
| res.m64_u64[0] = a64 + b64; |
| if (res.m64_u64[0] < a64) { |
| res.m64_u64[0] = ~(uint64_t)0; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqaddq_s8(int8x16_t a, int8x16_t b); // VQADD.S8 q0,q0,q0 |
| #define vqaddq_s8 _mm_adds_epi8 |
| |
| _NEON2SSESTORAGE int16x8_t vqaddq_s16(int16x8_t a, int16x8_t b); // VQADD.S16 q0,q0,q0 |
| #define vqaddq_s16 _mm_adds_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b); // VQADD.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vqaddq_s32(int32x4_t a, int32x4_t b) |
| { |
| //no corresponding x86 SIMD soulution, special tricks are necessary. Overflow happens only if a and b have the same sign and sum has the opposite sign |
| __m128i c7fffffff, res, res_sat, res_xor_a, b_xor_a_; |
| c7fffffff = _mm_set1_epi32(0x7fffffff); |
| res = _mm_add_epi32(a, b); |
| res_sat = _mm_srli_epi32(a, 31); |
| res_sat = _mm_add_epi32(res_sat, c7fffffff); |
| res_xor_a = _mm_xor_si128(res, a); |
| b_xor_a_ = _mm_xor_si128(b, a); |
| res_xor_a = _mm_andnot_si128(b_xor_a_, res_xor_a); |
| res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise |
| res_sat = _mm_and_si128(res_xor_a, res_sat); |
| res = _mm_andnot_si128(res_xor_a, res); |
| return _mm_or_si128(res, res_sat); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b); // VQADD.S64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqaddq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| _mm_store_si128((__m128i*)btmp, b); |
| res[0] = atmp[0] + btmp[0]; |
| res[1] = atmp[1] + btmp[1]; |
| |
| atmp[0] = (atmp[0] >> 63) + (~_SIGNBIT64); |
| atmp[1] = (atmp[1] >> 63) + (~_SIGNBIT64); |
| |
| if ((int64_t)((btmp[0] ^ atmp[0]) | ~(res[0] ^ btmp[0]))>=0) { |
| res[0] = atmp[0]; |
| } |
| if ((int64_t)((btmp[1] ^ atmp[1]) | ~(res[1] ^ btmp[1]))>=0) { |
| res[1] = atmp[1]; |
| } |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vqaddq_u8(uint8x16_t a, uint8x16_t b); // VQADD.U8 q0,q0,q0 |
| #define vqaddq_u8 _mm_adds_epu8 |
| |
| _NEON2SSESTORAGE uint16x8_t vqaddq_u16(uint16x8_t a, uint16x8_t b); // VQADD.s16 q0,q0,q0 |
| #define vqaddq_u16 _mm_adds_epu16 |
| |
| _NEON2SSESTORAGE uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b); // VQADD.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vqaddq_u32(uint32x4_t a, uint32x4_t b) |
| { |
| __m128i c80000000, cmp, subsum, suba, sum; |
| c80000000 = _mm_set1_epi32 (0x80000000); |
| sum = _mm_add_epi32 (a, b); |
| subsum = _mm_sub_epi32 (sum, c80000000); |
| suba = _mm_sub_epi32 (a, c80000000); |
| cmp = _mm_cmpgt_epi32 ( suba, subsum); //no unsigned comparison, need to go to signed |
| return _mm_or_si128 (sum, cmp); //saturation |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b); // VQADD.U64 q0,q0,q0 |
| #ifdef USE_SSE4 |
| _NEON2SSE_INLINE uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b) |
| { |
| __m128i c80000000, sum, cmp, suba, subsum; |
| c80000000 = _mm_set_epi32 (0x80000000, 0x0, 0x80000000, 0x0); |
| sum = _mm_add_epi64 (a, b); |
| subsum = _mm_sub_epi64 (sum, c80000000); |
| suba = _mm_sub_epi64 (a, c80000000); |
| cmp = _mm_cmpgt_epi64 ( suba, subsum); //no unsigned comparison, need to go to signed, SSE4.2!!! |
| return _mm_or_si128 (sum, cmp); //saturation |
| } |
| #else |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqaddq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| _mm_store_si128((__m128i*)btmp, b); |
| res[0] = atmp[0] + btmp[0]; |
| res[1] = atmp[1] + btmp[1]; |
| if (res[0] < atmp[0]) res[0] = ~(uint64_t)0; |
| if (res[1] < atmp[1]) res[1] = ~(uint64_t)0; |
| return _mm_load_si128((__m128i*)(res)); |
| } |
| #endif |
| |
| |
| //******************* Vector add high half (truncated) ****************** |
| //************************************************************************ |
| _NEON2SSESTORAGE int8x8_t vaddhn_s16(int16x8_t a, int16x8_t b); // VADDHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE int8x8_t vaddhn_s16(int16x8_t a, int16x8_t b) // VADDHN.I16 d0,q0,q0 |
| { |
| int8x8_t res64; |
| __m128i sum; |
| sum = _mm_add_epi16 (a, b); |
| sum = _mm_srai_epi16 (sum, 8); |
| sum = _mm_packs_epi16 (sum, sum); //use 64 low bits only |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vaddhn_s32(int32x4_t a, int32x4_t b); // VADDHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE int16x4_t vaddhn_s32(int32x4_t a, int32x4_t b) // VADDHN.I32 d0,q0,q0 |
| { |
| int16x4_t res64; |
| __m128i sum; |
| sum = _mm_add_epi32 (a, b); |
| sum = _mm_srai_epi32(sum, 16); |
| sum = _mm_packs_epi32 (sum, sum); //use 64 low bits only |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vaddhn_s64(int64x2_t a, int64x2_t b); // VADDHN.I64 d0,q0,q0 |
| _NEON2SSE_INLINE int32x2_t vaddhn_s64(int64x2_t a, int64x2_t b) |
| { |
| int32x2_t res64; |
| __m128i sum; |
| sum = _mm_add_epi64 (a, b); |
| sum = _mm_shuffle_epi32(sum, 1 | (3 << 2) | (0 << 4) | (2 << 6)); |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vaddhn_u16(uint16x8_t a, uint16x8_t b); // VADDHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE uint8x8_t vaddhn_u16(uint16x8_t a, uint16x8_t b) // VADDHN.I16 d0,q0,q0 |
| { |
| uint8x8_t res64; |
| __m128i sum; |
| sum = _mm_add_epi16 (a, b); |
| sum = _mm_srli_epi16 (sum, 8); |
| sum = _mm_packus_epi16 (sum,sum); //use 64 low bits only |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vaddhn_u32(uint32x4_t a, uint32x4_t b); // VADDHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE uint16x4_t vaddhn_u32(uint32x4_t a, uint32x4_t b) // VADDHN.I32 d0,q0,q0 |
| { |
| uint16x4_t res64; |
| __m128i sum; |
| sum = _mm_add_epi32 (a, b); |
| sum = _mm_srli_epi32 (sum, 16); |
| #ifdef USE_SSE4 |
| sum = _MM_PACKUS1_EPI32 (sum); //use 64 low bits only |
| #else |
| sum = _mm_shuffle_epi8 (sum, *(__m128i*) mask8_32_even_odd); //go to 16 bits |
| #endif |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vaddhn_u64(uint64x2_t a, uint64x2_t b); // VADDHN.I64 d0,q0,q0 |
| #define vaddhn_u64 vaddhn_s64 |
| |
| //*********** Vector rounding add high half: vraddhn_<type> ******************. |
| //*************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vraddhn_s16(int16x8_t a, int16x8_t b); // VRADDHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE int8x8_t vraddhn_s16(int16x8_t a, int16x8_t b) // VRADDHN.I16 d0,q0,q0 |
| { |
| int8x8_t res64; |
| __m128i sum, mask1; |
| sum = _mm_add_epi16 (a, b); |
| mask1 = _mm_slli_epi16(sum, 9); //shift left then back right to |
| mask1 = _mm_srli_epi16(mask1, 15); //get 7-th bit 1 or zero |
| sum = _mm_srai_epi16 (sum, 8); //get high half |
| sum = _mm_add_epi16 (sum, mask1); //actual rounding |
| sum = _mm_packs_epi16 (sum, sum); |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vraddhn_s32(int32x4_t a, int32x4_t b); // VRADDHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE int16x4_t vraddhn_s32(int32x4_t a, int32x4_t b) // VRADDHN.I32 d0,q0,q0 |
| { |
| //SIMD may be not optimal, serial may be faster |
| int16x4_t res64; |
| __m128i sum, mask1; |
| sum = _mm_add_epi32 (a, b); |
| mask1 = _mm_slli_epi32(sum, 17); //shift left then back right to |
| mask1 = _mm_srli_epi32(mask1,31); //get 15-th bit 1 or zero |
| sum = _mm_srai_epi32 (sum, 16); //get high half |
| sum = _mm_add_epi32 (sum, mask1); //actual rounding |
| sum = _mm_packs_epi32 (sum, sum); |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vraddhn_s64(int64x2_t a, int64x2_t b); // VRADDHN.I64 d0,q0,q0 |
| _NEON2SSE_INLINE int32x2_t vraddhn_s64(int64x2_t a, int64x2_t b) |
| { |
| //SIMD may be not optimal, serial may be faster |
| int32x2_t res64; |
| __m128i sum, mask1; |
| sum = _mm_add_epi64 (a, b); |
| mask1 = _mm_slli_epi64(sum, 33); //shift left then back right to |
| mask1 = _mm_srli_epi64(mask1,32); //get 31-th bit 1 or zero |
| sum = _mm_add_epi64 (sum, mask1); //actual high half rounding |
| sum = _mm_shuffle_epi32(sum, 1 | (3 << 2) | (1 << 4) | (3 << 6)); |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vraddhn_u16(uint16x8_t a, uint16x8_t b); // VRADDHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE uint8x8_t vraddhn_u16(uint16x8_t a, uint16x8_t b) // VRADDHN.I16 d0,q0,q0 |
| { |
| uint8x8_t res64; |
| __m128i sum, mask1; |
| sum = _mm_add_epi16 (a, b); |
| mask1 = _mm_slli_epi16(sum, 9); //shift left then back right to |
| mask1 = _mm_srli_epi16(mask1, 15); //get 7-th bit 1 or zero |
| sum = _mm_srai_epi16 (sum, 8); //get high half |
| sum = _mm_add_epi16 (sum, mask1); //actual rounding |
| sum = _mm_packus_epi16 (sum, sum); |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vraddhn_u32(uint32x4_t a, uint32x4_t b); // VRADDHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE uint16x4_t vraddhn_u32(uint32x4_t a, uint32x4_t b) |
| { |
| //SIMD may be not optimal, serial may be faster |
| uint16x4_t res64; |
| __m128i sum, mask1; |
| sum = _mm_add_epi32 (a, b); |
| mask1 = _mm_slli_epi32(sum, 17); //shift left then back right to |
| mask1 = _mm_srli_epi32(mask1,31); //get 15-th bit 1 or zero |
| sum = _mm_srai_epi32 (sum, 16); //get high half |
| sum = _mm_add_epi32 (sum, mask1); //actual rounding |
| sum = _MM_PACKUS1_EPI32 (sum); |
| return64(sum); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vraddhn_u64(uint64x2_t a, uint64x2_t b); // VRADDHN.I64 d0,q0,q0 |
| #define vraddhn_u64 vraddhn_s64 |
| |
| //********************************************************************************** |
| //********* Multiplication ************************************* |
| //************************************************************************************** |
| |
| //Vector multiply: vmul -> Vr[i] := Va[i] * Vb[i] |
| //As we don't go to wider result functions are equal to "multiply low" in x86 |
| _NEON2SSESTORAGE int8x8_t vmul_s8(int8x8_t a, int8x8_t b); // VMUL.I8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vmul_s8(int8x8_t a, int8x8_t b) // VMUL.I8 d0,d0,d0 |
| { |
| // no 8 bit simd multiply, need to go to 16 bits in SSE |
| int8x8_t res64; |
| __m128i a128, b128, res; |
| a128 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1 use low 64 bits |
| b128 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1 use low 64 bits |
| res = _mm_mullo_epi16 (a128, b128); |
| res = _mm_shuffle_epi8 (res, *(__m128i*) mask8_16_even_odd); //return to 8 bit from 16, use 64 low bits only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmul_s16(int16x4_t a, int16x4_t b); // VMUL.I16 d0,d0,d0 |
| #define vmul_s16 vmul_u16 |
| |
| _NEON2SSESTORAGE int32x2_t vmul_s32(int32x2_t a, int32x2_t b); // VMUL.I32 d0,d0,d0 |
| #define vmul_s32 vmul_u32 |
| |
| _NEON2SSESTORAGE float32x2_t vmul_f32(float32x2_t a, float32x2_t b); // VMUL.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vmul_f32(float32x2_t a, float32x2_t b) |
| { |
| float32x4_t tmp; |
| __m64_128 res64; |
| tmp = _mm_mul_ps(_pM128(a),_pM128(b)); |
| _M64f(res64, tmp); //use low 64 bits |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmul_u8(uint8x8_t a, uint8x8_t b); // VMUL.I8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vmul_u8(uint8x8_t a, uint8x8_t b) // VMUL.I8 d0,d0,d0 |
| { |
| // no 8 bit simd multiply, need to go to 16 bits in SSE |
| uint8x8_t res64; |
| __m128i mask, a128, b128, res; |
| mask = _mm_set1_epi16(0xff); |
| a128 = _MM_CVTEPU8_EPI16 (_pM128i(a)); |
| b128 = _MM_CVTEPU8_EPI16 (_pM128i(b)); |
| res = _mm_mullo_epi16 (a128, b128); |
| res = _mm_and_si128(res, mask); //to avoid saturation |
| res = _mm_packus_epi16 (res,res); //use only low 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmul_u16(uint16x4_t a, uint16x4_t b); // VMUL.I16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vmul_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_mm_mullo_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vmul_u32(uint32x2_t a, uint32x2_t b); // VMUL.I32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING( uint32x2_t vmul_u32(uint32x2_t a, uint32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint32x2_t res; |
| res.m64_u32[0] = a.m64_u32[0] * b.m64_u32[0]; |
| res.m64_u32[1] = a.m64_u32[1] * b.m64_u32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE poly8x8_t vmul_p8(poly8x8_t a, poly8x8_t b); // VMUL.P8 d0,d0,d0 |
| _NEON2SSE_INLINE poly8x8_t vmul_p8(poly8x8_t a, poly8x8_t b) |
| { |
| //may be optimized |
| poly8x8_t res64; |
| __m128i a64, b64, c1, res, tmp, bmasked; |
| int i; |
| a64 = _pM128i(a); |
| b64 = _pM128i(b); |
| c1 = _mm_cmpeq_epi8 (a64,a64); //all ones 0xff.... |
| c1 = vshrq_n_u8(c1,7); //0x1 |
| bmasked = _mm_and_si128(b64, c1); //0x1 |
| res = vmulq_u8(a64, bmasked); |
| for(i = 1; i<8; i++) { |
| c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here |
| bmasked = _mm_and_si128(b64, c1); //0x1 |
| tmp = vmulq_u8(a64, bmasked); |
| res = _mm_xor_si128(res, tmp); |
| } |
| return64 (res); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vmulq_s8(int8x16_t a, int8x16_t b); // VMUL.I8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vmulq_s8(int8x16_t a, int8x16_t b) // VMUL.I8 q0,q0,q0 |
| { |
| // no 8 bit simd multiply, need to go to 16 bits |
| //solution may be not optimal |
| __m128i a16, b16, r16_1, r16_2; |
| a16 = _MM_CVTEPI8_EPI16 (a); // SSE 4.1 |
| b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1 |
| r16_1 = _mm_mullo_epi16 (a16, b16); |
| //swap hi and low part of a and b to process the remaining data |
| a16 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); |
| a16 = _MM_CVTEPI8_EPI16 (a16); // SSE 4.1 |
| b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 __m128i r16_2 |
| |
| r16_2 = _mm_mullo_epi16 (a16, b16); |
| r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*)mask8_16_even_odd); //return to 8 bit |
| r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*)mask8_16_even_odd); //return to 8 bit |
| |
| return _mm_unpacklo_epi64(r16_1, r16_2); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmulq_s16(int16x8_t a, int16x8_t b); // VMUL.I16 q0,q0,q0 |
| #define vmulq_s16 _mm_mullo_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vmulq_s32(int32x4_t a, int32x4_t b); // VMUL.I32 q0,q0,q0 |
| #define vmulq_s32 _MM_MULLO_EPI32 //SSE4.1 |
| |
| _NEON2SSESTORAGE float32x4_t vmulq_f32(float32x4_t a, float32x4_t b); // VMUL.F32 q0,q0,q0 |
| #define vmulq_f32 _mm_mul_ps |
| |
| _NEON2SSESTORAGE uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b); // VMUL.I8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vmulq_u8(uint8x16_t a, uint8x16_t b) // VMUL.I8 q0,q0,q0 |
| { |
| // no 8 bit simd multiply, need to go to 16 bits |
| //solution may be not optimal |
| __m128i maskff, a16, b16, r16_1, r16_2; |
| maskff = _mm_set1_epi16(0xff); |
| a16 = _MM_CVTEPU8_EPI16 (a); // SSE 4.1 |
| b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1 |
| r16_1 = _mm_mullo_epi16 (a16, b16); |
| r16_1 = _mm_and_si128(r16_1, maskff); //to avoid saturation |
| //swap hi and low part of a and b to process the remaining data |
| a16 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); |
| a16 = _MM_CVTEPI8_EPI16 (a16); // SSE 4.1 |
| b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 |
| |
| r16_2 = _mm_mullo_epi16 (a16, b16); |
| r16_2 = _mm_and_si128(r16_2, maskff); //to avoid saturation |
| return _mm_packus_epi16 (r16_1, r16_2); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmulq_u16(uint16x8_t a, uint16x8_t b); // VMUL.I16 q0,q0,q0 |
| #define vmulq_u16 _mm_mullo_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmulq_u32(uint32x4_t a, uint32x4_t b); // VMUL.I32 q0,q0,q0 |
| #define vmulq_u32 _MM_MULLO_EPI32 //SSE4.1 |
| |
| _NEON2SSESTORAGE poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b); // VMUL.P8 q0,q0,q0 |
| _NEON2SSE_INLINE poly8x16_t vmulq_p8(poly8x16_t a, poly8x16_t b) |
| { |
| //may be optimized |
| __m128i c1, res, tmp, bmasked; |
| int i; |
| c1 = _mm_cmpeq_epi8 (a,a); //all ones 0xff.... |
| c1 = vshrq_n_u8(c1,7); //0x1 |
| bmasked = _mm_and_si128(b, c1); //0x1 |
| res = vmulq_u8(a, bmasked); |
| for(i = 1; i<8; i++) { |
| c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here |
| bmasked = _mm_and_si128(b, c1); //0x1 |
| tmp = vmulq_u8(a, bmasked); |
| res = _mm_xor_si128(res, tmp); |
| } |
| return res; |
| } |
| |
| //************************* Vector long multiply *********************************** |
| //**************************************************************************** |
| _NEON2SSESTORAGE int16x8_t vmull_s8(int8x8_t a, int8x8_t b); // VMULL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vmull_s8(int8x8_t a, int8x8_t b) // VMULL.S8 q0,d0,d0 |
| { |
| //no 8 bit simd multiply, need to go to 16 bits |
| __m128i a16, b16; |
| a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1 |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1 |
| return _mm_mullo_epi16 (a16, b16); //should fit into 16 bit |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmull_s16(int16x4_t a, int16x4_t b); // VMULL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vmull_s16(int16x4_t a, int16x4_t b) // VMULL.S16 q0,d0,d0 |
| { |
| #ifdef USE_SSE4 |
| __m128i a16, b16; |
| a16 = _MM_CVTEPI16_EPI32 (_pM128i(a)); // SSE 4.1 |
| b16 = _MM_CVTEPI16_EPI32 (_pM128i(b)); // SSE 4.1 |
| return _MM_MULLO_EPI32 (a16, b16); // SSE 4.1 |
| #else |
| __m128i low, hi, a128,b128; |
| a128 = _pM128i(a); |
| b128 = _pM128i(b); |
| low = _mm_mullo_epi16(a128,b128); |
| hi = _mm_mulhi_epi16(a128,b128); |
| return _mm_unpacklo_epi16(low,hi); |
| #endif |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmull_s32(int32x2_t a, int32x2_t b); // VMULL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE int64x2_t vmull_s32(int32x2_t a, int32x2_t b) // VMULL.S32 q0,d0,d0 |
| { |
| __m128i ab, ba, a128, b128; |
| a128 = _pM128i(a); |
| b128 = _pM128i(b); |
| ab = _mm_unpacklo_epi32 (a128, b128); //a0, b0, a1,b1 |
| ba = _mm_unpacklo_epi32 (b128, a128); //b0, a0, b1,a1 |
| return _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmull_u8(uint8x8_t a, uint8x8_t b); // VMULL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vmull_u8(uint8x8_t a, uint8x8_t b) // VMULL.U8 q0,d0,d0 |
| { |
| //no 8 bit simd multiply, need to go to 16 bits |
| __m128i a16, b16; |
| a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); // SSE 4.1 |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); // SSE 4.1 |
| return _mm_mullo_epi16 (a16, b16); //should fit into 16 bit |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmull_u16(uint16x4_t a, uint16x4_t b); // VMULL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vmull_u16(uint16x4_t a, uint16x4_t b) // VMULL.s16 q0,d0,d0 |
| { |
| #ifdef USE_SSE4 |
| __m128i a16, b16; |
| a16 = _MM_CVTEPU16_EPI32 (_pM128i(a)); // SSE 4.1 |
| b16 = _MM_CVTEPU16_EPI32 (_pM128i(b)); // SSE 4.1 |
| return _MM_MULLO_EPI32 (a16, b16); // SSE 4.1 |
| #else |
| __m128i a128,b128,low, hi; |
| a128 = _pM128i(a); |
| b128 = _pM128i(b); |
| low = _mm_mullo_epi16(a128,b128); |
| hi = _mm_mulhi_epu16(a128,b128); |
| return _mm_unpacklo_epi16(low,hi); |
| #endif |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmull_u32(uint32x2_t a, uint32x2_t b); // VMULL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE uint64x2_t vmull_u32(uint32x2_t a, uint32x2_t b) // VMULL.U32 q0,d0,d0 |
| { |
| ///may be not optimal compared with serial implementation |
| __m128i ab, ba, a128, b128; |
| a128 = _pM128i(a); |
| b128 = _pM128i(b); |
| ab = _mm_unpacklo_epi32 (a128, b128); //a0, b0, a1,b1 |
| ba = _mm_unpacklo_epi32 (b128, a128); //b0, a0, b1,a1 |
| return _mm_mul_epu32 (ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result |
| } |
| |
| _NEON2SSESTORAGE poly16x8_t vmull_p8(poly8x8_t a, poly8x8_t b); // VMULL.P8 q0,d0,d0 |
| _NEON2SSE_INLINE poly16x8_t vmull_p8(poly8x8_t a, poly8x8_t b) |
| { |
| //may be optimized |
| __m128i a128,b128, c1, a128_16, bmasked_16, res, tmp, bmasked; |
| int i; |
| a128 = _pM128i(a); |
| b128 = _pM128i(b); |
| c1 = _mm_cmpeq_epi8 (a128,a128); //all ones 0xff.... |
| c1 = vshrq_n_u8(c1,7); //0x1 |
| bmasked = _mm_and_si128(b128, c1); //0x1 |
| |
| a128_16 = _MM_CVTEPU8_EPI16 (a128); // SSE 4.1 |
| bmasked_16 = _MM_CVTEPU8_EPI16 (bmasked); // SSE 4.1 |
| res = _mm_mullo_epi16 (a128_16, bmasked_16); //should fit into 16 bit |
| for(i = 1; i<8; i++) { |
| c1 = _mm_slli_epi16(c1,1); //shift mask left by 1, 16 bit shift is OK here |
| bmasked = _mm_and_si128(b128, c1); //0x1 |
| bmasked_16 = _MM_CVTEPU8_EPI16 (bmasked); // SSE 4.1 |
| tmp = _mm_mullo_epi16 (a128_16, bmasked_16); //should fit into 16 bit, vmull_u8(a, bmasked); |
| res = _mm_xor_si128(res, tmp); |
| } |
| return res; |
| } |
| |
| //****************Vector saturating doubling long multiply ************************** |
| //***************************************************************** |
| _NEON2SSESTORAGE int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b); // VQDMULL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b) |
| { |
| //the serial soulution may be faster due to saturation |
| __m128i res; |
| res = vmull_s16(a, b); |
| return vqd_s32(res); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmull_s32(int32x2_t a, int32x2_t b); // VQDMULL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmull_s32(int32x2_t a, int32x2_t b),_NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //the serial soulution may be faster due to saturation |
| __m128i res; |
| res = vmull_s32(a,b); |
| return vqaddq_s64(res,res); //slow serial function!!!! |
| } |
| |
| //********************* Vector multiply accumulate: vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i] ************************ |
| //****************************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vmla_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLA.I8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vmla_s8(int8x8_t a, int8x8_t b, int8x8_t c) // VMLA.I8 d0,d0,d0 |
| { |
| // no 8 bit x86 simd multiply, need to go to 16 bits, and use the low 64 bits |
| int8x8_t res64; |
| __m128i b128, c128, res; |
| b128 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1 use low 64 bits |
| c128 = _MM_CVTEPI8_EPI16 (_pM128i(c)); // SSE 4.1 use low 64 bits |
| res = _mm_mullo_epi16 (c128, b128); |
| res = _mm_shuffle_epi8 (res, *(__m128i*) mask8_16_even_odd); |
| res = _mm_add_epi8 (res, _pM128i(a)); //use the low 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmla_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VMLA.I16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vmla_s16(int16x4_t a, int16x4_t b, int16x4_t c) |
| { |
| int16x4_t res64; |
| return64(vmlaq_s16(_pM128i(a),_pM128i(b), _pM128i(c))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vmla_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLA.I32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vmla_s32(int32x2_t a, int32x2_t b, int32x2_t c) // VMLA.I32 d0,d0,d0 |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _MM_MULLO_EPI32 (_pM128i(b), _pM128i(c)); //SSE4.1 |
| res = _mm_add_epi32 (res, _pM128i(a)); //use the low 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmla_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLA.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vmla_f32(float32x2_t a, float32x2_t b, float32x2_t c) |
| { |
| //fma is coming soon, but right now: |
| __m128 res; |
| __m64_128 res64; |
| res = _mm_mul_ps (_pM128(c), _pM128(b)); |
| res = _mm_add_ps (_pM128(a), res); |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmla_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLA.I8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vmla_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c) // VMLA.I8 d0,d0,d0 |
| { |
| // no 8 bit x86 simd multiply, need to go to 16 bits, and use the low 64 bits |
| uint8x8_t res64; |
| __m128i mask, b128, c128, res; |
| mask = _mm_set1_epi16(0xff); |
| b128 = _MM_CVTEPU8_EPI16 (_pM128i(b)); // SSE 4.1 use low 64 bits |
| c128 = _MM_CVTEPU8_EPI16 (_pM128i(c)); // SSE 4.1 use low 64 bits |
| res = _mm_mullo_epi16 (c128, b128); |
| res = _mm_and_si128(res, mask); //to avoid saturation |
| res = _mm_packus_epi16 (res, res); |
| res = _mm_add_epi8 (res, _pM128i(a)); //use the low 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmla_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VMLA.I16 d0,d0,d0 |
| #define vmla_u16 vmla_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vmla_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VMLA.I32 d0,d0,d0 |
| #define vmla_u32 vmla_s32 |
| |
| _NEON2SSESTORAGE int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLA.I8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vmlaq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VMLA.I8 q0,q0,q0 |
| { |
| //solution may be not optimal |
| // no 8 bit simd multiply, need to go to 16 bits |
| __m128i b16, c16, r16_1, a_2,r16_2; |
| b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1 |
| c16 = _MM_CVTEPI8_EPI16 (c); // SSE 4.1 |
| r16_1 = _mm_mullo_epi16 (b16, c16); |
| r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits |
| r16_1 = _mm_add_epi8 (r16_1, a); |
| //swap hi and low part of a, b and c to process the remaining data |
| a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); |
| c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); |
| b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 |
| c16 = _MM_CVTEPI8_EPI16 (c16); // SSE 4.1 |
| |
| r16_2 = _mm_mullo_epi16 (b16, c16); |
| r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); |
| r16_2 = _mm_add_epi8(r16_2, a_2); |
| return _mm_unpacklo_epi64(r16_1,r16_2); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLA.I16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vmlaq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VMLA.I16 q0,q0,q0 |
| { |
| __m128i res; |
| res = _mm_mullo_epi16 (c, b); |
| return _mm_add_epi16 (res, a); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLA.I32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vmlaq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VMLA.I32 q0,q0,q0 |
| { |
| __m128i res; |
| res = _MM_MULLO_EPI32 (c, b); //SSE4.1 |
| return _mm_add_epi32 (res, a); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLA.F32 q0,q0,q0 |
| _NEON2SSE_INLINE float32x4_t vmlaq_f32(float32x4_t a, float32x4_t b, float32x4_t c) // VMLA.F32 q0,q0,q0 |
| { |
| //fma is coming soon, but right now: |
| __m128 res; |
| res = _mm_mul_ps (c, b); |
| return _mm_add_ps (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLA.I8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vmlaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) // VMLA.I8 q0,q0,q0 |
| { |
| //solution may be not optimal |
| // no 8 bit simd multiply, need to go to 16 bits |
| __m128i b16, c16, r16_1, a_2, r16_2; |
| b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1 |
| c16 = _MM_CVTEPU8_EPI16 (c); // SSE 4.1 |
| r16_1 = _mm_mullo_epi16 (b16, c16); |
| r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits |
| r16_1 = _mm_add_epi8 (r16_1, a); |
| //swap hi and low part of a, b and c to process the remaining data |
| a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); |
| c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); |
| b16 = _MM_CVTEPU8_EPI16 (b16); // SSE 4.1 |
| c16 = _MM_CVTEPU8_EPI16 (c16); // SSE 4.1 |
| |
| r16_2 = _mm_mullo_epi16 (b16, c16); |
| r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); |
| r16_2 = _mm_add_epi8(r16_2, a_2); |
| return _mm_unpacklo_epi64(r16_1,r16_2); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLA.I16 q0,q0,q0 |
| #define vmlaq_u16 vmlaq_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmlaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLA.I32 q0,q0,q0 |
| #define vmlaq_u32 vmlaq_s32 |
| |
| //********************** Vector widening multiply accumulate (long multiply accumulate): |
| // vmla -> Vr[i] := Va[i] + Vb[i] * Vc[i] ************** |
| //******************************************************************************************** |
| _NEON2SSESTORAGE int16x8_t vmlal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLAL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vmlal_s8(int16x8_t a, int8x8_t b, int8x8_t c) // VMLAL.S8 q0,d0,d0 |
| { |
| int16x8_t res; |
| res = vmull_s8(b, c); |
| return _mm_add_epi16 (res, a); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLAL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VMLAL.S16 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| int32x4_t res; |
| res = vmull_s16(b, c); |
| return _mm_add_epi32 (res, a); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLAL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE int64x2_t vmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c) // VMLAL.S32 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| int64x2_t res; |
| res = vmull_s32( b, c); |
| return _mm_add_epi64 (res, a); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLAL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vmlal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c) // VMLAL.U8 q0,d0,d0 |
| { |
| uint16x8_t res; |
| res = vmull_u8(b, c); |
| return _mm_add_epi16 (res, a); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLAL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vmlal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c) // VMLAL.s16 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| uint32x4_t res; |
| res = vmull_u16(b, c); |
| return _mm_add_epi32 (res, a); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmlal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLAL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE uint64x2_t vmlal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c) // VMLAL.U32 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| int64x2_t res; |
| res = vmull_u32( b,c); |
| return _mm_add_epi64 (res, a); |
| } |
| |
| //******************** Vector multiply subtract: vmls -> Vr[i] := Va[i] - Vb[i] * Vc[i] *************************************** |
| //******************************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vmls_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VMLS.I8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vmls_s8(int8x8_t a, int8x8_t b, int8x8_t c) // VMLS.I8 d0,d0,d0 |
| { |
| // no 8 bit simd multiply, need to go to 16 bits - and use the low 64 bits |
| int8x8_t res64; |
| __m128i res; |
| res64 = vmul_s8(b,c); |
| res = _mm_sub_epi8 (_pM128i(a), _pM128i(res64)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmls_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VMLS.I16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vmls_s16(int16x4_t a, int16x4_t b, int16x4_t c) |
| { |
| int16x4_t res64; |
| return64(vmlsq_s16(_pM128i(a),_pM128i(b), _pM128i(c))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vmls_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VMLS.I32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vmls_s32(int32x2_t a, int32x2_t b, int32x2_t c) // VMLS.I32 d0,d0,d0 |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _MM_MULLO_EPI32 (_pM128i(c),_pM128i( b)); //SSE4.1 |
| res = _mm_sub_epi32 (_pM128i(a),res); //use low 64 bits only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmls_f32(float32x2_t a, float32x2_t b, float32x2_t c); // VMLS.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vmls_f32(float32x2_t a, float32x2_t b, float32x2_t c) |
| { |
| __m128 res; |
| __m64_128 res64; |
| res = _mm_mul_ps (_pM128(c), _pM128(b)); |
| res = _mm_sub_ps (_pM128(a), res); |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmls_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VMLS.I8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vmls_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c) |
| { |
| // no 8 bit simd multiply, need to go to 16 bits - and use the low 64 bits |
| uint8x8_t res64; |
| __m128i res; |
| res64 = vmul_u8(b,c); |
| res = _mm_sub_epi8 (_pM128i(a), _pM128i(res64)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmls_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VMLS.I16 d0,d0,d0 |
| #define vmls_u16 vmls_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vmls_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VMLS.I32 d0,d0,d0 |
| #define vmls_u32 vmls_s32 |
| |
| |
| _NEON2SSESTORAGE int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VMLS.I8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vmlsq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VMLS.I8 q0,q0,q0 |
| { |
| //solution may be not optimal |
| // no 8 bit simd multiply, need to go to 16 bits |
| __m128i b16, c16, r16_1, a_2, r16_2; |
| b16 = _MM_CVTEPI8_EPI16 (b); // SSE 4.1 |
| c16 = _MM_CVTEPI8_EPI16 (c); // SSE 4.1 |
| r16_1 = _mm_mullo_epi16 (b16, c16); |
| r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); |
| r16_1 = _mm_sub_epi8 (a, r16_1); |
| //swap hi and low part of a, b, c to process the remaining data |
| a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); |
| c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); |
| b16 = _MM_CVTEPI8_EPI16 (b16); // SSE 4.1 |
| c16 = _MM_CVTEPI8_EPI16 (c16); // SSE 4.1 |
| |
| r16_2 = _mm_mullo_epi16 (b16, c16); |
| r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); |
| r16_2 = _mm_sub_epi8 (a_2, r16_2); |
| return _mm_unpacklo_epi64(r16_1,r16_2); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VMLS.I16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vmlsq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VMLS.I16 q0,q0,q0 |
| { |
| __m128i res; |
| res = _mm_mullo_epi16 (c, b); |
| return _mm_sub_epi16 (a, res); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VMLS.I32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vmlsq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VMLS.I32 q0,q0,q0 |
| { |
| __m128i res; |
| res = _MM_MULLO_EPI32 (c, b); //SSE4.1 |
| return _mm_sub_epi32 (a, res); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c); // VMLS.F32 q0,q0,q0 |
| _NEON2SSE_INLINE float32x4_t vmlsq_f32(float32x4_t a, float32x4_t b, float32x4_t c) // VMLS.F32 q0,q0,q0 |
| { |
| __m128 res; |
| res = _mm_mul_ps (c, b); |
| return _mm_sub_ps (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VMLS.I8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vmlsq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) // VMLS.I8 q0,q0,q0 |
| { |
| //solution may be not optimal |
| // no 8 bit simd multiply, need to go to 16 bits |
| __m128i b16, c16, r16_1, a_2, r16_2; |
| b16 = _MM_CVTEPU8_EPI16 (b); // SSE 4.1 |
| c16 = _MM_CVTEPU8_EPI16 (c); // SSE 4.1 |
| r16_1 = _mm_mullo_epi16 (b16, c16); |
| r16_1 = _mm_shuffle_epi8 (r16_1, *(__m128i*) mask8_16_even_odd); //return to 8 bits |
| r16_1 = _mm_sub_epi8 (a, r16_1); |
| //swap hi and low part of a, b and c to process the remaining data |
| a_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| b16 = _mm_shuffle_epi32 (b, _SWAP_HI_LOW32); |
| c16 = _mm_shuffle_epi32 (c, _SWAP_HI_LOW32); |
| b16 = _MM_CVTEPU8_EPI16 (b16); // SSE 4.1 |
| c16 = _MM_CVTEPU8_EPI16 (c16); // SSE 4.1 |
| |
| r16_2 = _mm_mullo_epi16 (b16, c16); |
| r16_2 = _mm_shuffle_epi8 (r16_2, *(__m128i*) mask8_16_even_odd); |
| r16_2 = _mm_sub_epi8(a_2, r16_2); |
| return _mm_unpacklo_epi64(r16_1,r16_2); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlsq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VMLS.I16 q0,q0,q0 |
| #define vmlsq_u16 vmlsq_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmlsq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VMLS.I32 q0,q0,q0 |
| #define vmlsq_u32 vmlsq_s32 |
| |
| //******************** Vector multiply subtract long (widening multiply subtract) ************************************ |
| //************************************************************************************************************* |
| _NEON2SSESTORAGE int16x8_t vmlsl_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VMLSL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vmlsl_s8(int16x8_t a, int8x8_t b, int8x8_t c) // VMLSL.S8 q0,d0,d0 |
| { |
| int16x8_t res; |
| res = vmull_s8(b, c); |
| return _mm_sub_epi16 (a, res); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VMLSL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VMLSL.S16 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| int32x4_t res; |
| res = vmull_s16(b, c); |
| return _mm_sub_epi32 (a, res); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VMLSL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE int64x2_t vmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c) // VMLSL.S32 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| int64x2_t res; |
| res = vmull_s32( b,c); |
| return _mm_sub_epi64 (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlsl_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VMLSL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vmlsl_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c) // VMLSL.U8 q0,d0,d0 |
| { |
| uint16x8_t res; |
| res = vmull_u8(b, c); |
| return _mm_sub_epi16 (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlsl_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VMLSL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vmlsl_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c) // VMLSL.s16 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| uint32x4_t res; |
| res = vmull_u16(b, c); |
| return _mm_sub_epi32 (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmlsl_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VMLSL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE uint64x2_t vmlsl_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c) // VMLSL.U32 q0,d0,d0 |
| { |
| //may be not optimal compared with serial implementation |
| int64x2_t res; |
| res = vmull_u32( b,c); |
| return _mm_sub_epi64 (a, res); |
| } |
| |
| //****** Vector saturating doubling multiply high ********************** |
| //************************************************************************* |
| _NEON2SSESTORAGE int16x4_t vqdmulh_s16(int16x4_t a, int16x4_t b); // VQDMULH.S16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vqdmulh_s16(int16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int16x4_t res; |
| int32_t a32, b32, i; |
| for (i = 0; i<4; i++) { |
| a32 = (int32_t) a.m64_i16[i]; |
| b32 = (int32_t) b.m64_i16[i]; |
| a32 = (a32 * b32) >> 15; |
| res.m64_i16[i] = (a32 == 0x8000) ? 0x7fff : (int16_t) a32; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqdmulh_s32(int32x2_t a, int32x2_t b); // VQDMULH.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vqdmulh_s32(int32x2_t a, int32x2_t b) // no multiply high 32 bit SIMD in IA32, so need to do some tricks, serial solution may be faster |
| { |
| //may be not optimal compared with a serial solution |
| int32x2_t res64; |
| __m128i mask; |
| _NEON2SSE_ALIGN_16 static const uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| int64x2_t mul; |
| mul = vmull_s32(a,b); |
| mul = _mm_slli_epi64(mul,1); //double the result |
| //at this point start treating 2 64-bit numbers as 4 32-bit |
| mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits |
| mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32); |
| mul = _mm_xor_si128 (mul, mask); //res saturated for 0x80000000 |
| return64(mul); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b); // VQDMULH.S16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vqdmulhq_s16(int16x8_t a, int16x8_t b) // VQDMULH.S16 q0,q0,q0 |
| { |
| __m128i res, res_lo, mask; |
| _NEON2SSE_ALIGN_16 static const uint16_t cmask[] = {0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000}; |
| res = _mm_mulhi_epi16 (a, b); |
| res = _mm_slli_epi16 (res, 1); //double the result, don't care about saturation |
| res_lo = _mm_mullo_epi16 (a, b); |
| res_lo = _mm_srli_epi16(res_lo,15); //take the highest bit |
| res = _mm_add_epi16(res, res_lo); //combine results |
| mask = _mm_cmpeq_epi16 (res, *(__m128i*)cmask); |
| return _mm_xor_si128 (res, mask); //res saturated for 0x8000 |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b); // VQDMULH.S32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| // no multiply high 32 bit SIMD in IA32, may be not optimal compared with a serial solution for the SSSE3 target |
| __m128i ab, ba, mask, mul, mul1; |
| _NEON2SSE_ALIGN_16 static const uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| ab = _mm_unpacklo_epi32 (a, b); //a0, b0, a1,b1 |
| ba = _mm_unpacklo_epi32 (b, a); //b0, a0, b1,a1 |
| mul = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result |
| mul = _mm_slli_epi64(mul,1); //double the result |
| ab = _mm_unpackhi_epi32 (a, b); //a2, b2, a3,b3 |
| ba = _mm_unpackhi_epi32 (b, a); //b2, a2, b3,a3 |
| mul1 = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result |
| mul1 = _mm_slli_epi64(mul1,1); //double the result |
| mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits |
| mul1 = _mm_shuffle_epi32 (mul1, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits |
| mul = _mm_unpacklo_epi64(mul, mul1); |
| mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32); |
| return _mm_xor_si128 (mul, mask); //res saturated for 0x80000000 |
| } |
| |
| //********* Vector saturating rounding doubling multiply high **************** |
| //**************************************************************************** |
| //If use _mm_mulhrs_xx functions the result may differ from NEON one a little due to different rounding rules and order |
| _NEON2SSESTORAGE int16x4_t vqrdmulh_s16(int16x4_t a, int16x4_t b); // VQRDMULH.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vqrdmulh_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vqrdmulhq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqrdmulh_s32(int32x2_t a, int32x2_t b); // VQRDMULH.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrdmulh_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| //may be not optimal compared with a serial solution |
| int32x2_t res64; |
| _NEON2SSE_ALIGN_16 static const uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| __m128i res_sat, mask, mask1; |
| int64x2_t mul; |
| mul = vmull_s32(a,b); |
| res_sat = _mm_slli_epi64 (mul, 1); //double the result, saturation not considered |
| mask1 = _mm_slli_epi64(res_sat, 32); //shift left then back right to |
| mask1 = _mm_srli_epi64(mask1,31); //get 31-th bit 1 or zero |
| mul = _mm_add_epi32 (res_sat, mask1); //actual rounding |
| //at this point start treating 2 64-bit numbers as 4 32-bit |
| mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits from each 64-bit |
| mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32); |
| mul = _mm_xor_si128 (mul, mask); //res saturated for 0x80000000 |
| return64(mul); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b); // VQRDMULH.S16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vqrdmulhq_s16(int16x8_t a, int16x8_t b) // VQRDMULH.S16 q0,q0,q0 |
| { |
| __m128i mask, res; |
| _NEON2SSE_ALIGN_16 static const uint16_t cmask[] = {0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000}; |
| res = _mm_mulhrs_epi16 (a, b); |
| mask = _mm_cmpeq_epi16 (res, *(__m128i*)cmask); |
| return _mm_xor_si128 (res, mask); //res saturated for 0x8000 |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b); // VQRDMULH.S32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| // no multiply high 32 bit SIMD in IA32, may be not optimal compared with a serial solution for the SSSE3 target |
| __m128i ab, ba, mask, mul, mul1, mask1; |
| _NEON2SSE_ALIGN_16 static const uint32_t cmask32[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| ab = _mm_unpacklo_epi32 (a, b); //a0, b0, a1,b1 |
| ba = _mm_unpacklo_epi32 (b, a); //b0, a0, b1,a1 |
| mul = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result |
| mul = _mm_slli_epi64 (mul, 1); //double the result, saturation not considered |
| mask1 = _mm_slli_epi64(mul, 32); //shift left then back right to |
| mask1 = _mm_srli_epi64(mask1,31); //get 31-th bit 1 or zero |
| mul = _mm_add_epi32 (mul, mask1); //actual rounding |
| |
| ab = _mm_unpackhi_epi32 (a, b); //a2, b2, a3,b3 |
| ba = _mm_unpackhi_epi32 (b, a); //b2, a2, b3,a3 |
| mul1 = _MM_MUL_EPI32(ab, ba); //uses 1rst and 3rd data lanes, the multiplication gives 64 bit result |
| mul1 = _mm_slli_epi64 (mul1, 1); //double the result, saturation not considered |
| mask1 = _mm_slli_epi64(mul1, 32); //shift left then back right to |
| mask1 = _mm_srli_epi64(mask1,31); //get 31-th bit 1 or zero |
| mul1 = _mm_add_epi32 (mul1, mask1); //actual rounding |
| //at this point start treating 2 64-bit numbers as 4 32-bit |
| mul = _mm_shuffle_epi32 (mul, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits from each 64-bit |
| mul1 = _mm_shuffle_epi32 (mul1, 1 | (3 << 2) | (0 << 4) | (2 << 6)); //shuffle the data to get 2 32-bits from each 64-bit |
| mul = _mm_unpacklo_epi64(mul, mul1); |
| mask = _mm_cmpeq_epi32 (mul, *(__m128i*)cmask32); |
| return _mm_xor_si128 (mul, mask); //res saturated for 0x80000000 |
| } |
| |
| //*************Vector widening saturating doubling multiply accumulate (long saturating doubling multiply accumulate) ***** |
| //************************************************************************************************************************* |
| _NEON2SSESTORAGE int32x4_t vqdmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLAL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vqdmlal_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VQDMLAL.S16 q0,d0,d0 |
| { |
| //not optimal SIMD soulution, serial may be faster |
| __m128i res32; |
| res32 = vmull_s16(b, c); |
| res32 = vqd_s32(res32); //doubling & saturation ,if no saturation we could use _mm_slli_epi32 (res, 1); |
| return vqaddq_s32(res32, a); //saturation |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLAL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlal_s32(int64x2_t a, int32x2_t b, int32x2_t c),_NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| __m128i res64; |
| res64 = vmull_s32(b,c); |
| res64 = vqaddq_s64(res64, res64); //doubling & saturation ,if no saturation we could use _mm_slli_epi64 (res, 1); |
| return vqaddq_s64(res64, a); //saturation |
| } |
| |
| //************************************************************************************ |
| //****************** Vector subtract *********************************************** |
| //************************************************************************************ |
| _NEON2SSESTORAGE int8x8_t vsub_s8(int8x8_t a, int8x8_t b); // VSUB.I8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vsub_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_sub_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vsub_s16(int16x4_t a, int16x4_t b); // VSUB.I16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vsub_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_sub_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vsub_s32(int32x2_t a, int32x2_t b); // VSUB.I32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vsub_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(_mm_sub_epi32(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vsub_s64(int64x1_t a, int64x1_t b); // VSUB.I64 d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vsub_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res64; |
| res64.m64_i64[0] = a.m64_i64[0] - b.m64_i64[0]; |
| return res64; |
| } |
| |
| |
| _NEON2SSESTORAGE float32x2_t vsub_f32(float32x2_t a, float32x2_t b); // VSUB.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vsub_f32(float32x2_t a, float32x2_t b) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = a.m64_f32[0] - b.m64_f32[0]; |
| res.m64_f32[1] = a.m64_f32[1] - b.m64_f32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vsub_u8(uint8x8_t a, uint8x8_t b); // VSUB.I8 d0,d0,d0 |
| #define vsub_u8 vsub_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vsub_u16(uint16x4_t a, uint16x4_t b); // VSUB.I16 d0,d0,d0 |
| #define vsub_u16 vsub_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vsub_u32(uint32x2_t a, uint32x2_t b); // VSUB.I32 d0,d0,d0 |
| #define vsub_u32 vsub_s32 |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vsub_u64(uint64x1_t a, uint64x1_t b); // VSUB.I64 d0,d0,d0 |
| _NEON2SSE_INLINE uint64x1_t vsub_u64(uint64x1_t a, uint64x1_t b) |
| { |
| int64x1_t res64; |
| res64.m64_u64[0] = a.m64_u64[0] - b.m64_u64[0]; |
| return res64; |
| } |
| |
| |
| _NEON2SSESTORAGE int8x16_t vsubq_s8(int8x16_t a, int8x16_t b); // VSUB.I8 q0,q0,q0 |
| #define vsubq_s8 _mm_sub_epi8 |
| |
| _NEON2SSESTORAGE int16x8_t vsubq_s16(int16x8_t a, int16x8_t b); // VSUB.I16 q0,q0,q0 |
| #define vsubq_s16 _mm_sub_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vsubq_s32(int32x4_t a, int32x4_t b); // VSUB.I32 q0,q0,q0 |
| #define vsubq_s32 _mm_sub_epi32 |
| |
| _NEON2SSESTORAGE int64x2_t vsubq_s64(int64x2_t a, int64x2_t b); // VSUB.I64 q0,q0,q0 |
| #define vsubq_s64 _mm_sub_epi64 |
| |
| _NEON2SSESTORAGE float32x4_t vsubq_f32(float32x4_t a, float32x4_t b); // VSUB.F32 q0,q0,q0 |
| #define vsubq_f32 _mm_sub_ps |
| |
| _NEON2SSESTORAGE uint8x16_t vsubq_u8(uint8x16_t a, uint8x16_t b); // VSUB.I8 q0,q0,q0 |
| #define vsubq_u8 _mm_sub_epi8 |
| |
| _NEON2SSESTORAGE uint16x8_t vsubq_u16(uint16x8_t a, uint16x8_t b); // VSUB.I16 q0,q0,q0 |
| #define vsubq_u16 _mm_sub_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vsubq_u32(uint32x4_t a, uint32x4_t b); // VSUB.I32 q0,q0,q0 |
| #define vsubq_u32 _mm_sub_epi32 |
| |
| _NEON2SSESTORAGE uint64x2_t vsubq_u64(uint64x2_t a, uint64x2_t b); // VSUB.I64 q0,q0,q0 |
| #define vsubq_u64 _mm_sub_epi64 |
| |
| //***************Vector long subtract: vsub -> Vr[i]:=Va[i]-Vb[i] ****************** |
| //*********************************************************************************** |
| //Va, Vb have equal lane sizes, result is a 128 bit vector of lanes that are twice the width. |
| _NEON2SSESTORAGE int16x8_t vsubl_s8(int8x8_t a, int8x8_t b); // VSUBL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vsubl_s8(int8x8_t a, int8x8_t b) // VSUBL.S8 q0,d0,d0 |
| { |
| __m128i a16, b16; |
| a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE4.1, |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi16 (a16, b16); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vsubl_s16(int16x4_t a, int16x4_t b); // VSUBL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vsubl_s16(int16x4_t a, int16x4_t b) // VSUBL.S16 q0,d0,d0 |
| { |
| __m128i a32, b32; |
| a32 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE4.1 |
| b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi32 (a32, b32); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vsubl_s32(int32x2_t a, int32x2_t b); // VSUBL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE int64x2_t vsubl_s32(int32x2_t a, int32x2_t b) // VSUBL.S32 q0,d0,d0 |
| { |
| //may be not optimal |
| __m128i a64, b64; |
| a64 = _MM_CVTEPI32_EPI64 (_pM128i(a)); //SSE4.1 |
| b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi64 (a64, b64); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vsubl_u8(uint8x8_t a, uint8x8_t b); // VSUBL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vsubl_u8(uint8x8_t a, uint8x8_t b) // VSUBL.U8 q0,d0,d0 |
| { |
| __m128i a16, b16; |
| a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE4.1, |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi16 (a16, b16); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vsubl_u16(uint16x4_t a, uint16x4_t b); // VSUBL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vsubl_u16(uint16x4_t a, uint16x4_t b) // VSUBL.s16 q0,d0,d0 |
| { |
| __m128i a32, b32; |
| a32 = _MM_CVTEPU16_EPI32 (_pM128i(a)); //SSE4.1 |
| b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi32 (a32, b32); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vsubl_u32(uint32x2_t a, uint32x2_t b); // VSUBL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE uint64x2_t vsubl_u32(uint32x2_t a, uint32x2_t b) // VSUBL.U32 q0,d0,d0 |
| { |
| //may be not optimal |
| __m128i a64, b64; |
| a64 = _MM_CVTEPU32_EPI64 (_pM128i(a)); //SSE4.1 |
| b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi64 (a64, b64); |
| } |
| |
| //***************** Vector wide subtract: vsub -> Vr[i]:=Va[i]-Vb[i] ********************************** |
| //***************************************************************************************************** |
| _NEON2SSESTORAGE int16x8_t vsubw_s8(int16x8_t a, int8x8_t b); // VSUBW.S8 q0,q0,d0 |
| _NEON2SSE_INLINE int16x8_t vsubw_s8(int16x8_t a, int8x8_t b) // VSUBW.S8 q0,q0,d0 |
| { |
| __m128i b16; |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi16 (a, b16); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vsubw_s16(int32x4_t a, int16x4_t b); // VSUBW.S16 q0,q0,d0 |
| _NEON2SSE_INLINE int32x4_t vsubw_s16(int32x4_t a, int16x4_t b) // VSUBW.S16 q0,q0,d0 |
| { |
| __m128i b32; |
| b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi32 (a, b32); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vsubw_s32(int64x2_t a, int32x2_t b); // VSUBW.S32 q0,q0,d0 |
| _NEON2SSE_INLINE int64x2_t vsubw_s32(int64x2_t a, int32x2_t b) // VSUBW.S32 q0,q0,d0 |
| { |
| __m128i b64; |
| b64 = _MM_CVTEPI32_EPI64 (_pM128i(b)); //SSE4.1 |
| return _mm_sub_epi64 (a, b64); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b); // VSUBW.U8 q0,q0,d0 |
| _NEON2SSE_INLINE uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b) // VSUBW.U8 q0,q0,d0 |
| { |
| __m128i b16; |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi16 (a, b16); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vsubw_u16(uint32x4_t a, uint16x4_t b); // VSUBW.s16 q0,q0,d0 |
| _NEON2SSE_INLINE uint32x4_t vsubw_u16(uint32x4_t a, uint16x4_t b) // VSUBW.s16 q0,q0,d0 |
| { |
| __m128i b32; |
| b32 = _MM_CVTEPU16_EPI32 (_pM128i(b)); //SSE4.1, |
| return _mm_sub_epi32 (a, b32); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vsubw_u32(uint64x2_t a, uint32x2_t b); // VSUBW.U32 q0,q0,d0 |
| _NEON2SSE_INLINE uint64x2_t vsubw_u32(uint64x2_t a, uint32x2_t b) // VSUBW.U32 q0,q0,d0 |
| { |
| __m128i b64; |
| b64 = _MM_CVTEPU32_EPI64 (_pM128i(b)); //SSE4.1 |
| return _mm_sub_epi64 (a, b64); |
| } |
| |
| //************************Vector saturating subtract ********************************* |
| //************************************************************************************* |
| _NEON2SSESTORAGE int8x8_t vqsub_s8(int8x8_t a, int8x8_t b); // VQSUB.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vqsub_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_subs_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vqsub_s16(int16x4_t a, int16x4_t b); // VQSUB.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vqsub_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_subs_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vqsub_s32(int32x2_t a, int32x2_t b); // VQSUB.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vqsub_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vqsubq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vqsub_s64(int64x1_t a, int64x1_t b); // VQSUB.S64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqsub_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) //no optimal SIMD soulution |
| { |
| uint64x1_t res; |
| uint64_t a64,b64; |
| a64 = a.m64_u64[0]; |
| b64 = b.m64_u64[0]; |
| res.m64_u64[0] = a64 - b64; |
| |
| a64 = (a64 >> 63) + (~_SIGNBIT64); |
| if ((int64_t)((a64 ^ b64) & (a64 ^ res.m64_u64[0])) < 0) { |
| res.m64_u64[0] = a64; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqsub_u8(uint8x8_t a, uint8x8_t b); // VQSUB.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vqsub_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(_mm_subs_epu8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vqsub_u16(uint16x4_t a, uint16x4_t b); // VQSUB.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vqsub_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_mm_subs_epu16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vqsub_u32(uint32x2_t a, uint32x2_t b); // VQSUB.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vqsub_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(vqsubq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vqsub_u64(uint64x1_t a, uint64x1_t b); // VQSUB.U64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqsub_u64(uint64x1_t a, uint64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint64x1_t res; |
| uint64_t a64, b64; |
| a64 = _Ui64(a); |
| b64 = _Ui64(b); |
| if (a64 > b64) { |
| res.m64_u64[0] = a64 - b64; |
| } else { |
| res.m64_u64[0] = 0; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqsubq_s8(int8x16_t a, int8x16_t b); // VQSUB.S8 q0,q0,q0 |
| #define vqsubq_s8 _mm_subs_epi8 |
| |
| _NEON2SSESTORAGE int16x8_t vqsubq_s16(int16x8_t a, int16x8_t b); // VQSUB.S16 q0,q0,q0 |
| #define vqsubq_s16 _mm_subs_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b); // VQSUB.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vqsubq_s32(int32x4_t a, int32x4_t b) |
| { |
| //no corresponding x86 SIMD soulution, special tricks are necessary. The overflow is possible only if a and b have opposite signs and sub has opposite sign to a |
| __m128i c7fffffff, res, res_sat, res_xor_a, b_xor_a; |
| c7fffffff = _mm_set1_epi32(0x7fffffff); |
| res = _mm_sub_epi32(a, b); |
| res_sat = _mm_srli_epi32(a, 31); |
| res_sat = _mm_add_epi32(res_sat, c7fffffff); |
| res_xor_a = _mm_xor_si128(res, a); |
| b_xor_a = _mm_xor_si128(b, a); |
| res_xor_a = _mm_and_si128(b_xor_a, res_xor_a); |
| res_xor_a = _mm_srai_epi32(res_xor_a,31); //propagate the sigh bit, all ffff if <0 all ones otherwise |
| res_sat = _mm_and_si128(res_xor_a, res_sat); |
| res = _mm_andnot_si128(res_xor_a, res); |
| return _mm_or_si128(res, res_sat); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b); // VQSUB.S64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqsubq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) //no optimal SIMD soulution |
| { |
| _NEON2SSE_ALIGN_16 int64_t atmp[2], btmp[2]; |
| _NEON2SSE_ALIGN_16 uint64_t res[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| _mm_store_si128((__m128i*)btmp, b); |
| res[0] = atmp[0] - btmp[0]; |
| res[1] = atmp[1] - btmp[1]; |
| if (((res[0] ^ atmp[0]) & _SIGNBIT64) && ((atmp[0] ^ btmp[0]) & _SIGNBIT64)) { |
| res[0] = (atmp[0] >> 63) ^ ~_SIGNBIT64; |
| } |
| if (((res[1] ^ atmp[1]) & _SIGNBIT64) && ((atmp[1] ^ btmp[1]) & _SIGNBIT64)) { |
| res[1] = (atmp[1] >> 63) ^ ~_SIGNBIT64; |
| } |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vqsubq_u8(uint8x16_t a, uint8x16_t b); // VQSUB.U8 q0,q0,q0 |
| #define vqsubq_u8 _mm_subs_epu8 |
| |
| _NEON2SSESTORAGE uint16x8_t vqsubq_u16(uint16x8_t a, uint16x8_t b); // VQSUB.s16 q0,q0,q0 |
| #define vqsubq_u16 _mm_subs_epu16 |
| |
| _NEON2SSESTORAGE uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b); // VQSUB.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vqsubq_u32(uint32x4_t a, uint32x4_t b) // VQSUB.U32 q0,q0,q0 |
| { |
| __m128i min, mask, sub; |
| min = _MM_MIN_EPU32(a, b); //SSE4.1 |
| mask = _mm_cmpeq_epi32 (min, b); |
| sub = _mm_sub_epi32 (a, b); |
| return _mm_and_si128 ( sub, mask); |
| } |
| |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL); // VQSUB.U64 q0,q0,q0 |
| #ifdef USE_SSE4 |
| _NEON2SSE_INLINE uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b) |
| { |
| __m128i c80000000, subb, suba, cmp, sub; |
| c80000000 = _mm_set_epi32 (0x80000000, 0x0, 0x80000000, 0x0); |
| sub = _mm_sub_epi64 (a, b); |
| suba = _mm_sub_epi64 (a, c80000000); |
| subb = _mm_sub_epi64 (b, c80000000); |
| cmp = _mm_cmpgt_epi64 ( suba, subb); //no unsigned comparison, need to go to signed, SSE4.2!!! |
| return _mm_and_si128 (sub, cmp); //saturation |
| } |
| #else |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqsubq_u64(uint64x2_t a, uint64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t atmp[2], btmp[2], res[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| _mm_store_si128((__m128i*)btmp, b); |
| res[0] = (atmp[0] > btmp[0]) ? atmp[0] - btmp[0] : 0; |
| res[1] = (atmp[1] > btmp[1]) ? atmp[1] - btmp[1] : 0; |
| return _mm_load_si128((__m128i*)(res)); |
| } |
| #endif |
| |
| //**********Vector halving subtract Vr[i]:=(Va[i]-Vb[i])>>1 ****************************************************** |
| //**************************************************************** |
| _NEON2SSESTORAGE int8x8_t vhsub_s8(int8x8_t a, int8x8_t b); // VHSUB.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vhsub_s8(int8x8_t a, int8x8_t b) // VHSUB.S8 d0,d0,d0 |
| { |
| //no 8 bit shift available, internal overflow is possible, so let's go to 16 bit, |
| int8x8_t res64; |
| __m128i r16; |
| int8x8_t r; |
| r = vsub_s8 (a, b); |
| r16 = _MM_CVTEPI8_EPI16 (_pM128i(r)); //SSE 4.1 |
| r16 = _mm_srai_epi16 (r16, 1); //SSE2 |
| r16 = _mm_packs_epi16 (r16,r16); //use low 64 bits |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vhsub_s16(int16x4_t a, int16x4_t b); // VHSUB.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vhsub_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vhsubq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| |
| _NEON2SSESTORAGE int32x2_t vhsub_s32(int32x2_t a, int32x2_t b); // VHSUB.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vhsub_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vhsubq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vhsub_u8(uint8x8_t a, uint8x8_t b); // VHSUB.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vhsub_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(vhsubq_u8(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vhsub_u16(uint16x4_t a, uint16x4_t b); // VHSUB.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vhsub_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(vhsubq_u16(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vhsub_u32(uint32x2_t a, uint32x2_t b); // VHSUB.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vhsub_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(vhsubq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b); // VHSUB.S8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vhsubq_s8(int8x16_t a, int8x16_t b) // VHSUB.S8 q0,q0,q0 |
| { |
| // //need to deal with the possibility of internal overflow |
| __m128i c128, au,bu; |
| c128 = _mm_set1_epi8((int8_t)128); |
| au = _mm_add_epi8( a, c128); |
| bu = _mm_add_epi8( b, c128); |
| return vhsubq_u8(au,bu); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b); // VHSUB.S16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vhsubq_s16(int16x8_t a, int16x8_t b) // VHSUB.S16 q0,q0,q0 |
| { |
| //need to deal with the possibility of internal overflow |
| __m128i c8000, au,bu; |
| c8000 = _mm_set1_epi16((int16_t)0x8000); |
| au = _mm_add_epi16( a, c8000); |
| bu = _mm_add_epi16( b, c8000); |
| return vhsubq_u16(au,bu); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b); // VHSUB.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vhsubq_s32(int32x4_t a, int32x4_t b) // VHSUB.S32 q0,q0,q0 |
| { |
| //need to deal with the possibility of internal overflow |
| __m128i a2, b2,r, b_1; |
| a2 = _mm_srai_epi32 (a,1); |
| b2 = _mm_srai_epi32 (b,1); |
| r = _mm_sub_epi32 (a2, b2); |
| b_1 = _mm_andnot_si128(a, b); //!a and b |
| b_1 = _mm_slli_epi32 (b_1,31); |
| b_1 = _mm_srli_epi32 (b_1,31); //0 or 1, last b bit |
| return _mm_sub_epi32(r,b_1); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b); // VHSUB.U8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vhsubq_u8(uint8x16_t a, uint8x16_t b) // VHSUB.U8 q0,q0,q0 |
| { |
| __m128i avg; |
| avg = _mm_avg_epu8 (a, b); |
| return _mm_sub_epi8(a, avg); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b); // VHSUB.s16 q0,q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vhsubq_u16(uint16x8_t a, uint16x8_t b) // VHSUB.s16 q0,q0,q0 |
| { |
| __m128i avg; |
| avg = _mm_avg_epu16 (a, b); |
| return _mm_sub_epi16(a, avg); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b); // VHSUB.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vhsubq_u32(uint32x4_t a, uint32x4_t b) // VHSUB.U32 q0,q0,q0 |
| { |
| //need to deal with the possibility of internal overflow |
| __m128i a2, b2,r, b_1; |
| a2 = _mm_srli_epi32 (a,1); |
| b2 = _mm_srli_epi32 (b,1); |
| r = _mm_sub_epi32 (a2, b2); |
| b_1 = _mm_andnot_si128(a, b); //!a and b |
| b_1 = _mm_slli_epi32 (b_1,31); |
| b_1 = _mm_srli_epi32 (b_1,31); //0 or 1, last b bit |
| return _mm_sub_epi32(r,b_1); |
| } |
| |
| //******* Vector subtract high half (truncated) ** ************ |
| //************************************************************ |
| _NEON2SSESTORAGE int8x8_t vsubhn_s16(int16x8_t a, int16x8_t b); // VSUBHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE int8x8_t vsubhn_s16(int16x8_t a, int16x8_t b) // VSUBHN.I16 d0,q0,q0 |
| { |
| int8x8_t res64; |
| __m128i sum, sum8; |
| sum = _mm_sub_epi16 (a, b); |
| sum8 = _mm_srai_epi16 (sum, 8); |
| sum8 = _mm_packs_epi16(sum8,sum8); |
| return64(sum8); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vsubhn_s32(int32x4_t a, int32x4_t b); // VSUBHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE int16x4_t vsubhn_s32(int32x4_t a, int32x4_t b) // VSUBHN.I32 d0,q0,q0 |
| { |
| int16x4_t res64; |
| __m128i sum, sum16; |
| sum = _mm_sub_epi32 (a, b); |
| sum16 = _mm_srai_epi32 (sum, 16); |
| sum16 = _mm_packs_epi32(sum16,sum16); |
| return64(sum16); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vsubhn_s64(int64x2_t a, int64x2_t b); // VSUBHN.I64 d0,q0,q0 |
| _NEON2SSE_INLINE int32x2_t vsubhn_s64(int64x2_t a, int64x2_t b) |
| { |
| int32x2_t res64; |
| __m128i sub; |
| sub = _mm_sub_epi64 (a, b); |
| sub = _mm_shuffle_epi32(sub, 1 | (3 << 2) | (0 << 4) | (2 << 6)); |
| return64(sub); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vsubhn_u16(uint16x8_t a, uint16x8_t b); // VSUBHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE uint8x8_t vsubhn_u16(uint16x8_t a, uint16x8_t b) // VSUBHN.I16 d0,q0,q0 |
| { |
| uint8x8_t res64; |
| __m128i sum, sum8; |
| sum = _mm_sub_epi16 (a, b); |
| sum8 = _mm_srli_epi16 (sum, 8); |
| sum8 = _mm_packus_epi16(sum8,sum8); |
| return64(sum8); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vsubhn_u32(uint32x4_t a, uint32x4_t b); // VSUBHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE uint16x4_t vsubhn_u32(uint32x4_t a, uint32x4_t b) // VSUBHN.I32 d0,q0,q0 |
| { |
| uint16x4_t res64; |
| __m128i sum, sum16; |
| sum = _mm_sub_epi32 (a, b); |
| sum16 = _mm_srli_epi32 (sum, 16); |
| #ifdef USE_SSE4 |
| sum16 = _MM_PACKUS1_EPI32(sum16); |
| #else |
| sum16 = _mm_shuffle_epi8 (sum16, *(__m128i*) mask8_32_even_odd); //go to 16 bits |
| #endif |
| return64(sum16); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vsubhn_u64(uint64x2_t a, uint64x2_t b); // VSUBHN.I64 d0,q0,q0 |
| #define vsubhn_u64 vsubhn_s64 |
| |
| //************ Vector rounding subtract high half ********************* |
| //********************************************************************* |
| _NEON2SSESTORAGE int8x8_t vrsubhn_s16(int16x8_t a, int16x8_t b); // VRSUBHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE int8x8_t vrsubhn_s16(int16x8_t a, int16x8_t b) // VRSUBHN.I16 d0,q0,q0 |
| { |
| int8x8_t res64; |
| __m128i sub, mask1; |
| sub = _mm_sub_epi16 (a, b); |
| mask1 = _mm_slli_epi16(sub, 9); //shift left then back right to |
| mask1 = _mm_srli_epi16(mask1, 15); //get 7-th bit 1 or zero |
| sub = _mm_srai_epi16 (sub, 8); //get high half |
| sub = _mm_add_epi16 (sub, mask1); //actual rounding |
| sub = _mm_packs_epi16 (sub, sub); |
| return64(sub); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrsubhn_s32(int32x4_t a, int32x4_t b); // VRSUBHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE int16x4_t vrsubhn_s32(int32x4_t a, int32x4_t b) // VRSUBHN.I32 d0,q0,q0 |
| { |
| //SIMD may be not optimal, serial may be faster |
| int16x4_t res64; |
| __m128i sub, mask1; |
| sub = _mm_sub_epi32 (a, b); |
| mask1 = _mm_slli_epi32(sub, 17); //shift left then back right to |
| mask1 = _mm_srli_epi32(mask1,31); //get 15-th bit 1 or zero |
| sub = _mm_srai_epi32 (sub, 16); //get high half |
| sub = _mm_add_epi32 (sub, mask1); //actual rounding |
| sub = _mm_packs_epi32 (sub, sub); |
| return64(sub); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vrsubhn_s64(int64x2_t a, int64x2_t b); // VRSUBHN.I64 d0,q0,q0 |
| _NEON2SSE_INLINE int32x2_t vrsubhn_s64(int64x2_t a, int64x2_t b) |
| { |
| //SIMD may be not optimal, serial may be faster |
| int32x2_t res64; |
| __m128i sub, mask1; |
| sub = _mm_sub_epi64 (a, b); |
| mask1 = _mm_slli_epi64(sub, 33); //shift left then back right to |
| mask1 = _mm_srli_epi64(mask1,32); //get 31-th bit 1 or zero |
| sub = _mm_add_epi64 (sub, mask1); //actual high half rounding |
| sub = _mm_shuffle_epi32(sub, 1 | (3 << 2) | (0 << 4) | (2 << 6)); |
| return64(sub); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrsubhn_u16(uint16x8_t a, uint16x8_t b); // VRSUBHN.I16 d0,q0,q0 |
| _NEON2SSE_INLINE uint8x8_t vrsubhn_u16(uint16x8_t a, uint16x8_t b) // VRSUBHN.I16 d0,q0,q0 |
| { |
| uint8x8_t res64; |
| __m128i sub, mask1; |
| sub = _mm_sub_epi16 (a, b); |
| mask1 = _mm_slli_epi16(sub, 9); //shift left then back right to |
| mask1 = _mm_srli_epi16(mask1, 15); //get 7-th bit 1 or zero |
| sub = _mm_srai_epi16 (sub, 8); //get high half |
| sub = _mm_add_epi16 (sub, mask1); //actual rounding |
| sub = _mm_packus_epi16 (sub, sub); |
| return64(sub); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vrsubhn_u32(uint32x4_t a, uint32x4_t b); // VRSUBHN.I32 d0,q0,q0 |
| _NEON2SSE_INLINE uint16x4_t vrsubhn_u32(uint32x4_t a, uint32x4_t b) // VRSUBHN.I32 d0,q0,q0 |
| { |
| //SIMD may be not optimal, serial may be faster |
| uint16x4_t res64; |
| __m128i sub, mask1; |
| sub = _mm_sub_epi32 (a, b); |
| mask1 = _mm_slli_epi32(sub, 17); //shift left then back right to |
| mask1 = _mm_srli_epi32(mask1,31); //get 15-th bit 1 or zero |
| sub = _mm_srai_epi32 (sub, 16); //get high half |
| sub = _mm_add_epi32 (sub, mask1); //actual rounding |
| #ifdef USE_SSE4 |
| sub = _MM_PACKUS1_EPI32 (sub); |
| #else |
| sub = _mm_shuffle_epi8 (sub, *(__m128i*) mask8_32_even_odd); //go to 16 bits |
| #endif |
| return64(sub); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vrsubhn_u64(uint64x2_t a, uint64x2_t b); // VRSUBHN.I64 d0,q0,q0 |
| #define vrsubhn_u64 vrsubhn_s64 |
| |
| //*********** Vector saturating doubling multiply subtract long ******************** |
| //************************************************************************************ |
| _NEON2SSESTORAGE int32x4_t vqdmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VQDMLSL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vqdmlsl_s16(int32x4_t a, int16x4_t b, int16x4_t c) |
| { |
| //not optimal SIMD soulution, serial may be faster |
| __m128i res32, mask; |
| int32x4_t res; |
| _NEON2SSE_ALIGN_16 static const uint32_t cmask[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| res = vmull_s16(b, c); |
| res32 = _mm_slli_epi32 (res, 1); //double the result, saturation not considered |
| mask = _mm_cmpeq_epi32 (res32, *(__m128i*)cmask); |
| res32 = _mm_xor_si128 (res32, mask); //res32 saturated for 0x80000000 |
| return vqsubq_s32(a, res32); //saturation |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VQDMLSL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlsl_s32(int64x2_t a, int32x2_t b, int32x2_t c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| __m128i res64, mask; |
| int64x2_t res; |
| _NEON2SSE_ALIGN_16 static const uint64_t cmask[] = {0x8000000000000000, 0x8000000000000000}; |
| res = vmull_s32(b, c); |
| res64 = _mm_slli_epi64 (res, 1); //double the result, saturation not considered |
| mask = _MM_CMPEQ_EPI64 (res64, *(__m128i*)cmask); |
| res64 = _mm_xor_si128 (res64, mask); //res32 saturated for 0x80000000 |
| return vqsubq_s64(a, res64); //saturation |
| } |
| |
| //****************** COMPARISON *************************************** |
| //******************* Vector compare equal ************************************* |
| //**************************************************************************** |
| _NEON2SSESTORAGE uint8x8_t vceq_s8(int8x8_t a, int8x8_t b); // VCEQ.I8 d0, d0, d0 |
| _NEON2SSE_INLINE int8x8_t vceq_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_cmpeq_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vceq_s16(int16x4_t a, int16x4_t b); // VCEQ.I16 d0, d0, d0 |
| _NEON2SSE_INLINE int16x4_t vceq_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_cmpeq_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vceq_s32(int32x2_t a, int32x2_t b); // VCEQ.I32 d0, d0, d0 |
| _NEON2SSE_INLINE int32x2_t vceq_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(_mm_cmpeq_epi32(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vceq_f32(float32x2_t a, float32x2_t b); // VCEQ.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vceq_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128 res; |
| res = _mm_cmpeq_ps(_pM128(a), _pM128(b) ); |
| return64f(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vceq_u8(uint8x8_t a, uint8x8_t b); // VCEQ.I8 d0, d0, d0 |
| _NEON2SSE_INLINE uint8x8_t vceq_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(_mm_cmpeq_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vceq_u16(uint16x4_t a, uint16x4_t b); // VCEQ.I16 d0, d0, d0 |
| _NEON2SSE_INLINE uint16x4_t vceq_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_mm_cmpeq_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vceq_u32(uint32x2_t a, uint32x2_t b); // VCEQ.I32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vceq_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(_mm_cmpeq_epi32(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vceq_p8(poly8x8_t a, poly8x8_t b); // VCEQ.I8 d0, d0, d0 |
| #define vceq_p8 vceq_u8 |
| |
| |
| _NEON2SSESTORAGE uint8x16_t vceqq_s8(int8x16_t a, int8x16_t b); // VCEQ.I8 q0, q0, q0 |
| #define vceqq_s8 _mm_cmpeq_epi8 |
| |
| _NEON2SSESTORAGE uint16x8_t vceqq_s16(int16x8_t a, int16x8_t b); // VCEQ.I16 q0, q0, q0 |
| #define vceqq_s16 _mm_cmpeq_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vceqq_s32(int32x4_t a, int32x4_t b); // VCEQ.I32 q0, q0, q0 |
| #define vceqq_s32 _mm_cmpeq_epi32 |
| |
| _NEON2SSESTORAGE uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b); // VCEQ.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vceqq_f32(float32x4_t a, float32x4_t b) |
| { |
| __m128 res; |
| res = _mm_cmpeq_ps(a,b); |
| return _M128i(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vceqq_u8(uint8x16_t a, uint8x16_t b); // VCEQ.I8 q0, q0, q0 |
| #define vceqq_u8 _mm_cmpeq_epi8 |
| |
| _NEON2SSESTORAGE uint16x8_t vceqq_u16(uint16x8_t a, uint16x8_t b); // VCEQ.I16 q0, q0, q0 |
| #define vceqq_u16 _mm_cmpeq_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vceqq_u32(uint32x4_t a, uint32x4_t b); // VCEQ.I32 q0, q0, q0 |
| #define vceqq_u32 _mm_cmpeq_epi32 |
| |
| _NEON2SSESTORAGE uint8x16_t vceqq_p8(poly8x16_t a, poly8x16_t b); // VCEQ.I8 q0, q0, q0 |
| #define vceqq_p8 _mm_cmpeq_epi8 |
| |
| //******************Vector compare greater-than or equal************************* |
| //******************************************************************************* |
| //in IA SIMD no greater-than-or-equal comparison for integers, |
| // there is greater-than available only, so we need the following tricks |
| |
| _NEON2SSESTORAGE uint8x8_t vcge_s8(int8x8_t a, int8x8_t b); // VCGE.S8 d0, d0, d0 |
| _NEON2SSE_INLINE int8x8_t vcge_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vcgeq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vcge_s16(int16x4_t a, int16x4_t b); // VCGE.S16 d0, d0, d0 |
| _NEON2SSE_INLINE int16x4_t vcge_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vcgeq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcge_s32(int32x2_t a, int32x2_t b); // VCGE.S32 d0, d0, d0 |
| _NEON2SSE_INLINE int32x2_t vcge_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vcgeq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcge_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcge_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128 res; |
| res = _mm_cmpge_ps(_pM128(a),_pM128(b)); //use only 2 first entries |
| return64f(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vcge_u8(uint8x8_t a, uint8x8_t b); // VCGE.U8 d0, d0, d0 |
| _NEON2SSE_INLINE uint8x8_t vcge_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(vcgeq_u8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vcge_u16(uint16x4_t a, uint16x4_t b); // VCGE.s16 d0, d0, d0 |
| _NEON2SSE_INLINE uint16x4_t vcge_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(vcgeq_u16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcge_u32(uint32x2_t a, uint32x2_t b); // VCGE.U32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcge_u32(uint32x2_t a, uint32x2_t b) |
| { |
| //serial solution looks faster |
| uint32x2_t res64; |
| return64(vcgeq_u32 (_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| |
| _NEON2SSESTORAGE uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 |
| _NEON2SSE_INLINE uint8x16_t vcgeq_s8(int8x16_t a, int8x16_t b) // VCGE.S8 q0, q0, q0 |
| { |
| __m128i m1, m2; |
| m1 = _mm_cmpgt_epi8 ( a, b); |
| m2 = _mm_cmpeq_epi8 ( a, b); |
| return _mm_or_si128 ( m1, m2); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 |
| _NEON2SSE_INLINE uint16x8_t vcgeq_s16(int16x8_t a, int16x8_t b) // VCGE.S16 q0, q0, q0 |
| { |
| __m128i m1, m2; |
| m1 = _mm_cmpgt_epi16 ( a, b); |
| m2 = _mm_cmpeq_epi16 ( a, b); |
| return _mm_or_si128 ( m1,m2); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcgeq_s32(int32x4_t a, int32x4_t b) // VCGE.S32 q0, q0, q0 |
| { |
| __m128i m1, m2; |
| m1 = _mm_cmpgt_epi32 (a, b); |
| m2 = _mm_cmpeq_epi32 (a, b); |
| return _mm_or_si128 (m1, m2); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcgeq_f32(float32x4_t a, float32x4_t b) |
| { |
| __m128 res; |
| res = _mm_cmpge_ps(a,b); //use only 2 first entries |
| return *(__m128i*)&res; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 |
| _NEON2SSE_INLINE uint8x16_t vcgeq_u8(uint8x16_t a, uint8x16_t b) // VCGE.U8 q0, q0, q0 |
| { |
| //no unsigned chars comparison, only signed available,so need the trick |
| __m128i cmp; |
| cmp = _mm_max_epu8(a, b); |
| return _mm_cmpeq_epi8(cmp, a); //a>=b |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b); // VCGE.s16 q0, q0, q0 |
| _NEON2SSE_INLINE uint16x8_t vcgeq_u16(uint16x8_t a, uint16x8_t b) // VCGE.s16 q0, q0, q0 |
| { |
| //no unsigned shorts comparison, only signed available,so need the trick |
| #ifdef USE_SSE4 |
| __m128i cmp; |
| cmp = _mm_max_epu16(a, b); |
| return _mm_cmpeq_epi16(cmp, a); //a>=b |
| #else |
| __m128i as, mask; |
| __m128i zero = _mm_setzero_si128(); |
| __m128i cffff = _mm_set1_epi16(0xffff); |
| as = _mm_subs_epu16(b,a); |
| mask = _mm_cmpgt_epi16(as, zero); |
| return _mm_xor_si128 ( mask, cffff); |
| #endif |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcgeq_u32(uint32x4_t a, uint32x4_t b) // VCGE.U32 q0, q0, q0 |
| { |
| //no unsigned ints comparison, only signed available,so need the trick |
| #ifdef USE_SSE4 |
| __m128i cmp; |
| cmp = _mm_max_epu32(a, b); |
| return _mm_cmpeq_epi32(cmp, a); //a>=b |
| #else |
| //serial solution may be faster |
| __m128i c80000000, as, bs, m1, m2; |
| c80000000 = _mm_set1_epi32 (0x80000000); |
| as = _mm_sub_epi32(a,c80000000); |
| bs = _mm_sub_epi32(b,c80000000); |
| m1 = _mm_cmpgt_epi32 (as, bs); |
| m2 = _mm_cmpeq_epi32 (as, bs); |
| return _mm_or_si128 ( m1, m2); |
| #endif |
| } |
| |
| //**********************Vector compare less-than or equal****************************** |
| //*************************************************************************************** |
| //in IA SIMD no less-than-or-equal comparison for integers present, so we need the tricks |
| |
| _NEON2SSESTORAGE uint8x8_t vcle_s8(int8x8_t a, int8x8_t b); // VCGE.S8 d0, d0, d0 |
| _NEON2SSE_INLINE int8x8_t vcle_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vcleq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vcle_s16(int16x4_t a, int16x4_t b); // VCGE.S16 d0, d0, d0 |
| _NEON2SSE_INLINE int16x4_t vcle_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vcleq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcle_s32(int32x2_t a, int32x2_t b); // VCGE.S32 d0, d0, d0 |
| _NEON2SSE_INLINE int32x2_t vcle_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vcleq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcle_f32(float32x2_t a, float32x2_t b); // VCGE.F32 d0, d0, d0? |
| _NEON2SSE_INLINE uint32x2_t vcle_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128 res; |
| res = _mm_cmple_ps(_pM128(a),_pM128(b)); |
| return64f(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vcle_u8(uint8x8_t a, uint8x8_t b); // VCGE.U8 d0, d0, d0 |
| #define vcle_u8(a,b) vcge_u8(b,a) |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vcle_u16(uint16x4_t a, uint16x4_t b); // VCGE.s16 d0, d0, d0 |
| #define vcle_u16(a,b) vcge_u16(b,a) |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcle_u32(uint32x2_t a, uint32x2_t b); // VCGE.U32 d0, d0, d0 |
| #define vcle_u32(a,b) vcge_u32(b,a) |
| |
| _NEON2SSESTORAGE uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b); // VCGE.S8 q0, q0, q0 |
| _NEON2SSE_INLINE uint8x16_t vcleq_s8(int8x16_t a, int8x16_t b) // VCGE.S8 q0, q0, q0 |
| { |
| __m128i c1, res; |
| c1 = _mm_cmpeq_epi8 (a,a); //all ones 0xff.... |
| res = _mm_cmpgt_epi8 ( a, b); |
| return _mm_andnot_si128 (res, c1); //inverse the cmpgt result, get less-than-or-equal |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b); // VCGE.S16 q0, q0, q0 |
| _NEON2SSE_INLINE uint16x8_t vcleq_s16(int16x8_t a, int16x8_t b) // VCGE.S16 q0, q0, q0 |
| { |
| __m128i c1, res; |
| c1 = _mm_cmpeq_epi16 (a,a); //all ones 0xff.... |
| res = _mm_cmpgt_epi16 ( a, b); |
| return _mm_andnot_si128 (res, c1); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b); // VCGE.S32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcleq_s32(int32x4_t a, int32x4_t b) // VCGE.S32 q0, q0, q0 |
| { |
| __m128i c1, res; |
| c1 = _mm_cmpeq_epi32 (a,a); //all ones 0xff.... |
| res = _mm_cmpgt_epi32 ( a, b); |
| return _mm_andnot_si128 (res, c1); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b); // VCGE.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcleq_f32(float32x4_t a, float32x4_t b) |
| { |
| __m128 res; |
| res = _mm_cmple_ps(a,b); |
| return *(__m128i*)&res; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b); // VCGE.U8 q0, q0, q0 |
| #ifdef USE_SSE4 |
| _NEON2SSE_INLINE uint8x16_t vcleq_u8(uint8x16_t a, uint8x16_t b) // VCGE.U8 q0, q0, q0 |
| { |
| //no unsigned chars comparison in SSE, only signed available,so need the trick |
| __m128i cmp; |
| cmp = _mm_min_epu8(a, b); |
| return _mm_cmpeq_epi8(cmp, a); //a<=b |
| } |
| #else |
| # define vcleq_u8(a,b) vcgeq_u8(b,a) |
| #endif |
| |
| |
| _NEON2SSESTORAGE uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b); // VCGE.s16 q0, q0, q0 |
| #ifdef USE_SSE4 |
| _NEON2SSE_INLINE uint16x8_t vcleq_u16(uint16x8_t a, uint16x8_t b) // VCGE.s16 q0, q0, q0 |
| { |
| //no unsigned shorts comparison in SSE, only signed available,so need the trick |
| __m128i cmp; |
| cmp = _mm_min_epu16(a, b); |
| return _mm_cmpeq_epi16(cmp, a); //a<=b |
| } |
| #else |
| # define vcleq_u16(a,b) vcgeq_u16(b,a) |
| #endif |
| |
| |
| _NEON2SSESTORAGE uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b); // VCGE.U32 q0, q0, q0 |
| #ifdef USE_SSE4 |
| _NEON2SSE_INLINE uint32x4_t vcleq_u32(uint32x4_t a, uint32x4_t b) // VCGE.U32 q0, q0, q0 |
| { |
| //no unsigned chars comparison in SSE, only signed available,so need the trick |
| __m128i cmp; |
| cmp = _mm_min_epu32(a, b); |
| return _mm_cmpeq_epi32(cmp, a); //a<=b |
| } |
| #else |
| //solution may be not optimal compared with the serial one |
| # define vcleq_u32(a,b) vcgeq_u32(b,a) |
| #endif |
| |
| |
| //****** Vector compare greater-than ****************************************** |
| //************************************************************************** |
| _NEON2SSESTORAGE uint8x8_t vcgt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0 |
| _NEON2SSE_INLINE int8x8_t vcgt_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_cmpgt_epi8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vcgt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0 |
| _NEON2SSE_INLINE int16x4_t vcgt_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_cmpgt_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcgt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0 |
| _NEON2SSE_INLINE int32x2_t vcgt_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(_mm_cmpgt_epi32(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcgt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcgt_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128 res; |
| res = _mm_cmpgt_ps(_pM128(a),_pM128(b)); //use only 2 first entries |
| return64f(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vcgt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0 |
| _NEON2SSE_INLINE uint8x8_t vcgt_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(vcgtq_u8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vcgt_u16(uint16x4_t a, uint16x4_t b); // VCGT.s16 d0, d0, d0 |
| _NEON2SSE_INLINE uint16x4_t vcgt_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(vcgtq_u16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vcgt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcgt_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(vcgtq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x16_t vcgtq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 |
| #define vcgtq_s8 _mm_cmpgt_epi8 |
| |
| _NEON2SSESTORAGE uint16x8_t vcgtq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 |
| #define vcgtq_s16 _mm_cmpgt_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vcgtq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 |
| #define vcgtq_s32 _mm_cmpgt_epi32 |
| |
| _NEON2SSESTORAGE uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcgtq_f32(float32x4_t a, float32x4_t b) |
| { |
| __m128 res; |
| res = _mm_cmpgt_ps(a,b); //use only 2 first entries |
| return *(__m128i*)&res; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 |
| _NEON2SSE_INLINE uint8x16_t vcgtq_u8(uint8x16_t a, uint8x16_t b) // VCGT.U8 q0, q0, q0 |
| { |
| //no unsigned chars comparison, only signed available,so need the trick |
| __m128i as; |
| __m128i zero = _mm_setzero_si128(); |
| as = _mm_subs_epu8(a, b); |
| return _mm_cmpgt_epi8(as, zero); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b); // VCGT.s16 q0, q0, q0 |
| _NEON2SSE_INLINE uint16x8_t vcgtq_u16(uint16x8_t a, uint16x8_t b) // VCGT.s16 q0, q0, q0 |
| { |
| //no unsigned short comparison, only signed available,so need the trick |
| __m128i as; |
| __m128i zero = _mm_setzero_si128(); |
| as = _mm_subs_epu16(a, b); |
| return _mm_cmpgt_epi16(as, zero); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcgtq_u32(uint32x4_t a, uint32x4_t b) // VCGT.U32 q0, q0, q0 |
| { |
| //no unsigned int comparison, only signed available,so need the trick |
| __m128i c80000000, as, bs; |
| c80000000 = _mm_set1_epi32 (0x80000000); |
| as = _mm_sub_epi32(a,c80000000); |
| bs = _mm_sub_epi32(b,c80000000); |
| return _mm_cmpgt_epi32 ( as, bs); |
| } |
| |
| //********************* Vector compare less-than ************************** |
| //************************************************************************* |
| _NEON2SSESTORAGE uint8x8_t vclt_s8(int8x8_t a, int8x8_t b); // VCGT.S8 d0, d0, d0 |
| #define vclt_s8(a,b) vcgt_s8(b,a) //swap the arguments!! |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vclt_s16(int16x4_t a, int16x4_t b); // VCGT.S16 d0, d0, d0 |
| #define vclt_s16(a,b) vcgt_s16(b,a) //swap the arguments!! |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vclt_s32(int32x2_t a, int32x2_t b); // VCGT.S32 d0, d0, d0 |
| #define vclt_s32(a,b) vcgt_s32(b,a) //swap the arguments!! |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vclt_f32(float32x2_t a, float32x2_t b); // VCGT.F32 d0, d0, d0 |
| #define vclt_f32(a,b) vcgt_f32(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint8x8_t vclt_u8(uint8x8_t a, uint8x8_t b); // VCGT.U8 d0, d0, d0 |
| #define vclt_u8(a,b) vcgt_u8(b,a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint16x4_t vclt_u16(uint16x4_t a, uint16x4_t b); // VCGT.s16 d0, d0, d0 |
| #define vclt_u16(a,b) vcgt_u16(b,a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint32x2_t vclt_u32(uint32x2_t a, uint32x2_t b); // VCGT.U32 d0, d0, d0 |
| #define vclt_u32(a,b) vcgt_u32(b,a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint8x16_t vcltq_s8(int8x16_t a, int8x16_t b); // VCGT.S8 q0, q0, q0 |
| #define vcltq_s8(a,b) vcgtq_s8(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint16x8_t vcltq_s16(int16x8_t a, int16x8_t b); // VCGT.S16 q0, q0, q0 |
| #define vcltq_s16(a,b) vcgtq_s16(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint32x4_t vcltq_s32(int32x4_t a, int32x4_t b); // VCGT.S32 q0, q0, q0 |
| #define vcltq_s32(a,b) vcgtq_s32(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint32x4_t vcltq_f32(float32x4_t a, float32x4_t b); // VCGT.F32 q0, q0, q0 |
| #define vcltq_f32(a,b) vcgtq_f32(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint8x16_t vcltq_u8(uint8x16_t a, uint8x16_t b); // VCGT.U8 q0, q0, q0 |
| #define vcltq_u8(a,b) vcgtq_u8(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint16x8_t vcltq_u16(uint16x8_t a, uint16x8_t b); // VCGT.s16 q0, q0, q0 |
| #define vcltq_u16(a,b) vcgtq_u16(b, a) //swap the arguments!! |
| |
| _NEON2SSESTORAGE uint32x4_t vcltq_u32(uint32x4_t a, uint32x4_t b); // VCGT.U32 q0, q0, q0 |
| #define vcltq_u32(a,b) vcgtq_u32(b, a) //swap the arguments!! |
| |
| //*****************Vector compare absolute greater-than or equal ************ |
| //*************************************************************************** |
| _NEON2SSESTORAGE uint32x2_t vcage_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcage_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff); |
| a0 = _mm_cmpge_ps ( a0, b0); |
| return64f(a0); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcageq_f32(float32x4_t a, float32x4_t b) // VACGE.F32 q0, q0, q0 |
| { |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); |
| a0 = _mm_cmpge_ps ( a0, b0); |
| return (*(__m128i*)&a0); |
| } |
| |
| //********Vector compare absolute less-than or equal ****************** |
| //******************************************************************** |
| _NEON2SSESTORAGE uint32x2_t vcale_f32(float32x2_t a, float32x2_t b); // VACGE.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcale_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff); |
| a0 = _mm_cmple_ps (a0, b0); |
| return64f(a0); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b); // VACGE.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcaleq_f32(float32x4_t a, float32x4_t b) // VACGE.F32 q0, q0, q0 |
| { |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); |
| a0 = _mm_cmple_ps (a0, b0); |
| return (*(__m128i*)&a0); |
| } |
| |
| //******** Vector compare absolute greater-than ****************** |
| //****************************************************************** |
| _NEON2SSESTORAGE uint32x2_t vcagt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcagt_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff); |
| a0 = _mm_cmpgt_ps (a0, b0); |
| return64f(a0); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcagtq_f32(float32x4_t a, float32x4_t b) // VACGT.F32 q0, q0, q0 |
| { |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); |
| a0 = _mm_cmpgt_ps (a0, b0); |
| return (*(__m128i*)&a0); |
| } |
| |
| //***************Vector compare absolute less-than *********************** |
| //************************************************************************* |
| _NEON2SSESTORAGE uint32x2_t vcalt_f32(float32x2_t a, float32x2_t b); // VACGT.F32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcalt_f32(float32x2_t a, float32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (_pM128(a), *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (_pM128(b), *(__m128*)&c7fffffff); |
| a0 = _mm_cmplt_ps (a0, b0); |
| return64f(a0); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b); // VACGT.F32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcaltq_f32(float32x4_t a, float32x4_t b) // VACGT.F32 q0, q0, q0 |
| { |
| __m128i c7fffffff; |
| __m128 a0, b0; |
| c7fffffff = _mm_set1_epi32 (0x7fffffff); |
| a0 = _mm_and_ps (a, *(__m128*)&c7fffffff); |
| b0 = _mm_and_ps (b, *(__m128*)&c7fffffff); |
| a0 = _mm_cmplt_ps (a0, b0); |
| return (*(__m128i*)&a0); |
| } |
| |
| //*************************Vector test bits************************************ |
| //***************************************************************************** |
| /*VTST (Vector Test Bits) takes each element in a vector, and bitwise logical ANDs them |
| with the corresponding element of a second vector. If the result is not zero, the |
| corresponding element in the destination vector is set to all ones. Otherwise, it is set to |
| all zeros. */ |
| |
| _NEON2SSESTORAGE uint8x8_t vtst_s8(int8x8_t a, int8x8_t b); // VTST.8 d0, d0, d0 |
| _NEON2SSE_INLINE uint8x8_t vtst_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vtstq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vtst_s16(int16x4_t a, int16x4_t b); // VTST.16 d0, d0, d0 |
| _NEON2SSE_INLINE uint16x4_t vtst_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vtstq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vtst_s32(int32x2_t a, int32x2_t b); // VTST.32 d0, d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vtst_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vtstq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vtst_u8(uint8x8_t a, uint8x8_t b); // VTST.8 d0, d0, d0 |
| #define vtst_u8 vtst_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vtst_u16(uint16x4_t a, uint16x4_t b); // VTST.16 d0, d0, d0 |
| #define vtst_u16 vtst_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vtst_u32(uint32x2_t a, uint32x2_t b); // VTST.32 d0, d0, d0 |
| #define vtst_u32 vtst_s32 |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vtst_p8(poly8x8_t a, poly8x8_t b); // VTST.8 d0, d0, d0 |
| #define vtst_p8 vtst_u8 |
| |
| _NEON2SSESTORAGE uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b); // VTST.8 q0, q0, q0 |
| _NEON2SSE_INLINE uint8x16_t vtstq_s8(int8x16_t a, int8x16_t b) // VTST.8 q0, q0, q0 |
| { |
| __m128i zero, one, res; |
| zero = _mm_setzero_si128 (); |
| one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff |
| res = _mm_and_si128 (a, b); |
| res = _mm_cmpeq_epi8 (res, zero); |
| return _mm_xor_si128(res, one); //invert result |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b); // VTST.16 q0, q0, q0 |
| _NEON2SSE_INLINE uint16x8_t vtstq_s16(int16x8_t a, int16x8_t b) // VTST.16 q0, q0, q0 |
| { |
| __m128i zero, one, res; |
| zero = _mm_setzero_si128 (); |
| one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff |
| res = _mm_and_si128 (a, b); |
| res = _mm_cmpeq_epi16 (res, zero); |
| return _mm_xor_si128(res, one); //invert result |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b); // VTST.32 q0, q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vtstq_s32(int32x4_t a, int32x4_t b) // VTST.32 q0, q0, q0 |
| { |
| __m128i zero, one, res; |
| zero = _mm_setzero_si128 (); |
| one = _mm_cmpeq_epi8(zero,zero); //0xfff..ffff |
| res = _mm_and_si128 (a, b); |
| res = _mm_cmpeq_epi32 (res, zero); |
| return _mm_xor_si128(res, one); //invert result |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vtstq_u8(uint8x16_t a, uint8x16_t b); // VTST.8 q0, q0, q0 |
| #define vtstq_u8 vtstq_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vtstq_u16(uint16x8_t a, uint16x8_t b); // VTST.16 q0, q0, q0 |
| #define vtstq_u16 vtstq_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vtstq_u32(uint32x4_t a, uint32x4_t b); // VTST.32 q0, q0, q0 |
| #define vtstq_u32 vtstq_s32 |
| |
| _NEON2SSESTORAGE uint8x16_t vtstq_p8(poly8x16_t a, poly8x16_t b); // VTST.8 q0, q0, q0 |
| #define vtstq_p8 vtstq_u8 |
| |
| //****************** Absolute difference ******************** |
| //*** Absolute difference between the arguments: Vr[i] = | Va[i] - Vb[i] |***** |
| //************************************************************ |
| _NEON2SSESTORAGE int8x8_t vabd_s8(int8x8_t a, int8x8_t b); // VABD.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vabd_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vabdq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vabd_s16(int16x4_t a, int16x4_t b); // VABD.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vabd_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vabdq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vabd_s32(int32x2_t a, int32x2_t b); // VABD.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vabd_s32(int32x2_t a, int32x2_t b) |
| {//need to deal with an intermediate overflow |
| int32x2_t res; |
| res.m64_i32[0] = (a.m64_i32[0] > b.m64_i32[0]) ? a.m64_i32[0] - b.m64_i32[0]: b.m64_i32[0] - a.m64_i32[0]; |
| res.m64_i32[1] = (a.m64_i32[1] > b.m64_i32[1]) ? a.m64_i32[1] - b.m64_i32[1]: b.m64_i32[1] - a.m64_i32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vabd_u8(uint8x8_t a, uint8x8_t b); // VABD.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vabd_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(vabdq_u8(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vabd_u16(uint16x4_t a, uint16x4_t b); // VABD.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vabd_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(vabdq_u16(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vabd_u32(uint32x2_t a, uint32x2_t b); // VABD.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vabd_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| return64(vabdq_u32(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vabd_f32(float32x2_t a, float32x2_t b); // VABD.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vabd_f32(float32x2_t a, float32x2_t b) |
| { |
| float32x4_t res; |
| __m64_128 res64; |
| res = vabdq_f32(_pM128(a), _pM128(b)); |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vabdq_s8(int8x16_t a, int8x16_t b); // VABD.S8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vabdq_s8(int8x16_t a, int8x16_t b) // VABD.S8 q0,q0,q0 |
| { //need to deal with an intermediate overflow |
| __m128i cmp, difab, difba; |
| cmp = vcgtq_s8(a,b); |
| difab = _mm_sub_epi8(a,b); |
| difba = _mm_sub_epi8(b,a); |
| difab = _mm_and_si128(cmp, difab); |
| difba = _mm_andnot_si128(cmp, difba); |
| return _mm_or_si128(difab, difba); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vabdq_s16(int16x8_t a, int16x8_t b); // VABD.S16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vabdq_s16(int16x8_t a, int16x8_t b) // VABD.S16 q0,q0,q0 |
| {//need to deal with an intermediate overflow |
| __m128i cmp, difab, difba; |
| cmp = vcgtq_s16(a,b); |
| difab = _mm_sub_epi16(a,b); |
| difba = _mm_sub_epi16 (b,a); |
| difab = _mm_and_si128(cmp, difab); |
| difba = _mm_andnot_si128(cmp, difba); |
| return _mm_or_si128(difab, difba); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vabdq_s32(int32x4_t a, int32x4_t b); // VABD.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vabdq_s32(int32x4_t a, int32x4_t b) // VABD.S32 q0,q0,q0 |
| {//need to deal with an intermediate overflow |
| __m128i cmp, difab, difba; |
| cmp = vcgtq_s32(a,b); |
| difab = _mm_sub_epi32(a,b); |
| difba = _mm_sub_epi32(b,a); |
| difab = _mm_and_si128(cmp, difab); |
| difba = _mm_andnot_si128(cmp, difba); |
| return _mm_or_si128(difab, difba); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b); // VABD.U8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vabdq_u8(uint8x16_t a, uint8x16_t b) //no abs for unsigned |
| { |
| __m128i difab, difba; |
| difab = _mm_subs_epu8(a,b); |
| difba = _mm_subs_epu8 (b,a); |
| return _mm_or_si128(difab, difba); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b); // VABD.s16 q0,q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vabdq_u16(uint16x8_t a, uint16x8_t b) |
| { |
| __m128i difab, difba; |
| difab = _mm_subs_epu16(a,b); |
| difba = _mm_subs_epu16 (b,a); |
| return _mm_or_si128(difab, difba); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b); // VABD.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vabdq_u32(uint32x4_t a, uint32x4_t b) |
| { |
| __m128i cmp, difab, difba; |
| cmp = vcgtq_u32(a,b); |
| difab = _mm_sub_epi32(a,b); |
| difba = _mm_sub_epi32 (b,a); |
| difab = _mm_and_si128(cmp, difab); |
| difba = _mm_andnot_si128(cmp, difba); |
| return _mm_or_si128(difab, difba); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vabdq_f32(float32x4_t a, float32x4_t b); // VABD.F32 q0,q0,q0 |
| _NEON2SSE_INLINE float32x4_t vabdq_f32(float32x4_t a, float32x4_t b) // VABD.F32 q0,q0,q0 |
| { |
| __m128i c1; |
| __m128 res; |
| c1 = _mm_set1_epi32(0x7fffffff); |
| res = _mm_sub_ps (a, b); |
| return _mm_and_ps (res, *(__m128*)&c1); |
| } |
| |
| //************ Absolute difference - long ************************** |
| //******************************************************************** |
| _NEON2SSESTORAGE int16x8_t vabdl_s8(int8x8_t a, int8x8_t b); // VABDL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vabdl_s8(int8x8_t a, int8x8_t b) // VABDL.S8 q0,d0,d0 |
| { |
| __m128i a16, b16; |
| a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE4.1, |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1, |
| return vabdq_s16(a16, b16); |
| |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vabdl_s16(int16x4_t a, int16x4_t b); // VABDL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vabdl_s16(int16x4_t a, int16x4_t b) // VABDL.S16 q0,d0,d0 |
| { |
| __m128i a32, b32; |
| a32 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE4.1 |
| b32 = _MM_CVTEPI16_EPI32 (_pM128i(b)); //SSE4.1, |
| return vabdq_s32(a32, b32); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vabdl_s32(int32x2_t a, int32x2_t b); // VABDL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (int64x2_t vabdl_s32(int32x2_t a, int32x2_t b),_NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //no optimal SIMD solution, serial looks faster |
| _NEON2SSE_ALIGN_16 int64_t res[2]; |
| if(a.m64_i32[0] > b.m64_i32[0]) res[0] = ( int64_t) a.m64_i32[0] - ( int64_t) b.m64_i32[0]; |
| else res[0] = ( int64_t) b.m64_i32[0] - ( int64_t) a.m64_i32[0]; |
| if(a.m64_i32[1] > b.m64_i32[1]) res[1] = ( int64_t) a.m64_i32[1] - ( int64_t) b.m64_i32[1]; |
| else res[1] = ( int64_t) b.m64_i32[1] - ( int64_t) a.m64_i32[1]; |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vabdl_u8(uint8x8_t a, uint8x8_t b); // VABDL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vabdl_u8(uint8x8_t a, uint8x8_t b) |
| { |
| __m128i res; |
| res = vsubl_u8(a,b); |
| return _mm_abs_epi16(res); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vabdl_u16(uint16x4_t a, uint16x4_t b); // VABDL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vabdl_u16(uint16x4_t a, uint16x4_t b) |
| { |
| __m128i res; |
| res = vsubl_u16(a,b); |
| return _mm_abs_epi32(res); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vabdl_u32(uint32x2_t a, uint32x2_t b); // VABDL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (uint64x2_t vabdl_u32(uint32x2_t a, uint32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t res[2]; |
| if(a.m64_u32[0] > b.m64_u32[0]) res[0] = ( uint64_t) a.m64_u32[0] - ( uint64_t) b.m64_u32[0]; |
| else res[0] = ( uint64_t) b.m64_u32[0] - ( uint64_t) a.m64_u32[0]; |
| if(a.m64_u32[1] > b.m64_u32[1]) res[1] = ( uint64_t) a.m64_u32[1] - ( uint64_t) b.m64_u32[1]; |
| else res[1] = ( uint64_t) b.m64_u32[1] - ( uint64_t) a.m64_u32[1]; |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| //**********Absolute difference and accumulate: Vr[i] = Va[i] + | Vb[i] - Vc[i] | ************* |
| //********************************************************************************************* |
| _NEON2SSESTORAGE int8x8_t vaba_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VABA.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vaba_s8(int8x8_t a, int8x8_t b, int8x8_t c) |
| { |
| int8x8_t res64; |
| return64(vabaq_s8(_pM128i(a),_pM128i(b), _pM128i(c))); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vaba_s16(int16x4_t a, int16x4_t b, int16x4_t c); // VABA.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vaba_s16(int16x4_t a, int16x4_t b, int16x4_t c) |
| { |
| int16x4_t res64; |
| return64(vabaq_s16(_pM128i(a), _pM128i(b), _pM128i(c))); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vaba_s32(int32x2_t a, int32x2_t b, int32x2_t c); // VABA.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vaba_s32(int32x2_t a, int32x2_t b, int32x2_t c) |
| { |
| int32x2_t res64; |
| return64(vabaq_s32(_pM128i(a), _pM128i(b), _pM128i(c))); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vaba_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VABA.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vaba_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c) |
| { |
| int8x8_t res64; |
| return64(vabaq_u8(_pM128i(a),_pM128i(b), _pM128i(c))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vaba_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VABA.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vaba_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c) |
| { |
| int16x4_t res64; |
| return64(vabaq_u16(_pM128i(a), _pM128i(b), _pM128i(c))); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vaba_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VABA.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vaba_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c) |
| { |
| uint32x2_t res64; |
| return64(vabaq_u32(_pM128i(a), _pM128i(b), _pM128i(c))); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c); // VABA.S8 q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vabaq_s8(int8x16_t a, int8x16_t b, int8x16_t c) // VABA.S8 q0,q0,q0 |
| { |
| int8x16_t sub; |
| sub = vabdq_s8(b, c); |
| return vaddq_s8( a, sub); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c); // VABA.S16 q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vabaq_s16(int16x8_t a, int16x8_t b, int16x8_t c) // VABA.S16 q0,q0,q0 |
| { |
| int16x8_t sub; |
| sub = vabdq_s16(b, c); |
| return vaddq_s16( a, sub); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c); // VABA.S32 q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vabaq_s32(int32x4_t a, int32x4_t b, int32x4_t c) // VABA.S32 q0,q0,q0 |
| { |
| int32x4_t sub; |
| sub = vabdq_s32(b, c); |
| return vaddq_s32( a, sub); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VABA.U8 q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vabaq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c) |
| { |
| uint8x16_t sub; |
| sub = vabdq_u8(b, c); |
| return vaddq_u8( a, sub); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VABA.s16 q0,q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vabaq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c) |
| { |
| uint16x8_t sub; |
| sub = vabdq_u16(b, c); |
| return vaddq_u16( a, sub); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VABA.U32 q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vabaq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c) |
| { |
| uint32x4_t sub; |
| sub = vabdq_u32(b, c); |
| return vaddq_u32( a, sub); |
| } |
| |
| //************** Absolute difference and accumulate - long ******************************** |
| //************************************************************************************* |
| _NEON2SSESTORAGE int16x8_t vabal_s8(int16x8_t a, int8x8_t b, int8x8_t c); // VABAL.S8 q0,d0,d0 |
| _NEON2SSE_INLINE int16x8_t vabal_s8(int16x8_t a, int8x8_t b, int8x8_t c) // VABAL.S8 q0,d0,d0 |
| { |
| __m128i b16, c16, res; |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); //SSE4.1, |
| c16 = _MM_CVTEPI8_EPI16 (_pM128i(c)); //SSE4.1, |
| res = _mm_abs_epi16 (_mm_sub_epi16 (b16, c16) ); |
| return _mm_add_epi16 (a, res); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vabal_s16(int32x4_t a, int16x4_t b, int16x4_t c); // VABAL.S16 q0,d0,d0 |
| _NEON2SSE_INLINE int32x4_t vabal_s16(int32x4_t a, int16x4_t b, int16x4_t c) // VABAL.S16 q0,d0,d0 |
| { |
| __m128i b32, c32, res; |
| b32 = _MM_CVTEPI16_EPI32(_pM128i(b)); //SSE4.1 |
| c32 = _MM_CVTEPI16_EPI32(_pM128i(c)); //SSE4.1 |
| res = _mm_abs_epi32 (_mm_sub_epi32 (b32, c32) ); |
| return _mm_add_epi32 (a, res); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vabal_s32(int64x2_t a, int32x2_t b, int32x2_t c); // VABAL.S32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (int64x2_t vabal_s32(int64x2_t a, int32x2_t b, int32x2_t c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| __m128i res; |
| res = vabdl_s32(b,c); |
| return _mm_add_epi64(a, res); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vabal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c); // VABAL.U8 q0,d0,d0 |
| _NEON2SSE_INLINE uint16x8_t vabal_u8(uint16x8_t a, uint8x8_t b, uint8x8_t c) |
| { |
| __m128i b16, c16, res; |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); //SSE4.1, |
| c16 = _MM_CVTEPU8_EPI16 (_pM128i(c)); //SSE4.1, |
| res = _mm_abs_epi16 (_mm_sub_epi16 (b16, c16) ); |
| return _mm_add_epi16 (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vabal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c); // VABAL.s16 q0,d0,d0 |
| _NEON2SSE_INLINE uint32x4_t vabal_u16(uint32x4_t a, uint16x4_t b, uint16x4_t c) |
| { |
| __m128i b32, c32, res; |
| b32 = _MM_CVTEPU16_EPI32(_pM128i(b)); //SSE4.1 |
| c32 = _MM_CVTEPU16_EPI32(_pM128i(c)); //SSE4.1 |
| res = _mm_abs_epi32 (_mm_sub_epi32 (b32, c32) ); |
| return _mm_add_epi32 (a, res); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vabal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c); // VABAL.U32 q0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING (uint64x2_t vabal_u32(uint64x2_t a, uint32x2_t b, uint32x2_t c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| __m128i res; |
| res = vabdl_u32(b,c); |
| return _mm_add_epi64(a, res); |
| } |
| |
| //*********************************************************************************** |
| //**************** Maximum and minimum operations ********************************** |
| //*********************************************************************************** |
| //************* Maximum: vmax -> Vr[i] := (Va[i] >= Vb[i]) ? Va[i] : Vb[i] ******* |
| //*********************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vmax_s8(int8x8_t a, int8x8_t b); // VMAX.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vmax_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = _MM_MAX_EPI8(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmax_s16(int16x4_t a, int16x4_t b); // VMAX.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vmax_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_max_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmax_s32(int32x2_t a, int32x2_t b); // VMAX.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vmax_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _MM_MAX_EPI32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmax_u8(uint8x8_t a, uint8x8_t b); // VMAX.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vmax_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(_mm_max_epu8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vmax_u16(uint16x4_t a, uint16x4_t b); // VMAX.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vmax_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_MM_MAX_EPU16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vmax_u32(uint32x2_t a, uint32x2_t b); // VMAX.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vmax_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128i res; |
| res = _MM_MAX_EPU32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits, may be not effective compared with serial |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmax_f32(float32x2_t a, float32x2_t b); // VMAX.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vmax_f32(float32x2_t a, float32x2_t b) |
| { |
| //serial solution looks faster than SIMD one |
| float32x2_t res; |
| res.m64_f32[0] = (a.m64_f32[0] > b.m64_f32[0]) ? a.m64_f32[0] : b.m64_f32[0]; |
| res.m64_f32[1] = (a.m64_f32[1] > b.m64_f32[1]) ? a.m64_f32[1] : b.m64_f32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vmaxq_s8(int8x16_t a, int8x16_t b); // VMAX.S8 q0,q0,q0 |
| #define vmaxq_s8 _MM_MAX_EPI8 //SSE4.1 |
| |
| _NEON2SSESTORAGE int16x8_t vmaxq_s16(int16x8_t a, int16x8_t b); // VMAX.S16 q0,q0,q0 |
| #define vmaxq_s16 _mm_max_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vmaxq_s32(int32x4_t a, int32x4_t b); // VMAX.S32 q0,q0,q0 |
| #define vmaxq_s32 _MM_MAX_EPI32 //SSE4.1 |
| |
| _NEON2SSESTORAGE uint8x16_t vmaxq_u8(uint8x16_t a, uint8x16_t b); // VMAX.U8 q0,q0,q0 |
| #define vmaxq_u8 _mm_max_epu8 |
| |
| _NEON2SSESTORAGE uint16x8_t vmaxq_u16(uint16x8_t a, uint16x8_t b); // VMAX.s16 q0,q0,q0 |
| #define vmaxq_u16 _MM_MAX_EPU16 //SSE4.1 |
| |
| _NEON2SSESTORAGE uint32x4_t vmaxq_u32(uint32x4_t a, uint32x4_t b); // VMAX.U32 q0,q0,q0 |
| #define vmaxq_u32 _MM_MAX_EPU32 //SSE4.1 |
| |
| |
| _NEON2SSESTORAGE float32x4_t vmaxq_f32(float32x4_t a, float32x4_t b); // VMAX.F32 q0,q0,q0 |
| #define vmaxq_f32 _mm_max_ps |
| |
| |
| _NEON2SSESTORAGE float64x2_t vmaxq_f64(float64x2_t a, float64x2_t b); // VMAX.F64 q0,q0,q0 |
| #define vmaxq_f64 _mm_max_pd |
| |
| |
| //*************** Minimum: vmin -> Vr[i] := (Va[i] >= Vb[i]) ? Vb[i] : Va[i] ******************************** |
| //*********************************************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vmin_s8(int8x8_t a, int8x8_t b); // VMIN.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vmin_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = _MM_MIN_EPI8(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmin_s16(int16x4_t a, int16x4_t b); // VMIN.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vmin_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_min_epi16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vmin_s32(int32x2_t a, int32x2_t b); // VMIN.S32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vmin_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _MM_MIN_EPI32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmin_u8(uint8x8_t a, uint8x8_t b); // VMIN.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vmin_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| return64(_mm_min_epu8(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vmin_u16(uint16x4_t a, uint16x4_t b); // VMIN.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vmin_u16(uint16x4_t a, uint16x4_t b) |
| { |
| uint16x4_t res64; |
| return64(_MM_MIN_EPU16(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vmin_u32(uint32x2_t a, uint32x2_t b); // VMIN.U32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vmin_u32(uint32x2_t a, uint32x2_t b) |
| { |
| uint32x2_t res64; |
| __m128i res; |
| res = _MM_MIN_EPU32(_pM128i(a),_pM128i(b)); //SSE4.1, use only lower 64 bits, may be not effective compared with serial |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmin_f32(float32x2_t a, float32x2_t b); // VMIN.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vmin_f32(float32x2_t a, float32x2_t b) |
| { |
| //serial solution looks faster than SIMD one |
| float32x2_t res; |
| res.m64_f32[0] = (a.m64_f32[0] < b.m64_f32[0]) ? a.m64_f32[0] : b.m64_f32[0]; |
| res.m64_f32[1] = (a.m64_f32[1] < b.m64_f32[1]) ? a.m64_f32[1] : b.m64_f32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vminq_s8(int8x16_t a, int8x16_t b); // VMIN.S8 q0,q0,q0 |
| #define vminq_s8 _MM_MIN_EPI8 //SSE4.1 |
| |
| _NEON2SSESTORAGE int16x8_t vminq_s16(int16x8_t a, int16x8_t b); // VMIN.S16 q0,q0,q0 |
| #define vminq_s16 _mm_min_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vminq_s32(int32x4_t a, int32x4_t b); // VMIN.S32 q0,q0,q0 |
| #define vminq_s32 _MM_MIN_EPI32 //SSE4.1 |
| |
| _NEON2SSESTORAGE uint8x16_t vminq_u8(uint8x16_t a, uint8x16_t b); // VMIN.U8 q0,q0,q0 |
| #define vminq_u8 _mm_min_epu8 |
| |
| _NEON2SSESTORAGE uint16x8_t vminq_u16(uint16x8_t a, uint16x8_t b); // VMIN.s16 q0,q0,q0 |
| #define vminq_u16 _MM_MIN_EPU16 //SSE4.1 |
| |
| _NEON2SSESTORAGE uint32x4_t vminq_u32(uint32x4_t a, uint32x4_t b); // VMIN.U32 q0,q0,q0 |
| #define vminq_u32 _MM_MIN_EPU32 //SSE4.1 |
| |
| _NEON2SSESTORAGE float32x4_t vminq_f32(float32x4_t a, float32x4_t b); // VMIN.F32 q0,q0,q0 |
| #define vminq_f32 _mm_min_ps |
| |
| |
| _NEON2SSESTORAGE float64x2_t vminq_f64(float64x2_t a, float64x2_t b); // VMIN.F64 q0,q0,q0 |
| #define vminq_f64 _mm_min_pd |
| |
| |
| //************* Pairwise addition operations. ************************************** |
| //************************************************************************************ |
| //Pairwise add - adds adjacent pairs of elements of two vectors, and places the results in the destination vector |
| _NEON2SSESTORAGE int8x8_t vpadd_s8(int8x8_t a, int8x8_t b); // VPADD.I8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vpadd_s8(int8x8_t a, int8x8_t b) // VPADD.I8 d0,d0,d0 |
| { |
| //no 8 bit hadd in IA32, need to go to 16 bit and then pack |
| int8x8_t res64; |
| __m128i a16, b16, res; |
| a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1 |
| b16 = _MM_CVTEPI8_EPI16 (_pM128i(b)); // SSE 4.1 |
| res = _mm_hadd_epi16 (a16, b16); |
| res = _mm_shuffle_epi8 (res, *(__m128i*) mask8_16_even_odd); //return to 8 bit, use low 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vpadd_s16(int16x4_t a, int16x4_t b); // VPADD.I16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vpadd_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| __m128i hadd128; |
| hadd128 = _mm_hadd_epi16 (_pM128i(a), _pM128i(b)); |
| hadd128 = _mm_shuffle_epi32 (hadd128, 0 | (2 << 2) | (1 << 4) | (3 << 6)); |
| return64(hadd128); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vpadd_s32(int32x2_t a, int32x2_t b); // VPADD.I32 d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vpadd_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| __m128i hadd128; |
| hadd128 = _mm_hadd_epi32 (_pM128i(a), _pM128i(b)); |
| hadd128 = _mm_shuffle_epi32 (hadd128, 0 | (2 << 2) | (1 << 4) | (3 << 6)); |
| return64(hadd128); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vpadd_u8(uint8x8_t a, uint8x8_t b); // VPADD.I8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vpadd_u8(uint8x8_t a, uint8x8_t b) // VPADD.I8 d0,d0,d0 |
| { |
| // no 8 bit hadd in IA32, need to go to 16 bit and then pack |
| uint8x8_t res64; |
| // no unsigned _mm_hadd_ functions in IA32, but 8 unsigned is less then 16 signed, so it should work |
| __m128i mask8, a16, b16, res; |
| mask8 = _mm_set1_epi16(0xff); |
| a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); // SSE 4.1 |
| b16 = _MM_CVTEPU8_EPI16 (_pM128i(b)); // SSE 4.1 |
| res = _mm_hadd_epi16 (a16, b16); |
| res = _mm_and_si128(res, mask8); //to avoid saturation |
| res = _mm_packus_epi16 (res,res); //use low 64 bits |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vpadd_u16(uint16x4_t a, uint16x4_t b); // VPADD.I16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vpadd_u16(uint16x4_t a, uint16x4_t b) // VPADD.I16 d0,d0,d0 |
| { |
| // solution may be not optimal, serial execution may be faster |
| // no unsigned _mm_hadd_ functions in IA32, need to move from unsigned to signed |
| uint16x4_t res64; |
| __m128i c32767, cfffe, as, bs, res; |
| c32767 = _mm_set1_epi16 (32767); |
| cfffe = _mm_set1_epi16 ((int16_t)0xfffe); |
| as = _mm_sub_epi16 (_pM128i(a), c32767); |
| bs = _mm_sub_epi16 (_pM128i(b), c32767); |
| res = _mm_hadd_epi16 (as, bs); |
| res = _mm_add_epi16 (res, cfffe); |
| res = _mm_shuffle_epi32 (res, 0 | (2 << 2) | (1 << 4) | (3 << 6)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vpadd_u32(uint32x2_t a, uint32x2_t b); // VPADD.I32 d0,d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vpadd_u32(uint32x2_t a, uint32x2_t b) //serial may be faster |
| { |
| //hadd doesn't work for unsigned values |
| uint32x2_t res64; |
| __m128i ab, ab_sh, res; |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //a0 a1 b0 b1 |
| ab_sh = _mm_shuffle_epi32(ab, 1 | (0 << 2) | (3 << 4) | (2 << 6)); //a1, a0, b1, b0 |
| res = _mm_add_epi32(ab, ab_sh); |
| res = _mm_shuffle_epi32(res, 0 | (2 << 2) | (1 << 4) | (3 << 6)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vpadd_f32(float32x2_t a, float32x2_t b); // VPADD.F32 d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vpadd_f32(float32x2_t a, float32x2_t b) |
| { |
| __m128 hadd128; |
| __m64_128 res64; |
| hadd128 = _mm_hadd_ps (_pM128(a), _pM128(b)); |
| hadd128 = _mm_shuffle_ps (hadd128, hadd128, _MM_SHUFFLE(3,1, 2, 0)); //use low 64 bits |
| _M64f(res64, hadd128); |
| return res64; |
| } |
| |
| |
| //************************** Long pairwise add ********************************** |
| //********************************************************************************* |
| //Adds adjacent pairs of elements of a vector,sign or zero extends the results to twice their original width, |
| // and places the final results in the destination vector. |
| |
| _NEON2SSESTORAGE int16x4_t vpaddl_s8(int8x8_t a); // VPADDL.S8 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vpaddl_s8(int8x8_t a) // VPADDL.S8 d0,d0 |
| { |
| //no 8 bit hadd in IA32, need to go to 16 bit anyway |
| __m128i a16; |
| int16x4_t res64; |
| a16 = _MM_CVTEPI8_EPI16 (_pM128i(a)); // SSE 4.1 |
| a16 = _mm_hadd_epi16 (a16, a16); //use low 64 bits |
| return64(a16); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vpaddl_s16(int16x4_t a); // VPADDL.S16 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vpaddl_s16(int16x4_t a) // VPADDL.S16 d0,d0 |
| { |
| // solution may be not optimal, serial execution may be faster |
| int32x2_t res64; |
| __m128i r32_1; |
| r32_1 = _MM_CVTEPI16_EPI32 (_pM128i(a)); |
| r32_1 = _mm_hadd_epi32(r32_1, r32_1); //use low 64 bits |
| return64(r32_1); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vpaddl_s32(int32x2_t a); // VPADDL.S32 d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vpaddl_s32(int32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution looks faster |
| { |
| int64x1_t res; |
| res.m64_i64[0] = (int64_t)a.m64_i32[0] + (int64_t)a.m64_i32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vpaddl_u8(uint8x8_t a); // VPADDL.U8 d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vpaddl_u8(uint8x8_t a) // VPADDL.U8 d0,d0 |
| { |
| // no 8 bit hadd in IA32, need to go to 16 bit |
| // no unsigned _mm_hadd_ functions in IA32, but 8 unsigned is less then 16 signed, so it should work |
| uint16x4_t res64; |
| __m128i a16; |
| a16 = _MM_CVTEPU8_EPI16 (_pM128i(a)); // SSE 4.1 use low 64 bits |
| a16 = _mm_hadd_epi16 (a16, a16); //use low 64 bits |
| return64(a16); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vpaddl_u16(uint16x4_t a); // VPADDL.s16 d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vpaddl_u16(uint16x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than a SIMD one |
| uint32x2_t res; |
| res.m64_u32[0] = (uint32_t)a.m64_u16[0] + (uint32_t)a.m64_u16[1]; |
| res.m64_u32[1] = (uint32_t)a.m64_u16[2] + (uint32_t)a.m64_u16[3]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vpaddl_u32(uint32x2_t a); // VPADDL.U32 d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vpaddl_u32(uint32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution looks faster |
| { |
| uint64x1_t res; |
| res.m64_u64[0] = (uint64_t)a.m64_u32[0] + (uint64_t)a.m64_u32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vpaddlq_s8(int8x16_t a); // VPADDL.S8 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vpaddlq_s8(int8x16_t a) // VPADDL.S8 q0,q0 |
| { |
| //no 8 bit hadd in IA32, need to go to 16 bit |
| __m128i r16_1, r16_2; |
| r16_1 = _MM_CVTEPI8_EPI16 (a); // SSE 4.1 |
| //swap hi and low part of r to process the remaining data |
| r16_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| r16_2 = _MM_CVTEPI8_EPI16 (r16_2); |
| return _mm_hadd_epi16 (r16_1, r16_2); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vpaddlq_s16(int16x8_t a); // VPADDL.S16 q0,q0 |
| _NEON2SSE_INLINE int32x4_t vpaddlq_s16(int16x8_t a) // VPADDL.S16 q0,q0 |
| { |
| //no 8 bit hadd in IA32, need to go to 16 bit |
| __m128i r32_1, r32_2; |
| r32_1 = _MM_CVTEPI16_EPI32(a); |
| //swap hi and low part of r to process the remaining data |
| r32_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| r32_2 = _MM_CVTEPI16_EPI32 (r32_2); |
| return _mm_hadd_epi32 (r32_1, r32_2); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vpaddlq_s32(int32x4_t a); // VPADDL.S32 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vpaddlq_s32(int32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) // VPADDL.S32 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 int32_t atmp[4]; |
| _NEON2SSE_ALIGN_16 int64_t res[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| res[0] = (int64_t)atmp[0] + (int64_t)atmp[1]; |
| res[1] = (int64_t)atmp[2] + (int64_t)atmp[3]; |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vpaddlq_u8(uint8x16_t a); // VPADDL.U8 q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vpaddlq_u8(uint8x16_t a) // VPADDL.U8 q0,q0 |
| { |
| //no 8 bit hadd in IA32, need to go to 16 bit |
| __m128i r16_1, r16_2; |
| r16_1 = _MM_CVTEPU8_EPI16(a); |
| //swap hi and low part of r to process the remaining data |
| r16_2 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| r16_2 = _MM_CVTEPU8_EPI16 (r16_2); |
| return _mm_hadd_epi16 (r16_1, r16_2); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vpaddlq_u16(uint16x8_t a); // VPADDL.s16 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vpaddlq_u16(uint16x8_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than a SIMD one |
| _NEON2SSE_ALIGN_16 uint16_t atmp[8]; |
| _NEON2SSE_ALIGN_16 uint32_t res[4]; |
| _mm_store_si128((__m128i*)atmp, a); |
| res[0] = (uint32_t)atmp[0] + (uint32_t)atmp[1]; |
| res[1] = (uint32_t)atmp[2] + (uint32_t)atmp[3]; |
| res[2] = (uint32_t)atmp[4] + (uint32_t)atmp[5]; |
| res[3] = (uint32_t)atmp[6] + (uint32_t)atmp[7]; |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vpaddlq_u32(uint32x4_t a); // VPADDL.U32 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vpaddlq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 uint32_t atmp[4]; |
| _NEON2SSE_ALIGN_16 uint64_t res[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| res[0] = (uint64_t)atmp[0] + (uint64_t)atmp[1]; |
| res[1] = (uint64_t)atmp[2] + (uint64_t)atmp[3]; |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| //************************ Long pairwise add and accumulate ************************** |
| //**************************************************************************************** |
| //VPADAL (Vector Pairwise Add and Accumulate Long) adds adjacent pairs of elements of a vector, |
| // and accumulates the values of the results into the elements of the destination (wide) vector |
| _NEON2SSESTORAGE int16x4_t vpadal_s8(int16x4_t a, int8x8_t b); // VPADAL.S8 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vpadal_s8(int16x4_t a, int8x8_t b) |
| { |
| int16x4_t res64; |
| return64(vpadalq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vpadal_s16(int32x2_t a, int16x4_t b); // VPADAL.S16 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vpadal_s16(int32x2_t a, int16x4_t b) |
| { |
| int32x2_t res64; |
| return64(vpadalq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vpadal_s32(int64x1_t a, int32x2_t b); // VPADAL.S32 d0,d0 |
| _NEON2SSE_INLINE int64x1_t vpadal_s32(int64x1_t a, int32x2_t b) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = (int64_t)b.m64_i32[0] + (int64_t)b.m64_i32[1] + a.m64_i64[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vpadal_u8(uint16x4_t a, uint8x8_t b); // VPADAL.U8 d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vpadal_u8(uint16x4_t a, uint8x8_t b) |
| { |
| uint16x4_t res64; |
| return64(vpadalq_u8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vpadal_u16(uint32x2_t a, uint16x4_t b); // VPADAL.s16 d0,d0 |
| _NEON2SSE_INLINE uint32x2_t vpadal_u16(uint32x2_t a, uint16x4_t b) |
| { |
| uint32x2_t res64; |
| return64(vpadalq_u16(_pM128i(a), _pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vpadal_u32(uint64x1_t a, uint32x2_t b); // VPADAL.U32 d0,d0 |
| _NEON2SSE_INLINE uint64x1_t vpadal_u32(uint64x1_t a, uint32x2_t b) |
| { |
| uint64x1_t res; |
| res.m64_u64[0] = (uint64_t)b.m64_u32[0] + (uint64_t)b.m64_u32[1] + a.m64_u64[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b); // VPADAL.S8 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vpadalq_s8(int16x8_t a, int8x16_t b) // VPADAL.S8 q0,q0 |
| { |
| int16x8_t pad; |
| pad = vpaddlq_s8(b); |
| return _mm_add_epi16 (a, pad); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b); // VPADAL.S16 q0,q0 |
| _NEON2SSE_INLINE int32x4_t vpadalq_s16(int32x4_t a, int16x8_t b) // VPADAL.S16 q0,q0 |
| { |
| int32x4_t pad; |
| pad = vpaddlq_s16(b); |
| return _mm_add_epi32(a, pad); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b); // VPADAL.S32 q0,q0 |
| _NEON2SSE_INLINE int64x2_t vpadalq_s32(int64x2_t a, int32x4_t b) |
| { |
| int64x2_t pad; |
| pad = vpaddlq_s32(b); |
| return _mm_add_epi64 (a, pad); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b); // VPADAL.U8 q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vpadalq_u8(uint16x8_t a, uint8x16_t b) // VPADAL.U8 q0,q0 |
| { |
| uint16x8_t pad; |
| pad = vpaddlq_u8(b); |
| return _mm_add_epi16 (a, pad); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b); // VPADAL.s16 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vpadalq_u16(uint32x4_t a, uint16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint32x4_t pad; |
| pad = vpaddlq_u16(b); |
| return _mm_add_epi32(a, pad); |
| } //no optimal SIMD solution, serial is faster |
| |
| _NEON2SSESTORAGE uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b); // VPADAL.U32 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vpadalq_u32(uint64x2_t a, uint32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //no optimal SIMD solution, serial is faster |
| uint64x2_t pad; |
| pad = vpaddlq_u32(b); |
| return _mm_add_epi64(a, pad); |
| } //no optimal SIMD solution, serial is faster |
| |
| //********** Folding maximum ************************************* |
| //******************************************************************* |
| //VPMAX (Vector Pairwise Maximum) compares adjacent pairs of elements in two vectors, |
| //and copies the larger of each pair into the corresponding element in the destination |
| // no corresponding functionality in IA32 SIMD, so we need to do the vertical comparison |
| _NEON2SSESTORAGE int8x8_t vpmax_s8(int8x8_t a, int8x8_t b); // VPMAX.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vpmax_s8(int8x8_t a, int8x8_t b) // VPMAX.S8 d0,d0,d0 |
| { |
| int8x8_t res64; |
| __m128i ab, ab1, max; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_odd[16] = { 1, 3, 5, 7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical max finding |
| max = _MM_MAX_EPI8 (ab, ab1); // SSE4.1 |
| max = _mm_shuffle_epi8 (max, *(__m128i*) mask8_odd); //remove repetitive data |
| return64(max); //we need 64 bits only |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vpmax_s16(int16x4_t a, int16x4_t b); // VPMAX.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vpmax_s16(int16x4_t a, int16x4_t b) // VPMAX.S16 d0,d0,d0 |
| { |
| //solution may be not optimal compared with the serial one |
| int16x4_t res64; |
| __m128i ab, ab1, max; |
| _NEON2SSE_ALIGN_16 static const int8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical max finding, use 8bit fn and the corresponding mask |
| max = _mm_max_epi16 (ab, ab1); |
| max = _mm_shuffle_epi8 (max, *(__m128i*) mask8_32_even_odd); //remove repetitive data, only the low part of mask is used |
| return64(max); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vpmax_s32(int32x2_t a, int32x2_t b); // VPMAX.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vpmax_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than SIMD one |
| int32x2_t res; |
| res.m64_i32[0] = (a.m64_i32[0] < a.m64_i32[1]) ? a.m64_i32[1] : a.m64_i32[0]; |
| res.m64_i32[1] = (b.m64_i32[0] < b.m64_i32[1]) ? b.m64_i32[1] : b.m64_i32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vpmax_u8(uint8x8_t a, uint8x8_t b); // VPMAX.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vpmax_u8(uint8x8_t a, uint8x8_t b) // VPMAX.U8 d0,d0,d0 |
| { |
| uint8x8_t res64; |
| __m128i ab, ab1, max; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_odd[16] = { 1, 3, 5, 7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| ab = _mm_unpacklo_epi64 (_pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical max finding |
| max = _mm_max_epu8 (ab, ab1); // SSE4.1 |
| max = _mm_shuffle_epi8 (max, *(__m128i*) mask8_odd); //remove repetitive data |
| return64(max); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vpmax_u16(uint16x4_t a, uint16x4_t b); // VPMAX.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vpmax_u16(uint16x4_t a, uint16x4_t b) // VPMAX.s16 d0,d0,d0 |
| { |
| //solution may be not optimal compared with the serial one |
| uint16x4_t res64; |
| __m128i ab, ab1, max; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical max finding, use 8bit fn and the corresponding mask |
| max = _MM_MAX_EPU16 (ab, ab1); |
| max = _mm_shuffle_epi8 (max, *(__m128i*) mask8_32_even_odd); //remove repetitive data, only the low part of mask is used |
| return64(max); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vpmax_u32(uint32x2_t a, uint32x2_t b); // VPMAX.U32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vpmax_u32(uint32x2_t a, uint32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than SIMD one |
| uint32x2_t res; |
| res.m64_u32[0] = (a.m64_u32[0] < a.m64_u32[1]) ? a.m64_u32[1] : a.m64_u32[0]; |
| res.m64_u32[1] = (b.m64_u32[0] < b.m64_u32[1]) ? b.m64_u32[1] : b.m64_u32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vpmax_f32(float32x2_t a, float32x2_t b); // VPMAX.F32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float32x2_t vpmax_f32(float32x2_t a, float32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than SIMD one |
| float32x2_t res; |
| res.m64_f32[0] = (a.m64_f32[0] < a.m64_f32[1]) ? a.m64_f32[1] : a.m64_f32[0]; |
| res.m64_f32[1] = (b.m64_f32[0] < b.m64_f32[1]) ? b.m64_f32[1] : b.m64_f32[0]; |
| return res; |
| } |
| |
| // ***************** Folding minimum **************************** |
| // ************************************************************** |
| //vpmin -> takes minimum of adjacent pairs |
| _NEON2SSESTORAGE int8x8_t vpmin_s8(int8x8_t a, int8x8_t b); // VPMIN.S8 d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vpmin_s8(int8x8_t a, int8x8_t b) // VPMIN.S8 d0,d0,d0 |
| { |
| int8x8_t res64; |
| __m128i ab, ab1, min; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_odd[16] = { 1, 3, 5, 7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical min finding |
| min = _MM_MIN_EPI8 (ab, ab1); // SSE4.1 |
| min = _mm_shuffle_epi8 (min, *(__m128i*) mask8_odd); //remove repetitive data |
| return64(min); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vpmin_s16(int16x4_t a, int16x4_t b); // VPMIN.S16 d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vpmin_s16(int16x4_t a, int16x4_t b) // VPMIN.S16 d0,d0,d0 |
| { |
| //solution may be not optimal compared with the serial one |
| int16x4_t res64; |
| __m128i ab, ab1, min; |
| _NEON2SSE_ALIGN_16 static const int8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical max finding, use 8bit fn and the corresponding mask |
| min = _mm_min_epi16 (ab, ab1); |
| min = _mm_shuffle_epi8 (min, *(__m128i*) mask8_32_even_odd); //remove repetitive data, only the low part of mask is used |
| return64(min); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vpmin_s32(int32x2_t a, int32x2_t b); // VPMIN.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vpmin_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than SIMD one |
| int32x2_t res; |
| res.m64_i32[0] = (a.m64_i32[0] > a.m64_i32[1]) ? a.m64_i32[1] : a.m64_i32[0]; |
| res.m64_i32[1] = (b.m64_i32[0] > b.m64_i32[1]) ? b.m64_i32[1] : b.m64_i32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vpmin_u8(uint8x8_t a, uint8x8_t b); // VPMIN.U8 d0,d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vpmin_u8(uint8x8_t a, uint8x8_t b) // VPMIN.U8 d0,d0,d0 |
| { |
| uint8x8_t res64; |
| __m128i ab, ab1, min; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask8_odd[16] = { 1, 3, 5, 7, 9, 11, 13, 15, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask8_sab); //horisontal pairs swap for vertical max finding |
| min = _mm_min_epu8 (ab, ab1); // SSE4.1 |
| min = _mm_shuffle_epi8 (min, *(__m128i*) mask8_odd); //remove repetitive data |
| return64(min); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vpmin_u16(uint16x4_t a, uint16x4_t b); // VPMIN.s16 d0,d0,d0 |
| _NEON2SSE_INLINE uint16x4_t vpmin_u16(uint16x4_t a, uint16x4_t b) // VPMIN.s16 d0,d0,d0 |
| { |
| //solution may be not optimal compared with the serial one |
| uint16x4_t res64; |
| __m128i ab, ab1, min; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask16_sab[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; //each chars pair is considerd to be 16 bit number |
| ab = _mm_unpacklo_epi64 ( _pM128i(a), _pM128i(b)); //ab |
| ab1 = _mm_shuffle_epi8 (ab, *(__m128i*) mask16_sab); //horisontal pairs swap for vertical min finding, use 8bit fn and the corresponding mask |
| min = _MM_MIN_EPU16 (ab, ab1); |
| min = _mm_shuffle_epi8 (min, *(__m128i*) mask8_32_even_odd); //remove repetitive data, only the low part of mask is used |
| return64(min); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vpmin_u32(uint32x2_t a, uint32x2_t b); // VPMIN.U32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vpmin_u32(uint32x2_t a, uint32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than SIMD one |
| uint32x2_t res; |
| res.m64_u32[0] = (a.m64_u32[0] > a.m64_u32[1]) ? a.m64_u32[1] : a.m64_u32[0]; |
| res.m64_u32[1] = (b.m64_u32[0] > b.m64_u32[1]) ? b.m64_u32[1] : b.m64_u32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vpmin_f32(float32x2_t a, float32x2_t b); // VPMIN.F32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float32x2_t vpmin_f32(float32x2_t a, float32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution looks faster than SIMD one |
| float32x2_t res; |
| res.m64_f32[0] = (a.m64_f32[0] > a.m64_f32[1]) ? a.m64_f32[1] : a.m64_f32[0]; |
| res.m64_f32[1] = (b.m64_f32[0] > b.m64_f32[1]) ? b.m64_f32[1] : b.m64_f32[0]; |
| return res; |
| } |
| |
| //*************************************************************** |
| //*********** Reciprocal/Sqrt ************************************ |
| //*************************************************************** |
| //****************** Reciprocal estimate ******************************* |
| //the ARM NEON and x86 SIMD results may be slightly different |
| _NEON2SSESTORAGE float32x2_t vrecpe_f32(float32x2_t a); // VRECPE.F32 d0,d0 |
| _NEON2SSE_INLINE float32x2_t vrecpe_f32(float32x2_t a) //use low 64 bits |
| { |
| float32x4_t res; |
| __m64_128 res64; |
| res = _mm_rcp_ps(_pM128(a)); |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vrecpe_u32(uint32x2_t a); // VRECPE.U32 d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vrecpe_u32(uint32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //Input is fixed point number!!! No reciprocal for ints in IA32 available |
| uint32x2_t res; |
| float resf, r; |
| int i, q, s; |
| for (i =0; i<2; i++){ |
| if((a.m64_u32[i] & 0x80000000) == 0) { |
| res.m64_u32[i] = 0xffffffff; |
| }else{ |
| resf = (float) (a.m64_u32[i] * (0.5f / (uint32_t)(1 << 31))); |
| q = (int)(resf * 512.0); /* a in units of 1/512 rounded down */ |
| r = (float)(1.0 / (((float)q + 0.5) / 512.0)); /* reciprocal r */ |
| s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */ |
| r = (float)s / 256.0; |
| res.m64_u32[i] = r * (uint32_t)(1 << 31); |
| } |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vrecpeq_f32(float32x4_t a); // VRECPE.F32 q0,q0 |
| #define vrecpeq_f32 _mm_rcp_ps |
| |
| |
| _NEON2SSESTORAGE uint32x4_t vrecpeq_u32(uint32x4_t a); // VRECPE.U32 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrecpeq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //Input is fixed point number!!! |
| //We implement the recip_estimate function as described in ARMv7 reference manual (VRECPE instruction) but use float instead of double |
| _NEON2SSE_ALIGN_16 uint32_t atmp[4]; |
| _NEON2SSE_ALIGN_16 uint32_t res[4]; |
| _NEON2SSE_ALIGN_16 static const uint32_t c80000000[4] = {0x80000000,0x80000000, 0x80000000,0x80000000}; |
| float resf, r; |
| int i, q, s; |
| __m128i res128, mask, zero; |
| _mm_store_si128((__m128i*)atmp, a); |
| zero = _mm_setzero_si128(); |
| for (i =0; i<4; i++){ |
| resf = (atmp[i] * (0.5f / (uint32_t) (1 << 31))); // 2.3283064365386963E-10 ~(0.5f / (uint32_t) (1 << 31)) |
| q = (int)(resf * 512.0); /* a in units of 1/512 rounded down */ |
| r = 1.0 / (((float)q + 0.5) / 512.0); /* reciprocal r */ |
| s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */ |
| r = (float)s / 256.0; |
| res[i] = (uint32_t) (r * (((uint32_t)1) << 31) ); |
| } |
| res128 = _mm_load_si128((__m128i*)res); |
| mask = _mm_and_si128(a, *(__m128i*)c80000000); |
| mask = _mm_cmpeq_epi32(zero, mask); //0xffffffff if atmp[i] <= 0x7fffffff |
| return _mm_or_si128(res128, mask); |
| } |
| |
| //**********Reciprocal square root estimate **************** |
| //********************************************************** |
| //no reciprocal square root for ints in IA32 available, neither for unsigned int to float4 lanes conversion, so a serial solution looks faster |
| //but the particular implementation for vrsqrte_u32 may vary for various ARM compilers |
| ////the ARM NEON and x86 SIMD results may be slightly different |
| _NEON2SSESTORAGE float32x2_t vrsqrte_f32(float32x2_t a); // VRSQRTE.F32 d0,d0 |
| _NEON2SSE_INLINE float32x2_t vrsqrte_f32(float32x2_t a) //use low 64 bits |
| { |
| float32x4_t res; |
| __m64_128 res64; |
| res = _mm_rsqrt_ps(_pM128(a)); |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vrsqrte_u32(uint32x2_t a); // VRSQRTE.U32 d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vrsqrte_u32(uint32x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //Input is fixed point number!!! |
| //We implement the recip_sqrt_estimate function as described in ARMv7 reference manual (VRSQRTE instruction) but use float instead of double |
| uint32x2_t res; |
| __m128 tmp; |
| float r, resf, coeff; |
| int i,q0, s; |
| for (i =0; i<2; i++){ |
| if((a.m64_u32[i] & 0xc0000000) == 0) { //a <=0x3fffffff |
| res.m64_u32[i] = 0xffffffff; |
| }else{ |
| resf = (float) (a.m64_u32[i] * (0.5f / (uint32_t)(1 << 31))); |
| coeff = (resf < 0.5)? 512.0 : 256.0 ; /* range 0.25 <= resf < 0.5 or range 0.5 <= resf < 1.0*/ |
| q0 = (int)(resf * coeff); /* a in units of 1/512 rounded down */ |
| r = ((float)q0 + 0.5) / coeff; |
| tmp = _mm_rsqrt_ss(_mm_load_ss( &r));/* reciprocal root r */ |
| _mm_store_ss(&r, tmp); |
| s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */ |
| r = (float)(s / 256.0); |
| res.m64_u32[i] = r * (((uint32_t)1) << 31); |
| } |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vrsqrteq_f32(float32x4_t a); // VRSQRTE.F32 q0,q0 |
| #define vrsqrteq_f32 _mm_rsqrt_ps |
| |
| _NEON2SSESTORAGE uint32x4_t vrsqrteq_u32(uint32x4_t a); // VRSQRTE.U32 q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrsqrteq_u32(uint32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //Input is fixed point number!!! |
| //We implement the recip_sqrt_estimate function as described in ARMv7 reference manual (VRSQRTE instruction) but use float instead of double |
| _NEON2SSE_ALIGN_16 uint32_t atmp[4], res[4]; |
| _NEON2SSE_ALIGN_16 static const uint32_t c_c0000000[4] = {0xc0000000,0xc0000000, 0xc0000000,0xc0000000}; |
| __m128 tmp; |
| __m128i res128, mask, zero; |
| float r, resf, coeff; |
| int i,q0, s; |
| _mm_store_si128((__m128i*)atmp, a); |
| zero = _mm_setzero_si128(); |
| for (i =0; i<4; i++){ |
| resf = (float) (atmp[i] * (0.5f / (uint32_t)(1 << 31))); |
| coeff = (float)((resf < 0.5)? 512.0 : 256.0); /* range 0.25 <= resf < 0.5 or range 0.5 <= resf < 1.0*/ |
| q0 = (int)(resf * coeff); /* a in units of 1/512 rounded down */ |
| r = ((float)q0 + 0.5) / coeff; |
| tmp = _mm_rsqrt_ss(_mm_load_ss( &r));/* reciprocal root r */ |
| _mm_store_ss(&r, tmp); |
| s = (int)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */ |
| r = (float)s / 256.0; |
| res[i] = (uint32_t) (r * (((uint32_t)1) << 31) ); |
| } |
| res128 = _mm_load_si128((__m128i*)res); |
| mask = _mm_and_si128(a, *(__m128i*)c_c0000000); |
| mask = _mm_cmpeq_epi32(zero, mask); //0xffffffff if atmp[i] <= 0x3fffffff |
| return _mm_or_si128(res128, mask); |
| } |
| //************ Reciprocal estimate/step and 1/sqrt estimate/step *************************** |
| //****************************************************************************************** |
| //******VRECPS (Vector Reciprocal Step) *************************************************** |
| //multiplies the elements of one vector by the corresponding elements of another vector, |
| //subtracts each of the results from 2, and places the final results into the elements of the destination vector. |
| |
| _NEON2SSESTORAGE float32x2_t vrecps_f32(float32x2_t a, float32x2_t b); // VRECPS.F32 d0, d0, d0 |
| _NEON2SSE_INLINE float32x2_t vrecps_f32(float32x2_t a, float32x2_t b) |
| { |
| float32x4_t res; |
| __m64_128 res64; |
| res = vrecpsq_f32(_pM128(a), _pM128(b)); |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b); // VRECPS.F32 q0, q0, q0 |
| _NEON2SSE_INLINE float32x4_t vrecpsq_f32(float32x4_t a, float32x4_t b) // VRECPS.F32 q0, q0, q0 |
| { |
| __m128 f2, mul; |
| f2 = _mm_set1_ps(2.); |
| mul = _mm_mul_ps(a,b); |
| return _mm_sub_ps(f2,mul); |
| } |
| |
| //*****************VRSQRTS (Vector Reciprocal Square Root Step) ***************************** |
| //multiplies the elements of one vector by the corresponding elements of another vector, |
| //subtracts each of the results from 3, divides these results by two, and places the final results into the elements of the destination vector. |
| |
| _NEON2SSESTORAGE float32x2_t vrsqrts_f32(float32x2_t a, float32x2_t b); // VRSQRTS.F32 d0, d0, d0 |
| _NEON2SSE_INLINE float32x2_t vrsqrts_f32(float32x2_t a, float32x2_t b) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = (3 - a.m64_f32[0] * b.m64_f32[0]) / 2; |
| res.m64_f32[1] = (3 - a.m64_f32[1] * b.m64_f32[1]) / 2; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b); // VRSQRTS.F32 q0, q0, q0 |
| _NEON2SSE_INLINE float32x4_t vrsqrtsq_f32(float32x4_t a, float32x4_t b) // VRSQRTS.F32 q0, q0, q0 |
| { |
| __m128 f3, f05, mul; |
| f3 = _mm_set1_ps(3.); |
| f05 = _mm_set1_ps(0.5); |
| mul = _mm_mul_ps(a,b); |
| f3 = _mm_sub_ps(f3,mul); |
| return _mm_mul_ps (f3, f05); |
| } |
| //******************************************************************************************** |
| //***************************** Shifts by signed variable *********************************** |
| //******************************************************************************************** |
| //***** Vector shift left: Vr[i] := Va[i] << Vb[i] (negative values shift right) *********************** |
| //******************************************************************************************** |
| //No such operations in IA32 SIMD unfortunately, constant shift only available, so need to do the serial solution |
| //helper macro. It matches ARM implementation for big shifts |
| #define SERIAL_SHIFT(TYPE, INTERNAL_TYPE, LENMAX, LEN) \ |
| _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 INTERNAL_TYPE btmp[LENMAX]; int i, lanesize = sizeof(INTERNAL_TYPE) << 3; \ |
| _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ |
| for (i = 0; i<LEN; i++) { \ |
| if( (btmp[i] >= lanesize)||(btmp[i] <= -lanesize) ) res[i] = 0; \ |
| else res[i] = (btmp[i] >=0) ? atmp[i] << btmp[i] : atmp[i] >> (-btmp[i]); } \ |
| return _mm_load_si128((__m128i*)res); |
| |
| #define SERIAL_SHIFT_64(TYPE, SIGN, LEN) \ |
| int ## TYPE ## x ## LEN ## _t res; int i, lanesize = sizeof(int ## TYPE ## _t) << 3; \ |
| for (i = 0; i<LEN; i++) { \ |
| if( (b.m64_i ## TYPE[i] >= lanesize)||(b.m64_i ## TYPE[i] <= -lanesize) ) res.m64_ ## SIGN ## TYPE[i] = 0; \ |
| else res.m64_ ## SIGN ## TYPE[i] = (b.m64_i ## TYPE[i] >=0) ? a.m64_ ## SIGN ## TYPE[i] << b.m64_i ## TYPE[i] : a.m64_ ## SIGN ## TYPE[i] >> (-b.m64_i ## TYPE[i]); } \ |
| return res; |
| |
| _NEON2SSESTORAGE int8x8_t vshl_s8(int8x8_t a, int8x8_t b); // VSHL.S8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vshl_s8(int8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(8, i, 8) |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vshl_s16(int16x4_t a, int16x4_t b); // VSHL.S16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vshl_s16(int16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(16, i, 4) |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vshl_s32(int32x2_t a, int32x2_t b); // VSHL.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vshl_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(32, i, 2) |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vshl_s64(int64x1_t a, int64x1_t b); // VSHL.S64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vshl_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(64, i, 1) |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vshl_u8(uint8x8_t a, int8x8_t b); // VSHL.U8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vshl_u8(uint8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(8, u, 8) |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vshl_u16(uint16x4_t a, int16x4_t b); // VSHL.s16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vshl_u16(uint16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(16, u, 4) |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vshl_u32(uint32x2_t a, int32x2_t b); // VSHL.U32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vshl_u32(uint32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT_64(32, u, 2) |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vshl_u64(uint64x1_t a, int64x1_t b); // VSHL.U64 d0,d0,d0 |
| _NEON2SSE_INLINE uint64x1_t vshl_u64(uint64x1_t a, int64x1_t b) //if we use the SERIAL_SHIFT macro need to have the special processing for large numbers |
| { |
| SERIAL_SHIFT_64(64, u, 1) |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vshlq_s8(int8x16_t a, int8x16_t b); // VSHL.S8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(int8_t, int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vshlq_s16(int16x8_t a, int16x8_t b); // VSHL.S16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(int16_t, int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vshlq_s32(int32x4_t a, int32x4_t b); // VSHL.S32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(int32_t, int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vshlq_s64(int64x2_t a, int64x2_t b); // VSHL.S64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(int64_t, int64_t, 2, 2) |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b); // VSHL.U8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(uint8_t, int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b); // VSHL.s16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(uint16_t, int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b); // VSHL.U32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(uint32_t, int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b); // VSHL.U64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING( uint64x2_t vshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SHIFT(uint64_t, int64_t, 2, 2) |
| } |
| |
| |
| //*********** Vector saturating shift left: (negative values shift right) ********************** |
| //******************************************************************************************** |
| //No such operations in IA32 SIMD available yet, constant shift only available, so need to do the serial solution |
| #define SERIAL_SATURATING_SHIFT_SIGNED(TYPE, LENMAX, LEN) \ |
| _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX], btmp[LENMAX]; TYPE limit; int i; \ |
| int lanesize_1 = (sizeof(TYPE) << 3) - 1; \ |
| _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ |
| for (i = 0; i<LEN; i++) { \ |
| if (atmp[i] ==0) res[i] = 0; \ |
| else{ \ |
| if(btmp[i] <0) res[i] = atmp[i] >> (-btmp[i]); \ |
| else{ \ |
| if (btmp[i]>lanesize_1) { \ |
| res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ |
| }else{ \ |
| limit = (TYPE)1 << (lanesize_1 - btmp[i]); \ |
| if((atmp[i] >= limit)||(atmp[i] <= -limit)) \ |
| res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ |
| else res[i] = atmp[i] << btmp[i]; }}}} \ |
| return _mm_load_si128((__m128i*)res); |
| |
| #define SERIAL_SATURATING_SHIFT_UNSIGNED(TYPE, LENMAX, LEN) \ |
| _NEON2SSE_ALIGN_16 _UNSIGNED_T(TYPE) atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 TYPE btmp[LENMAX]; _UNSIGNED_T(TYPE) limit; int i; \ |
| TYPE lanesize = (sizeof(TYPE) << 3); \ |
| _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ |
| for (i = 0; i<LEN; i++) { \ |
| if (atmp[i] ==0) {res[i] = 0; \ |
| }else{ \ |
| if(btmp[i] < 0) res[i] = atmp[i] >> (-btmp[i]); \ |
| else{ \ |
| if (btmp[i]>lanesize) res[i] = ~((TYPE)0); \ |
| else{ \ |
| limit = (TYPE) 1 << (lanesize - btmp[i]); \ |
| res[i] = ( atmp[i] >= limit) ? res[i] = ~((TYPE)0) : atmp[i] << btmp[i]; }}}} \ |
| return _mm_load_si128((__m128i*)res); |
| |
| #define SERIAL_SATURATING_SHIFT_SIGNED_64(TYPE, LEN) \ |
| int ## TYPE ## x ## LEN ## _t res; int ## TYPE ## _t limit; int i; \ |
| int lanesize_1 = (sizeof( int ## TYPE ## _t) << 3) - 1; \ |
| for (i = 0; i<LEN; i++) { \ |
| if (a.m64_i ## TYPE[i] ==0) res.m64_i ## TYPE[i] = 0; \ |
| else{ \ |
| if(b.m64_i ## TYPE[i] <0) res.m64_i ## TYPE[i] = a.m64_i ## TYPE[i] >> (-(b.m64_i ## TYPE[i])); \ |
| else{ \ |
| if (b.m64_i ## TYPE[i]>lanesize_1) { \ |
| res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t) 1 << lanesize_1) - 1; \ |
| }else{ \ |
| limit = (int ## TYPE ## _t) 1 << (lanesize_1 - b.m64_i ## TYPE[i]); \ |
| if((a.m64_i ## TYPE[i] >= limit)||(a.m64_i ## TYPE[i] <= -limit)) \ |
| res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t) 1 << lanesize_1) - 1; \ |
| else res.m64_i ## TYPE[i] = a.m64_i ## TYPE[i] << b.m64_i ## TYPE[i]; }}}} \ |
| return res; |
| |
| #define SERIAL_SATURATING_SHIFT_UNSIGNED_64(TYPE, LEN) \ |
| int ## TYPE ## x ## LEN ## _t res; _UNSIGNED_T(int ## TYPE ## _t) limit; int i; \ |
| int ## TYPE ## _t lanesize = (sizeof(int ## TYPE ## _t) << 3); \ |
| for (i = 0; i<LEN; i++) { \ |
| if (a.m64_u ## TYPE[i] ==0) {res.m64_u ## TYPE[i] = 0; \ |
| }else{ \ |
| if(b.m64_i ## TYPE[i] < 0) res.m64_u ## TYPE[i] = a.m64_u ## TYPE[i] >> (-(b.m64_i ## TYPE[i])); \ |
| else{ \ |
| if (b.m64_i ## TYPE[i]>lanesize) res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0); \ |
| else{ \ |
| limit = (int ## TYPE ## _t) 1 << (lanesize - b.m64_i ## TYPE[i]); \ |
| res.m64_u ## TYPE[i] = ( a.m64_u ## TYPE[i] >= limit) ? res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0) : a.m64_u ## TYPE[i] << b.m64_u ## TYPE[i]; }}}} \ |
| return res; |
| |
| _NEON2SSESTORAGE int8x8_t vqshl_s8(int8x8_t a, int8x8_t b); // VQSHL.S8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vqshl_s8(int8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED_64(8,8) |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqshl_s16(int16x4_t a, int16x4_t b); // VQSHL.S16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vqshl_s16(int16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED_64(16,4) |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqshl_s32(int32x2_t a, int32x2_t b); // VQSHL.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqshl_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED_64(32,2) |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vqshl_s64(int64x1_t a, int64x1_t b); // VQSHL.S64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqshl_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED_64(64,1) |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqshl_u8(uint8x8_t a, int8x8_t b); // VQSHL.U8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vqshl_u8(uint8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED_64(8,8) |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqshl_u16(uint16x4_t a, int16x4_t b); // VQSHL.s16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vqshl_u16(uint16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED_64(16,4) |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqshl_u32(uint32x2_t a, int32x2_t b); // VQSHL.U32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqshl_u32(uint32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED_64(32,2) |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vqshl_u64(uint64x1_t a, int64x1_t b); // VQSHL.U64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqshl_u64(uint64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED_64(64,1) |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b); // VQSHL.S8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vqshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED(int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b); // VQSHL.S16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vqshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED(int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b); // VQSHL.S32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED(int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b); // VQSHL.S64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_SIGNED(int64_t, 2, 2) |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b); // VQSHL.U8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vqshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED(int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b); // VQSHL.s16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vqshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED(int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b); // VQSHL.U32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vqshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED(int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b); // VQSHL.U64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_SHIFT_UNSIGNED(int64_t, 2, 2) |
| } |
| |
| |
| //******** Vector rounding shift left: (negative values shift right) ********** |
| //**************************************************************************** |
| //No such operations in IA32 SIMD available yet, constant shift only available, so need to do the serial solution |
| //rounding makes sense for right shifts only. |
| #define SERIAL_ROUNDING_SHIFT(TYPE, INTERNAL_TYPE, LENMAX, LEN) \ |
| _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 INTERNAL_TYPE btmp[LENMAX]; INTERNAL_TYPE i, lanesize = sizeof(INTERNAL_TYPE) << 3; \ |
| _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ |
| for (i = 0; i<LEN; i++) { \ |
| if( btmp[i] >= 0) { \ |
| if(btmp[i] >= lanesize) res[i] = 0; \ |
| else res[i] = (atmp[i] << btmp[i]); \ |
| }else{ \ |
| res[i] = (btmp[i] < -lanesize) ? res[i] = 0 : \ |
| (btmp[i] == -lanesize) ? (atmp[i] & ((INTERNAL_TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) : \ |
| (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((INTERNAL_TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); }} \ |
| return _mm_load_si128((__m128i*)res); |
| |
| |
| #define SERIAL_ROUNDING_SHIFT_64(TYPE, SIGN, LEN) \ |
| int ## TYPE ## x ## LEN ## _t res; int i; int lanesize = sizeof(int ## TYPE ## _t) << 3; \ |
| for (i = 0; i<LEN; i++) { \ |
| if( b.m64_i ## TYPE[i] >= 0) { \ |
| if(b.m64_i ## TYPE[i] >= lanesize) res.m64_ ## SIGN ## TYPE[i] = 0; \ |
| else res.m64_ ## SIGN ## TYPE[i] = (a.m64_ ## SIGN ## TYPE[i] << b.m64_i ## TYPE[i]); \ |
| }else{ \ |
| res.m64_ ## SIGN ## TYPE[i] = (b.m64_i ## TYPE[i] < -lanesize) ? res.m64_ ## SIGN ## TYPE[i] = 0 : \ |
| (b.m64_i ## TYPE[i] == -lanesize) ? (a.m64_ ## SIGN ## TYPE[i] & ((int ## TYPE ## _t) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) : \ |
| (a.m64_ ## SIGN ## TYPE[i] >> (-(b.m64_i ## TYPE[i]))) + ( (a.m64_ ## SIGN ## TYPE[i] & ((int ## TYPE ## _t) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) ); }} \ |
| return res; |
| |
| |
| _NEON2SSESTORAGE int8x8_t vrshl_s8(int8x8_t a, int8x8_t b); // VRSHL.S8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vrshl_s8(int8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(8,i,8) |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrshl_s16(int16x4_t a, int16x4_t b); // VRSHL.S16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vrshl_s16(int16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(16,i,4) |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vrshl_s32(int32x2_t a, int32x2_t b); // VRSHL.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vrshl_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(32,i,2) |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vrshl_s64(int64x1_t a, int64x1_t b); // VRSHL.S64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vrshl_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(64,i,1) |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrshl_u8(uint8x8_t a, int8x8_t b); // VRSHL.U8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vrshl_u8(uint8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(8,u,8) |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vrshl_u16(uint16x4_t a, int16x4_t b); // VRSHL.s16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vrshl_u16(uint16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(16,u,4) |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vrshl_u32(uint32x2_t a, int32x2_t b); // VRSHL.U32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vrshl_u32(uint32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(32,u,2) |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vrshl_u64(uint64x1_t a, int64x1_t b); // VRSHL.U64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vrshl_u64(uint64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT_64(64,u,1) |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b); // VRSHL.S8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vrshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(int8_t, int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b); // VRSHL.S16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vrshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(int16_t, int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b); // VRSHL.S32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vrshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(int32_t, int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b); // VRSHL.S64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vrshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(int64_t, int64_t, 2, 2) |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b); // VRSHL.U8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vrshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(uint8_t, int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b); // VRSHL.s16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vrshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(uint16_t, int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b); // VRSHL.U32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vrshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(uint32_t, int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b); // VRSHL.U64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vrshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_ROUNDING_SHIFT(uint64_t, int64_t, 2, 2) |
| } |
| |
| |
| //********** Vector saturating rounding shift left: (negative values shift right) **************** |
| //************************************************************************************************* |
| //No such operations in IA32 SIMD unfortunately, constant shift only available, so need to do the serial solution |
| //Saturation happens for left shifts only while rounding makes sense for right shifts only. |
| #define SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(TYPE, LENMAX, LEN) \ |
| _NEON2SSE_ALIGN_16 TYPE atmp[LENMAX], res[LENMAX], btmp[LENMAX]; TYPE limit; int i; \ |
| int lanesize_1 = (sizeof(TYPE) << 3) - 1; \ |
| _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ |
| for (i = 0; i<LEN; i++) { \ |
| if (atmp[i] ==0) res[i] = 0; \ |
| else{ \ |
| if(btmp[i] <0) res[i] = (btmp[i] < (-lanesize_1)) ? 0 : (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); \ |
| else{ \ |
| if (btmp[i]>lanesize_1) { \ |
| res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ |
| }else{ \ |
| limit = (TYPE)1 << (lanesize_1 - btmp[i]); \ |
| if((atmp[i] >= limit)||(atmp[i] <= -limit)) \ |
| res[i] = ((_UNSIGNED_T(TYPE))atmp[i] >> lanesize_1 ) + ((TYPE)1 << lanesize_1) - 1; \ |
| else res[i] = atmp[i] << btmp[i]; }}}} \ |
| return _mm_load_si128((__m128i*)res); |
| |
| #define SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(TYPE, LENMAX, LEN) \ |
| _NEON2SSE_ALIGN_16 _UNSIGNED_T(TYPE) atmp[LENMAX], res[LENMAX]; _NEON2SSE_ALIGN_16 TYPE btmp[LENMAX]; _UNSIGNED_T(TYPE) limit; int i; \ |
| int lanesize = (sizeof(TYPE) << 3); \ |
| _mm_store_si128((__m128i*)atmp, a); _mm_store_si128((__m128i*)btmp, b); \ |
| for (i = 0; i<LEN; i++) { \ |
| if (atmp[i] ==0) {res[i] = 0; \ |
| }else{ \ |
| if(btmp[i] < 0) res[i] = (btmp[i] < (-lanesize)) ? 0 : (atmp[i] >> (-btmp[i])) + ( (atmp[i] & ((TYPE)1 << (-btmp[i] - 1))) >> (-btmp[i] - 1) ); \ |
| else{ \ |
| if (btmp[i]>lanesize) res[i] = ~((TYPE)0); \ |
| else{ \ |
| limit = (TYPE) 1 << (lanesize - btmp[i]); \ |
| res[i] = ( atmp[i] >= limit) ? res[i] = ~((TYPE)0) : atmp[i] << btmp[i]; }}}} \ |
| return _mm_load_si128((__m128i*)res); |
| |
| #define SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(TYPE, LEN) \ |
| __m64_128 res; int ## TYPE ## _t limit; int i; \ |
| int lanesize_1 = (sizeof(int ## TYPE ## _t ) << 3) - 1; \ |
| for (i = 0; i<LEN; i++) { \ |
| if (a.m64_i ## TYPE[i] ==0) res.m64_i ## TYPE[i] = 0; \ |
| else{ \ |
| if(b.m64_i ## TYPE[i] <0) res.m64_i ## TYPE[i] = (b.m64_i ## TYPE[i] < (-lanesize_1)) ? 0 : (a.m64_i ## TYPE[i] >> (-(b.m64_i ## TYPE[i]))) + ( (a.m64_i ## TYPE[i] & ((int ## TYPE ## _t ) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) ); \ |
| else{ \ |
| if (b.m64_i ## TYPE[i]>lanesize_1) { \ |
| res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t ))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t ) 1 << lanesize_1) - 1; \ |
| }else{ \ |
| limit = (int ## TYPE ## _t ) 1 << (lanesize_1 - b.m64_i ## TYPE[i]); \ |
| if((a.m64_i ## TYPE[i] >= limit)||(a.m64_i ## TYPE[i] <= -limit)) \ |
| res.m64_i ## TYPE[i] = ((_UNSIGNED_T(int ## TYPE ## _t ))a.m64_i ## TYPE[i] >> lanesize_1 ) + ((int ## TYPE ## _t ) 1 << lanesize_1) - 1; \ |
| else res.m64_i ## TYPE[i] = a.m64_i ## TYPE[i] << b.m64_i ## TYPE[i]; }}}} \ |
| return res; |
| |
| #define SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(TYPE, LEN) \ |
| __m64_128 res; _UNSIGNED_T(int ## TYPE ## _t) limit; int i; \ |
| int lanesize = (sizeof(int ## TYPE ## _t) << 3); \ |
| for (i = 0; i<LEN; i++) { \ |
| if (a.m64_u ## TYPE[i] ==0) {res.m64_u ## TYPE[i] = 0; \ |
| }else{ \ |
| if(b.m64_i ## TYPE[i] < 0) res.m64_u ## TYPE[i] = (b.m64_i ## TYPE[i] < (-lanesize)) ? 0 : (a.m64_u ## TYPE[i] >> (-(b.m64_i ## TYPE[i]))) + ( (a.m64_u ## TYPE[i] & ((int ## TYPE ## _t) 1 << (-(b.m64_i ## TYPE[i]) - 1))) >> (-(b.m64_i ## TYPE[i]) - 1) ); \ |
| else{ \ |
| if (b.m64_i ## TYPE[i]>lanesize) res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0); \ |
| else{ \ |
| limit = (int ## TYPE ## _t) 1 << (lanesize - b.m64_i ## TYPE[i]); \ |
| res.m64_u ## TYPE[i] = ( a.m64_u ## TYPE[i] >= limit) ? res.m64_u ## TYPE[i] = ~((int ## TYPE ## _t) 0) : a.m64_u ## TYPE[i] << b.m64_i ## TYPE[i]; }}}} \ |
| return res; |
| |
| _NEON2SSESTORAGE int8x8_t vqrshl_s8(int8x8_t a, int8x8_t b); // VQRSHL.S8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vqrshl_s8(int8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(8,8) |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqrshl_s16(int16x4_t a, int16x4_t b); // VQRSHL.S16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vqrshl_s16(int16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(16,4) |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqrshl_s32(int32x2_t a, int32x2_t b); // VQRSHL.S32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrshl_s32(int32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(32,2) |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vqrshl_s64(int64x1_t a, int64x1_t b); // VQRSHL.S64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqrshl_s64(int64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED_64(64,1) |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqrshl_u8(uint8x8_t a, int8x8_t b); // VQRSHL.U8 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vqrshl_u8(uint8x8_t a, int8x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(8,8) |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqrshl_u16(uint16x4_t a, int16x4_t b); // VQRSHL.s16 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vqrshl_u16(uint16x4_t a, int16x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(16,4) |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqrshl_u32(uint32x2_t a, int32x2_t b); // VQRSHL.U32 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqrshl_u32(uint32x2_t a, int32x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(32,2) |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vqrshl_u64(uint64x1_t a, int64x1_t b); // VQRSHL.U64 d0,d0,d0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqrshl_u64(uint64x1_t a, int64x1_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED_64(64,1) |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b); // VQRSHL.S8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x16_t vqrshlq_s8(int8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b); // VQRSHL.S16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x8_t vqrshlq_s16(int16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b); // VQRSHL.S32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrshlq_s32(int32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b); // VQRSHL.S64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqrshlq_s64(int64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_SIGNED(int64_t, 2, 2) |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b); // VQRSHL.U8 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x16_t vqrshlq_u8(uint8x16_t a, int8x16_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int8_t, 16, 16) |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b); // VQRSHL.s16 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x8_t vqrshlq_u16(uint16x8_t a, int16x8_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int16_t, 8, 8) |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b); // VQRSHL.U32 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x4_t vqrshlq_u32(uint32x4_t a, int32x4_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int32_t, 4, 4) |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b); // VQRSHL.U64 q0,q0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqrshlq_u64(uint64x2_t a, int64x2_t b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| SERIAL_SATURATING_ROUNDING_SHIFT_UNSIGNED(int64_t, 2, 2) |
| } |
| |
| // ********************************************************************************* |
| // ***************************** Shifts by a constant ***************************** |
| // ********************************************************************************* |
| //**************** Vector shift right by constant************************************* |
| //************************************************************************************ |
| _NEON2SSESTORAGE int8x8_t vshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VSHR.S8 d0,d0,#8 |
| _NEON2SSE_INLINE int8x8_t vshr_n_s8(int8x8_t a, __constrange(1,8) int b) // VSHR.S8 d0,d0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit |
| int8x8_t res64; |
| __m128i r; |
| r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r = _mm_srai_epi16 (r, b); //SSE2 |
| r = _mm_packs_epi16 (r,r); //we need 64 bits only |
| return64(r); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vshr_n_s16(int16x4_t a, __constrange(1,16) int b); // VSHR.S16 d0,d0,#16 |
| _NEON2SSE_INLINE int16x4_t vshr_n_s16(int16x4_t a, __constrange(1,16) int b) |
| { |
| int16x4_t res64; |
| return64(_mm_srai_epi16(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vshr_n_s32(int32x2_t a, __constrange(1,32) int b); // VSHR.S32 d0,d0,#32 |
| _NEON2SSE_INLINE int32x2_t vshr_n_s32(int32x2_t a, __constrange(1,32) int b) |
| { |
| int32x2_t res64; |
| return64(_mm_srai_epi32(_pM128i(a), b)); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VSHR.S64 d0,d0,#64 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vshr_n_s64(int64x1_t a, __constrange(1,64) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //no arithmetic shift for 64bit values, serial solution used |
| int64x1_t res; |
| if(b>=64) res.m64_i64[0] = 0; |
| else res.m64_i64[0] = (*(int64_t*)&a) >> b; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VSHR.U8 d0,d0,#8 |
| _NEON2SSE_INLINE uint8x8_t vshr_n_u8(uint8x8_t a, __constrange(1,8) int b) // VSHR.U8 d0,d0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit |
| uint8x8_t res64; |
| __m128i r; |
| r = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r = _mm_srli_epi16 (r, b); //for unsigned variables we use the logical shift not arithmetical one |
| r = _mm_packus_epi16 (r,r); //we need 64 bits only |
| return64(r); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vshr_n_u16(uint16x4_t a, __constrange(1,16) int b); // VSHR.s16 d0,d0,#16 |
| _NEON2SSE_INLINE uint16x4_t vshr_n_u16(uint16x4_t a, __constrange(1,16) int b) |
| { |
| uint16x4_t res64; |
| return64(_mm_srli_epi16(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vshr_n_u32(uint32x2_t a, __constrange(1,32) int b); // VSHR.U32 d0,d0,#32 |
| _NEON2SSE_INLINE uint32x2_t vshr_n_u32(uint32x2_t a, __constrange(1,32) int b) |
| { |
| uint32x2_t res64; |
| return64(_mm_srli_epi32(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VSHR.U64 d0,d0,#64 |
| _NEON2SSE_INLINE uint64x1_t vshr_n_u64(uint64x1_t a, __constrange(1,64) int b) |
| { |
| uint64x1_t res64; |
| return64(_mm_srli_epi64(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VSHR.S8 q0,q0,#8 |
| _NEON2SSE_INLINE int8x16_t vshrq_n_s8(int8x16_t a, __constrange(1,8) int b) // VSHR.S8 q0,q0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit trick |
| __m128i zero, mask0, a_sign, r, a_sign_mask; |
| _NEON2SSE_ALIGN_16 static const int16_t mask0_16[9] = {0x0000, 0x0080, 0x00c0, 0x00e0, 0x00f0, 0x00f8, 0x00fc, 0x00fe, 0x00ff}; |
| zero = _mm_setzero_si128(); |
| mask0 = _mm_set1_epi16(mask0_16[b]); //to mask the bits to be "spoiled" by 16 bit shift |
| a_sign = _mm_cmpgt_epi8 (zero, a); //ff if a<0 or zero if a>0 |
| r = _mm_srai_epi16 (a, b); |
| a_sign_mask = _mm_and_si128 (mask0, a_sign); |
| r = _mm_andnot_si128 (mask0, r); |
| return _mm_or_si128 (r, a_sign_mask); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VSHR.S16 q0,q0,#16 |
| #define vshrq_n_s16 _mm_srai_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VSHR.S32 q0,q0,#32 |
| #define vshrq_n_s32 _mm_srai_epi32 |
| |
| _NEON2SSESTORAGE int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VSHR.S64 q0,q0,#64 |
| _NEON2SSE_INLINE int64x2_t vshrq_n_s64(int64x2_t a, __constrange(1,64) int b) |
| { |
| //SIMD implementation may be not optimal due to 64 bit arithmetic shift absense in x86 SIMD |
| __m128i c1, signmask,a0, res64; |
| _NEON2SSE_ALIGN_16 static const uint64_t mask[] = {0x8000000000000000, 0x8000000000000000}; |
| c1 = _mm_cmpeq_epi32(a,a); //0xffffffffffffffff |
| signmask = _mm_slli_epi64 (c1, (64 - b)); |
| a0 = _mm_or_si128(a, *(__m128i*)mask); //get the first bit |
| a0 = _MM_CMPEQ_EPI64 (a, a0); |
| signmask = _mm_and_si128(a0, signmask); |
| res64 = _mm_srli_epi64 (a, b); |
| return _mm_or_si128(res64, signmask); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VSHR.U8 q0,q0,#8 |
| _NEON2SSE_INLINE uint8x16_t vshrq_n_u8(uint8x16_t a, __constrange(1,8) int b) // VSHR.U8 q0,q0,#8 |
| { |
| //no 8 bit shift available, need the special trick |
| __m128i mask0, r; |
| _NEON2SSE_ALIGN_16 static const uint16_t mask10_16[9] = {0xffff, 0xff7f, 0xff3f, 0xff1f, 0xff0f, 0xff07, 0xff03, 0xff01, 0xff00}; |
| mask0 = _mm_set1_epi16(mask10_16[b]); //to mask the bits to be "spoiled" by 16 bit shift |
| r = _mm_srli_epi16 ( a, b); |
| return _mm_and_si128 (r, mask0); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VSHR.s16 q0,q0,#16 |
| #define vshrq_n_u16 _mm_srli_epi16 |
| |
| _NEON2SSESTORAGE uint32x4_t vshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VSHR.U32 q0,q0,#32 |
| #define vshrq_n_u32 _mm_srli_epi32 |
| |
| _NEON2SSESTORAGE uint64x2_t vshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VSHR.U64 q0,q0,#64 |
| #define vshrq_n_u64 _mm_srli_epi64 |
| |
| //*************************** Vector shift left by constant ************************* |
| //********************************************************************************* |
| _NEON2SSESTORAGE int8x8_t vshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0 |
| _NEON2SSE_INLINE int8x8_t vshl_n_s8(int8x8_t a, __constrange(0,7) int b) // VSHL.I8 d0,d0,#0 |
| { |
| //no 8 bit shift available, go to 16 bit |
| int8x8_t res64; |
| __m128i r; |
| r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r = _mm_slli_epi16 (r, b); //SSE2 |
| r = _mm_shuffle_epi8 (r, *(__m128i*) mask8_16_even_odd); //return to 8 bit, we need 64 bits only |
| return64(r); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VSHL.I16 d0,d0,#0 |
| _NEON2SSE_INLINE int16x4_t vshl_n_s16(int16x4_t a, __constrange(0,15) int b) |
| { |
| int16x4_t res64; |
| return64(_mm_slli_epi16(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vshl_n_s32(int32x2_t a, __constrange(0,31) int b); // VSHL.I32 d0,d0,#0 |
| _NEON2SSE_INLINE int32x2_t vshl_n_s32(int32x2_t a, __constrange(0,31) int b) |
| { |
| int32x2_t res64; |
| return64(_mm_slli_epi32(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0 |
| _NEON2SSE_INLINE int64x1_t vshl_n_s64(int64x1_t a, __constrange(0,63) int b) |
| { |
| int64x1_t res64; |
| return64(_mm_slli_epi64(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VSHL.I8 d0,d0,#0 |
| _NEON2SSE_INLINE uint8x8_t vshl_n_u8(uint8x8_t a, __constrange(0,7) int b) |
| { |
| //no 8 bit shift available, go to 16 bit |
| uint8x8_t res64; |
| __m128i mask8; |
| __m128i r; |
| mask8 = _mm_set1_epi16(0xff); |
| r = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r = _mm_slli_epi16 (r, b); //SSE2 |
| r = _mm_and_si128(r, mask8); //to avoid saturation |
| r = _mm_packus_epi16 (r,r); //we need 64 bits only |
| return64(r); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VSHL.I16 d0,d0,#0 |
| #define vshl_n_u16 vshl_n_s16 |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vshl_n_u32(uint32x2_t a, __constrange(0,31) int b); // VSHL.I32 d0,d0,#0 |
| #define vshl_n_u32 vshl_n_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VSHL.I64 d0,d0,#0 |
| #define vshl_n_u64 vshl_n_s64 |
| |
| _NEON2SSESTORAGE int8x16_t vshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 |
| #define vshlq_n_s8 vshlq_n_u8 |
| |
| _NEON2SSESTORAGE int16x8_t vshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 |
| #define vshlq_n_s16 _mm_slli_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 |
| #define vshlq_n_s32 _mm_slli_epi32 |
| |
| _NEON2SSESTORAGE int64x2_t vshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 |
| #define vshlq_n_s64 _mm_slli_epi64 |
| |
| _NEON2SSESTORAGE uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VSHL.I8 q0,q0,#0 |
| _NEON2SSE_INLINE uint8x16_t vshlq_n_u8(uint8x16_t a, __constrange(0,7) int b) |
| { |
| //no 8 bit shift available, need the special trick |
| __m128i mask0, r; |
| _NEON2SSE_ALIGN_16 static const uint16_t mask10_16[9] = {0xffff, 0xfeff, 0xfcff, 0xf8ff, 0xf0ff, 0xe0ff, 0xc0ff, 0x80ff, 0xff}; |
| mask0 = _mm_set1_epi16(mask10_16[b]); //to mask the bits to be "spoiled" by 16 bit shift |
| r = _mm_slli_epi16 ( a, b); |
| return _mm_and_si128 (r, mask0); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VSHL.I16 q0,q0,#0 |
| #define vshlq_n_u16 vshlq_n_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VSHL.I32 q0,q0,#0 |
| #define vshlq_n_u32 vshlq_n_s32 |
| |
| _NEON2SSESTORAGE uint64x2_t vshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VSHL.I64 q0,q0,#0 |
| #define vshlq_n_u64 vshlq_n_s64 |
| |
| //************* Vector rounding shift right by constant ****************** |
| //************************************************************************* |
| //No corresponding x86 intrinsics exist, need to do some tricks |
| _NEON2SSESTORAGE int8x8_t vrshr_n_s8(int8x8_t a, __constrange(1,8) int b); // VRSHR.S8 d0,d0,#8 |
| _NEON2SSE_INLINE int8x8_t vrshr_n_s8(int8x8_t a, __constrange(1,8) int b) // VRSHR.S8 d0,d0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit |
| int8x8_t res64; |
| __m128i r, maskb; |
| r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1 |
| maskb = _mm_slli_epi16 (r, (16 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi16 (maskb, 15); //1 or 0 |
| r = _mm_srai_epi16 (r, b); |
| r = _mm_add_epi16 (r, maskb); //actual rounding |
| r = _mm_packs_epi16 (r,r); ////we need 64 bits only |
| return64(r); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrshr_n_s16(int16x4_t a, __constrange(1,16) int b); // VRSHR.S16 d0,d0,#16 |
| _NEON2SSE_INLINE int16x4_t vrshr_n_s16(int16x4_t a, __constrange(1,16) int b) |
| { |
| int16x4_t res64; |
| return64(vrshrq_n_s16(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vrshr_n_s32(int32x2_t a, __constrange(1,32) int b); // VRSHR.S32 d0,d0,#32 |
| _NEON2SSE_INLINE int32x2_t vrshr_n_s32(int32x2_t a, __constrange(1,32) int b) |
| { |
| int32x2_t res64; |
| return64(vrshrq_n_s32(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vrshr_n_s64(int64x1_t a, __constrange(1,64) int b); // VRSHR.S64 d0,d0,#64 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vrshr_n_s64(int64x1_t a, __constrange(1,64) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| //serial solution is faster |
| int64x1_t res; |
| int64_t a_i64 = *( int64_t*)&a; |
| if(b==64) { |
| res.m64_i64[0] = 0; //for some compilers rounding happens and we need to use(a_i64 & _SIGNBIT64)>>63; |
| } else { |
| int64_t maskb = a_i64 & (( int64_t)1 << (b - 1)); |
| res.m64_i64[0] = (a_i64 >> b) + (maskb >> (b - 1)); |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrshr_n_u8(uint8x8_t a, __constrange(1,8) int b); // VRSHR.U8 d0,d0,#8 |
| _NEON2SSE_INLINE uint8x8_t vrshr_n_u8(uint8x8_t a, __constrange(1,8) int b) // VRSHR.U8 d0,d0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit, solution may be not optimal compared with the serial one |
| uint8x8_t res64; |
| __m128i r, maskb; |
| r = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1 |
| maskb = _mm_slli_epi16 (r, (16 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi16 (maskb, 15); //1 or 0 |
| r = _mm_srli_epi16 (r, b); |
| r = _mm_add_epi16 (r, maskb); //actual rounding |
| r = _mm_packus_epi16 (r,r); ////we need 64 bits only |
| return64(r); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vrshr_n_u16(uint16x4_t a, __constrange(1,16) int b); // VRSHR.s16 d0,d0,#16 |
| _NEON2SSE_INLINE uint16x4_t vrshr_n_u16(uint16x4_t a, __constrange(1,16) int b) |
| { |
| uint16x4_t res64; |
| return64(vrshrq_n_u16(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vrshr_n_u32(uint32x2_t a, __constrange(1,32) int b); // VRSHR.U32 d0,d0,#32 |
| _NEON2SSE_INLINE uint32x2_t vrshr_n_u32(uint32x2_t a, __constrange(1,32) int b) |
| { |
| uint32x2_t res64; |
| return64(vrshrq_n_u32(_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vrshr_n_u64(uint64x1_t a, __constrange(1,64) int b); // VRSHR.U64 d0,d0,#64 |
| _NEON2SSE_INLINE uint64x1_t vrshr_n_u64(uint64x1_t a, __constrange(1,64) int b) |
| { |
| uint64x1_t res64; |
| return64(vrshrq_n_u64(_pM128i(a), b)); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b); // VRSHR.S8 q0,q0,#8 |
| _NEON2SSE_INLINE int8x16_t vrshrq_n_s8(int8x16_t a, __constrange(1,8) int b) // VRSHR.S8 q0,q0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit trick |
| __m128i r, mask1, maskb; |
| _NEON2SSE_ALIGN_16 static const uint16_t mask2b[9] = {0x0000, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080}; // 2^b-th bit set to 1 |
| r = vshrq_n_s8 (a, b); |
| mask1 = _mm_set1_epi16(mask2b[b]); // 2^b-th bit set to 1 for 16bit, need it for rounding |
| maskb = _mm_and_si128(a, mask1); //get b or 0 for rounding |
| maskb = _mm_srli_epi16 (maskb, b - 1); // to add 1 |
| return _mm_add_epi8(r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b); // VRSHR.S16 q0,q0,#16 |
| _NEON2SSE_INLINE int16x8_t vrshrq_n_s16(int16x8_t a, __constrange(1,16) int b) // VRSHR.S16 q0,q0,#16 |
| { |
| __m128i maskb, r; |
| maskb = _mm_slli_epi16(a, (16 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi16(maskb, 15); //1 or 0 |
| r = _mm_srai_epi16 (a, b); |
| return _mm_add_epi16 (r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b); // VRSHR.S32 q0,q0,#32 |
| _NEON2SSE_INLINE int32x4_t vrshrq_n_s32(int32x4_t a, __constrange(1,32) int b) // VRSHR.S32 q0,q0,#32 |
| { |
| __m128i maskb, r; |
| maskb = _mm_slli_epi32 (a, (32 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi32 (maskb,31); //1 or 0 |
| r = _mm_srai_epi32(a, b); |
| return _mm_add_epi32 (r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b); // VRSHR.S64 q0,q0,#64 |
| _NEON2SSE_INLINE int64x2_t vrshrq_n_s64(int64x2_t a, __constrange(1,64) int b) |
| { |
| //solution may be not optimal compared with a serial one |
| __m128i maskb; |
| int64x2_t r; |
| maskb = _mm_slli_epi64 (a, (64 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi64 (maskb,63); //1 or 0 |
| r = vshrq_n_s64(a, b); |
| return _mm_add_epi64 (r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b); // VRSHR.U8 q0,q0,#8 |
| _NEON2SSE_INLINE uint8x16_t vrshrq_n_u8(uint8x16_t a, __constrange(1,8) int b) // VRSHR.U8 q0,q0,#8 |
| { |
| //no 8 bit shift available, go to 16 bit trick |
| __m128i r, mask1, maskb; |
| _NEON2SSE_ALIGN_16 static const uint16_t mask2b[9] = {0x0000, 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080}; // 2^b-th bit set to 1 |
| r = vshrq_n_u8 (a, b); |
| mask1 = _mm_set1_epi16(mask2b[b]); // 2^b-th bit set to 1 for 16bit, need it for rounding |
| maskb = _mm_and_si128(a, mask1); //get b or 0 for rounding |
| maskb = _mm_srli_epi16 (maskb, b - 1); // to add 1 |
| return _mm_add_epi8(r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b); // VRSHR.s16 q0,q0,#16 |
| _NEON2SSE_INLINE uint16x8_t vrshrq_n_u16(uint16x8_t a, __constrange(1,16) int b) // VRSHR.S16 q0,q0,#16 |
| { |
| __m128i maskb, r; |
| maskb = _mm_slli_epi16(a, (16 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi16(maskb, 15); //1 or 0 |
| r = _mm_srli_epi16 (a, b); |
| return _mm_add_epi16 (r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b); // VRSHR.U32 q0,q0,#32 |
| _NEON2SSE_INLINE uint32x4_t vrshrq_n_u32(uint32x4_t a, __constrange(1,32) int b) // VRSHR.S32 q0,q0,#32 |
| { |
| __m128i maskb, r; |
| maskb = _mm_slli_epi32 (a, (32 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi32 (maskb,31); //1 or 0 |
| r = _mm_srli_epi32(a, b); |
| return _mm_add_epi32 (r, maskb); //actual rounding |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b); // VRSHR.U64 q0,q0,#64 |
| _NEON2SSE_INLINE uint64x2_t vrshrq_n_u64(uint64x2_t a, __constrange(1,64) int b) |
| { |
| //solution may be not optimal compared with a serial one |
| __m128i maskb, r; |
| maskb = _mm_slli_epi64 (a, (64 - b)); //to get rounding (b-1)th bit |
| maskb = _mm_srli_epi64 (maskb,63); //1 or 0 |
| r = _mm_srli_epi64(a, b); |
| return _mm_add_epi64 (r, maskb); //actual rounding |
| } |
| |
| //************* Vector shift right by constant and accumulate ********* |
| //********************************************************************* |
| _NEON2SSESTORAGE int8x8_t vsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRA.S8 d0,d0,#8 |
| _NEON2SSE_INLINE int8x8_t vsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c) // VSRA.S8 d0,d0,#8 |
| { |
| int8x8_t shift; |
| shift = vshr_n_s8(b, c); |
| return vadd_s8( a, shift); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRA.S16 d0,d0,#16 |
| _NEON2SSE_INLINE int16x4_t vsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c) // VSRA.S16 d0,d0,#16 |
| { |
| int16x4_t shift; |
| shift = vshr_n_s16( b, c); |
| return vadd_s16(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRA.S32 d0,d0,#32 |
| _NEON2SSE_INLINE int32x2_t vsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c) // VSRA.S32 d0,d0,#32 |
| { |
| //may be not optimal compared with the serial execution |
| int32x2_t shift; |
| shift = vshr_n_s32(b, c); |
| return vadd_s32( a, shift); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRA.S64 d0,d0,#64 |
| _NEON2SSE_INLINE int64x1_t vsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c) |
| { |
| //may be not optimal compared with a serial solution |
| int64x1_t shift; |
| shift = vshr_n_s64(b, c); |
| return vadd_s64( a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRA.U8 d0,d0,#8 |
| _NEON2SSE_INLINE uint8x8_t vsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c) // VSRA.U8 d0,d0,#8 |
| { |
| uint8x8_t shift; |
| shift = vshr_n_u8(b, c); |
| return vadd_u8(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRA.s16 d0,d0,#16 |
| _NEON2SSE_INLINE uint16x4_t vsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c) // VSRA.s16 d0,d0,#16 |
| { |
| uint16x4_t shift; |
| shift = vshr_n_u16(b, c); |
| return vadd_u16(a,shift); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRA.U32 d0,d0,#32 |
| _NEON2SSE_INLINE uint32x2_t vsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c) // VSRA.U32 d0,d0,#32 |
| { |
| //may be not optimal compared with the serial execution |
| uint32x2_t shift; |
| shift = vshr_n_u32(b, c); |
| return vadd_u32( a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRA.U64 d0,d0,#64 |
| _NEON2SSE_INLINE uint64x1_t vsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c) // VSRA.U64 d0,d0,#64 |
| { |
| //may be not optimal compared with the serial execution |
| uint64x1_t shift; |
| shift = vshr_n_u64(b, c); |
| return vadd_u64(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRA.S8 q0,q0,#8 |
| _NEON2SSE_INLINE int8x16_t vsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VSRA.S8 q0,q0,#8 |
| { |
| int8x16_t shift; |
| shift = vshrq_n_s8(b, c); |
| return vaddq_s8(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRA.S16 q0,q0,#16 |
| _NEON2SSE_INLINE int16x8_t vsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VSRA.S16 q0,q0,#16 |
| { |
| int16x8_t shift; |
| shift = vshrq_n_s16(b, c); |
| return vaddq_s16(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRA.S32 q0,q0,#32 |
| _NEON2SSE_INLINE int32x4_t vsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VSRA.S32 q0,q0,#32 |
| { |
| int32x4_t shift; |
| shift = vshrq_n_s32(b, c); |
| return vaddq_s32(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRA.S64 q0,q0,#64 |
| _NEON2SSE_INLINE int64x2_t vsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) // VSRA.S64 q0,q0,#64 |
| { |
| int64x2_t shift; |
| shift = vshrq_n_s64(b, c); |
| return vaddq_s64( a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRA.U8 q0,q0,#8 |
| _NEON2SSE_INLINE uint8x16_t vsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c) // VSRA.U8 q0,q0,#8 |
| { |
| uint8x16_t shift; |
| shift = vshrq_n_u8(b, c); |
| return vaddq_u8(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRA.s16 q0,q0,#16 |
| _NEON2SSE_INLINE uint16x8_t vsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c) // VSRA.s16 q0,q0,#16 |
| { |
| uint16x8_t shift; |
| shift = vshrq_n_u16(b, c); |
| return vaddq_u16(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRA.U32 q0,q0,#32 |
| _NEON2SSE_INLINE uint32x4_t vsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c) // VSRA.U32 q0,q0,#32 |
| { |
| uint32x4_t shift; |
| shift = vshrq_n_u32(b, c); |
| return vaddq_u32(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRA.U64 q0,q0,#64 |
| _NEON2SSE_INLINE uint64x2_t vsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c) // VSRA.U64 q0,q0,#64 |
| { |
| uint64x2_t shift; |
| shift = vshrq_n_u64(b, c); |
| return vaddq_u64(a, shift); |
| } |
| |
| //************* Vector rounding shift right by constant and accumulate **************************** |
| //************************************************************************************************ |
| _NEON2SSESTORAGE int8x8_t vrsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VRSRA.S8 d0,d0,#8 |
| _NEON2SSE_INLINE int8x8_t vrsra_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c) // VRSRA.S8 d0,d0,#8 |
| { |
| int8x8_t shift; |
| shift = vrshr_n_s8(b, c); |
| return vadd_s8( a, shift); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VRSRA.S16 d0,d0,#16 |
| _NEON2SSE_INLINE int16x4_t vrsra_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c) // VRSRA.S16 d0,d0,#16 |
| { |
| int16x4_t shift; |
| shift = vrshr_n_s16( b, c); |
| return vadd_s16(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vrsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VRSRA.S32 d0,d0,#32 |
| _NEON2SSE_INLINE int32x2_t vrsra_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c) // VRSRA.S32 d0,d0,#32 |
| { |
| //may be not optimal compared with the serial execution |
| int32x2_t shift; |
| shift = vrshr_n_s32(b, c); |
| return vadd_s32( a, shift); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vrsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VRSRA.S64 d0,d0,#64 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vrsra_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution |
| { |
| int64x1_t shift; |
| shift = vrshr_n_s64(b, c); |
| return vadd_s64( a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VRSRA.U8 d0,d0,#8 |
| _NEON2SSE_INLINE uint8x8_t vrsra_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c) // VRSRA.U8 d0,d0,#8 |
| { |
| uint8x8_t shift; |
| shift = vrshr_n_u8(b, c); |
| return vadd_u8(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vrsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VRSRA.s16 d0,d0,#16 |
| _NEON2SSE_INLINE uint16x4_t vrsra_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c) // VRSRA.s16 d0,d0,#16 |
| { |
| uint16x4_t shift; |
| shift = vrshr_n_u16(b, c); |
| return vadd_u16(a,shift); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vrsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VRSRA.U32 d0,d0,#32 |
| _NEON2SSE_INLINE uint32x2_t vrsra_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c) // VRSRA.U32 d0,d0,#32 |
| { |
| //may be not optimal compared with the serial execution |
| uint32x2_t shift; |
| shift = vrshr_n_u32(b, c); |
| return vadd_u32( a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vrsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VRSRA.U64 d0,d0,#64 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vrsra_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution |
| { |
| //may be not optimal compared with the serial execution |
| uint64x1_t shift; |
| shift = vrshr_n_u64(b, c); |
| return vadd_u64( a, shift); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VRSRA.S8 q0,q0,#8 |
| _NEON2SSE_INLINE int8x16_t vrsraq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VRSRA.S8 q0,q0,#8 |
| { |
| int8x16_t shift; |
| shift = vrshrq_n_s8(b, c); |
| return vaddq_s8(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VRSRA.S16 q0,q0,#16 |
| _NEON2SSE_INLINE int16x8_t vrsraq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VRSRA.S16 q0,q0,#16 |
| { |
| int16x8_t shift; |
| shift = vrshrq_n_s16(b, c); |
| return vaddq_s16(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VRSRA.S32 q0,q0,#32 |
| _NEON2SSE_INLINE int32x4_t vrsraq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VRSRA.S32 q0,q0,#32 |
| { |
| int32x4_t shift; |
| shift = vrshrq_n_s32(b, c); |
| return vaddq_s32(a, shift); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VRSRA.S64 q0,q0,#64 |
| _NEON2SSE_INLINE int64x2_t vrsraq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) |
| { |
| int64x2_t shift; |
| shift = vrshrq_n_s64(b, c); |
| return vaddq_s64(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VRSRA.U8 q0,q0,#8 |
| _NEON2SSE_INLINE uint8x16_t vrsraq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c) // VRSRA.U8 q0,q0,#8 |
| { |
| uint8x16_t shift; |
| shift = vrshrq_n_u8(b, c); |
| return vaddq_u8(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VRSRA.s16 q0,q0,#16 |
| _NEON2SSE_INLINE uint16x8_t vrsraq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c) // VRSRA.s16 q0,q0,#16 |
| { |
| uint16x8_t shift; |
| shift = vrshrq_n_u16(b, c); |
| return vaddq_u16(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VRSRA.U32 q0,q0,#32 |
| _NEON2SSE_INLINE uint32x4_t vrsraq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c) // VRSRA.U32 q0,q0,#32 |
| { |
| uint32x4_t shift; |
| shift = vrshrq_n_u32(b, c); |
| return vaddq_u32(a, shift); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VRSRA.U64 q0,q0,#64 |
| _NEON2SSE_INLINE uint64x2_t vrsraq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c) |
| { |
| uint64x2_t shift; |
| shift = vrshrq_n_u64(b, c); |
| return vaddq_u64(a, shift); |
| } |
| |
| //**********************Vector saturating shift left by constant ***************************** |
| //******************************************************************************************** |
| //we don't check const ranges assuming they are met |
| _NEON2SSESTORAGE int8x8_t vqshl_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHL.S8 d0,d0,#0 |
| _NEON2SSE_INLINE int8x8_t vqshl_n_s8(int8x8_t a, __constrange(0,7) int b) // VQSHL.S8 d0,d0,#0 |
| { |
| //no 8 bit shift available in IA32 SIMD, go to 16 bit. It also provides the auto saturation (in packs function) |
| int8x8_t res64; |
| __m128i a128, r128; |
| a128 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r128 = _mm_slli_epi16 (a128, b); |
| r128 = _mm_packs_epi16 (r128,r128); //saturated s8, use 64 low bits only |
| return64(r128); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqshl_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHL.S16 d0,d0,#0 |
| _NEON2SSE_INLINE int16x4_t vqshl_n_s16(int16x4_t a, __constrange(0,15) int b) // VQSHL.S16 d0,d0,#0 |
| { |
| // go to 32 bit to get the auto saturation (in packs function) |
| int16x4_t res64; |
| __m128i a128, r128; |
| a128 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE 4.1 |
| r128 = _mm_slli_epi32 (a128, b); //shift_res |
| r128 = _mm_packs_epi32 (r128,r128); //saturated s16, use 64 low bits only |
| return64(r128); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqshl_n_s32(int32x2_t a, __constrange(0,31) int b); // VQSHL.S32 d0,d0,#0 |
| _NEON2SSE_INLINE int32x2_t vqshl_n_s32(int32x2_t a, __constrange(0,31) int b) |
| { |
| //serial execution may be faster |
| int32x2_t res64; |
| return64(vqshlq_n_s32 (_pM128i(a), b)); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vqshl_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHL.S64 d0,d0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x1_t vqshl_n_s64(int64x1_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| // no effective SIMD solution here |
| int64x1_t res; |
| int64_t bmask; |
| int64_t a_i64 = *( int64_t*)&a; |
| bmask = ( int64_t)1 << (63 - b); //positive |
| if (a_i64 >= bmask) { |
| res.m64_i64[0] = ~(_SIGNBIT64); |
| } else { |
| res.m64_i64[0] = (a_i64 <= -bmask) ? _SIGNBIT64 : a_i64 << b; |
| } |
| return res; |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vqshl_n_u8(uint8x8_t a, __constrange(0,7) int b); // VQSHL.U8 d0,d0,#0 |
| _NEON2SSE_INLINE uint8x8_t vqshl_n_u8(uint8x8_t a, __constrange(0,7) int b) // VQSHL.U8 d0,d0,#0 |
| { |
| //no 8 bit shift available in IA32 SIMD, go to 16 bit |
| uint8x8_t res64; |
| __m128i a128, r128; |
| a128 = _MM_CVTEPU8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r128 = _mm_slli_epi16 (a128, b); //shift_res |
| r128 = _mm_packus_epi16 (r128,r128); //saturated u8, use 64 low bits only |
| return64(r128); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqshl_n_u16(uint16x4_t a, __constrange(0,15) int b); // VQSHL.s16 d0,d0,#0 |
| _NEON2SSE_INLINE uint16x4_t vqshl_n_u16(uint16x4_t a, __constrange(0,15) int b) // VQSHL.s16 d0,d0,#0 |
| { |
| // go to 32 bit to get the auto saturation (in packus function) |
| uint16x4_t res64; |
| __m128i a128, r128; |
| a128 = _MM_CVTEPU16_EPI32 (_pM128i(a)); //SSE 4.1 |
| r128 = _mm_slli_epi32 (a128, b); //shift_res |
| r128 = _MM_PACKUS1_EPI32 (r128); //saturated s16 |
| return64(r128); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqshl_n_u32(uint32x2_t a, __constrange(0,31) int b); // VQSHL.U32 d0,d0,#0 |
| _NEON2SSE_INLINE uint32x2_t vqshl_n_u32(uint32x2_t a, __constrange(0,31) int b) |
| { |
| uint32x2_t res64; |
| return64(vqshlq_n_u32(_pM128i(a), b)); |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vqshl_n_u64(uint64x1_t a, __constrange(0,63) int b); // VQSHL.U64 d0,d0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqshl_n_u64(uint64x1_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| // no effective SIMD solution here |
| uint64x1_t res; |
| uint64_t bmask; |
| uint64_t a_i64 = *(uint64_t*)&a; |
| bmask = ( uint64_t)1 << (64 - b); |
| res.m64_u64[0] = (a_i64 >= bmask)&&(b>0) ? 0xffffffffffffffff : a_i64 << b; //if b=0 we are fine with any a |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHL.S8 q0,q0,#0 |
| _NEON2SSE_INLINE int8x16_t vqshlq_n_s8(int8x16_t a, __constrange(0,7) int b) // VQSHL.S8 q0,q0,#0 |
| { |
| // go to 16 bit to get the auto saturation (in packs function) |
| __m128i a128, r128_1, r128_2; |
| a128 = _MM_CVTEPI8_EPI16 (a); //SSE 4.1 |
| r128_1 = _mm_slli_epi16 (a128, b); |
| //swap hi and low part of a128 to process the remaining data |
| a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| a128 = _MM_CVTEPI8_EPI16 (a128); |
| r128_2 = _mm_slli_epi16 (a128, b); |
| return _mm_packs_epi16 (r128_1, r128_2); //saturated s8 |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHL.S16 q0,q0,#0 |
| _NEON2SSE_INLINE int16x8_t vqshlq_n_s16(int16x8_t a, __constrange(0,15) int b) // VQSHL.S16 q0,q0,#0 |
| { |
| // manual saturation solution looks LESS optimal than 32 bits conversion one |
| // go to 32 bit to get the auto saturation (in packs function) |
| __m128i a128, r128_1, r128_2; |
| a128 = _MM_CVTEPI16_EPI32 (a); //SSE 4.1 |
| r128_1 = _mm_slli_epi32 (a128, b); //shift_res |
| //swap hi and low part of a128 to process the remaining data |
| a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| a128 = _MM_CVTEPI16_EPI32 (a128); |
| r128_2 = _mm_slli_epi32 (a128, b); |
| return _mm_packs_epi32 (r128_1, r128_2); //saturated s16 |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHL.S32 q0,q0,#0 |
| _NEON2SSE_INLINE int32x4_t vqshlq_n_s32(int32x4_t a, __constrange(0,31) int b) // VQSHL.S32 q0,q0,#0 |
| { |
| // no 64 bit saturation option available, special tricks necessary |
| __m128i c1, maskA, saturation_mask, c7ffffff_mask, shift_res, shift_res_mask; |
| c1 = _mm_cmpeq_epi32(a,a); //0xff..ff |
| maskA = _mm_srli_epi32(c1, b + 1); //mask for positive numbers (32-b+1) zeros and b-1 ones |
| saturation_mask = _mm_cmpgt_epi32 (a, maskA); //0xff...ff if we need saturation, 0 otherwise |
| c7ffffff_mask = _mm_srli_epi32(saturation_mask, 1); //saturated to 0x7f..ff when needed and zeros if not |
| shift_res = _mm_slli_epi32 (a, b); |
| shift_res_mask = _mm_andnot_si128(saturation_mask, shift_res); |
| //result with positive numbers saturated |
| shift_res = _mm_or_si128 (c7ffffff_mask, shift_res_mask); |
| //treat negative numbers |
| maskA = _mm_slli_epi32(c1, 31 - b); //mask for negative numbers b-1 ones and (32-b+1) zeros |
| saturation_mask = _mm_cmpgt_epi32 (maskA,a); //0xff...ff if we need saturation, 0 otherwise |
| c7ffffff_mask = _mm_slli_epi32(saturation_mask, 31); //saturated to 0x80..00 when needed and zeros if not |
| shift_res_mask = _mm_andnot_si128(saturation_mask, shift_res); |
| return _mm_or_si128 (c7ffffff_mask, shift_res_mask); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHL.S64 q0,q0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqshlq_n_s64(int64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| // no effective SIMD solution here |
| _NEON2SSE_ALIGN_16 int64_t atmp[2], res[2]; |
| int64_t bmask; |
| int i; |
| bmask = ( int64_t)1 << (63 - b); //positive |
| _mm_store_si128((__m128i*)atmp, a); |
| for (i = 0; i<2; i++) { |
| if (atmp[i] >= bmask) { |
| res[i] = ~(_SIGNBIT64); |
| } else { |
| res[i] = (atmp[i] <= -bmask) ? _SIGNBIT64 : atmp[i] << b; |
| } |
| } |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b); // VQSHL.U8 q0,q0,#0 |
| _NEON2SSE_INLINE uint8x16_t vqshlq_n_u8(uint8x16_t a, __constrange(0,7) int b) // VQSHL.U8 q0,q0,#0 |
| { |
| // go to 16 bit to get the auto saturation (in packs function) |
| __m128i a128, r128_1, r128_2; |
| a128 = _MM_CVTEPU8_EPI16 (a); //SSE 4.1 |
| r128_1 = _mm_slli_epi16 (a128, b); |
| //swap hi and low part of a128 to process the remaining data |
| a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| a128 = _MM_CVTEPU8_EPI16 (a128); |
| r128_2 = _mm_slli_epi16 (a128, b); |
| return _mm_packus_epi16 (r128_1, r128_2); //saturated u8 |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b); // VQSHL.s16 q0,q0,#0 |
| _NEON2SSE_INLINE uint16x8_t vqshlq_n_u16(uint16x8_t a, __constrange(0,15) int b) // VQSHL.s16 q0,q0,#0 |
| { |
| // manual saturation solution looks more optimal than 32 bits conversion one |
| __m128i cb, c8000, a_signed, saturation_mask, shift_res; |
| cb = _mm_set1_epi16((1 << (16 - b)) - 1 - 0x8000 ); |
| c8000 = _mm_set1_epi16 ((int16_t)0x8000); |
| //no unsigned shorts comparison in SSE, only signed available, so need the trick |
| a_signed = _mm_sub_epi16(a, c8000); //go to signed |
| saturation_mask = _mm_cmpgt_epi16 (a_signed, cb); |
| shift_res = _mm_slli_epi16 (a, b); |
| return _mm_or_si128 (shift_res, saturation_mask); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b); // VQSHL.U32 q0,q0,#0 |
| _NEON2SSE_INLINE uint32x4_t vqshlq_n_u32(uint32x4_t a, __constrange(0,31) int b) // VQSHL.U32 q0,q0,#0 |
| { |
| // manual saturation solution, no 64 bit saturation option, the serial version may be faster |
| __m128i cb, c80000000, a_signed, saturation_mask, shift_res; |
| cb = _mm_set1_epi32((1 << (32 - b)) - 1 - 0x80000000 ); |
| c80000000 = _mm_set1_epi32 (0x80000000); |
| //no unsigned ints comparison in SSE, only signed available, so need the trick |
| a_signed = _mm_sub_epi32(a, c80000000); //go to signed |
| saturation_mask = _mm_cmpgt_epi32 (a_signed, cb); |
| shift_res = _mm_slli_epi32 (a, b); |
| return _mm_or_si128 (shift_res, saturation_mask); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b); // VQSHL.U64 q0,q0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshlq_n_u64(uint64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| // no effective SIMD solution here |
| _NEON2SSE_ALIGN_16 uint64_t atmp[2], res[2]; |
| uint64_t bmask; |
| int i; |
| bmask = ( uint64_t)1 << (64 - b); |
| _mm_store_si128((__m128i*)atmp, a); |
| for (i = 0; i<2; i++) { |
| res[i] = (atmp[i] >= bmask)&&(b>0) ? 0xffffffffffffffff : atmp[i] << b; //if b=0 we are fine with any a |
| } |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| //**************Vector signed->unsigned saturating shift left by constant ************* |
| //************************************************************************************* |
| _NEON2SSESTORAGE uint8x8_t vqshlu_n_s8(int8x8_t a, __constrange(0,7) int b); // VQSHLU.S8 d0,d0,#0 |
| _NEON2SSE_INLINE uint8x8_t vqshlu_n_s8(int8x8_t a, __constrange(0,7) int b) // VQSHLU.S8 d0,d0,#0 |
| { |
| //no 8 bit shift available in IA32 SIMD, go to 16 bit. It also provides the auto saturation (in packs function) |
| uint8x8_t res64; |
| __m128i a128, r128; |
| a128 = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1 |
| r128 = _mm_slli_epi16 (a128, b); |
| r128 = _mm_packus_epi16 (r128,r128); //saturated u8, use 64 low bits only |
| return64(r128); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqshlu_n_s16(int16x4_t a, __constrange(0,15) int b); // VQSHLU.S16 d0,d0,#0 |
| _NEON2SSE_INLINE uint16x4_t vqshlu_n_s16(int16x4_t a, __constrange(0,15) int b) // VQSHLU.S16 d0,d0,#0 |
| { |
| uint16x4_t res64; |
| __m128i a128, r128; |
| a128 = _MM_CVTEPI16_EPI32 (_pM128i(a)); //SSE 4.1 |
| r128 = _mm_slli_epi32 (a128, b); //shift_res |
| r128 = _MM_PACKUS1_EPI32 (r128); //saturated s16, use 64 low bits only |
| return64(r128); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqshlu_n_s32(int32x2_t a, __constrange(0,31) int b); // VQSHLU.S32 d0,d0,#0 |
| _NEON2SSE_INLINE int32x2_t vqshlu_n_s32(int32x2_t a, __constrange(0,31) int b) |
| { |
| int32x2_t res64; |
| return64( vqshluq_n_s32(_pM128i(a), b)); |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vqshlu_n_s64(int64x1_t a, __constrange(0,63) int b); // VQSHLU.S64 d0,d0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x1_t vqshlu_n_s64(int64x1_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) // no effective SIMD solution here, serial execution looks faster |
| { |
| uint64x1_t res; |
| uint64_t limit; |
| if (a.m64_i64[0]<=0) { |
| res.m64_u64[0] = 0; |
| } else { |
| limit = (uint64_t) 1 << (64 - b); |
| res.m64_u64[0] = ( ((uint64_t)a.m64_i64[0]) >= limit) ? res.m64_u64[0] = ~((uint64_t)0) : a.m64_i64[0] << b; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b); // VQSHLU.S8 q0,q0,#0 |
| _NEON2SSE_INLINE uint8x16_t vqshluq_n_s8(int8x16_t a, __constrange(0,7) int b) // VQSHLU.S8 q0,q0,#0 |
| { |
| __m128i a128, r128_1, r128_2; |
| a128 = _MM_CVTEPI8_EPI16 (a); //SSE 4.1 |
| r128_1 = _mm_slli_epi16 (a128, b); |
| //swap hi and low part of a128 to process the remaining data |
| a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| a128 = _MM_CVTEPI8_EPI16 (a128); |
| r128_2 = _mm_slli_epi16 (a128, b); |
| return _mm_packus_epi16 (r128_1, r128_2); //saturated u8 |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b); // VQSHLU.S16 q0,q0,#0 |
| _NEON2SSE_INLINE uint16x8_t vqshluq_n_s16(int16x8_t a, __constrange(0,15) int b) // VQSHLU.S16 q0,q0,#0 |
| { |
| // manual saturation solution looks LESS optimal than 32 bits conversion one |
| __m128i a128, r128_1, r128_2; |
| a128 = _MM_CVTEPI16_EPI32 (a); //SSE 4.1 |
| r128_1 = _mm_slli_epi32 (a128, b); //shift_res |
| //swap hi and low part of a128 to process the remaining data |
| a128 = _mm_shuffle_epi32 (a, _SWAP_HI_LOW32); |
| a128 = _MM_CVTEPI16_EPI32 (a128); |
| r128_2 = _mm_slli_epi32 (a128, b); |
| return _MM_PACKUS_EPI32 (r128_1, r128_2); //saturated s16 |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b); // VQSHLU.S32 q0,q0,#0 |
| _NEON2SSE_INLINE uint32x4_t vqshluq_n_s32(int32x4_t a, __constrange(0,31) int b) // VQSHLU.S32 q0,q0,#0 |
| { |
| //solution may be not optimal compared with the serial one |
| __m128i zero, maskA, maskGT0, a0, a_masked, a_shift; |
| zero = _mm_setzero_si128(); |
| maskA = _mm_cmpeq_epi32(a, a); |
| maskA = _mm_slli_epi32(maskA,(32 - b)); // b ones and (32-b)zeros |
| //saturate negative numbers to zero |
| maskGT0 = _mm_cmpgt_epi32 (a, zero); // //0xffffffff if positive number and zero otherwise (negative numbers) |
| a0 = _mm_and_si128 (a, maskGT0); //negative are zeros now |
| //saturate positive to 0xffffffff |
| a_masked = _mm_and_si128 (a0, maskA); |
| a_masked = _mm_cmpgt_epi32 (a_masked, zero); //0xffffffff if saturation necessary 0 otherwise |
| a_shift = _mm_slli_epi32 (a0, b); |
| return _mm_or_si128 (a_shift, a_masked); //actual saturation |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b); // VQSHLU.S64 q0,q0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint64x2_t vqshluq_n_s64(int64x2_t a, __constrange(0,63) int b), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| // no effective SIMD solution here, serial execution looks faster |
| _NEON2SSE_ALIGN_16 int64_t atmp[2]; |
| _NEON2SSE_ALIGN_16 uint64_t res[2]; |
| uint64_t limit; |
| int i; |
| _mm_store_si128((__m128i*)atmp, a); |
| for (i = 0; i<2; i++) { |
| if (atmp[i]<=0) { |
| res[i] = 0; |
| } else { |
| limit = (uint64_t) 1 << (64 - b); |
| res[i] = ( ((uint64_t)atmp[i]) >= limit) ? res[i] = ~((uint64_t)0) : atmp[i] << b; |
| } |
| } |
| return _mm_load_si128((__m128i*)res); |
| } |
| |
| //************** Vector narrowing shift right by constant ************** |
| //********************************************************************** |
| _NEON2SSESTORAGE int8x8_t vshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8 |
| _NEON2SSE_INLINE int8x8_t vshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VSHRN.I16 d0,q0,#8 |
| { |
| int8x8_t res64; |
| __m128i r16; |
| r16 = vshrq_n_s16(a,b); |
| r16 = _mm_shuffle_epi8 (r16, *(__m128i*) mask8_16_even_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16 |
| _NEON2SSE_INLINE int16x4_t vshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VSHRN.I32 d0,q0,#16 |
| { |
| int16x4_t res64; |
| __m128i r32; |
| r32 = vshrq_n_s32(a,b); |
| r32 = _mm_shuffle_epi8 (r32, *(__m128i*) mask8_32_even_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32 |
| _NEON2SSE_INLINE int32x2_t vshrn_n_s64(int64x2_t a, __constrange(1,32) int b) |
| { |
| int32x2_t res64; |
| __m128i r64; |
| r64 = vshrq_n_s64(a,b); |
| r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(r64); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VSHRN.I16 d0,q0,#8 |
| _NEON2SSE_INLINE uint8x8_t vshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VSHRN.I16 d0,q0,#8 |
| { |
| uint8x8_t res64; |
| __m128i mask, r16; |
| mask = _mm_set1_epi16(0xff); |
| r16 = vshrq_n_s16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8) |
| r16 = _mm_and_si128(r16, mask); //to avoid saturation |
| r16 = _mm_packus_epi16 (r16,r16); //narrow, use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VSHRN.I32 d0,q0,#16 |
| _NEON2SSE_INLINE uint16x4_t vshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VSHRN.I32 d0,q0,#16 |
| { |
| uint16x4_t res64; |
| __m128i mask, r32; |
| mask = _mm_set1_epi32(0xffff); |
| r32 = vshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 16) |
| r32 = _mm_and_si128(r32, mask); //to avoid saturation |
| r32 = _MM_PACKUS1_EPI32 (r32); //saturate and narrow, use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VSHRN.I64 d0,q0,#32 |
| _NEON2SSE_INLINE uint32x2_t vshrn_n_u64(uint64x2_t a, __constrange(1,32) int b) |
| { |
| uint32x2_t res64; |
| __m128i r64; |
| r64 = vshrq_n_u64(a,b); |
| r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(r64); |
| } |
| |
| //************** Vector signed->unsigned narrowing saturating shift right by constant ******** |
| //********************************************************************************************* |
| _NEON2SSESTORAGE uint8x8_t vqshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRUN.S16 d0,q0,#8 |
| _NEON2SSE_INLINE uint8x8_t vqshrun_n_s16(int16x8_t a, __constrange(1,8) int b) // VQSHRUN.S16 d0,q0,#8 |
| { |
| uint8x8_t res64; |
| __m128i r16; |
| r16 = vshrq_n_s16(a,b); |
| r16 = _mm_packus_epi16 (r16,r16); //saturate and narrow (signed to unsigned), use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRUN.S32 d0,q0,#16 |
| _NEON2SSE_INLINE uint16x4_t vqshrun_n_s32(int32x4_t a, __constrange(1,16) int b) // VQSHRUN.S32 d0,q0,#16 |
| { |
| uint16x4_t res64; |
| __m128i r32; |
| r32 = vshrq_n_s32(a,b); |
| r32 = _MM_PACKUS1_EPI32 (r32); //saturate and narrow(signed to unsigned), use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRUN.S64 d0,q0,#32 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqshrun_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution is faster |
| { |
| _NEON2SSE_ALIGN_16 int64_t atmp[2]; |
| uint32x2_t res; |
| int64_t res64; |
| _mm_store_si128((__m128i*)atmp, a); |
| if (atmp[0] < 0) { |
| res.m64_u32[0] = 0; |
| } else { |
| res64 = (atmp[0] >> b); |
| res.m64_u32[0] = (res64 > (int64_t)0xffffffff) ? 0xffffffff : (uint32_t) res64; |
| } |
| if (atmp[1] < 0) { |
| res.m64_u32[1] = 0; |
| } else { |
| res64 = (atmp[1] >> b); |
| res.m64_u32[1] = (res64 > (int64_t)0xffffffff) ? 0xffffffff : (uint32_t)res64; |
| } |
| return res; |
| } |
| |
| //**** Vector signed->unsigned rounding narrowing saturating shift right by constant ***** |
| _NEON2SSESTORAGE uint8x8_t vqrshrun_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRUN.S16 d0,q0,#8 |
| _NEON2SSE_INLINE uint8x8_t vqrshrun_n_s16(int16x8_t a, __constrange(1,8) int b) // VQRSHRUN.S16 d0,q0,#8 |
| { |
| //solution may be not optimal compared with the serial one |
| __m128i r16; |
| uint8x8_t res64; |
| r16 = vrshrq_n_s16(a,b); |
| r16 = _mm_packus_epi16 (r16,r16); //saturate and narrow (signed to unsigned), use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqrshrun_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRUN.S32 d0,q0,#16 |
| _NEON2SSE_INLINE uint16x4_t vqrshrun_n_s32(int32x4_t a, __constrange(1,16) int b) // VQRSHRUN.S32 d0,q0,#16 |
| { |
| //solution may be not optimal compared with the serial one |
| __m128i r32; |
| uint16x4_t res64; |
| r32 = vrshrq_n_s32(a,b); |
| r32 = _MM_PACKUS1_EPI32 (r32); //saturate and narrow (signed to unsigned), use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqrshrun_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRUN.S64 d0,q0,#32 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vqrshrun_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_SERIAL) //serial solution is faster |
| { |
| _NEON2SSE_ALIGN_16 int64_t atmp[2]; |
| uint32x2_t res; |
| int64_t res64; |
| _mm_store_si128((__m128i*)atmp, a); |
| if (atmp[0] < 0) { |
| res.m64_u32[0] = 0; |
| } else { |
| res64 = (atmp[0] >> b) + ( (atmp[0] & ((int64_t)1 << (b - 1))) >> (b - 1) ); |
| res.m64_u32[0] = (uint32_t) ((res64 > (int64_t)0xffffffff ) ? 0xffffffff : res64); |
| } |
| if (atmp[1] < 0) { |
| res.m64_u32[1] = 0; |
| } else { |
| res64 = (atmp[1] >> b) + ( (atmp[0] & ((int64_t)1 << (b - 1))) >> (b - 1) ); |
| res.m64_u32[1] = (uint32_t)((res64 > (int64_t)0xffffffff ) ? 0xffffffff : res64); |
| } |
| return res; |
| } |
| |
| //***** Vector narrowing saturating shift right by constant ****** |
| //***************************************************************** |
| _NEON2SSESTORAGE int8x8_t vqshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQSHRN.S16 d0,q0,#8 |
| _NEON2SSE_INLINE int8x8_t vqshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VQSHRN.S16 d0,q0,#8 |
| { |
| int8x8_t res64; |
| __m128i r16; |
| r16 = vshrq_n_s16(a,b); |
| r16 = _mm_packs_epi16 (r16,r16); //saturate and narrow, use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQSHRN.S32 d0,q0,#16 |
| _NEON2SSE_INLINE int16x4_t vqshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VQSHRN.S32 d0,q0,#16 |
| { |
| int16x4_t res64; |
| __m128i r32; |
| r32 = vshrq_n_s32(a,b); |
| r32 = _mm_packs_epi32 (r32,r32); //saturate and narrow, use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQSHRN.S64 d0,q0,#32 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqshrn_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| //no optimal SIMD solution found |
| _NEON2SSE_ALIGN_16 int64_t res64[2], atmp[2]; |
| int32x2_t res; |
| _mm_store_si128((__m128i*)atmp, a); |
| res64[0] = (atmp[0] >> b); |
| res64[1] = (atmp[1] >> b); |
| if(res64[0]>SINT_MAX) res64[0] = SINT_MAX; |
| if(res64[0]<SINT_MIN) res64[0] = SINT_MIN; |
| if(res64[1]>SINT_MAX) res64[1] = SINT_MAX; |
| if(res64[1]<SINT_MIN) res64[1] = SINT_MIN; |
| res.m64_i32[0] = (int32_t)res64[0]; |
| res.m64_i32[1] = (int32_t)res64[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQSHRN.s16 d0,q0,#8 |
| _NEON2SSE_INLINE uint8x8_t vqshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VQSHRN.s16 d0,q0,#8 |
| { |
| uint8x8_t res64; |
| __m128i r16; |
| r16 = vshrq_n_u16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8) |
| r16 = _mm_packus_epi16 (r16,r16); //saturate and narrow, use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQSHRN.U32 d0,q0,#16 |
| _NEON2SSE_INLINE uint16x4_t vqshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VQSHRN.U32 d0,q0,#16 |
| { |
| uint16x4_t res64; |
| __m128i r32; |
| r32 = vshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 8) |
| r32 = _MM_PACKUS1_EPI32 (r32); //saturate and narrow, use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQSHRN.U64 d0,q0,#32 |
| _NEON2SSE_INLINE uint32x2_t vqshrn_n_u64(uint64x2_t a, __constrange(1,32) int b) |
| { |
| //serial solution may be faster |
| uint32x2_t res64; |
| __m128i r64, res_hi, zero; |
| zero = _mm_setzero_si128(); |
| r64 = vshrq_n_u64(a,b); |
| res_hi = _mm_srli_epi64(r64, 32); |
| res_hi = _mm_cmpgt_epi32(res_hi, zero); |
| r64 = _mm_or_si128(r64, res_hi); |
| r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(r64); |
| } |
| |
| |
| //********* Vector rounding narrowing shift right by constant ************************* |
| //**************************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8 |
| _NEON2SSE_INLINE int8x8_t vrshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VRSHRN.I16 d0,q0,#8 |
| { |
| int8x8_t res64; |
| __m128i r16; |
| r16 = vrshrq_n_s16(a,b); |
| r16 = _mm_shuffle_epi8 (r16, *(__m128i*) mask8_16_even_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16 |
| _NEON2SSE_INLINE int16x4_t vrshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VRSHRN.I32 d0,q0,#16 |
| { |
| int16x4_t res64; |
| __m128i r32; |
| r32 = vrshrq_n_s32(a,b); |
| r32 = _mm_shuffle_epi8 (r32, *(__m128i*) mask8_32_even_odd); //narrow, use low 64 bits only. Impossible to use _mm_packs because of negative saturation problems |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32 |
| _NEON2SSE_INLINE int32x2_t vrshrn_n_s64(int64x2_t a, __constrange(1,32) int b) |
| { |
| int32x2_t res64; |
| __m128i r64; |
| r64 = vrshrq_n_s64(a,b); |
| r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(r64); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VRSHRN.I16 d0,q0,#8 |
| _NEON2SSE_INLINE uint8x8_t vrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VRSHRN.I16 d0,q0,#8 |
| { |
| uint8x8_t res64; |
| __m128i mask, r16; |
| mask = _mm_set1_epi16(0xff); |
| r16 = vrshrq_n_s16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8) |
| r16 = _mm_and_si128(r16, mask); //to avoid saturation |
| r16 = _mm_packus_epi16 (r16,r16); //saturate and narrow, use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VRSHRN.I32 d0,q0,#16 |
| _NEON2SSE_INLINE uint16x4_t vrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VRSHRN.I32 d0,q0,#16 |
| { |
| uint16x4_t res64; |
| __m128i mask, r32; |
| mask = _mm_set1_epi32(0xffff); |
| r32 = vrshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 8) |
| r32 = _mm_and_si128(r32, mask); //to avoid saturation |
| r32 = _MM_PACKUS1_EPI32 (r32); //saturate and narrow, use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VRSHRN.I64 d0,q0,#32 |
| _NEON2SSE_INLINE uint32x2_t vrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b) //serial solution may be faster |
| { |
| uint32x2_t res64; |
| __m128i r64; |
| r64 = vrshrq_n_u64(a,b); |
| r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(r64); |
| } |
| |
| //************* Vector rounding narrowing saturating shift right by constant ************ |
| //**************************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vqrshrn_n_s16(int16x8_t a, __constrange(1,8) int b); // VQRSHRN.S16 d0,q0,#8 |
| _NEON2SSE_INLINE int8x8_t vqrshrn_n_s16(int16x8_t a, __constrange(1,8) int b) // VQRSHRN.S16 d0,q0,#8 |
| { |
| int8x8_t res64; |
| __m128i r16; |
| r16 = vrshrq_n_s16(a,b); |
| r16 = _mm_packs_epi16 (r16,r16); //saturate and narrow, use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqrshrn_n_s32(int32x4_t a, __constrange(1,16) int b); // VQRSHRN.S32 d0,q0,#16 |
| _NEON2SSE_INLINE int16x4_t vqrshrn_n_s32(int32x4_t a, __constrange(1,16) int b) // VQRSHRN.S32 d0,q0,#16 |
| { |
| int16x4_t res64; |
| __m128i r32; |
| r32 = vrshrq_n_s32(a,b); |
| r32 = _mm_packs_epi32 (r32,r32); //saturate and narrow, use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqrshrn_n_s64(int64x2_t a, __constrange(1,32) int b); // VQRSHRN.S64 d0,q0,#32 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrshrn_n_s64(int64x2_t a, __constrange(1,32) int b), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| //no optimal SIMD solution found |
| _NEON2SSE_ALIGN_16 int64_t res64[2], atmp[2], maskb[2]; |
| int32x2_t res; |
| _mm_store_si128((__m128i*)atmp, a); |
| maskb[0] = atmp[0] & (( int64_t)1 << (b - 1)); |
| res64[0] = (atmp[0] >> b) + (maskb[0] >> (b - 1)); //rounded result |
| maskb[1] = atmp[1] & (( int64_t)1 << (b - 1)); |
| res64[1] = (atmp[1] >> b) + (maskb[1] >> (b - 1)); //rounded result |
| if(res64[0]>SINT_MAX) res64[0] = SINT_MAX; |
| if(res64[0]<SINT_MIN) res64[0] = SINT_MIN; |
| if(res64[1]>SINT_MAX) res64[1] = SINT_MAX; |
| if(res64[1]<SINT_MIN) res64[1] = SINT_MIN; |
| res.m64_i32[0] = (int32_t)res64[0]; |
| res.m64_i32[1] = (int32_t)res64[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b); // VQRSHRN.s16 d0,q0,#8 |
| _NEON2SSE_INLINE uint8x8_t vqrshrn_n_u16(uint16x8_t a, __constrange(1,8) int b) // VQRSHRN.s16 d0,q0,#8 |
| { |
| uint8x8_t res64; |
| __m128i r16; |
| r16 = vrshrq_n_u16(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _mm_packus_epi16 (signed 16 to unsigned 8) |
| r16 = _mm_packus_epi16 (r16,r16); //saturate and narrow, use low 64 bits only |
| return64(r16); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b); // VQRSHRN.U32 d0,q0,#16 |
| _NEON2SSE_INLINE uint16x4_t vqrshrn_n_u32(uint32x4_t a, __constrange(1,16) int b) // VQRSHRN.U32 d0,q0,#16 |
| { |
| uint16x4_t res64; |
| __m128i r32; |
| r32 = vrshrq_n_u32(a,b); //after right shift b>=1 unsigned var fits into signed range, so we could use _MM_PACKUS_EPI32 (signed 32 to unsigned 8) |
| r32 = _MM_PACKUS1_EPI32 (r32); //saturate and narrow, use low 64 bits only |
| return64(r32); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b); // VQRSHRN.U64 d0,q0,#32 |
| _NEON2SSE_INLINE uint32x2_t vqrshrn_n_u64(uint64x2_t a, __constrange(1,32) int b) |
| { |
| //serial solution may be faster |
| uint32x2_t res64; |
| __m128i r64, res_hi, zero; |
| zero = _mm_setzero_si128(); |
| r64 = vrshrq_n_u64(a,b); |
| res_hi = _mm_srli_epi64(r64, 32); |
| res_hi = _mm_cmpgt_epi32(res_hi, zero); |
| r64 = _mm_or_si128(r64, res_hi); |
| r64 = _mm_shuffle_epi32(r64, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(r64); |
| } |
| |
| //************** Vector widening shift left by constant **************** |
| //************************************************************************ |
| _NEON2SSESTORAGE int16x8_t vshll_n_s8(int8x8_t a, __constrange(0,8) int b); // VSHLL.S8 q0,d0,#0 |
| _NEON2SSE_INLINE int16x8_t vshll_n_s8(int8x8_t a, __constrange(0,8) int b) // VSHLL.S8 q0,d0,#0 |
| { |
| __m128i r; |
| r = _MM_CVTEPI8_EPI16 (_pM128i(a)); //SSE 4.1 |
| return _mm_slli_epi16 (r, b); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vshll_n_s16(int16x4_t a, __constrange(0,16) int b); // VSHLL.S16 q0,d0,#0 |
| _NEON2SSE_INLINE int32x4_t vshll_n_s16(int16x4_t a, __constrange(0,16) int b) // VSHLL.S16 q0,d0,#0 |
| { |
| __m128i r; |
| r = _MM_CVTEPI16_EPI32(_pM128i(a)); //SSE4.1, |
| return _mm_slli_epi32 (r, b); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vshll_n_s32(int32x2_t a, __constrange(0,32) int b); // VSHLL.S32 q0,d0,#0 |
| _NEON2SSE_INLINE int64x2_t vshll_n_s32(int32x2_t a, __constrange(0,32) int b) // VSHLL.S32 q0,d0,#0 |
| { |
| __m128i r; |
| r = _MM_CVTEPI32_EPI64(_pM128i(a)); //SSE4.1, |
| return _mm_slli_epi64 (r, b); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vshll_n_u8(uint8x8_t a, __constrange(0,8) int b); // VSHLL.U8 q0,d0,#0 |
| _NEON2SSE_INLINE uint16x8_t vshll_n_u8(uint8x8_t a, __constrange(0,8) int b) // VSHLL.U8 q0,d0,#0 |
| { |
| //no uint8 to uint16 conversion available, manual conversion used |
| __m128i zero, r; |
| zero = _mm_setzero_si128 (); |
| r = _mm_unpacklo_epi8(_pM128i(a), zero); |
| return _mm_slli_epi16 (r, b); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vshll_n_u16(uint16x4_t a, __constrange(0,16) int b); // VSHLL.s16 q0,d0,#0 |
| _NEON2SSE_INLINE uint32x4_t vshll_n_u16(uint16x4_t a, __constrange(0,16) int b) // VSHLL.s16 q0,d0,#0 |
| { |
| //no uint16 to uint32 conversion available, manual conversion used |
| __m128i zero, r; |
| zero = _mm_setzero_si128 (); |
| r = _mm_unpacklo_epi16(_pM128i(a), zero); |
| return _mm_slli_epi32 (r, b); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vshll_n_u32(uint32x2_t a, __constrange(0,32) int b); // VSHLL.U32 q0,d0,#0 |
| _NEON2SSE_INLINE uint64x2_t vshll_n_u32(uint32x2_t a, __constrange(0,32) int b) // VSHLL.U32 q0,d0,#0 |
| { |
| //no uint32 to uint64 conversion available, manual conversion used |
| __m128i zero, r; |
| zero = _mm_setzero_si128 (); |
| r = _mm_unpacklo_epi32(_pM128i(a), zero); |
| return _mm_slli_epi64 (r, b); |
| } |
| |
| //************************************************************************************ |
| //**************************** Shifts with insert ************************************ |
| //************************************************************************************ |
| //takes each element in a vector, shifts them by an immediate value, |
| //and inserts the results in the destination vector. Bits shifted out of the each element are lost. |
| |
| //**************** Vector shift right and insert ************************************ |
| //Actually the "c" left bits from "a" are the only bits remained from "a" after the shift. |
| //All other bits are taken from b shifted. |
| _NEON2SSESTORAGE int8x8_t vsri_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8 |
| _NEON2SSE_INLINE int8x8_t vsri_n_s8(int8x8_t a, int8x8_t b, __constrange(1,8) int c) |
| { |
| int8x8_t res64; |
| return64(vsriq_n_s8(_pM128i(a),_pM128i(b), c)); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vsri_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16 |
| _NEON2SSE_INLINE int16x4_t vsri_n_s16(int16x4_t a, int16x4_t b, __constrange(1,16) int c) |
| { |
| int16x4_t res64; |
| return64(vsriq_n_s16(_pM128i(a),_pM128i(b), c)); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vsri_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32 |
| _NEON2SSE_INLINE int32x2_t vsri_n_s32(int32x2_t a, int32x2_t b, __constrange(1,32) int c) |
| { |
| int32x2_t res64; |
| return64(vsriq_n_s32(_pM128i(a),_pM128i(b), c)); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vsri_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64 |
| _NEON2SSE_INLINE int64x1_t vsri_n_s64(int64x1_t a, int64x1_t b, __constrange(1,64) int c) |
| { |
| int64x1_t res; |
| if (c ==64) |
| res = a; |
| else{ |
| res.m64_i64[0] = (b.m64_u64[0] >> c) | ((a.m64_i64[0] >> (64 - c)) << (64 - c)); //treat b as unsigned for shift to get leading zeros |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vsri_n_u8(uint8x8_t a, uint8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8 |
| #define vsri_n_u8 vsri_n_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vsri_n_u16(uint16x4_t a, uint16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16 |
| #define vsri_n_u16 vsri_n_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vsri_n_u32(uint32x2_t a, uint32x2_t b, __constrange(1,32) int c); // VSRI.32 d0,d0,#32 |
| #define vsri_n_u32 vsri_n_s32 |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vsri_n_u64(uint64x1_t a, uint64x1_t b, __constrange(1,64) int c); // VSRI.64 d0,d0,#64 |
| #define vsri_n_u64 vsri_n_s64 |
| |
| _NEON2SSESTORAGE poly8x8_t vsri_n_p8(poly8x8_t a, poly8x8_t b, __constrange(1,8) int c); // VSRI.8 d0,d0,#8 |
| #define vsri_n_p8 vsri_n_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vsri_n_p16(poly16x4_t a, poly16x4_t b, __constrange(1,16) int c); // VSRI.16 d0,d0,#16 |
| #define vsri_n_p16 vsri_n_u16 |
| |
| _NEON2SSESTORAGE int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 |
| _NEON2SSE_INLINE int8x16_t vsriq_n_s8(int8x16_t a, int8x16_t b, __constrange(1,8) int c) // VSRI.8 q0,q0,#8 |
| { |
| __m128i maskA, a_masked; |
| uint8x16_t b_shift; |
| _NEON2SSE_ALIGN_16 uint8_t maskLeft[9] = {0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; //"a" bits mask, 0 bit not used |
| maskA = _mm_set1_epi8(maskLeft[c]); // c ones and (8-c)zeros |
| a_masked = _mm_and_si128 (a, maskA); |
| b_shift = vshrq_n_u8( b, c); // c zeros on the left in b due to logical shift |
| return _mm_or_si128 (a_masked, b_shift); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 |
| _NEON2SSE_INLINE int16x8_t vsriq_n_s16(int16x8_t a, int16x8_t b, __constrange(1,16) int c) // VSRI.16 q0,q0,#16 |
| { |
| //to cut "c" left bits from a we do shift right and then shift back left providing c right zeros in a |
| uint16x8_t b_shift; |
| uint16x8_t a_c; |
| b_shift = vshrq_n_u16( b, c); // c zeros on the left in b due to logical shift |
| a_c = vshrq_n_u16( a, (16 - c)); |
| a_c = _mm_slli_epi16(a_c, (16 - c)); //logical shift provides right "c" bits zeros in a |
| return _mm_or_si128 (a_c, b_shift); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 |
| _NEON2SSE_INLINE int32x4_t vsriq_n_s32(int32x4_t a, int32x4_t b, __constrange(1,32) int c) // VSRI.32 q0,q0,#32 |
| { |
| //to cut "c" left bits from a we do shift right and then shift back left providing c right zeros in a |
| uint32x4_t b_shift; |
| uint32x4_t a_c; |
| b_shift = vshrq_n_u32( b, c); // c zeros on the left in b due to logical shift |
| a_c = vshrq_n_u32( a, (32 - c)); |
| a_c = _mm_slli_epi32(a_c, (32 - c)); //logical shift provides right "c" bits zeros in a |
| return _mm_or_si128 (a_c, b_shift); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 |
| _NEON2SSE_INLINE int64x2_t vsriq_n_s64(int64x2_t a, int64x2_t b, __constrange(1,64) int c) |
| { |
| //serial solution may be faster |
| uint64x2_t b_shift; |
| uint64x2_t a_c; |
| b_shift = _mm_srli_epi64(b, c); // c zeros on the left in b due to logical shift |
| a_c = _mm_srli_epi64(a, (64 - c)); |
| a_c = _mm_slli_epi64(a_c, (64 - c)); //logical shift provides right "c" bits zeros in a |
| return _mm_or_si128 (a_c, b_shift); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vsriq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 |
| #define vsriq_n_u8 vsriq_n_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vsriq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 |
| #define vsriq_n_u16 vsriq_n_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vsriq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(1,32) int c); // VSRI.32 q0,q0,#32 |
| #define vsriq_n_u32 vsriq_n_s32 |
| |
| _NEON2SSESTORAGE uint64x2_t vsriq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(1,64) int c); // VSRI.64 q0,q0,#64 |
| #define vsriq_n_u64 vsriq_n_s64 |
| |
| _NEON2SSESTORAGE poly8x16_t vsriq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(1,8) int c); // VSRI.8 q0,q0,#8 |
| #define vsriq_n_p8 vsriq_n_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vsriq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(1,16) int c); // VSRI.16 q0,q0,#16 |
| #define vsriq_n_p16 vsriq_n_u16 |
| |
| //***** Vector shift left and insert ********************************************* |
| //********************************************************************************* |
| //Actually the "c" right bits from "a" are the only bits remained from "a" after the shift. |
| //All other bits are taken from b shifted. Ending zeros are inserted in b in the shift proces. We need to combine "a" and "b shifted". |
| _NEON2SSESTORAGE int8x8_t vsli_n_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0 |
| _NEON2SSE_INLINE int8x8_t vsli_n_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c) |
| { |
| int8x8_t res64; |
| return64(vsliq_n_s8(_pM128i(a),_pM128i(b), c)); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vsli_n_s16(int16x4_t a, int16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0 |
| _NEON2SSE_INLINE int16x4_t vsli_n_s16(int16x4_t a, int16x4_t b, __constrange(0,15) int c) |
| { |
| int16x4_t res64; |
| return64(vsliq_n_s16(_pM128i(a),_pM128i(b), c)); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vsli_n_s32(int32x2_t a, int32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0 |
| _NEON2SSE_INLINE int32x2_t vsli_n_s32(int32x2_t a, int32x2_t b, __constrange(0,31) int c) |
| { |
| int32x2_t res64; |
| return64(vsliq_n_s32(_pM128i(a),_pM128i(b), c)); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vsli_n_s64(int64x1_t a, int64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0 |
| _NEON2SSE_INLINE int64x1_t vsli_n_s64(int64x1_t a, int64x1_t b, __constrange(0,63) int c) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = (b.m64_i64[0] << c) | ((a.m64_u64[0] << (64 - c)) >> (64 - c)); //need to treat a as unsigned to get leading zeros |
| return res; |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vsli_n_u8(uint8x8_t a, uint8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0 |
| #define vsli_n_u8 vsli_n_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vsli_n_u16(uint16x4_t a, uint16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0 |
| #define vsli_n_u16 vsli_n_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vsli_n_u32(uint32x2_t a, uint32x2_t b, __constrange(0,31) int c); // VSLI.32 d0,d0,#0 |
| #define vsli_n_u32 vsli_n_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vsli_n_u64(uint64x1_t a, uint64x1_t b, __constrange(0,63) int c); // VSLI.64 d0,d0,#0 |
| #define vsli_n_u64 vsli_n_s64 |
| |
| _NEON2SSESTORAGE poly8x8_t vsli_n_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VSLI.8 d0,d0,#0 |
| #define vsli_n_p8 vsli_n_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vsli_n_p16(poly16x4_t a, poly16x4_t b, __constrange(0,15) int c); // VSLI.16 d0,d0,#0 |
| #define vsli_n_p16 vsli_n_u16 |
| |
| _NEON2SSESTORAGE int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 |
| _NEON2SSE_INLINE int8x16_t vsliq_n_s8(int8x16_t a, int8x16_t b, __constrange(0,7) int c) // VSLI.8 q0,q0,#0 |
| { |
| __m128i maskA, a_masked; |
| int8x16_t b_shift; |
| _NEON2SSE_ALIGN_16 uint8_t maskRight[8] = {0x0, 0x1, 0x3, 0x7, 0x0f, 0x1f, 0x3f, 0x7f}; //"a" bits mask |
| maskA = _mm_set1_epi8(maskRight[c]); // (8-c)zeros and c ones |
| b_shift = vshlq_n_s8( b, c); |
| a_masked = _mm_and_si128 (a, maskA); |
| return _mm_or_si128 (b_shift, a_masked); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 |
| _NEON2SSE_INLINE int16x8_t vsliq_n_s16(int16x8_t a, int16x8_t b, __constrange(0,15) int c) // VSLI.16 q0,q0,#0 |
| { |
| //to cut "c" right bits from a we do shift left and then logical shift back right providing (16-c)zeros in a |
| int16x8_t b_shift; |
| int16x8_t a_c; |
| b_shift = vshlq_n_s16( b, c); |
| a_c = vshlq_n_s16( a, (16 - c)); |
| a_c = _mm_srli_epi16(a_c, (16 - c)); |
| return _mm_or_si128 (b_shift, a_c); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 |
| _NEON2SSE_INLINE int32x4_t vsliq_n_s32(int32x4_t a, int32x4_t b, __constrange(0,31) int c) // VSLI.32 q0,q0,#0 |
| { |
| //solution may be not optimal compared with the serial one |
| //to cut "c" right bits from a we do shift left and then logical shift back right providing (32-c)zeros in a |
| int32x4_t b_shift; |
| int32x4_t a_c; |
| b_shift = vshlq_n_s32( b, c); |
| a_c = vshlq_n_s32( a, (32 - c)); |
| a_c = _mm_srli_epi32(a_c, (32 - c)); |
| return _mm_or_si128 (b_shift, a_c); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 |
| _NEON2SSE_INLINE int64x2_t vsliq_n_s64(int64x2_t a, int64x2_t b, __constrange(0,63) int c) // VSLI.64 q0,q0,#0 |
| { |
| //solution may be not optimal compared with the serial one |
| //to cut "c" right bits from a we do shift left and then logical shift back right providing (64-c)zeros in a |
| int64x2_t b_shift; |
| int64x2_t a_c; |
| b_shift = vshlq_n_s64( b, c); |
| a_c = vshlq_n_s64( a, (64 - c)); |
| a_c = _mm_srli_epi64(a_c, (64 - c)); |
| return _mm_or_si128 (b_shift, a_c); //combine (insert b into a) |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vsliq_n_u8(uint8x16_t a, uint8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 |
| #define vsliq_n_u8 vsliq_n_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vsliq_n_u16(uint16x8_t a, uint16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 |
| #define vsliq_n_u16 vsliq_n_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vsliq_n_u32(uint32x4_t a, uint32x4_t b, __constrange(0,31) int c); // VSLI.32 q0,q0,#0 |
| #define vsliq_n_u32 vsliq_n_s32 |
| |
| _NEON2SSESTORAGE uint64x2_t vsliq_n_u64(uint64x2_t a, uint64x2_t b, __constrange(0,63) int c); // VSLI.64 q0,q0,#0 |
| #define vsliq_n_u64 vsliq_n_s64 |
| |
| _NEON2SSESTORAGE poly8x16_t vsliq_n_p8(poly8x16_t a, poly8x16_t b, __constrange(0,7) int c); // VSLI.8 q0,q0,#0 |
| #define vsliq_n_p8 vsliq_n_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vsliq_n_p16(poly16x8_t a, poly16x8_t b, __constrange(0,15) int c); // VSLI.16 q0,q0,#0 |
| #define vsliq_n_p16 vsliq_n_u16 |
| |
| // *********************************************************************************************** |
| // ****************** Loads and stores of a single vector *************************************** |
| // *********************************************************************************************** |
| //Performs loads and stores of a single vector of some type. |
| //******************************* Loads ******************************************************** |
| // *********************************************************************************************** |
| //We assume ptr is NOT aligned in general case and use __m128i _mm_loadu_si128 ((__m128i*) ptr);. |
| //also for SSE3 supporting systems the __m128i _mm_lddqu_si128 (__m128i const* p) usage for unaligned access may be advantageous. |
| // it loads a 32-byte block aligned on a 16-byte boundary and extracts the 16 bytes corresponding to the unaligned access |
| //If the ptr is aligned then could use __m128i _mm_load_si128 ((__m128i*) ptr) instead; |
| #define LOAD_SI128(ptr) \ |
| ( ((uintptr_t)(ptr) & 15) == 0 ) ? _mm_load_si128((__m128i*)(ptr)) : _mm_loadu_si128((__m128i*)(ptr)) |
| |
| _NEON2SSESTORAGE uint8x16_t vld1q_u8(__transfersize(16) uint8_t const * ptr); // VLD1.8 {d0, d1}, [r0] |
| #define vld1q_u8 LOAD_SI128 |
| |
| _NEON2SSESTORAGE uint16x8_t vld1q_u16(__transfersize(8) uint16_t const * ptr); // VLD1.16 {d0, d1}, [r0] |
| #define vld1q_u16 LOAD_SI128 |
| |
| _NEON2SSESTORAGE uint32x4_t vld1q_u32(__transfersize(4) uint32_t const * ptr); // VLD1.32 {d0, d1}, [r0] |
| #define vld1q_u32 LOAD_SI128 |
| |
| _NEON2SSESTORAGE uint64x2_t vld1q_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| #define vld1q_u64 LOAD_SI128 |
| |
| _NEON2SSESTORAGE int8x16_t vld1q_s8(__transfersize(16) int8_t const * ptr); // VLD1.8 {d0, d1}, [r0] |
| #define vld1q_s8 LOAD_SI128 |
| |
| _NEON2SSESTORAGE int16x8_t vld1q_s16(__transfersize(8) int16_t const * ptr); // VLD1.16 {d0, d1}, [r0] |
| #define vld1q_s16 LOAD_SI128 |
| |
| _NEON2SSESTORAGE int32x4_t vld1q_s32(__transfersize(4) int32_t const * ptr); // VLD1.32 {d0, d1}, [r0] |
| #define vld1q_s32 LOAD_SI128 |
| |
| _NEON2SSESTORAGE int64x2_t vld1q_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| #define vld1q_s64 LOAD_SI128 |
| |
| _NEON2SSESTORAGE float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr); // VLD1.16 {d0, d1}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers |
| /* _NEON2SSE_INLINE float16x8_t vld1q_f16(__transfersize(8) __fp16 const * ptr)// VLD1.16 {d0, d1}, [r0] |
| {__m128 f1 = _mm_set_ps (ptr[3], ptr[2], ptr[1], ptr[0]); |
| __m128 f2; |
| f2 = _mm_set_ps (ptr[7], ptr[6], ptr[5], ptr[4]); |
| }*/ |
| |
| _NEON2SSESTORAGE float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr); // VLD1.32 {d0, d1}, [r0] |
| _NEON2SSE_INLINE float32x4_t vld1q_f32(__transfersize(4) float32_t const * ptr) |
| { |
| if( (((uintptr_t)(ptr)) & 15 ) == 0 ) //16 bits aligned |
| return _mm_load_ps(ptr); |
| else |
| return _mm_loadu_ps(ptr); |
| } |
| |
| _NEON2SSESTORAGE poly8x16_t vld1q_p8(__transfersize(16) poly8_t const * ptr); // VLD1.8 {d0, d1}, [r0] |
| #define vld1q_p8 LOAD_SI128 |
| |
| _NEON2SSESTORAGE poly16x8_t vld1q_p16(__transfersize(8) poly16_t const * ptr); // VLD1.16 {d0, d1}, [r0] |
| #define vld1q_p16 LOAD_SI128 |
| |
| _NEON2SSESTORAGE uint8x8_t vld1_u8(__transfersize(8) uint8_t const * ptr); // VLD1.8 {d0}, [r0] |
| #define vld1_u8(ptr) *((__m64_128*)(ptr)) //was _mm_loadl_epi64((__m128i*)(ptr)) |
| |
| _NEON2SSESTORAGE uint16x4_t vld1_u16(__transfersize(4) uint16_t const * ptr); // VLD1.16 {d0}, [r0] |
| #define vld1_u16 vld1_u8 |
| |
| _NEON2SSESTORAGE uint32x2_t vld1_u32(__transfersize(2) uint32_t const * ptr); // VLD1.32 {d0}, [r0] |
| #define vld1_u32 vld1_u8 |
| |
| |
| _NEON2SSESTORAGE uint64x1_t vld1_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] |
| #define vld1_u64 vld1_u8 |
| |
| _NEON2SSESTORAGE int8x8_t vld1_s8(__transfersize(8) int8_t const * ptr); // VLD1.8 {d0}, [r0] |
| #define vld1_s8 vld1_u8 |
| |
| _NEON2SSESTORAGE int16x4_t vld1_s16(__transfersize(4) int16_t const * ptr); // VLD1.16 {d0}, [r0] |
| #define vld1_s16 vld1_u16 |
| |
| _NEON2SSESTORAGE int32x2_t vld1_s32(__transfersize(2) int32_t const * ptr); // VLD1.32 {d0}, [r0] |
| #define vld1_s32 vld1_u32 |
| |
| _NEON2SSESTORAGE int64x1_t vld1_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] |
| #define vld1_s64 vld1_u64 |
| |
| _NEON2SSESTORAGE float16x4_t vld1_f16(__transfersize(4) __fp16 const * ptr); // VLD1.16 {d0}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit like _mm_set_ps (ptr[3], ptr[2], ptr[1], ptr[0]); |
| |
| _NEON2SSESTORAGE float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr); // VLD1.32 {d0}, [r0] |
| _NEON2SSE_INLINE float32x2_t vld1_f32(__transfersize(2) float32_t const * ptr) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = *(ptr); |
| res.m64_f32[1] = *(ptr + 1); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE poly8x8_t vld1_p8(__transfersize(8) poly8_t const * ptr); // VLD1.8 {d0}, [r0] |
| #define vld1_p8 vld1_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vld1_p16(__transfersize(4) poly16_t const * ptr); // VLD1.16 {d0}, [r0] |
| #define vld1_p16 vld1_u16 |
| |
| |
| _NEON2SSESTORAGE float64x2_t vld1q_f64(__transfersize(4) float64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| _NEON2SSE_INLINE float64x2_t vld1q_f64(__transfersize(4) float64_t const * ptr) |
| { |
| if ((((uintptr_t)(ptr)) & 15) == 0) //16 bits aligned |
| return _mm_load_pd(ptr); |
| else |
| return _mm_loadu_pd(ptr); |
| } |
| |
| |
| //*********************************************************************************************************** |
| //******* Lane load functions - insert the data at vector's given position (lane) ************************* |
| //*********************************************************************************************************** |
| _NEON2SSESTORAGE uint8x16_t vld1q_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0] |
| #define vld1q_lane_u8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE uint16x8_t vld1q_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] |
| #define vld1q_lane_u16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE uint32x4_t vld1q_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] |
| #define vld1q_lane_u32(ptr, vec, lane) _MM_INSERT_EPI32(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE uint64x2_t vld1q_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0] |
| #define vld1q_lane_u64(ptr, vec, lane) _MM_INSERT_EPI64(vec, *(ptr), lane); // _p; |
| |
| |
| _NEON2SSESTORAGE int8x16_t vld1q_lane_s8(__transfersize(1) int8_t const * ptr, int8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0] |
| #define vld1q_lane_s8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE int16x8_t vld1q_lane_s16(__transfersize(1) int16_t const * ptr, int16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] |
| #define vld1q_lane_s16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE int32x4_t vld1q_lane_s32(__transfersize(1) int32_t const * ptr, int32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] |
| #define vld1q_lane_s32(ptr, vec, lane) _MM_INSERT_EPI32(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE float16x8_t vld1q_lane_f16(__transfersize(1) __fp16 const * ptr, float16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane); // VLD1.32 {d0[0]}, [r0] |
| _NEON2SSE_INLINE float32x4_t vld1q_lane_f32(__transfersize(1) float32_t const * ptr, float32x4_t vec, __constrange(0,3) int lane) |
| { |
| //we need to deal with ptr 16bit NOT aligned case |
| __m128 p; |
| p = _mm_set1_ps(*(ptr)); |
| return _MM_INSERT_PS(vec, p, _INSERTPS_NDX(0, lane)); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vld1q_lane_s64(__transfersize(1) int64_t const * ptr, int64x2_t vec, __constrange(0,1) int lane); // VLD1.64 {d0}, [r0] |
| #define vld1q_lane_s64(ptr, vec, lane) _MM_INSERT_EPI64(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE poly8x16_t vld1q_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x16_t vec, __constrange(0,15) int lane); // VLD1.8 {d0[0]}, [r0] |
| #define vld1q_lane_p8(ptr, vec, lane) _MM_INSERT_EPI8(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE poly16x8_t vld1q_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x8_t vec, __constrange(0,7) int lane); // VLD1.16 {d0[0]}, [r0] |
| #define vld1q_lane_p16(ptr, vec, lane) _MM_INSERT_EPI16(vec, *(ptr), lane) |
| |
| _NEON2SSESTORAGE uint8x8_t vld1_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x8_t vec, __constrange(0,7) int lane); // VLD1.8 {d0[0]}, [r0] |
| _NEON2SSE_INLINE uint8x8_t vld1_lane_u8(__transfersize(1) uint8_t const * ptr, uint8x8_t vec, __constrange(0,7) int lane) |
| { |
| uint8x8_t res; |
| res = vec; |
| res.m64_u8[lane] = *(ptr); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vld1_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0] |
| _NEON2SSE_INLINE uint16x4_t vld1_lane_u16(__transfersize(1) uint16_t const * ptr, uint16x4_t vec, __constrange(0,3) int lane) |
| { |
| uint16x4_t res; |
| res = vec; |
| res.m64_u16[lane] = *(ptr); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vld1_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0] |
| _NEON2SSE_INLINE uint32x2_t vld1_lane_u32(__transfersize(1) uint32_t const * ptr, uint32x2_t vec, __constrange(0,1) int lane) |
| { |
| uint32x2_t res; |
| res = vec; |
| res.m64_u32[lane] = *(ptr); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vld1_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x1_t vec, __constrange(0,0) int lane); // VLD1.64 {d0}, [r0] |
| _NEON2SSE_INLINE uint64x1_t vld1_lane_u64(__transfersize(1) uint64_t const * ptr, uint64x1_t vec, __constrange(0,0) int lane) |
| { |
| uint64x1_t res; |
| res.m64_u64[0] = *(ptr); |
| return res; |
| } |
| |
| |
| _NEON2SSESTORAGE int8x8_t vld1_lane_s8(__transfersize(1) int8_t const * ptr, int8x8_t vec, __constrange(0,7) int lane); // VLD1.8 {d0[0]}, [r0] |
| #define vld1_lane_s8(ptr, vec, lane) vld1_lane_u8((uint8_t*)ptr, vec, lane) |
| |
| _NEON2SSESTORAGE int16x4_t vld1_lane_s16(__transfersize(1) int16_t const * ptr, int16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0] |
| #define vld1_lane_s16(ptr, vec, lane) vld1_lane_u16((uint16_t*)ptr, vec, lane) |
| |
| _NEON2SSESTORAGE int32x2_t vld1_lane_s32(__transfersize(1) int32_t const * ptr, int32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0] |
| #define vld1_lane_s32(ptr, vec, lane) vld1_lane_u32((uint32_t*)ptr, vec, lane) |
| |
| _NEON2SSESTORAGE float16x4_t vld1_lane_f16(__transfersize(1) __fp16 const * ptr, float16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x2_t vld1_lane_f32(__transfersize(1) float32_t const * ptr, float32x2_t vec, __constrange(0,1) int lane); // VLD1.32 {d0[0]}, [r0] |
| _NEON2SSE_INLINE float32x2_t vld1_lane_f32(__transfersize(1) float32_t const * ptr, float32x2_t vec, __constrange(0,1) int lane) |
| { |
| float32x2_t res; |
| res = vec; |
| res.m64_f32[lane] = *(ptr); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vld1_lane_s64(__transfersize(1) int64_t const * ptr, int64x1_t vec, __constrange(0,0) int lane); // VLD1.64 {d0}, [r0] |
| #define vld1_lane_s64(ptr, vec, lane) vld1_lane_u64((uint64_t*)ptr, vec, lane) |
| |
| _NEON2SSESTORAGE poly8x8_t vld1_lane_p8(__transfersize(1) poly8_t const * ptr, poly8x8_t vec, __constrange(0,7) int lane); // VLD1.8 {d0[0]}, [r0] |
| #define vld1_lane_p8 vld1_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vld1_lane_p16(__transfersize(1) poly16_t const * ptr, poly16x4_t vec, __constrange(0,3) int lane); // VLD1.16 {d0[0]}, [r0] |
| #define vld1_lane_p16 vld1_lane_s16 |
| |
| // ****************** Load single value ( set all lanes of vector with same value from memory)********************** |
| // ****************************************************************************************************************** |
| _NEON2SSESTORAGE uint8x16_t vld1q_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| #define vld1q_dup_u8(ptr) _mm_set1_epi8(*(ptr)) |
| |
| _NEON2SSESTORAGE uint16x8_t vld1q_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| #define vld1q_dup_u16(ptr) _mm_set1_epi16(*(ptr)) |
| |
| _NEON2SSESTORAGE uint32x4_t vld1q_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| #define vld1q_dup_u32(ptr) _mm_set1_epi32(*(ptr)) |
| |
| _NEON2SSESTORAGE uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSE_INLINE uint64x2_t vld1q_dup_u64(__transfersize(1) uint64_t const * ptr) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t val[2] = {*(ptr), *(ptr)}; |
| return LOAD_SI128(val); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vld1q_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| #define vld1q_dup_s8(ptr) _mm_set1_epi8(*(ptr)) |
| |
| _NEON2SSESTORAGE int16x8_t vld1q_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| #define vld1q_dup_s16(ptr) _mm_set1_epi16 (*(ptr)) |
| |
| _NEON2SSESTORAGE int32x4_t vld1q_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| #define vld1q_dup_s32(ptr) _mm_set1_epi32 (*(ptr)) |
| |
| _NEON2SSESTORAGE int64x2_t vld1q_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] |
| #define vld1q_dup_s64(ptr) vld1q_dup_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x8_t vld1q_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0] |
| //current IA SIMD doesn't support float16, need to go to 32 bits |
| |
| _NEON2SSESTORAGE float32x4_t vld1q_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| #define vld1q_dup_f32(ptr) _mm_set1_ps (*(ptr)) |
| |
| _NEON2SSESTORAGE poly8x16_t vld1q_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| #define vld1q_dup_p8(ptr) _mm_set1_epi8(*(ptr)) |
| |
| _NEON2SSESTORAGE poly16x8_t vld1q_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| #define vld1q_dup_p16(ptr) _mm_set1_epi16 (*(ptr)) |
| |
| _NEON2SSESTORAGE uint8x8_t vld1_dup_u8(__transfersize(1) uint8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vld1_dup_u8(__transfersize(1) uint8_t const * ptr), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint8x8_t res; |
| int i; |
| for(i = 0; i<8; i++) { |
| res.m64_u8[i] = *(ptr); |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vld1_dup_u16(__transfersize(1) uint16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vld1_dup_u16(__transfersize(1) uint16_t const * ptr), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint16x4_t res; |
| int i; |
| for(i = 0; i<4; i++) { |
| res.m64_u16[i] = *(ptr); |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vld1_dup_u32(__transfersize(1) uint32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vld1_dup_u32(__transfersize(1) uint32_t const * ptr), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint32x2_t res; |
| res.m64_u32[0] = *(ptr); |
| res.m64_u32[1] = *(ptr); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vld1_dup_u64(__transfersize(1) uint64_t const * ptr); // VLD1.64 {d0}, [r0] |
| _NEON2SSE_INLINE uint64x1_t vld1_dup_u64(__transfersize(1) uint64_t const * ptr) |
| { |
| uint64x1_t res; |
| res.m64_u64[0] = *(ptr); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vld1_dup_s8(__transfersize(1) int8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| #define vld1_dup_s8(ptr) vld1_dup_u8((uint8_t*)ptr) |
| |
| |
| _NEON2SSESTORAGE int16x4_t vld1_dup_s16(__transfersize(1) int16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| #define vld1_dup_s16(ptr) vld1_dup_u16((uint16_t*)ptr) |
| |
| |
| _NEON2SSESTORAGE int32x2_t vld1_dup_s32(__transfersize(1) int32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| #define vld1_dup_s32(ptr) vld1_dup_u32((uint32_t*)ptr) |
| |
| |
| _NEON2SSESTORAGE int64x1_t vld1_dup_s64(__transfersize(1) int64_t const * ptr); // VLD1.64 {d0}, [r0] |
| #define vld1_dup_s64(ptr) vld1_dup_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x4_t vld1_dup_f16(__transfersize(1) __fp16 const * ptr); // VLD1.16 {d0[]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x2_t vld1_dup_f32(__transfersize(1) float32_t const * ptr); // VLD1.32 {d0[]}, [r0] |
| _NEON2SSE_INLINE float32x2_t vld1_dup_f32(__transfersize(1) float32_t const * ptr) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = *(ptr); |
| res.m64_f32[1] = res.m64_f32[0]; |
| return res; // use last 64bits only |
| } |
| |
| _NEON2SSESTORAGE poly8x8_t vld1_dup_p8(__transfersize(1) poly8_t const * ptr); // VLD1.8 {d0[]}, [r0] |
| #define vld1_dup_p8 vld1_dup_u8 |
| |
| |
| _NEON2SSESTORAGE poly16x4_t vld1_dup_p16(__transfersize(1) poly16_t const * ptr); // VLD1.16 {d0[]}, [r0] |
| #define vld1_dup_p16 vld1_dup_u16 |
| |
| |
| //************************************************************************************* |
| //********************************* Store ********************************************** |
| //************************************************************************************* |
| // If ptr is 16bit aligned and you need to store data without cache pollution then use void _mm_stream_si128 ((__m128i*)ptr, val); |
| //here we assume the case of NOT 16bit aligned ptr possible. If it is aligned we could to use _mm_store_si128 like shown in the following macro |
| #define STORE_SI128(ptr, val) \ |
| (((uintptr_t)(ptr) & 15) == 0 ) ? _mm_store_si128 ((__m128i*)(ptr), val) : _mm_storeu_si128 ((__m128i*)(ptr), val); |
| |
| _NEON2SSESTORAGE void vst1q_u8(__transfersize(16) uint8_t * ptr, uint8x16_t val); // VST1.8 {d0, d1}, [r0] |
| #define vst1q_u8 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_u16(__transfersize(8) uint16_t * ptr, uint16x8_t val); // VST1.16 {d0, d1}, [r0] |
| #define vst1q_u16 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_u32(__transfersize(4) uint32_t * ptr, uint32x4_t val); // VST1.32 {d0, d1}, [r0] |
| #define vst1q_u32 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_u64(__transfersize(2) uint64_t * ptr, uint64x2_t val); // VST1.64 {d0, d1}, [r0] |
| #define vst1q_u64 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_s8(__transfersize(16) int8_t * ptr, int8x16_t val); // VST1.8 {d0, d1}, [r0] |
| #define vst1q_s8 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_s16(__transfersize(8) int16_t * ptr, int16x8_t val); // VST1.16 {d0, d1}, [r0] |
| #define vst1q_s16 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_s32(__transfersize(4) int32_t * ptr, int32x4_t val); // VST1.32 {d0, d1}, [r0] |
| #define vst1q_s32 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_s64(__transfersize(2) int64_t * ptr, int64x2_t val); // VST1.64 {d0, d1}, [r0] |
| #define vst1q_s64 STORE_SI128 |
| |
| _NEON2SSESTORAGE void vst1q_f16(__transfersize(8) __fp16 * ptr, float16x8_t val); // VST1.16 {d0, d1}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently |
| |
| _NEON2SSESTORAGE void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val); // VST1.32 {d0, d1}, [r0] |
| _NEON2SSE_INLINE void vst1q_f32(__transfersize(4) float32_t * ptr, float32x4_t val) |
| { |
| if( ((uintptr_t)(ptr) & 15) == 0 ) //16 bits aligned |
| _mm_store_ps (ptr, val); |
| else |
| _mm_storeu_ps (ptr, val); |
| } |
| |
| _NEON2SSESTORAGE void vst1q_p8(__transfersize(16) poly8_t * ptr, poly8x16_t val); // VST1.8 {d0, d1}, [r0] |
| #define vst1q_p8 vst1q_u8 |
| |
| _NEON2SSESTORAGE void vst1q_p16(__transfersize(8) poly16_t * ptr, poly16x8_t val); // VST1.16 {d0, d1}, [r0] |
| #define vst1q_p16 vst1q_u16 |
| |
| _NEON2SSESTORAGE void vst1_u8(__transfersize(8) uint8_t * ptr, uint8x8_t val); // VST1.8 {d0}, [r0] |
| _NEON2SSE_INLINE void vst1_u8(__transfersize(8) uint8_t * ptr, uint8x8_t val) |
| { |
| int i; |
| for (i = 0; i<8; i++) { |
| *(ptr + i) = ((uint8_t*)&val)[i]; |
| } |
| //_mm_storel_epi64((__m128i*)ptr, val); |
| return; |
| } |
| |
| _NEON2SSESTORAGE void vst1_u16(__transfersize(4) uint16_t * ptr, uint16x4_t val); // VST1.16 {d0}, [r0] |
| _NEON2SSE_INLINE void vst1_u16(__transfersize(4) uint16_t * ptr, uint16x4_t val) |
| { |
| int i; |
| for (i = 0; i<4; i++) { |
| *(ptr + i) = ((uint16_t*)&val)[i]; |
| } |
| //_mm_storel_epi64((__m128i*)ptr, val); |
| return; |
| } |
| |
| _NEON2SSESTORAGE void vst1_u32(__transfersize(2) uint32_t * ptr, uint32x2_t val); // VST1.32 {d0}, [r0] |
| _NEON2SSE_INLINE void vst1_u32(__transfersize(2) uint32_t * ptr, uint32x2_t val) |
| { |
| int i; |
| for (i = 0; i<2; i++) { |
| *(ptr + i) = ((uint32_t*)&val)[i]; |
| } |
| //_mm_storel_epi64((__m128i*)ptr, val); |
| return; |
| } |
| |
| _NEON2SSESTORAGE void vst1_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val); // VST1.64 {d0}, [r0] |
| _NEON2SSE_INLINE void vst1_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val) |
| { |
| *(ptr) = *((uint64_t*)&val); |
| //_mm_storel_epi64((__m128i*)ptr, val); |
| return; |
| } |
| |
| _NEON2SSESTORAGE void vst1_s8(__transfersize(8) int8_t * ptr, int8x8_t val); // VST1.8 {d0}, [r0] |
| #define vst1_s8(ptr,val) vst1_u8((uint8_t*)ptr,val) |
| |
| _NEON2SSESTORAGE void vst1_s16(__transfersize(4) int16_t * ptr, int16x4_t val); // VST1.16 {d0}, [r0] |
| #define vst1_s16(ptr,val) vst1_u16((uint16_t*)ptr,val) |
| |
| _NEON2SSESTORAGE void vst1_s32(__transfersize(2) int32_t * ptr, int32x2_t val); // VST1.32 {d0}, [r0] |
| #define vst1_s32(ptr,val) vst1_u32((uint32_t*)ptr,val) |
| |
| _NEON2SSESTORAGE void vst1_s64(__transfersize(1) int64_t * ptr, int64x1_t val); // VST1.64 {d0}, [r0] |
| #define vst1_s64(ptr,val) vst1_u64((uint64_t*)ptr,val) |
| |
| _NEON2SSESTORAGE void vst1_f16(__transfersize(4) __fp16 * ptr, float16x4_t val); // VST1.16 {d0}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst1_f32(__transfersize(2) float32_t * ptr, float32x2_t val); // VST1.32 {d0}, [r0] |
| _NEON2SSE_INLINE void vst1_f32(__transfersize(2) float32_t * ptr, float32x2_t val) |
| { |
| *(ptr) = val.m64_f32[0]; |
| *(ptr + 1) = val.m64_f32[1]; |
| return; |
| } |
| |
| _NEON2SSESTORAGE void vst1_p8(__transfersize(8) poly8_t * ptr, poly8x8_t val); // VST1.8 {d0}, [r0] |
| #define vst1_p8 vst1_u8 |
| |
| _NEON2SSESTORAGE void vst1_p16(__transfersize(4) poly16_t * ptr, poly16x4_t val); // VST1.16 {d0}, [r0] |
| #define vst1_p16 vst1_u16 |
| |
| //***********Store a lane of a vector into memory (extract given lane) ********************* |
| //****************************************************************************************** |
| _NEON2SSESTORAGE void vst1q_lane_u8(__transfersize(1) uint8_t * ptr, uint8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0] |
| #define vst1q_lane_u8(ptr, val, lane) *(ptr) = (uint8_t) _MM_EXTRACT_EPI8 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_u16(__transfersize(1) uint16_t * ptr, uint16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] |
| #define vst1q_lane_u16(ptr, val, lane) *(ptr) = (uint16_t) _MM_EXTRACT_EPI16 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_u32(__transfersize(1) uint32_t * ptr, uint32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0] |
| #define vst1q_lane_u32(ptr, val, lane) *(ptr) = (uint32_t) _MM_EXTRACT_EPI32 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_u64(__transfersize(1) uint64_t * ptr, uint64x2_t val, __constrange(0,1) int lane); // VST1.64 {d0}, [r0] |
| #define vst1q_lane_u64(ptr, val, lane) *(ptr) = (uint64_t) _MM_EXTRACT_EPI64 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_s8(__transfersize(1) int8_t * ptr, int8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0] |
| #define vst1q_lane_s8(ptr, val, lane) *(ptr) = (int8_t) _MM_EXTRACT_EPI8 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_s16(__transfersize(1) int16_t * ptr, int16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] |
| #define vst1q_lane_s16(ptr, val, lane) *(ptr) = (int16_t) _MM_EXTRACT_EPI16 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_s32(__transfersize(1) int32_t * ptr, int32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0] |
| #define vst1q_lane_s32(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI32 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_s64(__transfersize(1) int64_t * ptr, int64x2_t val, __constrange(0,1) int lane); // VST1.64 {d0}, [r0] |
| #define vst1q_lane_s64(ptr, val, lane) *(ptr) = _MM_EXTRACT_EPI64 (val, lane) |
| |
| _NEON2SSESTORAGE void vst1q_lane_f16(__transfersize(1) __fp16 * ptr, float16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst1q_lane_f32(__transfersize(1) float32_t * ptr, float32x4_t val, __constrange(0,3) int lane); // VST1.32 {d0[0]}, [r0] |
| _NEON2SSE_INLINE void vst1q_lane_f32(__transfersize(1) float32_t * ptr, float32x4_t val, __constrange(0,3) int lane) |
| { |
| int32_t ilane; |
| ilane = _MM_EXTRACT_PS(val,lane); |
| *(ptr) = *((float*)&ilane); |
| } |
| |
| _NEON2SSESTORAGE void vst1q_lane_p8(__transfersize(1) poly8_t * ptr, poly8x16_t val, __constrange(0,15) int lane); // VST1.8 {d0[0]}, [r0] |
| #define vst1q_lane_p8 vst1q_lane_u8 |
| |
| _NEON2SSESTORAGE void vst1q_lane_p16(__transfersize(1) poly16_t * ptr, poly16x8_t val, __constrange(0,7) int lane); // VST1.16 {d0[0]}, [r0] |
| #define vst1q_lane_p16 vst1q_lane_s16 |
| |
| _NEON2SSESTORAGE void vst1_lane_u8(__transfersize(1) uint8_t * ptr, uint8x8_t val, __constrange(0,7) int lane); // VST1.8 {d0[0]}, [r0] |
| _NEON2SSE_INLINE void vst1_lane_u8(__transfersize(1) uint8_t * ptr, uint8x8_t val, __constrange(0,7) int lane) |
| { |
| *(ptr) = val.m64_u8[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst1_lane_u16(__transfersize(1) uint16_t * ptr, uint16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0] |
| _NEON2SSE_INLINE void vst1_lane_u16(__transfersize(1) uint16_t * ptr, uint16x4_t val, __constrange(0,3) int lane) |
| { |
| *(ptr) = val.m64_u16[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst1_lane_u32(__transfersize(1) uint32_t * ptr, uint32x2_t val, __constrange(0,1) int lane); // VST1.32 {d0[0]}, [r0] |
| _NEON2SSE_INLINE void vst1_lane_u32(__transfersize(1) uint32_t * ptr, uint32x2_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.m64_u32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst1_lane_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val, __constrange(0,0) int lane); // VST1.64 {d0}, [r0] |
| _NEON2SSE_INLINE void vst1_lane_u64(__transfersize(1) uint64_t * ptr, uint64x1_t val, __constrange(0,0) int lane) |
| { |
| *(ptr) = val.m64_u64[0]; |
| } |
| |
| _NEON2SSESTORAGE void vst1_lane_s8(__transfersize(1) int8_t * ptr, int8x8_t val, __constrange(0,7) int lane); // VST1.8 {d0[0]}, [r0] |
| #define vst1_lane_s8(ptr, val, lane) vst1_lane_u8((uint8_t*)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst1_lane_s16(__transfersize(1) int16_t * ptr, int16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0] |
| #define vst1_lane_s16(ptr, val, lane) vst1_lane_u16((uint16_t*)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst1_lane_s32(__transfersize(1) int32_t * ptr, int32x2_t val, __constrange(0,1) int lane); // VST1.32 {d0[0]}, [r0] |
| #define vst1_lane_s32(ptr, val, lane) vst1_lane_u32((uint32_t*)ptr, val, lane) |
| |
| |
| _NEON2SSESTORAGE void vst1_lane_s64(__transfersize(1) int64_t * ptr, int64x1_t val, __constrange(0,0) int lane); // VST1.64 {d0}, [r0] |
| #define vst1_lane_s64(ptr, val, lane) vst1_lane_u64((uint64_t*)ptr, val, lane) |
| |
| |
| _NEON2SSESTORAGE void vst1_lane_f16(__transfersize(1) __fp16 * ptr, float16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst1_lane_f32(__transfersize(1) float32_t * ptr, float32x2_t val, __constrange(0,1) int lane); // VST1.32 {d0[0]}, [r0] |
| _NEON2SSE_INLINE void vst1_lane_f32(__transfersize(1) float32_t * ptr, float32x2_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.m64_f32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst1_lane_p8(__transfersize(1) poly8_t * ptr, poly8x8_t val, __constrange(0,7) int lane); // VST1.8 {d0[0]}, [r0] |
| #define vst1_lane_p8 vst1_lane_u8 |
| |
| _NEON2SSESTORAGE void vst1_lane_p16(__transfersize(1) poly16_t * ptr, poly16x4_t val, __constrange(0,3) int lane); // VST1.16 {d0[0]}, [r0] |
| #define vst1_lane_p16 vst1_lane_s16 |
| |
| //*********************************************************************************************** |
| //**************** Loads and stores of an N-element structure ********************************** |
| //*********************************************************************************************** |
| //These intrinsics load or store an n-element structure. The array structures are defined in the beginning |
| //We assume ptr is NOT aligned in general case, for more details see "Loads and stores of a single vector functions" |
| //****************** 2 elements load ********************************************* |
| _NEON2SSESTORAGE uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr); // VLD2.8 {d0, d2}, [r0] |
| _NEON2SSE_INLINE uint8x16x2_t vld2q_u8(__transfersize(32) uint8_t const * ptr) // VLD2.8 {d0, d2}, [r0] |
| { |
| uint8x16x2_t v; |
| v.val[0] = vld1q_u8(ptr); |
| v.val[1] = vld1q_u8((ptr + 16)); |
| v = vuzpq_s8(v.val[0], v.val[1]); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr); // VLD2.16 {d0, d2}, [r0] |
| _NEON2SSE_INLINE uint16x8x2_t vld2q_u16(__transfersize(16) uint16_t const * ptr) // VLD2.16 {d0, d2}, [r0] |
| { |
| uint16x8x2_t v; |
| v.val[0] = vld1q_u16( ptr); |
| v.val[1] = vld1q_u16( (ptr + 8)); |
| v = vuzpq_s16(v.val[0], v.val[1]); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr); // VLD2.32 {d0, d2}, [r0] |
| _NEON2SSE_INLINE uint32x4x2_t vld2q_u32(__transfersize(8) uint32_t const * ptr) // VLD2.32 {d0, d2}, [r0] |
| { |
| uint32x4x2_t v; |
| v.val[0] = vld1q_u32 ( ptr); |
| v.val[1] = vld1q_u32 ( (ptr + 4)); |
| v = vuzpq_s32(v.val[0], v.val[1]); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x16x2_t vld2q_s8(__transfersize(32) int8_t const * ptr); |
| #define vld2q_s8(ptr) vld2q_u8((uint8_t*) ptr) |
| |
| _NEON2SSESTORAGE int16x8x2_t vld2q_s16(__transfersize(16) int16_t const * ptr); // VLD2.16 {d0, d2}, [r0] |
| #define vld2q_s16(ptr) vld2q_u16((uint16_t*) ptr) |
| |
| _NEON2SSESTORAGE int32x4x2_t vld2q_s32(__transfersize(8) int32_t const * ptr); // VLD2.32 {d0, d2}, [r0] |
| #define vld2q_s32(ptr) vld2q_u32((uint32_t*) ptr) |
| |
| |
| _NEON2SSESTORAGE float16x8x2_t vld2q_f16(__transfersize(16) __fp16 const * ptr); // VLD2.16 {d0, d2}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr); // VLD2.32 {d0, d2}, [r0] |
| _NEON2SSE_INLINE float32x4x2_t vld2q_f32(__transfersize(8) float32_t const * ptr) // VLD2.32 {d0, d2}, [r0] |
| { |
| float32x4x2_t v; |
| v.val[0] = vld1q_f32 (ptr); |
| v.val[1] = vld1q_f32 ((ptr + 4)); |
| v = vuzpq_f32(v.val[0], v.val[1]); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x16x2_t vld2q_p8(__transfersize(32) poly8_t const * ptr); // VLD2.8 {d0, d2}, [r0] |
| #define vld2q_p8 vld2q_u8 |
| |
| _NEON2SSESTORAGE poly16x8x2_t vld2q_p16(__transfersize(16) poly16_t const * ptr); // VLD2.16 {d0, d2}, [r0] |
| #define vld2q_p16 vld2q_u16 |
| |
| _NEON2SSESTORAGE uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr); // VLD2.8 {d0, d1}, [r0] |
| _NEON2SSE_INLINE uint8x8x2_t vld2_u8(__transfersize(16) uint8_t const * ptr) |
| { |
| uint8x8x2_t v; |
| __m128i ld128; |
| ld128 = vld1q_u8(ptr); //merge two 64-bits in 128 bit |
| ld128 = _mm_shuffle_epi8(ld128, *(__m128i*)mask8_16_even_odd); |
| vst1q_u8((v.val), ld128); // v.val[1] = _mm_shuffle_epi32(v.val[0], _SWAP_HI_LOW32); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr); // VLD2.16 {d0, d1}, [r0] |
| _NEON2SSE_INLINE uint16x4x2_t vld2_u16(__transfersize(8) uint16_t const * ptr) |
| { |
| _NEON2SSE_ALIGN_16 uint16x4x2_t v; |
| __m128i ld128; |
| ld128 = vld1q_u16(ptr); //merge two 64-bits in 128 bit |
| ld128 = _mm_shuffle_epi8(ld128, *(__m128i*) mask8_32_even_odd); |
| vst1q_u16((v.val), ld128); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr); // VLD2.32 {d0, d1}, [r0] |
| _NEON2SSE_INLINE uint32x2x2_t vld2_u32(__transfersize(4) uint32_t const * ptr) |
| { |
| _NEON2SSE_ALIGN_16 uint32x2x2_t v; |
| __m128i ld128; |
| ld128 = vld1q_u32(ptr); //merge two 64-bits in 128 bit |
| ld128 = _mm_shuffle_epi32(ld128, 0 | (2 << 2) | (1 << 4) | (3 << 6)); |
| vst1q_u32((v.val), ld128); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| _NEON2SSE_INLINE uint64x1x2_t vld2_u64(__transfersize(2) uint64_t const * ptr) |
| { |
| uint64x1x2_t v; |
| v.val[0].m64_u64[0] = *(ptr); |
| v.val[1].m64_u64[0] = *(ptr + 1); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x2_t vld2_s8(__transfersize(16) int8_t const * ptr); // VLD2.8 {d0, d1}, [r0] |
| #define vld2_s8(ptr) vld2_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x4x2_t vld2_s16(__transfersize(8) int16_t const * ptr); // VLD2.16 {d0, d1}, [r0] |
| #define vld2_s16(ptr) vld2_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x2x2_t vld2_s32(__transfersize(4) int32_t const * ptr); // VLD2.32 {d0, d1}, [r0] |
| #define vld2_s32(ptr) vld2_u32((uint32_t*)ptr) |
| |
| _NEON2SSESTORAGE int64x1x2_t vld2_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| #define vld2_s64(ptr) vld2_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x4x2_t vld2_f16(__transfersize(8) __fp16 const * ptr); // VLD2.16 {d0, d1}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1_f16 for example |
| |
| _NEON2SSESTORAGE float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr); // VLD2.32 {d0, d1}, [r0] |
| _NEON2SSE_INLINE float32x2x2_t vld2_f32(__transfersize(4) float32_t const * ptr) |
| { |
| float32x2x2_t v; |
| v.val[0].m64_f32[0] = *(ptr); |
| v.val[0].m64_f32[1] = *(ptr + 2); |
| v.val[1].m64_f32[0] = *(ptr + 1); |
| v.val[1].m64_f32[1] = *(ptr + 3); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x2_t vld2_p8(__transfersize(16) poly8_t const * ptr); // VLD2.8 {d0, d1}, [r0] |
| #define vld2_p8 vld2_u8 |
| |
| _NEON2SSESTORAGE poly16x4x2_t vld2_p16(__transfersize(8) poly16_t const * ptr); // VLD2.16 {d0, d1}, [r0] |
| #define vld2_p16 vld2_u16 |
| |
| //******************** Triplets *************************************** |
| //********************************************************************* |
| _NEON2SSESTORAGE uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE uint8x16x3_t vld3q_u8(__transfersize(48) uint8_t const * ptr) // VLD3.8 {d0, d2, d4}, [r0] |
| { |
| //a0,a1,a2,a3,...a7,a8,...a15, b0,b1,b2,...b7,b8,...b15, c0,c1,c2,...c7,c8,...c15 -> |
| //a:0,3,6,9,12,15,b:2,5,8,11,14, c:1,4,7,10,13 |
| //a:1,4,7,10,13, b:0,3,6,9,12,15,c:2,5,8,11,14, |
| //a:2,5,8,11,14, b:1,4,7,10,13, c:0,3,6,9,12,15 |
| uint8x16x3_t v; |
| __m128i tmp0, tmp1,tmp2, tmp3; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_0[16] = {0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_1[16] = {2,5,8,11,14,0,3,6,9,12,15,1,4,7,10,13}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_2[16] = {1,4,7,10,13,2,5,8,11,14,0,3,6,9,12,15}; |
| |
| v.val[0] = vld1q_u8 (ptr); //a0,a1,a2,a3,...a7, ...a15 |
| v.val[1] = vld1q_u8 ((ptr + 16)); //b0,b1,b2,b3...b7, ...b15 |
| v.val[2] = vld1q_u8 ((ptr + 32)); //c0,c1,c2,c3,...c7,...c15 |
| |
| tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask8_0); //a:0,3,6,9,12,15,1,4,7,10,13,2,5,8,11 |
| tmp1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask8_1); //b:2,5,8,11,14,0,3,6,9,12,15,1,4,7,10,13 |
| tmp2 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask8_2); //c:1,4,7,10,13,2,5,8,11,14,3,6,9,12,15 |
| |
| tmp3 = _mm_slli_si128(tmp0,10); //0,0,0,0,0,0,0,0,0,0,a0,a3,a6,a9,a12,a15 |
| tmp3 = _mm_alignr_epi8(tmp1,tmp3, 10); //a:0,3,6,9,12,15,b:2,5,8,11,14,x,x,x,x,x |
| tmp3 = _mm_slli_si128(tmp3, 5); //0,0,0,0,0,a:0,3,6,9,12,15,b:2,5,8,11,14, |
| tmp3 = _mm_srli_si128(tmp3, 5); //a:0,3,6,9,12,15,b:2,5,8,11,14,:0,0,0,0,0 |
| v.val[0] = _mm_slli_si128(tmp2, 11); //0,0,0,0,0,0,0,0,0,0,0,0, 1,4,7,10,13, |
| v.val[0] = _mm_or_si128(v.val[0],tmp3); //a:0,3,6,9,12,15,b:2,5,8,11,14,c:1,4,7,10,13, |
| |
| tmp3 = _mm_slli_si128(tmp0, 5); //0,0,0,0,0,a:0,3,6,9,12,15,1,4,7,10,13, |
| tmp3 = _mm_srli_si128(tmp3, 11); //a:1,4,7,10,13, 0,0,0,0,0,0,0,0,0,0,0 |
| v.val[1] = _mm_srli_si128(tmp1,5); //b:0,3,6,9,12,15,C:1,4,7,10,13, 0,0,0,0,0 |
| v.val[1] = _mm_slli_si128(v.val[1], 5); //0,0,0,0,0,b:0,3,6,9,12,15,C:1,4,7,10,13, |
| v.val[1] = _mm_or_si128(v.val[1],tmp3); //a:1,4,7,10,13,b:0,3,6,9,12,15,C:1,4,7,10,13, |
| v.val[1] = _mm_slli_si128(v.val[1],5); //0,0,0,0,0,a:1,4,7,10,13,b:0,3,6,9,12,15, |
| v.val[1] = _mm_srli_si128(v.val[1], 5); //a:1,4,7,10,13,b:0,3,6,9,12,15,0,0,0,0,0 |
| tmp3 = _mm_srli_si128(tmp2,5); //c:2,5,8,11,14,0,3,6,9,12,15,0,0,0,0,0 |
| tmp3 = _mm_slli_si128(tmp3,11); //0,0,0,0,0,0,0,0,0,0,0,c:2,5,8,11,14, |
| v.val[1] = _mm_or_si128(v.val[1],tmp3); //a:1,4,7,10,13,b:0,3,6,9,12,15,c:2,5,8,11,14, |
| |
| tmp3 = _mm_srli_si128(tmp2,10); //c:0,3,6,9,12,15, 0,0,0,0,0,0,0,0,0,0, |
| tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0,0,0,0,0,0, c:0,3,6,9,12,15, |
| v.val[2] = _mm_srli_si128(tmp1,11); //b:1,4,7,10,13,0,0,0,0,0,0,0,0,0,0,0 |
| v.val[2] = _mm_slli_si128(v.val[2],5); //0,0,0,0,0,b:1,4,7,10,13, 0,0,0,0,0,0 |
| v.val[2] = _mm_or_si128(v.val[2],tmp3); //0,0,0,0,0,b:1,4,7,10,13,c:0,3,6,9,12,15, |
| tmp0 = _mm_srli_si128(tmp0, 11); //a:2,5,8,11,14, 0,0,0,0,0,0,0,0,0,0,0, |
| v.val[2] = _mm_or_si128(v.val[2],tmp0); //a:2,5,8,11,14,b:1,4,7,10,13,c:0,3,6,9,12,15, |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE uint16x8x3_t vld3q_u16(__transfersize(24) uint16_t const * ptr) // VLD3.16 {d0, d2, d4}, [r0] |
| { |
| //a0, a1,a2,a3,...a7, b0,b1,b2,b3,...b7, c0,c1,c2,c3...c7 -> a0,a3,a6,b1,b4,b7,c2,c5, a1,a4,a7,b2,b5,c0,c3,c6, a2,a5,b0,b3,b6,c1,c4,c7 |
| uint16x8x3_t v; |
| __m128i tmp0, tmp1,tmp2, tmp3; |
| _NEON2SSE_ALIGN_16 static const int8_t mask16_0[16] = {0,1, 6,7, 12,13, 2,3, 8,9, 14,15, 4,5, 10,11}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask16_1[16] = {2,3, 8,9, 14,15, 4,5, 10,11, 0,1, 6,7, 12,13}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask16_2[16] = {4,5, 10,11, 0,1, 6,7, 12,13, 2,3, 8,9, 14,15}; |
| |
| v.val[0] = vld1q_u16 (ptr); //a0,a1,a2,a3,...a7, |
| v.val[1] = vld1q_u16 ((ptr + 8)); //b0,b1,b2,b3...b7 |
| v.val[2] = vld1q_u16 ((ptr + 16)); //c0,c1,c2,c3,...c7 |
| |
| tmp0 = _mm_shuffle_epi8(v.val[0], *(__m128i*)mask16_0); //a0,a3,a6,a1,a4,a7,a2,a5, |
| tmp1 = _mm_shuffle_epi8(v.val[1], *(__m128i*)mask16_1); //b1,b4,b7,b2,b5,b0,b3,b6 |
| tmp2 = _mm_shuffle_epi8(v.val[2], *(__m128i*)mask16_2); //c2,c5, c0,c3,c6, c1,c4,c7 |
| |
| tmp3 = _mm_slli_si128(tmp0,10); //0,0,0,0,0,a0,a3,a6, |
| tmp3 = _mm_alignr_epi8(tmp1,tmp3, 10); //a0,a3,a6,b1,b4,b7,x,x |
| tmp3 = _mm_slli_si128(tmp3, 4); //0,0, a0,a3,a6,b1,b4,b7 |
| tmp3 = _mm_srli_si128(tmp3, 4); //a0,a3,a6,b1,b4,b7,0,0 |
| v.val[0] = _mm_slli_si128(tmp2, 12); //0,0,0,0,0,0, c2,c5, |
| v.val[0] = _mm_or_si128(v.val[0],tmp3); //a0,a3,a6,b1,b4,b7,c2,c5 |
| |
| tmp3 = _mm_slli_si128(tmp0, 4); //0,0,a0,a3,a6,a1,a4,a7 |
| tmp3 = _mm_srli_si128(tmp3,10); //a1,a4,a7, 0,0,0,0,0 |
| v.val[1] = _mm_srli_si128(tmp1,6); //b2,b5,b0,b3,b6,0,0 |
| v.val[1] = _mm_slli_si128(v.val[1], 6); //0,0,0,b2,b5,b0,b3,b6, |
| v.val[1] = _mm_or_si128(v.val[1],tmp3); //a1,a4,a7,b2,b5,b0,b3,b6, |
| v.val[1] = _mm_slli_si128(v.val[1],6); //0,0,0,a1,a4,a7,b2,b5, |
| v.val[1] = _mm_srli_si128(v.val[1], 6); //a1,a4,a7,b2,b5,0,0,0, |
| tmp3 = _mm_srli_si128(tmp2,4); //c0,c3,c6, c1,c4,c7,0,0 |
| tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0,c0,c3,c6, |
| v.val[1] = _mm_or_si128(v.val[1],tmp3); //a1,a4,a7,b2,b5,c0,c3,c6, |
| |
| tmp3 = _mm_srli_si128(tmp2,10); //c1,c4,c7, 0,0,0,0,0 |
| tmp3 = _mm_slli_si128(tmp3,10); //0,0,0,0,0, c1,c4,c7, |
| v.val[2] = _mm_srli_si128(tmp1,10); //b0,b3,b6,0,0, 0,0,0 |
| v.val[2] = _mm_slli_si128(v.val[2],4); //0,0, b0,b3,b6,0,0,0 |
| v.val[2] = _mm_or_si128(v.val[2],tmp3); //0,0, b0,b3,b6,c1,c4,c7, |
| tmp0 = _mm_srli_si128(tmp0, 12); //a2,a5,0,0,0,0,0,0 |
| v.val[2] = _mm_or_si128(v.val[2],tmp0); //a2,a5,b0,b3,b6,c1,c4,c7, |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE uint32x4x3_t vld3q_u32(__transfersize(12) uint32_t const * ptr) // VLD3.32 {d0, d2, d4}, [r0] |
| { |
| //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1, a1,b0,b3,c2, a2,b1,c0,c3, |
| uint32x4x3_t v; |
| __m128i tmp0, tmp1,tmp2, tmp3; |
| v.val[0] = vld1q_u32 (ptr); //a0,a1,a2,a3, |
| v.val[1] = vld1q_u32 ((ptr + 4)); //b0,b1,b2,b3 |
| v.val[2] = vld1q_u32 ((ptr + 8)); //c0,c1,c2,c3, |
| |
| tmp0 = _mm_shuffle_epi32(v.val[0], 0 | (3 << 2) | (1 << 4) | (2 << 6)); //a0,a3,a1,a2 |
| tmp1 = _mm_shuffle_epi32(v.val[1], _SWAP_HI_LOW32); //b2,b3,b0,b1 |
| tmp2 = _mm_shuffle_epi32(v.val[2], 1 | (2 << 2) | (0 << 4) | (3 << 6)); //c1,c2, c0,c3 |
| |
| tmp3 = _mm_unpacklo_epi32(tmp1, tmp2); //b2,c1, b3,c2 |
| v.val[0] = _mm_unpacklo_epi64(tmp0,tmp3); //a0,a3,b2,c1 |
| tmp0 = _mm_unpackhi_epi32(tmp0, tmp1); //a1,b0, a2,b1 |
| v.val[1] = _mm_shuffle_epi32(tmp0, _SWAP_HI_LOW32 ); //a2,b1, a1,b0, |
| v.val[1] = _mm_unpackhi_epi64(v.val[1], tmp3); //a1,b0, b3,c2 |
| v.val[2] = _mm_unpackhi_epi64(tmp0, tmp2); //a2,b1, c0,c3 |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x16x3_t vld3q_s8(__transfersize(48) int8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] |
| #define vld3q_s8(ptr) vld3q_u8((uint8_t*) (ptr)) |
| |
| _NEON2SSESTORAGE int16x8x3_t vld3q_s16(__transfersize(24) int16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| #define vld3q_s16(ptr) vld3q_u16((uint16_t*) (ptr)) |
| |
| _NEON2SSESTORAGE int32x4x3_t vld3q_s32(__transfersize(12) int32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] |
| #define vld3q_s32(ptr) vld3q_u32((uint32_t*) (ptr)) |
| |
| _NEON2SSESTORAGE float16x8x3_t vld3q_f16(__transfersize(24) __fp16 const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr); // VLD3.32 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE float32x4x3_t vld3q_f32(__transfersize(12) float32_t const * ptr) // VLD3.32 {d0, d2, d4}, [r0] |
| { |
| //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1, a1,b0,b3,c2, a2,b1,c0,c3, |
| float32x4x3_t v; |
| __m128 tmp0, tmp1,tmp2, tmp3; |
| v.val[0] = vld1q_f32 (ptr); //a0,a1,a2,a3, |
| v.val[1] = vld1q_f32 ((ptr + 4)); //b0,b1,b2,b3 |
| v.val[2] = vld1q_f32 ((ptr + 8)); //c0,c1,c2,c3, |
| |
| tmp0 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[0]), 0 | (3 << 2) | (1 << 4) | (2 << 6))); //a0,a3,a1,a2 |
| tmp1 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[1]), _SWAP_HI_LOW32)); //b2,b3,b0,b1 |
| tmp2 = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(v.val[2]), 1 | (2 << 2) | (0 << 4) | (3 << 6))); //c1,c2, c0,c3 |
| tmp3 = _mm_unpacklo_ps(tmp1, tmp2); //b2,c1, b3,c2 |
| |
| v.val[0] = _mm_movelh_ps(tmp0,tmp3); //a0,a3,b2,c1 |
| tmp0 = _mm_unpackhi_ps(tmp0, tmp1); //a1,b0, a2,b1 |
| v.val[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(tmp0), _SWAP_HI_LOW32 )); //a2,b1, a1,b0, |
| v.val[1] = _mm_movehl_ps(tmp3,v.val[1]); //a1,b0, b3,c2 |
| v.val[2] = _mm_movehl_ps(tmp2,tmp0); //a2,b1, c0,c3 |
| return v; |
| } |
| |
| poly8x16x3_t vld3q_p8(__transfersize(48) poly8_t const * ptr); // VLD3.8 {d0, d2, d4}, [r0] |
| #define vld3q_p8 vld3q_u8 |
| |
| _NEON2SSESTORAGE poly16x8x3_t vld3q_p16(__transfersize(24) poly16_t const * ptr); // VLD3.16 {d0, d2, d4}, [r0] |
| #define vld3q_p16 vld3q_u16 |
| |
| _NEON2SSESTORAGE uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE uint8x8x3_t vld3_u8(__transfersize(24) uint8_t const * ptr) // VLD3.8 {d0, d1, d2}, [r0] |
| { |
| //a0, a1,a2,a3,...a7, b0,b1,b2,b3,...b7, c0,c1,c2,c3...c7 -> a0,a3,a6,b1,b4,b7,c2,c5, a1,a4,a7,b2,b5,c0,c3,c6, a2,a5,b0,b3,b6,c1,c4,c7 |
| uint8x8x3_t v; |
| __m128i val0, val1, val2, tmp0, tmp1; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_0[16] = {0,3,6,9,12,15, 1,4,7,10,13, 2,5,8,11,14}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_1[16] = {2,5, 0,3,6, 1,4,7, 0,0,0,0,0,0,0,0}; |
| val0 = vld1q_u8 (ptr); //a0,a1,a2,a3,...a7, b0,b1,b2,b3...b7 |
| val2 = _mm_loadl_epi64((__m128i*)(ptr + 16)); //c0,c1,c2,c3,...c7 |
| |
| tmp0 = _mm_shuffle_epi8(val0, *(__m128i*)mask8_0); //a0,a3,a6,b1,b4,b7, a1,a4,a7,b2,b5, a2,a5,b0,b3,b6, |
| tmp1 = _mm_shuffle_epi8(val2, *(__m128i*)mask8_1); //c2,c5, c0,c3,c6, c1,c4,c7,x,x,x,x,x,x,x,x |
| val0 = _mm_slli_si128(tmp0,10); |
| val0 = _mm_srli_si128(val0,10); //a0,a3,a6,b1,b4,b7, 0,0,0,0,0,0,0,0,0,0 |
| val2 = _mm_slli_si128(tmp1,6); //0,0,0,0,0,0,c2,c5,x,x,x,x,x,x,x,x |
| val0 = _mm_or_si128(val0,val2); //a0,a3,a6,b1,b4,b7,c2,c5 x,x,x,x,x,x,x,x |
| _M64(v.val[0], val0); |
| val1 = _mm_slli_si128(tmp0,5); //0,0,0,0,0,0,0,0,0,0,0, a1,a4,a7,b2,b5, |
| val1 = _mm_srli_si128(val1,11); //a1,a4,a7,b2,b5,0,0,0,0,0,0,0,0,0,0,0, |
| val2 = _mm_srli_si128(tmp1,2); //c0,c3,c6,c1,c4,c7,x,x,x,x,x,x,x,x,0,0 |
| val2 = _mm_slli_si128(val2,5); //0,0,0,0,0,c0,c3,c6,0,0,0,0,0,0,0,0 |
| val1 = _mm_or_si128(val1,val2); //a1,a4,a7,b2,b5,c0,c3,c6,x,x,x,x,x,x,x,x |
| _M64(v.val[1], val1); |
| |
| tmp0 = _mm_srli_si128(tmp0,11); //a2,a5,b0,b3,b6,0,0,0,0,0,0,0,0,0,0,0, |
| val2 = _mm_srli_si128(tmp1,5); //c1,c4,c7,0,0,0,0,0,0,0,0,0,0,0,0,0 |
| val2 = _mm_slli_si128(val2,5); //0,0,0,0,0,c1,c4,c7, |
| val2 = _mm_or_si128(tmp0, val2); //a2,a5,b0,b3,b6,c1,c4,c7,x,x,x,x,x,x,x,x |
| _M64(v.val[2], val2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE uint16x4x3_t vld3_u16(__transfersize(12) uint16_t const * ptr) // VLD3.16 {d0, d1, d2}, [r0] |
| { |
| //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,a3,b2,c1, a1,b0,b3,c2, a2,b1,c0,c3, |
| uint16x4x3_t v; |
| __m128i val0, val1, val2, tmp0, tmp1; |
| _NEON2SSE_ALIGN_16 static const int8_t mask16[16] = {0,1, 6,7, 12,13, 2,3, 8,9, 14,15, 4,5, 10,11}; |
| val0 = vld1q_u16 (ptr); //a0,a1,a2,a3, b0,b1,b2,b3 |
| val2 = _mm_loadl_epi64((__m128i*)(ptr + 8)); //c0,c1,c2,c3, x,x,x,x |
| |
| tmp0 = _mm_shuffle_epi8(val0, *(__m128i*)mask16); //a0, a3, b2,a1, b0, b3, a2, b1 |
| tmp1 = _mm_shufflelo_epi16(val2, 201); //11 00 10 01 : c1, c2, c0, c3, |
| val0 = _mm_slli_si128(tmp0,10); |
| val0 = _mm_srli_si128(val0,10); //a0, a3, b2, 0,0, 0,0, |
| val2 = _mm_slli_si128(tmp1,14); //0,0,0,0,0,0,0,c1 |
| val2 = _mm_srli_si128(val2,8); //0,0,0,c1,0,0,0,0 |
| val0 = _mm_or_si128(val0,val2); //a0, a3, b2, c1, x,x,x,x |
| _M64(v.val[0], val0); |
| |
| val1 = _mm_slli_si128(tmp0,4); //0,0,0,0,0,a1, b0, b3 |
| val1 = _mm_srli_si128(val1,10); //a1, b0, b3, 0,0, 0,0, |
| val2 = _mm_srli_si128(tmp1,2); //c2, 0,0,0,0,0,0,0, |
| val2 = _mm_slli_si128(val2,6); //0,0,0,c2,0,0,0,0 |
| val1 = _mm_or_si128(val1,val2); //a1, b0, b3, c2, x,x,x,x |
| _M64(v.val[1], val1); |
| |
| tmp0 = _mm_srli_si128(tmp0,12); //a2, b1,0,0,0,0,0,0 |
| tmp1 = _mm_srli_si128(tmp1,4); |
| tmp1 = _mm_slli_si128(tmp1,4); //0,0,c0, c3, |
| val2 = _mm_or_si128(tmp0, tmp1); //a2, b1, c0, c3, |
| _M64(v.val[2], val2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE uint32x2x3_t vld3_u32(__transfersize(6) uint32_t const * ptr) // VLD3.32 {d0, d1, d2}, [r0] |
| { |
| //a0,a1, b0,b1, c0,c1, -> a0,b1, a1,c0, b0,c1 |
| uint32x2x3_t v; |
| __m128i val0, val1, val2; |
| val0 = vld1q_u32 (ptr); //a0,a1, b0,b1, |
| val2 = _mm_loadl_epi64((__m128i*) (ptr + 4)); //c0,c1, x,x |
| |
| val0 = _mm_shuffle_epi32(val0, 0 | (3 << 2) | (1 << 4) | (2 << 6)); //a0,b1, a1, b0 |
| _M64(v.val[0], val0); |
| val2 = _mm_slli_si128(val2, 8); //x, x,c0,c1, |
| val1 = _mm_unpackhi_epi32(val0,val2); //a1,c0, b0, c1 |
| _M64(v.val[1], val1); |
| val2 = _mm_srli_si128(val1, 8); //b0, c1, x, x, |
| _M64(v.val[2], val2); |
| return v; |
| } |
| _NEON2SSESTORAGE uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE uint64x1x3_t vld3_u64(__transfersize(3) uint64_t const * ptr) // VLD1.64 {d0, d1, d2}, [r0] |
| { |
| uint64x1x3_t v; |
| v.val[0].m64_u64[0] = *(ptr); |
| v.val[1].m64_u64[0] = *(ptr + 1); |
| v.val[2].m64_u64[0] = *(ptr + 2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x3_t vld3_s8(__transfersize(24) int8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] |
| #define vld3_s8(ptr) vld3_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x4x3_t vld3_s16(__transfersize(12) int16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| #define vld3_s16(ptr) vld3_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x2x3_t vld3_s32(__transfersize(6) int32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] |
| #define vld3_s32(ptr) vld3_u32((uint32_t*)ptr) |
| |
| int64x1x3_t vld3_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| #define vld3_s64(ptr) vld3_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x4x3_t vld3_f16(__transfersize(12) __fp16 const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr); // VLD3.32 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE float32x2x3_t vld3_f32(__transfersize(6) float32_t const * ptr) |
| { |
| //a0,a1, b0,b1, c0,c1, -> a0,b1, a1,c0, b0,c1 |
| float32x2x3_t v; |
| v.val[0].m64_f32[0] = *(ptr); |
| v.val[0].m64_f32[1] = *(ptr + 3); |
| |
| v.val[1].m64_f32[0] = *(ptr + 1); |
| v.val[1].m64_f32[1] = *(ptr + 4); |
| |
| v.val[2].m64_f32[0] = *(ptr + 2); |
| v.val[2].m64_f32[1] = *(ptr + 5); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x3_t vld3_p8(__transfersize(24) poly8_t const * ptr); // VLD3.8 {d0, d1, d2}, [r0] |
| #define vld3_p8 vld3_u8 |
| |
| _NEON2SSESTORAGE poly16x4x3_t vld3_p16(__transfersize(12) poly16_t const * ptr); // VLD3.16 {d0, d1, d2}, [r0] |
| #define vld3_p16 vld3_u16 |
| |
| //*************** Quadruples load ******************************** |
| //***************************************************************** |
| _NEON2SSESTORAGE uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE uint8x16x4_t vld4q_u8(__transfersize(64) uint8_t const * ptr) // VLD4.8 {d0, d2, d4, d6}, [r0] |
| { |
| uint8x16x4_t v; |
| __m128i tmp3, tmp2, tmp1, tmp0; |
| |
| v.val[0] = vld1q_u8 ( ptr); //a0,a1,a2,...a7, ...a15 |
| v.val[1] = vld1q_u8 ( (ptr + 16)); //b0, b1,b2,...b7.... b15 |
| v.val[2] = vld1q_u8 ( (ptr + 32)); //c0, c1,c2,...c7....c15 |
| v.val[3] = vld1q_u8 ( (ptr + 48)); //d0,d1,d2,...d7....d15 |
| |
| tmp0 = _mm_unpacklo_epi8(v.val[0],v.val[1]); //a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7 |
| tmp1 = _mm_unpacklo_epi8(v.val[2],v.val[3]); //c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7 |
| tmp2 = _mm_unpackhi_epi8(v.val[0],v.val[1]); //a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15 |
| tmp3 = _mm_unpackhi_epi8(v.val[2],v.val[3]); //c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15 |
| |
| v.val[0] = _mm_unpacklo_epi8(tmp0, tmp2); //a0,a8, b0,b8, a1,a9, b1,b9, ....a3,a11, b3,b11 |
| v.val[1] = _mm_unpackhi_epi8(tmp0, tmp2); //a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15 |
| v.val[2] = _mm_unpacklo_epi8(tmp1, tmp3); //c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11 |
| v.val[3] = _mm_unpackhi_epi8(tmp1, tmp3); //c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15 |
| |
| tmp0 = _mm_unpacklo_epi32(v.val[0], v.val[2] ); ///a0,a8, b0,b8, c0,c8, d0,d8, a1,a9, b1,b9, c1,c9, d1,d9 |
| tmp1 = _mm_unpackhi_epi32(v.val[0], v.val[2] ); //a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11 |
| tmp2 = _mm_unpacklo_epi32(v.val[1], v.val[3] ); //a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13, |
| tmp3 = _mm_unpackhi_epi32(v.val[1], v.val[3] ); //a6,a14, b6,b14, c6,c14, d6,d14, a7,a15,b7,b15,c7,c15,d7,d15 |
| |
| v.val[0] = _mm_unpacklo_epi8(tmp0, tmp2); //a0,a4,a8,a12,b0,b4,b8,b12,c0,c4,c8,c12,d0,d4,d8,d12 |
| v.val[1] = _mm_unpackhi_epi8(tmp0, tmp2); //a1,a5, a9, a13, b1,b5, b9,b13, c1,c5, c9, c13, d1,d5, d9,d13 |
| v.val[2] = _mm_unpacklo_epi8(tmp1, tmp3); //a2,a6, a10,a14, b2,b6, b10,b14,c2,c6, c10,c14, d2,d6, d10,d14 |
| v.val[3] = _mm_unpackhi_epi8(tmp1, tmp3); //a3,a7, a11,a15, b3,b7, b11,b15,c3,c7, c11, c15,d3,d7, d11,d15 |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE uint16x8x4_t vld4q_u16(__transfersize(32) uint16_t const * ptr) // VLD4.16 {d0, d2, d4, d6}, [r0] |
| { |
| uint16x8x4_t v; |
| __m128i tmp3, tmp2, tmp1, tmp0; |
| tmp0 = vld1q_u16 (ptr); //a0,a1,a2,...a7 |
| tmp1 = vld1q_u16 ((ptr + 8)); //b0, b1,b2,...b7 |
| tmp2 = vld1q_u16 ((ptr + 16)); //c0, c1,c2,...c7 |
| tmp3 = vld1q_u16 ((ptr + 24)); //d0,d1,d2,...d7 |
| v.val[0] = _mm_unpacklo_epi16(tmp0,tmp1); //a0,b0, a1,b1, a2,b2, a3,b3, |
| v.val[1] = _mm_unpacklo_epi16(tmp2,tmp3); //c0,d0, c1,d1, c2,d2, c3,d3, |
| v.val[2] = _mm_unpackhi_epi16(tmp0,tmp1); //a4,b4, a5,b5, a6,b6, a7,b7 |
| v.val[3] = _mm_unpackhi_epi16(tmp2,tmp3); //c4,d4, c5,d5, c6,d6, c7,d7 |
| tmp0 = _mm_unpacklo_epi16(v.val[0], v.val[2]); //a0,a4, b0,b4, a1,a5, b1,b5 |
| tmp1 = _mm_unpackhi_epi16(v.val[0], v.val[2]); //a2,a6, b2,b6, a3,a7, b3,b7 |
| tmp2 = _mm_unpacklo_epi16(v.val[1], v.val[3]); //c0,c4, d0,d4, c1,c5, d1,d5 |
| tmp3 = _mm_unpackhi_epi16(v.val[1], v.val[3]); //c2,c6, d2,d6, c3,c7, d3,d7 |
| v.val[0] = _mm_unpacklo_epi64(tmp0, tmp2); //a0,a4, b0,b4, c0,c4, d0,d4, |
| v.val[1] = _mm_unpackhi_epi64(tmp0, tmp2); //a1,a5, b1,b5, c1,c5, d1,d5 |
| v.val[2] = _mm_unpacklo_epi64(tmp1, tmp3); //a2,a6, b2,b6, c2,c6, d2,d6, |
| v.val[3] = _mm_unpackhi_epi64(tmp1, tmp3); //a3,a7, b3,b7, c3,c7, d3,d7 |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE uint32x4x4_t vld4q_u32(__transfersize(16) uint32_t const * ptr) // VLD4.32 {d0, d2, d4, d6}, [r0] |
| { |
| uint32x4x4_t v; |
| __m128i tmp3, tmp2, tmp1, tmp0; |
| v.val[0] = vld1q_u32 (ptr); |
| v.val[1] = vld1q_u32 ((ptr + 4)); |
| v.val[2] = vld1q_u32 ((ptr + 8)); |
| v.val[3] = vld1q_u32 ((ptr + 12)); |
| tmp0 = _mm_unpacklo_epi32(v.val[0],v.val[1]); |
| tmp1 = _mm_unpacklo_epi32(v.val[2],v.val[3]); |
| tmp2 = _mm_unpackhi_epi32(v.val[0],v.val[1]); |
| tmp3 = _mm_unpackhi_epi32(v.val[2],v.val[3]); |
| v.val[0] = _mm_unpacklo_epi64(tmp0, tmp1); |
| v.val[1] = _mm_unpackhi_epi64(tmp0, tmp1); |
| v.val[2] = _mm_unpacklo_epi64(tmp2, tmp3); |
| v.val[3] = _mm_unpackhi_epi64(tmp2, tmp3); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x16x4_t vld4q_s8(__transfersize(64) int8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] |
| #define vld4q_s8(ptr) vld4q_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x8x4_t vld4q_s16(__transfersize(32) int16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| #define vld4q_s16(ptr) vld4q_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x4x4_t vld4q_s32(__transfersize(16) int32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] |
| #define vld4q_s32(ptr) vld4q_u32((uint32_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x8x4_t vld4q_f16(__transfersize(32) __fp16 const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr); // VLD4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE float32x4x4_t vld4q_f32(__transfersize(16) float32_t const * ptr) // VLD4.32 {d0, d2, d4, d6}, [r0] |
| { |
| float32x4x4_t v; |
| __m128 tmp3, tmp2, tmp1, tmp0; |
| |
| v.val[0] = vld1q_f32 ((float*) ptr); |
| v.val[1] = vld1q_f32 ((float*) (ptr + 4)); |
| v.val[2] = vld1q_f32 ((float*) (ptr + 8)); |
| v.val[3] = vld1q_f32 ((float*) (ptr + 12)); |
| tmp0 = _mm_unpacklo_ps(v.val[0], v.val[1]); |
| tmp2 = _mm_unpacklo_ps(v.val[2], v.val[3]); |
| tmp1 = _mm_unpackhi_ps(v.val[0], v.val[1]); |
| tmp3 = _mm_unpackhi_ps(v.val[2], v.val[3]); |
| v.val[0] = _mm_movelh_ps(tmp0, tmp2); |
| v.val[1] = _mm_movehl_ps(tmp2, tmp0); |
| v.val[2] = _mm_movelh_ps(tmp1, tmp3); |
| v.val[3] = _mm_movehl_ps(tmp3, tmp1); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x16x4_t vld4q_p8(__transfersize(64) poly8_t const * ptr); // VLD4.8 {d0, d2, d4, d6}, [r0] |
| #define vld4q_p8 vld4q_u8 |
| |
| _NEON2SSESTORAGE poly16x8x4_t vld4q_p16(__transfersize(32) poly16_t const * ptr); // VLD4.16 {d0, d2, d4, d6}, [r0] |
| #define vld4q_p16 vld4q_s16 |
| |
| _NEON2SSESTORAGE uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE uint8x8x4_t vld4_u8(__transfersize(32) uint8_t const * ptr) // VLD4.8 {d0, d1, d2, d3}, [r0] |
| { |
| uint8x8x4_t v; |
| __m128i sh0, sh1; |
| __m128i val0, val2; |
| _NEON2SSE_ALIGN_16 int8_t mask4_8[16] = {0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15}; |
| |
| val0 = vld1q_u8(( ptr)); //load first 64-bits in val[0] and val[1] |
| val2 = vld1q_u8(( ptr + 16)); //load third and forth 64-bits in val[2], val[3] |
| |
| sh0 = _mm_shuffle_epi8(val0, *(__m128i*)mask4_8); |
| sh1 = _mm_shuffle_epi8(val2, *(__m128i*)mask4_8); |
| val0 = _mm_unpacklo_epi32(sh0,sh1); //0,4,8,12,16,20,24,28, 1,5,9,13,17,21,25,29 |
| vst1q_u8(&v.val[0], val0 ); |
| val2 = _mm_unpackhi_epi32(sh0,sh1); //2,6,10,14,18,22,26,30, 3,7,11,15,19,23,27,31 |
| vst1q_u8(&v.val[2], val2 ); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE uint16x4x4_t vld4_u16(__transfersize(16) uint16_t const * ptr) // VLD4.16 {d0, d1, d2, d3}, [r0] |
| { |
| uint16x4x4_t v; |
| __m128i sh0, sh1; |
| __m128i val0, val2; |
| _NEON2SSE_ALIGN_16 static const int8_t mask4_16[16] = {0,1, 8,9, 2,3, 10,11, 4,5, 12,13, 6,7, 14,15}; //0, 4, 1, 5, 2, 6, 3, 7 |
| val0 = vld1q_u16 ( (ptr)); //load first 64-bits in val[0] and val[1] |
| val2 = vld1q_u16 ( (ptr + 8)); //load third and forth 64-bits in val[2], val[3] |
| sh0 = _mm_shuffle_epi8(val0, *(__m128i*)mask4_16); |
| sh1 = _mm_shuffle_epi8(val2, *(__m128i*)mask4_16); |
| val0 = _mm_unpacklo_epi32(sh0,sh1); //0,4,8,12, 1,5,9,13 |
| vst1q_u16(&v.val[0], val0 ); |
| val2 = _mm_unpackhi_epi32(sh0,sh1); //2,6,10,14, 3,7,11,15 |
| vst1q_u16(&v.val[2], val2 ); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE uint32x2x4_t vld4_u32(__transfersize(8) uint32_t const * ptr) |
| { |
| //a0,a1, b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1 |
| uint32x2x4_t v; |
| __m128i val0, val01, val2; |
| val0 = vld1q_u32 (ptr); //a0,a1, b0,b1, |
| val2 = vld1q_u32 ((ptr + 4)); //c0,c1, d0,d1 |
| val01 = _mm_unpacklo_epi32(val0,val2); //a0, c0, a1,c1, |
| val2 = _mm_unpackhi_epi32(val0,val2); //b0,d0, b1, d1 |
| vst1q_u32(&v.val[0], val01); |
| vst1q_u32(&v.val[2], val2 ); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE uint64x1x4_t vld4_u64(__transfersize(4) uint64_t const * ptr) // VLD1.64 {d0, d1, d2, d3}, [r0] |
| { |
| uint64x1x4_t v; |
| v.val[0].m64_u64[0] = *(ptr); //load first 64-bits in val[0] and val[1] |
| v.val[1].m64_u64[0] = *(ptr + 1); //load first 64-bits in val[0] and val[1] |
| v.val[2].m64_u64[0] = *(ptr + 2); //load third and forth 64-bits in val[2], val[3] |
| v.val[3].m64_u64[0] = *(ptr + 3); //load third and forth 64-bits in val[2], val[3] |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x4_t vld4_s8(__transfersize(32) int8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] |
| #define vld4_s8(ptr) vld4_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x4x4_t vld4_s16(__transfersize(16) int16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| #define vld4_s16(ptr) vld4_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x2x4_t vld4_s32(__transfersize(8) int32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] |
| #define vld4_s32(ptr) vld4_u32((uint32_t*)ptr) |
| |
| int64x1x4_t vld4_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| #define vld4_s64(ptr) vld4_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x4x4_t vld4_f16(__transfersize(16) __fp16 const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr); // VLD4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE float32x2x4_t vld4_f32(__transfersize(8) float32_t const * ptr) // VLD4.32 {d0, d1, d2, d3}, [r0] |
| { |
| //a0,a1, b0,b1, c0,c1, d0,d1 -> a0,c0, a1,c1, b0,d0, b1,d1 |
| float32x2x4_t res; |
| res.val[0].m64_f32[0] = *(ptr); |
| res.val[0].m64_f32[1] = *(ptr + 4); |
| res.val[1].m64_f32[0] = *(ptr + 1); |
| res.val[1].m64_f32[1] = *(ptr + 5); |
| res.val[2].m64_f32[0] = *(ptr + 2); |
| res.val[2].m64_f32[1] = *(ptr + 6); |
| res.val[3].m64_f32[0] = *(ptr + 3); |
| res.val[3].m64_f32[1] = *(ptr + 7); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x4_t vld4_p8(__transfersize(32) poly8_t const * ptr); // VLD4.8 {d0, d1, d2, d3}, [r0] |
| #define vld4_p8 vld4_u8 |
| |
| _NEON2SSESTORAGE poly16x4x4_t vld4_p16(__transfersize(16) poly16_t const * ptr); // VLD4.16 {d0, d1, d2, d3}, [r0] |
| #define vld4_p16 vld4_u16 |
| |
| //************* Duplicate (or propagate) ptr[0] to all val[0] lanes and ptr[1] to all val[1] lanes ******************* |
| //******************************************************************************************************************* |
| _NEON2SSESTORAGE uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] |
| _NEON2SSE_INLINE uint8x8x2_t vld2_dup_u8(__transfersize(2) uint8_t const * ptr) // VLD2.8 {d0[], d1[]}, [r0] |
| { |
| uint8x8x2_t v; |
| __m128i val0, val1; |
| val0 = LOAD_SI128(ptr); //0,1,x,x, x,x,x,x,x,x,x,x, x,x,x,x |
| val1 = _mm_unpacklo_epi8(val0,val0); //0,0,1,1,x,x,x,x, x,x,x,x,x,x,x,x, |
| val1 = _mm_unpacklo_epi16(val1,val1); //0,0,0,0, 1,1,1,1,x,x,x,x, x,x,x,x |
| val0 = _mm_unpacklo_epi32(val1,val1); //0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, |
| vst1q_u8(v.val, val0); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| _NEON2SSE_INLINE uint16x4x2_t vld2_dup_u16(__transfersize(2) uint16_t const * ptr) // VLD2.16 {d0[], d1[]}, [r0] |
| { |
| uint16x4x2_t v; |
| __m128i val0, val1; |
| val1 = LOAD_SI128(ptr); //0,1,x,x, x,x,x,x |
| val0 = _mm_shufflelo_epi16(val1, 0); //00 00 00 00 (all 0) |
| _M64(v.val[0], val0); |
| val1 = _mm_shufflelo_epi16(val1, 85); //01 01 01 01 (all 1) |
| _M64(v.val[1], val1); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] |
| _NEON2SSE_INLINE uint32x2x2_t vld2_dup_u32(__transfersize(2) uint32_t const * ptr) // VLD2.32 {d0[], d1[]}, [r0] |
| { |
| uint32x2x2_t v; |
| __m128i val0; |
| val0 = LOAD_SI128(ptr); //0,1,x,x |
| val0 = _mm_shuffle_epi32(val0, 0 | (0 << 2) | (1 << 4) | (1 << 6)); //0,0,1,1 |
| vst1q_u32(v.val, val0); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint64x1x2_t vld2_dup_u64(__transfersize(2) uint64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| #define vld2_dup_u64 vld2_u64 |
| |
| _NEON2SSESTORAGE int8x8x2_t vld2_dup_s8(__transfersize(2) int8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] |
| #define vld2_dup_s8(ptr) vld2_dup_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x4x2_t vld2_dup_s16(__transfersize(2) int16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| #define vld2_dup_s16(ptr) vld2_dup_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x2x2_t vld2_dup_s32(__transfersize(2) int32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] |
| #define vld2_dup_s32(ptr) vld2_dup_u32((uint32_t*)ptr) |
| |
| _NEON2SSESTORAGE int64x1x2_t vld2_dup_s64(__transfersize(2) int64_t const * ptr); // VLD1.64 {d0, d1}, [r0] |
| #define vld2_dup_s64(ptr) vld2_dup_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x4x2_t vld2_dup_f16(__transfersize(2) __fp16 const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr); // VLD2.32 {d0[], d1[]}, [r0] |
| _NEON2SSE_INLINE float32x2x2_t vld2_dup_f32(__transfersize(2) float32_t const * ptr) // VLD2.32 {d0[], d1[]}, [r0] |
| { |
| float32x2x2_t v; |
| v.val[0].m64_f32[0] = *(ptr); //0,0 |
| v.val[0].m64_f32[1] = *(ptr); //0,0 |
| v.val[1].m64_f32[0] = *(ptr + 1); //1,1 |
| v.val[1].m64_f32[1] = *(ptr + 1); //1,1 |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x2_t vld2_dup_p8(__transfersize(2) poly8_t const * ptr); // VLD2.8 {d0[], d1[]}, [r0] |
| #define vld2_dup_p8 vld2_dup_u8 |
| |
| _NEON2SSESTORAGE poly16x4x2_t vld2_dup_p16(__transfersize(2) poly16_t const * ptr); // VLD2.16 {d0[], d1[]}, [r0] |
| #define vld2_dup_p16 vld2_dup_s16 |
| |
| //************* Duplicate (or propagate)triplets: ******************* |
| //******************************************************************** |
| //ptr[0] to all val[0] lanes, ptr[1] to all val[1] lanes and ptr[2] to all val[2] lanes |
| _NEON2SSESTORAGE uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSE_INLINE uint8x8x3_t vld3_dup_u8(__transfersize(3) uint8_t const * ptr) // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| { |
| uint8x8x3_t v; |
| __m128i val0, val1, val2; |
| val0 = LOAD_SI128(ptr); //0,1,2,x, x,x,x,x,x,x,x,x, x,x,x,x |
| val1 = _mm_unpacklo_epi8(val0,val0); //0,0,1,1,2,2,x,x, x,x,x,x,x,x,x,x, |
| val1 = _mm_unpacklo_epi16(val1,val1); //0,0,0,0, 1,1,1,1,2,2,2,2,x,x,x,x, |
| val0 = _mm_unpacklo_epi32(val1,val1); //0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, |
| val2 = _mm_unpackhi_epi32(val1,val1); // 2,2,2,2,2,2,2,2, x,x,x,x,x,x,x,x, |
| vst1q_u8(v.val, val0); |
| _M64(v.val[2], val2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSE_INLINE uint16x4x3_t vld3_dup_u16(__transfersize(3) uint16_t const * ptr) // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| { |
| uint16x4x3_t v; |
| __m128i val0, val1, val2; |
| val2 = LOAD_SI128(ptr); //0,1,2,x, x,x,x,x |
| val0 = _mm_shufflelo_epi16(val2, 0); //00 00 00 00 (all 0) |
| val1 = _mm_shufflelo_epi16(val2, 85); //01 01 01 01 (all 1) |
| val2 = _mm_shufflelo_epi16(val2, 170); //10 10 10 10 (all 2) |
| _M64(v.val[0], val0); |
| _M64(v.val[1], val1); |
| _M64(v.val[2], val2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSE_INLINE uint32x2x3_t vld3_dup_u32(__transfersize(3) uint32_t const * ptr) // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| { |
| uint32x2x3_t v; |
| __m128i val0, val1, val2; |
| val2 = LOAD_SI128(ptr); //0,1,2,x |
| val0 = _mm_shuffle_epi32(val2, 0 | (0 << 2) | (2 << 4) | (2 << 6)); //0,0,2,2 |
| val1 = _mm_shuffle_epi32(val2, 1 | (1 << 2) | (2 << 4) | (2 << 6)); //1,1,2,2 |
| val2 = _mm_srli_si128(val0, 8); //2,2,0x0,0x0 |
| _M64(v.val[0], val0); |
| _M64(v.val[1], val1); |
| _M64(v.val[2], val2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE uint64x1x3_t vld3_dup_u64(__transfersize(3) uint64_t const * ptr) // VLD1.64 {d0, d1, d2}, [r0] |
| { |
| uint64x1x3_t v; |
| v.val[0].m64_u64[0] = *(ptr); |
| v.val[1].m64_u64[0] = *(ptr + 1); |
| v.val[2].m64_u64[0] = *(ptr + 2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x3_t vld3_dup_s8(__transfersize(3) int8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| #define vld3_dup_s8(ptr) vld3_dup_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x4x3_t vld3_dup_s16(__transfersize(3) int16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| #define vld3_dup_s16(ptr) vld3_dup_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x2x3_t vld3_dup_s32(__transfersize(3) int32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| #define vld3_dup_s32(ptr) vld3_dup_u32((uint32_t*)ptr) |
| |
| int64x1x3_t vld3_dup_s64(__transfersize(3) int64_t const * ptr); // VLD1.64 {d0, d1, d2}, [r0] |
| #define vld3_dup_s64(ptr) vld3_dup_u64((uint64_t*)ptr) |
| |
| |
| _NEON2SSESTORAGE float16x4x3_t vld3_dup_f16(__transfersize(3) __fp16 const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr); // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| _NEON2SSE_INLINE float32x2x3_t vld3_dup_f32(__transfersize(3) float32_t const * ptr) // VLD3.32 {d0[], d1[], d2[]}, [r0] |
| { |
| float32x2x3_t v; |
| int i; |
| for (i = 0; i<3; i++) { |
| v.val[i].m64_f32[0] = *(ptr + i); |
| v.val[i].m64_f32[1] = *(ptr + i); |
| } |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x3_t vld3_dup_p8(__transfersize(3) poly8_t const * ptr); // VLD3.8 {d0[], d1[], d2[]}, [r0] |
| #define vld3_dup_p8 vld3_dup_u8 |
| |
| _NEON2SSESTORAGE poly16x4x3_t vld3_dup_p16(__transfersize(3) poly16_t const * ptr); // VLD3.16 {d0[], d1[], d2[]}, [r0] |
| #define vld3_dup_p16 vld3_dup_s16 |
| |
| |
| //************* Duplicate (or propagate) quadruples: ******************* |
| //*********************************************************************** |
| //ptr[0] to all val[0] lanes, ptr[1] to all val[1] lanes, ptr[2] to all val[2] lanes and ptr[3] to all val[3] lanes |
| _NEON2SSESTORAGE uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSE_INLINE uint8x8x4_t vld4_dup_u8(__transfersize(4) uint8_t const * ptr) // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| { |
| uint8x8x4_t v; |
| __m128i val0, val1, val2; |
| val0 = LOAD_SI128(ptr); //0,1,2,3, x,x,x,x,x,x,x,x, x,x,x,x |
| val1 = _mm_unpacklo_epi8(val0,val0); //0,0,1,1,2,2,3,3, x,x,x,x,x,x,x,x, |
| val1 = _mm_unpacklo_epi16(val1,val1); //0,0,0,0, 1,1,1,1,2,2,2,2,3,3,3,3 |
| val0 = _mm_unpacklo_epi32(val1,val1); //0,0,0,0, 0,0,0,0,1,1,1,1,1,1,1,1, |
| val2 = _mm_unpackhi_epi32(val1,val1); // 2,2,2,2,2,2,2,2, 3,3,3,3, 3,3,3,3 |
| vst1q_u8(&v.val[0], val0); |
| vst1q_u8(&v.val[2], val2); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSE_INLINE uint16x4x4_t vld4_dup_u16(__transfersize(4) uint16_t const * ptr) // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| { |
| uint16x4x4_t v; |
| __m128i val0, val1, val2, val3; |
| val3 = LOAD_SI128(ptr); //0,1,2,3, x,x,x,x |
| val0 = _mm_shufflelo_epi16(val3, 0); //00 00 00 00 (all 0) |
| val1 = _mm_shufflelo_epi16(val3, 85); //01 01 01 01 (all 1) |
| val2 = _mm_shufflelo_epi16(val3, 170); //10 10 10 10 (all 2) |
| val3 = _mm_shufflelo_epi16(val3, 255); //11 11 11 11 (all 3) |
| _M64(v.val[0], val0); |
| _M64(v.val[1], val1); |
| _M64(v.val[2], val2); |
| _M64(v.val[3], val3); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSE_INLINE uint32x2x4_t vld4_dup_u32(__transfersize(4) uint32_t const * ptr) // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| { |
| uint32x2x4_t v; |
| __m128i val0, val1, val2, val3; |
| val3 = LOAD_SI128(ptr); //0,1,2,3 |
| val0 = _mm_shuffle_epi32(val3, 0 | (0 << 2) | (2 << 4) | (3 << 6)); //0,0,2,3 |
| val1 = _mm_shuffle_epi32(val3, 1 | (1 << 2) | (2 << 4) | (3 << 6)); //1,1,2,3 |
| val2 = _mm_shuffle_epi32(val3, 2 | (2 << 2) | (3 << 4) | (3 << 6)); //2,2,3,3 |
| val3 = _mm_shuffle_epi32(val3, 3 | (3 << 2) | (3 << 4) | (3 << 6)); //3,3,2,2 |
| _M64(v.val[0], val0); |
| _M64(v.val[1], val1); |
| _M64(v.val[2], val2); |
| _M64(v.val[3], val3); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE uint64x1x4_t vld4_dup_u64(__transfersize(4) uint64_t const * ptr) // VLD1.64 {d0, d1, d2, d3}, [r0] |
| { |
| uint64x1x4_t v; |
| v.val[0].m64_u64[0] = *(ptr); |
| v.val[1].m64_u64[0] = *(ptr + 1); |
| v.val[2].m64_u64[0] = *(ptr + 2); |
| v.val[3].m64_u64[0] = *(ptr + 3); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x4_t vld4_dup_s8(__transfersize(4) int8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| #define vld4_dup_s8(ptr) vld4_dup_u8((uint8_t*)ptr) |
| |
| _NEON2SSESTORAGE int16x4x4_t vld4_dup_s16(__transfersize(4) int16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| #define vld4_dup_s16(ptr) vld4_dup_u16((uint16_t*)ptr) |
| |
| _NEON2SSESTORAGE int32x2x4_t vld4_dup_s32(__transfersize(4) int32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| #define vld4_dup_s32(ptr) vld4_dup_u32((uint32_t*)ptr) |
| |
| int64x1x4_t vld4_dup_s64(__transfersize(4) int64_t const * ptr); // VLD1.64 {d0, d1, d2, d3}, [r0] |
| #define vld4_dup_s64(ptr) vld4_dup_u64((uint64_t*)ptr) |
| |
| _NEON2SSESTORAGE float16x4x4_t vld4_dup_f16(__transfersize(4) __fp16 const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr); // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| _NEON2SSE_INLINE float32x2x4_t vld4_dup_f32(__transfersize(4) float32_t const * ptr) // VLD4.32 {d0[], d1[], d2[], d3[]}, [r0] |
| { |
| float32x2x4_t v; |
| int i; |
| for (i = 0; i<4; i++) { |
| v.val[i].m64_f32[0] = *(ptr + i); |
| v.val[i].m64_f32[1] = *(ptr + i); |
| } |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x4_t vld4_dup_p8(__transfersize(4) poly8_t const * ptr); // VLD4.8 {d0[], d1[], d2[], d3[]}, [r0] |
| #define vld4_dup_p8 vld4_dup_u8 |
| |
| _NEON2SSESTORAGE poly16x4x4_t vld4_dup_p16(__transfersize(4) poly16_t const * ptr); // VLD4.16 {d0[], d1[], d2[], d3[]}, [r0] |
| #define vld4_dup_p16 vld4_dup_u16 |
| |
| |
| //********************************************************************************** |
| //*******************Lane loads for an N-element structures *********************** |
| //********************************************************************************** |
| //********************** Lane pairs ************************************************ |
| //does vld1_lane_xx ptr[0] to src->val[0] at lane positon and ptr[1] to src->val[1] at lane positon |
| //we assume src is 16 bit aligned |
| |
| //!!!!!! Microsoft compiler does not allow xxxxxx_2t function arguments resulting in "formal parameter with __declspec(align('16')) won't be aligned" error |
| //to fix it the all functions below work with xxxxxx_2t pointers and the corresponding original functions are redefined |
| |
| //uint16x8x2_t vld2q_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x8x2_t src,__constrange(0,7) int lane);// VLD2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE uint16x8x2_t vld2q_lane_u16_ptr(__transfersize(2) uint16_t const * ptr, uint16x8x2_t* src,__constrange(0,7) int lane) // VLD2.16 {d0[0], d2[0]}, [r0] |
| { |
| uint16x8x2_t v; |
| v.val[0] = vld1q_lane_s16 (ptr, src->val[0], lane); |
| v.val[1] = vld1q_lane_s16 ((ptr + 1), src->val[1], lane); |
| return v; |
| } |
| #define vld2q_lane_u16(ptr, src, lane) vld2q_lane_u16_ptr(ptr, &src, lane) |
| |
| //uint32x4x2_t vld2q_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x4x2_t src,__constrange(0,3) int lane);// VLD2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE uint32x4x2_t vld2q_lane_u32_ptr(__transfersize(2) uint32_t const * ptr, uint32x4x2_t* src,__constrange(0,3) int lane) // VLD2.32 {d0[0], d2[0]}, [r0] |
| { |
| uint32x4x2_t v; |
| v.val[0] = _MM_INSERT_EPI32 (src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI32 (src->val[1], ptr[1], lane); |
| return v; |
| } |
| #define vld2q_lane_u32(ptr, src, lane) vld2q_lane_u32_ptr(ptr, &src, lane) |
| |
| //int16x8x2_t vld2q_lane_s16(__transfersize(2) int16_t const * ptr, int16x8x2_t src, __constrange(0,7)int lane);// VLD2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE int16x8x2_t vld2q_lane_s16_ptr(__transfersize(2) int16_t const * ptr, int16x8x2_t* src, __constrange(0,7) int lane) |
| { |
| int16x8x2_t v; |
| v.val[0] = vld1q_lane_s16 (ptr, src->val[0], lane); |
| v.val[1] = vld1q_lane_s16 ((ptr + 1), src->val[1], lane); |
| return v; |
| } |
| #define vld2q_lane_s16(ptr, src, lane) vld2q_lane_s16_ptr(ptr, &src, lane) |
| |
| //int32x4x2_t vld2q_lane_s32(__transfersize(2) int32_t const * ptr, int32x4x2_t src, __constrange(0,3)int lane);// VLD2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE int32x4x2_t vld2q_lane_s32_ptr(__transfersize(2) int32_t const * ptr, int32x4x2_t* src, __constrange(0,3) int lane) |
| { |
| int32x4x2_t v; |
| v.val[0] = _MM_INSERT_EPI32 (src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI32 (src->val[1], ptr[1], lane); |
| return v; |
| } |
| #define vld2q_lane_s32(ptr, src, lane) vld2q_lane_s32_ptr(ptr, &src, lane) |
| |
| //float16x8x2_t vld2q_lane_f16(__transfersize(2) __fp16 const * ptr, float16x8x2_t src, __constrange(0,7)int lane);// VLD2.16 {d0[0], d2[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| //float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t src,__constrange(0,3) int lane);// VLD2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE float32x4x2_t vld2q_lane_f32_ptr(__transfersize(2) float32_t const * ptr, float32x4x2_t* src,__constrange(0,3) int lane) // VLD2.32 {d0[0], d2[0]}, [r0] |
| { |
| float32x4x2_t v; |
| v.val[0] = vld1q_lane_f32(ptr, src->val[0], lane); |
| v.val[1] = vld1q_lane_f32((ptr + 1), src->val[1], lane); |
| return v; |
| } |
| #define vld2q_lane_f32(ptr,src,lane) vld2q_lane_f32_ptr(ptr,&src,lane) |
| |
| //poly16x8x2_t vld2q_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x8x2_t src,__constrange(0,7) int lane);// VLD2.16 {d0[0], d2[0]}, [r0] |
| #define vld2q_lane_p16 vld2q_lane_u16 |
| |
| _NEON2SSESTORAGE uint8x8x2_t vld2_lane_u8(__transfersize(2) uint8_t const * ptr, uint8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE uint8x8x2_t vld2_lane_u8(__transfersize(2) uint8_t const * ptr, uint8x8x2_t src, __constrange(0,7) int lane) // VLD2.8 {d0[0], d1[0]}, [r0] |
| { |
| uint8x8x2_t v; |
| v.val[0] = vld1_lane_u8(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u8((ptr + 1), src.val[1], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x2_t vld2_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x4x2_t src, __constrange(0,3)int lane);// VLD2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE uint16x4x2_t vld2_lane_u16(__transfersize(2) uint16_t const * ptr, uint16x4x2_t src, __constrange(0,3) int lane) |
| { |
| uint16x4x2_t v; |
| v.val[0] = vld1_lane_u16(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u16((ptr + 1), src.val[1], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x2_t vld2_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x2x2_t src, __constrange(0,1)int lane);// VLD2.32 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE uint32x2x2_t vld2_lane_u32(__transfersize(2) uint32_t const * ptr, uint32x2x2_t src, __constrange(0,1) int lane) |
| { |
| uint32x2x2_t v; |
| v.val[0] = vld1_lane_u32(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u32((ptr + 1), src.val[1], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x2_t vld2_lane_s8(__transfersize(2) int8_t const * ptr, int8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0] |
| #define vld2_lane_s8(ptr, src, lane) vld2_lane_u8(( uint8_t*) ptr, src, lane) |
| |
| _NEON2SSESTORAGE int16x4x2_t vld2_lane_s16(__transfersize(2) int16_t const * ptr, int16x4x2_t src, __constrange(0,3) int lane);// VLD2.16 {d0[0], d1[0]}, [r0] |
| #define vld2_lane_s16(ptr, src, lane) vld2_lane_u16(( uint16_t*) ptr, src, lane) |
| |
| _NEON2SSESTORAGE int32x2x2_t vld2_lane_s32(__transfersize(2) int32_t const * ptr, int32x2x2_t src, __constrange(0,1) int lane);// VLD2.32 {d0[0], d1[0]}, [r0] |
| #define vld2_lane_s32(ptr, src, lane) vld2_lane_u32(( uint32_t*) ptr, src, lane) |
| |
| //float16x4x2_t vld2_lane_f16(__transfersize(2) __fp16 const * ptr, float16x4x2_t src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x2x2_t vld2_lane_f32(__transfersize(2) float32_t const * ptr, float32x2x2_t src,__constrange(0,1) int lane); // VLD2.32 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE float32x2x2_t vld2_lane_f32(__transfersize(2) float32_t const * ptr, float32x2x2_t src,__constrange(0,1) int lane) |
| { |
| float32x2x2_t v; |
| v.val[0] = vld1_lane_f32(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_f32((ptr + 1), src.val[1], lane); |
| return v; |
| } |
| |
| //poly8x8x2_t vld2_lane_p8(__transfersize(2) poly8_t const * ptr, poly8x8x2_t src, __constrange(0,7) int lane);// VLD2.8 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE poly8x8x2_t vld2_lane_p8_ptr(__transfersize(2) poly8_t const * ptr, poly8x8x2_t * src, __constrange(0,7) int lane); // VLD2.8 {d0[0], d1[0]}, [r0] |
| #define vld2_lane_p8 vld2_lane_u8 |
| |
| //poly16x4x2_t vld2_lane_p16(__transfersize(2) poly16_t const * ptr, poly16x4x2_t src, __constrange(0,3)int lane);// VLD2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSESTORAGE poly16x4x2_t vld2_lane_p16_ptr(__transfersize(2) poly16_t const * ptr, poly16x4x2_t * src, __constrange(0,3) int lane); // VLD2.16 {d0[0], d1[0]}, [r0] |
| #define vld2_lane_p16 vld2_lane_u16 |
| |
| //*********** Lane triplets ********************** |
| //************************************************* |
| //does vld1_lane_xx ptr[0] to src->val[0], ptr[1] to src->val[1] and ptr[2] to src->val[2] at lane positon |
| //we assume src is 16 bit aligned |
| |
| //uint16x8x3_t vld3q_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x8x3_t src,__constrange(0,7) int lane);// VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE uint16x8x3_t vld3q_lane_u16_ptr(__transfersize(3) uint16_t const * ptr, uint16x8x3_t* src,__constrange(0,7) int lane) // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| { |
| uint16x8x3_t v; |
| v.val[0] = _MM_INSERT_EPI16 ( src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI16 ( src->val[1], ptr[1], lane); |
| v.val[2] = _MM_INSERT_EPI16 ( src->val[2], ptr[2], lane); |
| return v; |
| } |
| #define vld3q_lane_u16(ptr, src, lane) vld3q_lane_u16_ptr(ptr, &src, lane) |
| |
| //uint32x4x3_t vld3q_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x4x3_t src,__constrange(0,3) int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE uint32x4x3_t vld3q_lane_u32_ptr(__transfersize(3) uint32_t const * ptr, uint32x4x3_t* src,__constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| { |
| uint32x4x3_t v; |
| v.val[0] = _MM_INSERT_EPI32 ( src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI32 ( src->val[1], ptr[1], lane); |
| v.val[2] = _MM_INSERT_EPI32 ( src->val[2], ptr[2], lane); |
| return v; |
| } |
| #define vld3q_lane_u32(ptr, src, lane) vld3q_lane_u32_ptr(ptr, &src, lane) |
| |
| //int16x8x3_t vld3q_lane_s16(__transfersize(3) int16_t const * ptr, int16x8x3_t src, __constrange(0,7)int lane);// VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE int16x8x3_t vld3q_lane_s16_ptr(__transfersize(3) int16_t const * ptr, int16x8x3_t* src, __constrange(0,7) int lane) // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| { |
| int16x8x3_t v; |
| v.val[0] = _MM_INSERT_EPI16 ( src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI16 ( src->val[1], ptr[1], lane); |
| v.val[2] = _MM_INSERT_EPI16 ( src->val[2], ptr[2], lane); |
| return v; |
| } |
| #define vld3q_lane_s16(ptr, src, lane) vld3q_lane_s16_ptr(ptr, &src, lane) |
| |
| //int32x4x3_t vld3q_lane_s32(__transfersize(3) int32_t const * ptr, int32x4x3_t src, __constrange(0,3)int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE int32x4x3_t vld3q_lane_s32_ptr(__transfersize(3) int32_t const * ptr, int32x4x3_t* src, __constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| { |
| int32x4x3_t v; |
| v.val[0] = _MM_INSERT_EPI32 ( src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI32 ( src->val[1], ptr[1], lane); |
| v.val[2] = _MM_INSERT_EPI32 ( src->val[2], ptr[2], lane); |
| return v; |
| } |
| #define vld3q_lane_s32(ptr, src, lane) vld3q_lane_s32_ptr(ptr, &src, lane) |
| |
| _NEON2SSESTORAGE float16x8x3_t vld3q_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x8x3_t * src, __constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| #define vld3q_lane_f16(ptr, src, lane) vld3q_lane_f16_ptr(ptr, &src, lane) |
| |
| |
| //float32x4x3_t vld3q_lane_f32(__transfersize(3) float32_t const * ptr, float32x4x3_t src,__constrange(0,3) int lane);// VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE float32x4x3_t vld3q_lane_f32_ptr(__transfersize(3) float32_t const * ptr, float32x4x3_t* src,__constrange(0,3) int lane) // VLD3.32 {d0[0], d2[0], d4[0]}, [r0] |
| { |
| float32x4x3_t v; |
| v.val[0] = vld1q_lane_f32(&ptr[0], src->val[0], lane); |
| v.val[1] = vld1q_lane_f32(&ptr[1], src->val[1], lane); |
| v.val[2] = vld1q_lane_f32(&ptr[2], src->val[2], lane); |
| return v; |
| } |
| #define vld3q_lane_f32(ptr,src,lane) vld3q_lane_f32_ptr(ptr,&src,lane) |
| |
| _NEON2SSESTORAGE poly16x8x3_t vld3q_lane_p16_ptr(__transfersize(3) poly16_t const * ptr, poly16x8x3_t * src,__constrange(0,7) int lane); // VLD3.16 {d0[0], d2[0], d4[0]}, [r0] |
| #define vld3q_lane_p16 vld3q_lane_u16 |
| |
| _NEON2SSESTORAGE uint8x8x3_t vld3_lane_u8(__transfersize(3) uint8_t const * ptr, uint8x8x3_t src, __constrange(0,7) int lane);// VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE uint8x8x3_t vld3_lane_u8(__transfersize(3) uint8_t const * ptr, uint8x8x3_t src, __constrange(0,7) int lane) // VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| { |
| uint8x8x3_t v; |
| v.val[0] = vld1_lane_u8(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u8((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_u8((ptr + 2), src.val[2], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x3_t vld3_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x4x3_t src, __constrange(0,3)int lane);// VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE uint16x4x3_t vld3_lane_u16(__transfersize(3) uint16_t const * ptr, uint16x4x3_t src, __constrange(0,3) int lane) // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| { |
| uint16x4x3_t v; |
| v.val[0] = vld1_lane_u16(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u16((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_u16((ptr + 2), src.val[2], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x3_t vld3_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x2x3_t src, __constrange(0,1)int lane);// VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE uint32x2x3_t vld3_lane_u32(__transfersize(3) uint32_t const * ptr, uint32x2x3_t src, __constrange(0,1) int lane) // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| { |
| //need to merge into 128 bit anyway |
| uint32x2x3_t v; |
| v.val[0] = vld1_lane_u32(ptr, src.val[0], lane);; |
| v.val[1] = vld1_lane_u32((ptr + 1), src.val[1], lane);; |
| v.val[2] = vld1_lane_u32((ptr + 2), src.val[2], lane);; |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x3_t vld3_lane_s8(__transfersize(3) int8_t const * ptr, int8x8x3_t src, __constrange(0,7) int lane); // VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| #define vld3_lane_s8(ptr, src, lane) vld3_lane_u8(( uint8_t*) ptr, src, lane) |
| |
| _NEON2SSESTORAGE int16x4x3_t vld3_lane_s16(__transfersize(3) int16_t const * ptr, int16x4x3_t src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| #define vld3_lane_s16(ptr, src, lane) vld3_lane_u16(( uint16_t*) ptr, src, lane) |
| |
| _NEON2SSESTORAGE int32x2x3_t vld3_lane_s32(__transfersize(3) int32_t const * ptr, int32x2x3_t src, __constrange(0,1) int lane); // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| #define vld3_lane_s32(ptr, src, lane) vld3_lane_u32(( uint32_t*) ptr, src, lane) |
| |
| _NEON2SSESTORAGE float16x4x3_t vld3_lane_f16_ptr(__transfersize(3) __fp16 const * ptr, float16x4x3_t * src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x2x3_t vld3_lane_f32(__transfersize(3) float32_t const * ptr, float32x2x3_t src,__constrange(0,1) int lane);// VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE float32x2x3_t vld3_lane_f32(__transfersize(3) float32_t const * ptr, float32x2x3_t src,__constrange(0,1) int lane) // VLD3.32 {d0[0], d1[0], d2[0]}, [r0] |
| { |
| float32x2x3_t v; |
| v.val[0] = vld1_lane_f32(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_f32((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_f32((ptr + 2), src.val[2], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x3_t vld3_lane_p8(__transfersize(3) poly8_t const * ptr, poly8x8x3_t src, __constrange(0,7) int lane); // VLD3.8 {d0[0], d1[0], d2[0]}, [r0] |
| #define vld3_lane_p8 vld3_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x4x3_t vld3_lane_p16(__transfersize(3) poly16_t const * ptr, poly16x4x3_t src, __constrange(0,3) int lane); // VLD3.16 {d0[0], d1[0], d2[0]}, [r0] |
| #define vld3_lane_p16 vld3_lane_u16 |
| |
| //******************* Lane Quadruples load *************************** |
| //********************************************************************* |
| //does vld1_lane_xx ptr[0] to src->val[0], ptr[1] to src->val[1], ptr[2] to src->val[2] and ptr[3] to src->val[3] at lane positon |
| //we assume src is 16 bit aligned |
| |
| //uint16x8x4_t vld4q_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x8x4_t src,__constrange(0,7) int lane)// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSE_INLINE uint16x8x4_t vld4q_lane_u16_ptr(__transfersize(4) uint16_t const * ptr, uint16x8x4_t* src,__constrange(0,7) int lane) |
| { |
| uint16x8x4_t v; |
| v.val[0] = _MM_INSERT_EPI16 ( src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI16 ( src->val[1], ptr[1], lane); |
| v.val[2] = _MM_INSERT_EPI16 ( src->val[2], ptr[2], lane); |
| v.val[3] = _MM_INSERT_EPI16 ( src->val[3], ptr[3], lane); |
| return v; |
| } |
| #define vld4q_lane_u16(ptr, src, lane) vld4q_lane_u16_ptr(ptr, &src, lane) |
| |
| //uint32x4x4_t vld4q_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x4x4_t src,__constrange(0,3) int lane)// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSE_INLINE uint32x4x4_t vld4q_lane_u32_ptr(__transfersize(4) uint32_t const * ptr, uint32x4x4_t* src,__constrange(0,3) int lane) |
| { |
| uint32x4x4_t v; |
| v.val[0] = _MM_INSERT_EPI32 ( src->val[0], ptr[0], lane); |
| v.val[1] = _MM_INSERT_EPI32 ( src->val[1], ptr[1], lane); |
| v.val[2] = _MM_INSERT_EPI32 ( src->val[2], ptr[2], lane); |
| v.val[3] = _MM_INSERT_EPI32 ( src->val[3], ptr[3], lane); |
| return v; |
| } |
| #define vld4q_lane_u32(ptr, src, lane) vld4q_lane_u32_ptr(ptr, &src, lane) |
| |
| //int16x8x4_t vld4q_lane_s16(__transfersize(4) int16_t const * ptr, int16x8x4_t src, __constrange(0,7)int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE int16x8x4_t vld4q_lane_s16_ptr(__transfersize(4) int16_t const * ptr, int16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| #define vld4q_lane_s16(ptr, src, lane) vld4q_lane_u16(( uint16_t*) ptr, src, lane) |
| |
| //int32x4x4_t vld4q_lane_s32(__transfersize(4) int32_t const * ptr, int32x4x4_t src, __constrange(0,3)int lane);// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE int32x4x4_t vld4q_lane_s32_ptr(__transfersize(4) int32_t const * ptr, int32x4x4_t * src, __constrange(0,3) int lane); // VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| #define vld4q_lane_s32(ptr, src, lane) vld4q_lane_u32(( uint32_t*) ptr, src, lane) |
| |
| //float16x8x4_t vld4q_lane_f16(__transfersize(4) __fp16 const * ptr, float16x8x4_t src, __constrange(0,7)int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE float16x8x4_t vld4q_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x8x4_t * src, __constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| //float32x4x4_t vld4q_lane_f32(__transfersize(4) float32_t const * ptr, float32x4x4_t src,__constrange(0,3) int lane)// VLD4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSE_INLINE float32x4x4_t vld4q_lane_f32_ptr(__transfersize(4) float32_t const * ptr, float32x4x4_t* src,__constrange(0,3) int lane) |
| { |
| float32x4x4_t v; |
| v.val[0] = vld1q_lane_f32(&ptr[0], src->val[0], lane); |
| v.val[1] = vld1q_lane_f32(&ptr[1], src->val[1], lane); |
| v.val[2] = vld1q_lane_f32(&ptr[2], src->val[2], lane); |
| v.val[3] = vld1q_lane_f32(&ptr[3], src->val[3], lane); |
| return v; |
| } |
| #define vld4q_lane_f32(ptr,val,lane) vld4q_lane_f32_ptr(ptr,&val,lane) |
| |
| //poly16x8x4_t vld4q_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x8x4_t src,__constrange(0,7) int lane);// VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE poly16x8x4_t vld4q_lane_p16_ptr(__transfersize(4) poly16_t const * ptr, poly16x8x4_t * src,__constrange(0,7) int lane); // VLD4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| #define vld4q_lane_p16 vld4q_lane_u16 |
| |
| _NEON2SSESTORAGE uint8x8x4_t vld4_lane_u8(__transfersize(4) uint8_t const * ptr, uint8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE uint8x8x4_t vld4_lane_u8(__transfersize(4) uint8_t const * ptr, uint8x8x4_t src, __constrange(0,7) int lane) |
| { |
| uint8x8x4_t v; |
| v.val[0] = vld1_lane_u8(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u8((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_u8((ptr + 2), src.val[2], lane); |
| v.val[3] = vld1_lane_u8((ptr + 3), src.val[3], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint16x4x4_t vld4_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE uint16x4x4_t vld4_lane_u16(__transfersize(4) uint16_t const * ptr, uint16x4x4_t src, __constrange(0,3) int lane) |
| { |
| uint16x4x4_t v; |
| v.val[0] = vld1_lane_u16(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u16((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_u16((ptr + 2), src.val[2], lane); |
| v.val[3] = vld1_lane_u16((ptr + 3), src.val[3], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE uint32x2x4_t vld4_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x2x4_t src, __constrange(0,1)int lane);// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE uint32x2x4_t vld4_lane_u32(__transfersize(4) uint32_t const * ptr, uint32x2x4_t src, __constrange(0,1) int lane) |
| { |
| uint32x2x4_t v; |
| v.val[0] = vld1_lane_u32(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_u32((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_u32((ptr + 2), src.val[2], lane); |
| v.val[3] = vld1_lane_u32((ptr + 3), src.val[3], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE int8x8x4_t vld4_lane_s8(__transfersize(4) int8_t const * ptr, int8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vld4_lane_s8(ptr,src,lane) vld4_lane_u8((uint8_t*)ptr,src,lane) |
| |
| _NEON2SSESTORAGE int16x4x4_t vld4_lane_s16(__transfersize(4) int16_t const * ptr, int16x4x4_t src, __constrange(0,3) int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vld4_lane_s16(ptr,src,lane) vld4_lane_u16((uint16_t*)ptr,src,lane) |
| |
| _NEON2SSESTORAGE int32x2x4_t vld4_lane_s32(__transfersize(4) int32_t const * ptr, int32x2x4_t src, __constrange(0,1) int lane);// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vld4_lane_s32(ptr,src,lane) vld4_lane_u32((uint32_t*)ptr,src,lane) |
| |
| //float16x4x4_t vld4_lane_f16(__transfersize(4) __fp16 const * ptr, float16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE float16x4x4_t vld4_lane_f16_ptr(__transfersize(4) __fp16 const * ptr, float16x4x4_t * src, __constrange(0,3) int lane); |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x2x4_t vld4_lane_f32(__transfersize(4) float32_t const * ptr, float32x2x4_t src,__constrange(0,1) int lane);// VLD4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE float32x2x4_t vld4_lane_f32(__transfersize(4) float32_t const * ptr, float32x2x4_t src,__constrange(0,1) int lane) |
| { |
| //serial solution may be faster |
| float32x2x4_t v; |
| v.val[0] = vld1_lane_f32(ptr, src.val[0], lane); |
| v.val[1] = vld1_lane_f32((ptr + 1), src.val[1], lane); |
| v.val[2] = vld1_lane_f32((ptr + 2), src.val[2], lane); |
| v.val[3] = vld1_lane_f32((ptr + 3), src.val[3], lane); |
| return v; |
| } |
| |
| _NEON2SSESTORAGE poly8x8x4_t vld4_lane_p8(__transfersize(4) poly8_t const * ptr, poly8x8x4_t src, __constrange(0,7) int lane);// VLD4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vld4_lane_p8 vld4_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x4x4_t vld4_lane_p16(__transfersize(4) poly16_t const * ptr, poly16x4x4_t src, __constrange(0,3)int lane);// VLD4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vld4_lane_p16 vld4_lane_u16 |
| |
| //******************* Store duplets ********************************************* |
| //******************************************************************************** |
| //void vst2q_u8(__transfersize(32) uint8_t * ptr, uint8x16x2_t val)// VST2.8 {d0, d2}, [r0] |
| _NEON2SSE_INLINE void vst2q_u8_ptr(__transfersize(32) uint8_t * ptr, uint8x16x2_t* val) |
| { |
| uint8x16x2_t v; |
| v.val[0] = _mm_unpacklo_epi8(val->val[0], val->val[1]); |
| v.val[1] = _mm_unpackhi_epi8(val->val[0], val->val[1]); |
| vst1q_u8 (ptr, v.val[0]); |
| vst1q_u8 ((ptr + 16), v.val[1]); |
| } |
| #define vst2q_u8(ptr, val) vst2q_u8_ptr(ptr, &val) |
| |
| //void vst2q_u16(__transfersize(16) uint16_t * ptr, uint16x8x2_t val)// VST2.16 {d0, d2}, [r0] |
| _NEON2SSE_INLINE void vst2q_u16_ptr(__transfersize(16) uint16_t * ptr, uint16x8x2_t* val) |
| { |
| uint16x8x2_t v; |
| v.val[0] = _mm_unpacklo_epi16(val->val[0], val->val[1]); |
| v.val[1] = _mm_unpackhi_epi16(val->val[0], val->val[1]); |
| vst1q_u16 (ptr, v.val[0]); |
| vst1q_u16 ((ptr + 8), v.val[1]); |
| } |
| #define vst2q_u16(ptr, val) vst2q_u16_ptr(ptr, &val) |
| |
| //void vst2q_u32(__transfersize(8) uint32_t * ptr, uint32x4x2_t val)// VST2.32 {d0, d2}, [r0] |
| _NEON2SSE_INLINE void vst2q_u32_ptr(__transfersize(8) uint32_t* ptr, uint32x4x2_t* val) |
| { |
| uint32x4x2_t v; |
| v.val[0] = _mm_unpacklo_epi32(val->val[0], val->val[1]); |
| v.val[1] = _mm_unpackhi_epi32(val->val[0], val->val[1]); |
| vst1q_u32 (ptr, v.val[0]); |
| vst1q_u32 ((ptr + 4), v.val[1]); |
| } |
| #define vst2q_u32(ptr, val) vst2q_u32_ptr(ptr, &val) |
| |
| //void vst2q_s8(__transfersize(32) int8_t * ptr, int8x16x2_t val); // VST2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_s8_ptr(__transfersize(32) int8_t * ptr, int8x16x2_t * val); |
| #define vst2q_s8(ptr, val) vst2q_u8((uint8_t*)(ptr), val) |
| |
| //void vst2q_s16(__transfersize(16) int16_t * ptr, int16x8x2_t val);// VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_s16_ptr(__transfersize(16) int16_t * ptr, int16x8x2_t * val); |
| #define vst2q_s16(ptr, val) vst2q_u16((uint16_t*)(ptr), val) |
| |
| //void vst2q_s32(__transfersize(8) int32_t * ptr, int32x4x2_t val);// VST2.32 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_s32_ptr(__transfersize(8) int32_t * ptr, int32x4x2_t * val); |
| #define vst2q_s32(ptr, val) vst2q_u32((uint32_t*)(ptr), val) |
| |
| //void vst2q_f16(__transfersize(16) __fp16 * ptr, float16x8x2_t val);// VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_f16_ptr(__transfersize(16) __fp16 * ptr, float16x8x2_t * val); |
| // IA32 SIMD doesn't work with 16bit floats currently |
| |
| //void vst2q_f32(__transfersize(8) float32_t * ptr, float32x4x2_t val)// VST2.32 {d0, d2}, [r0] |
| _NEON2SSE_INLINE void vst2q_f32_ptr(__transfersize(8) float32_t* ptr, float32x4x2_t* val) |
| { |
| float32x4x2_t v; |
| v.val[0] = _mm_unpacklo_ps(val->val[0], val->val[1]); |
| v.val[1] = _mm_unpackhi_ps(val->val[0], val->val[1]); |
| vst1q_f32 (ptr, v.val[0]); |
| vst1q_f32 ((ptr + 4), v.val[1]); |
| } |
| #define vst2q_f32(ptr, val) vst2q_f32_ptr(ptr, &val) |
| |
| //void vst2q_p8(__transfersize(32) poly8_t * ptr, poly8x16x2_t val);// VST2.8 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_p8_ptr(__transfersize(32) poly8_t * ptr, poly8x16x2_t * val); |
| #define vst2q_p8 vst2q_u8 |
| |
| //void vst2q_p16(__transfersize(16) poly16_t * ptr, poly16x8x2_t val);// VST2.16 {d0, d2}, [r0] |
| _NEON2SSESTORAGE void vst2q_p16_ptr(__transfersize(16) poly16_t * ptr, poly16x8x2_t * val); |
| #define vst2q_p16 vst2q_u16 |
| |
| _NEON2SSESTORAGE void vst2_u8(__transfersize(16) uint8_t * ptr, uint8x8x2_t val);// VST2.8 {d0, d1}, [r0] |
| _NEON2SSE_INLINE void vst2_u8(__transfersize(16) uint8_t * ptr, uint8x8x2_t val) |
| { |
| __m128i v0; |
| v0 = _mm_unpacklo_epi8(_pM128i(val.val[0]), _pM128i(val.val[1])); |
| vst1q_u8 (ptr, v0); |
| } |
| |
| _NEON2SSESTORAGE void vst2_u16(__transfersize(8) uint16_t * ptr, uint16x4x2_t val);// VST2.16 {d0, d1}, [r0] |
| _NEON2SSE_INLINE void vst2_u16(__transfersize(8) uint16_t * ptr, uint16x4x2_t val) |
| { |
| __m128i v0; |
| v0 = _mm_unpacklo_epi16(_pM128i(val.val[0]), _pM128i(val.val[1])); |
| vst1q_u16 (ptr, v0); |
| } |
| |
| _NEON2SSESTORAGE void vst2_u32(__transfersize(4) uint32_t * ptr, uint32x2x2_t val);// VST2.32 {d0, d1}, [r0] |
| _NEON2SSE_INLINE void vst2_u32(__transfersize(4) uint32_t * ptr, uint32x2x2_t val) |
| { |
| __m128i v0; |
| v0 = _mm_unpacklo_epi32(_pM128i(val.val[0]), _pM128i(val.val[1])); |
| vst1q_u32 (ptr, v0); |
| } |
| |
| _NEON2SSESTORAGE void vst2_u64(__transfersize(2) uint64_t * ptr, uint64x1x2_t val);// VST1.64 {d0, d1}, [r0] |
| _NEON2SSE_INLINE void vst2_u64(__transfersize(2) uint64_t * ptr, uint64x1x2_t val) |
| { |
| *(ptr) = val.val[0].m64_u64[0]; |
| *(ptr + 1) = val.val[1].m64_u64[0]; |
| } |
| |
| _NEON2SSESTORAGE void vst2_s8(__transfersize(16) int8_t * ptr, int8x8x2_t val);// VST2.8 {d0, d1}, [r0] |
| #define vst2_s8(ptr, val) vst2_u8((uint8_t*) ptr, val) |
| |
| _NEON2SSESTORAGE void vst2_s16(__transfersize(8) int16_t * ptr, int16x4x2_t val); // VST2.16 {d0, d1}, [r0] |
| #define vst2_s16(ptr,val) vst2_u16((uint16_t*) ptr, val) |
| |
| _NEON2SSESTORAGE void vst2_s32(__transfersize(4) int32_t * ptr, int32x2x2_t val); // VST2.32 {d0, d1}, [r0] |
| #define vst2_s32(ptr,val) vst2_u32((uint32_t*) ptr, val) |
| |
| _NEON2SSESTORAGE void vst2_s64(__transfersize(2) int64_t * ptr, int64x1x2_t val); |
| #define vst2_s64(ptr,val) vst2_u64((uint64_t*) ptr,val) |
| |
| //void vst2_f16(__transfersize(8) __fp16 * ptr, float16x4x2_t val); // VST2.16 {d0, d1}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst2_f32(__transfersize(4) float32_t * ptr, float32x2x2_t val); // VST2.32 {d0, d1}, [r0] |
| _NEON2SSE_INLINE void vst2_f32(__transfersize(4) float32_t* ptr, float32x2x2_t val) |
| { |
| *(ptr) = val.val[0].m64_f32[0]; |
| *(ptr + 1) = val.val[1].m64_f32[0]; |
| *(ptr + 2) = val.val[0].m64_f32[1]; |
| *(ptr + 3) = val.val[1].m64_f32[1]; |
| } |
| |
| _NEON2SSESTORAGE void vst2_p8(__transfersize(16) poly8_t * ptr, poly8x8x2_t val); // VST2.8 {d0, d1}, [r0] |
| #define vst2_p8 vst2_u8 |
| |
| _NEON2SSESTORAGE void vst2_p16(__transfersize(8) poly16_t * ptr, poly16x4x2_t val); // VST2.16 {d0, d1}, [r0] |
| #define vst2_p16 vst2_u16 |
| |
| //******************** Triplets store ***************************************** |
| //****************************************************************************** |
| //void vst3q_u8(__transfersize(48) uint8_t * ptr, uint8x16x3_t val)// VST3.8 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE void vst3q_u8_ptr(__transfersize(48) uint8_t * ptr, uint8x16x3_t* val) |
| { |
| uint8x16x3_t v; |
| __m128i v0,v1,v2, cff, bldmask; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask0[16] = {0, 1, 0xff, 2, 3,0xff, 4, 5,0xff, 6,7,0xff, 8,9,0xff, 10}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask1[16] = {0, 0xff, 1, 2, 0xff, 3, 4, 0xff, 5, 6, 0xff, 7,8,0xff, 9,10}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2[16] = {0xff, 6, 7, 0xff, 8, 9,0xff, 10, 11,0xff, 12,13,0xff, 14,15,0xff}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2lo[16] = {0xff,0xff, 0, 0xff,0xff, 1, 0xff,0xff, 2, 0xff,0xff, 3, 0xff,0xff, 4, 0xff}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2med[16] = {0xff, 5, 0xff, 0xff, 6, 0xff,0xff, 7, 0xff,0xff, 8, 0xff,0xff, 9, 0xff, 0xff}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2hi[16] = {10, 0xff,0xff, 11, 0xff,0xff, 12, 0xff,0xff, 13, 0xff,0xff, 14, 0xff, 0xff, 15}; |
| |
| v0 = _mm_unpacklo_epi8(val->val[0], val->val[1]); //0,1, 3,4, 6,7, 9,10, 12,13, 15,16, 18,19, 21,22 |
| v2 = _mm_unpackhi_epi8(val->val[0], val->val[1]); //24,25, 27,28, 30,31, 33,34, 36,37, 39,40, 42,43, 45,46 |
| v1 = _mm_alignr_epi8(v2, v0, 11); //12,13, 15,16, 18,19, 21,22, 24,25, 27,28, 30,31, 33,34 |
| v.val[0] = _mm_shuffle_epi8(v0, *(__m128i*)mask0); //make holes for the v.val[2] data embedding |
| v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2lo); //make plugs for the v.val[2] data embedding |
| cff = _mm_cmpeq_epi8(v0, v0); //all ff |
| bldmask = _mm_cmpeq_epi8(*(__m128i*)mask0, cff); |
| v.val[0] = _MM_BLENDV_EPI8(v.val[0], v.val[2], bldmask); |
| vst1q_u8(ptr, v.val[0]); |
| v.val[0] = _mm_shuffle_epi8(v1, *(__m128i*)mask1); //make holes for the v.val[2] data embedding |
| v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2med); //make plugs for the v.val[2] data embedding |
| bldmask = _mm_cmpeq_epi8(*(__m128i*)mask1, cff); |
| v.val[1] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask); |
| vst1q_u8((ptr + 16), v.val[1]); |
| v.val[0] = _mm_shuffle_epi8(v2, *(__m128i*)mask2); //make holes for the v.val[2] data embedding |
| v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2hi); //make plugs for the v.val[2] data embedding |
| bldmask = _mm_cmpeq_epi8(*(__m128i*)mask2, cff); |
| v.val[2] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask ); |
| vst1q_u8((ptr + 32), v.val[2]); |
| } |
| #define vst3q_u8(ptr, val) vst3q_u8_ptr(ptr, &val) |
| |
| //void vst3q_u16(__transfersize(24) uint16_t * ptr, uint16x8x3_t val)// VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE void vst3q_u16_ptr(__transfersize(24) uint16_t * ptr, uint16x8x3_t* val) |
| { |
| uint16x8x3_t v; |
| __m128i v0,v1,v2, cff, bldmask; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask0[16] = {0,1, 2,3, 0xff,0xff, 4,5, 6,7,0xff,0xff, 8,9,10,11}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask1[16] = {0xff, 0xff, 0,1, 2,3, 0xff,0xff, 4,5, 6,7, 0xff,0xff, 8,9}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2[16] = {6,7,0xff,0xff, 8,9,10,11, 0xff, 0xff, 12,13,14,15, 0xff, 0xff}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2lo[16] = {0xff,0xff, 0xff,0xff, 0,1, 0xff,0xff, 0xff,0xff, 2,3, 0xff,0xff, 0xff,0xff}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2med[16] = {4,5, 0xff,0xff,0xff,0xff, 6,7, 0xff, 0xff,0xff,0xff, 8,9, 0xff, 0xff}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask2hi[16] = {0xff, 0xff, 10,11, 0xff, 0xff, 0xff, 0xff, 12,13, 0xff, 0xff, 0xff, 0xff,14,15}; |
| |
| v0 = _mm_unpacklo_epi16(val->val[0], val->val[1]); //0,1, 3,4, 6,7, 9,10 |
| v2 = _mm_unpackhi_epi16(val->val[0], val->val[1]); //12,13, 15,16, 18,19, 21,22, |
| v1 = _mm_alignr_epi8(v2, v0, 12); //9,10, 12,13, 15,16, 18,19 |
| v.val[0] = _mm_shuffle_epi8(v0, *(__m128i*)mask0); //make holes for the v.val[2] data embedding |
| v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2lo); //make plugs for the v.val[2] data embedding |
| cff = _mm_cmpeq_epi16(v0, v0); //all ff |
| bldmask = _mm_cmpeq_epi16(*(__m128i*)mask0, cff); |
| v.val[0] = _MM_BLENDV_EPI8(v.val[0], v.val[2], bldmask); |
| vst1q_u16(ptr, v.val[0]); |
| v.val[0] = _mm_shuffle_epi8(v1, *(__m128i*)mask1); //make holes for the v.val[2] data embedding |
| v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2med); //make plugs for the v.val[2] data embedding |
| bldmask = _mm_cmpeq_epi16(*(__m128i*)mask1, cff); |
| v.val[1] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask); |
| vst1q_u16((ptr + 8), v.val[1]); |
| v.val[0] = _mm_shuffle_epi8(v2, *(__m128i*)mask2); //make holes for the v.val[2] data embedding |
| v.val[2] = _mm_shuffle_epi8(val->val[2], *(__m128i*)mask2hi); //make plugs for the v.val[2] data embedding |
| bldmask = _mm_cmpeq_epi16(*(__m128i*)mask2, cff); |
| v.val[2] = _MM_BLENDV_EPI8(v.val[0],v.val[2], bldmask ); |
| vst1q_u16((ptr + 16), v.val[2]); |
| } |
| #define vst3q_u16(ptr, val) vst3q_u16_ptr(ptr, &val) |
| |
| //void vst3q_u32(__transfersize(12) uint32_t * ptr, uint32x4x3_t val)// VST3.32 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE void vst3q_u32_ptr(__transfersize(12) uint32_t * ptr, uint32x4x3_t* val) |
| { |
| //a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3 -> a0,b0,c0,a1, b1,c1,a2,b2, c2,a3,b3,c3 |
| uint32x4x3_t v; |
| __m128i tmp0, tmp1,tmp2; |
| tmp0 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //a0,b0,a1,b1 |
| tmp1 = _mm_unpackhi_epi32(val->val[0], val->val[1]); //a2,b2,a3,b3 |
| tmp2 = _mm_unpacklo_epi32(val->val[1], val->val[2]); //b0,c0,b1,c1 |
| v.val[1] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp2),_mm_castsi128_ps(tmp1), _MM_SHUFFLE(1,0,3,2))); //b1,c1,a2,b2, |
| v.val[2] = _mm_unpackhi_epi64(tmp1, val->val[2]); //a3,b3, c2,c3 |
| v.val[2] = _mm_shuffle_epi32(v.val[2], 2 | (0 << 2) | (1 << 4) | (3 << 6)); //c2,a3,b3,c3 |
| tmp1 = _mm_unpacklo_epi32(tmp2,val->val[0]); //b0,a0,c0,a1 |
| v.val[0] = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(tmp0),_mm_castsi128_ps(tmp1), _MM_SHUFFLE(3,2,1,0))); //a0,b0,c0,a1, |
| |
| vst1q_u32(ptr, v.val[0]); |
| vst1q_u32((ptr + 4), v.val[1]); |
| vst1q_u32((ptr + 8), v.val[2]); |
| } |
| #define vst3q_u32(ptr, val) vst3q_u32_ptr(ptr, &val) |
| |
| //void vst3q_s8(__transfersize(48) int8_t * ptr, int8x16x3_t val); |
| _NEON2SSESTORAGE void vst3q_s8_ptr(__transfersize(48) int8_t * ptr, int8x16x3_t * val); |
| #define vst3q_s8(ptr, val) vst3q_u8((uint8_t*)(ptr), val) |
| |
| //void vst3q_s16(__transfersize(24) int16_t * ptr, int16x8x3_t val); |
| _NEON2SSESTORAGE void vst3q_s16_ptr(__transfersize(24) int16_t * ptr, int16x8x3_t * val); |
| #define vst3q_s16(ptr, val) vst3q_u16((uint16_t*)(ptr), val) |
| |
| //void vst3q_s32(__transfersize(12) int32_t * ptr, int32x4x3_t val); |
| _NEON2SSESTORAGE void vst3q_s32_ptr(__transfersize(12) int32_t * ptr, int32x4x3_t * val); |
| #define vst3q_s32(ptr, val) vst3q_u32((uint32_t*)(ptr), val) |
| |
| //void vst3q_f16(__transfersize(24) __fp16 * ptr, float16x8x3_t val);// VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_f16_ptr(__transfersize(24) __fp16 * ptr, float16x8x3_t * val); |
| // IA32 SIMD doesn't work with 16bit floats currently |
| |
| //void vst3q_f32(__transfersize(12) float32_t * ptr, float32x4x3_t val)// VST3.32 {d0, d2, d4}, [r0] |
| _NEON2SSE_INLINE void vst3q_f32_ptr(__transfersize(12) float32_t * ptr, float32x4x3_t* val) |
| { |
| float32x4x3_t v; |
| __m128 tmp0, tmp1,tmp2; |
| tmp0 = _mm_unpacklo_ps(val->val[0], val->val[1]); //a0,b0,a1,b1 |
| tmp1 = _mm_unpackhi_ps(val->val[0], val->val[1]); //a2,b2,a3,b3 |
| tmp2 = _mm_unpacklo_ps(val->val[1], val->val[2]); //b0,c0,b1,c1 |
| v.val[1] = _mm_shuffle_ps(tmp2,tmp1, _MM_SHUFFLE(1,0,3,2)); //b1,c1,a2,b2, |
| v.val[2] = _mm_movehl_ps(val->val[2],tmp1); //a3,b3, c2,c3 |
| v.val[2] = _mm_shuffle_ps(v.val[2],v.val[2], _MM_SHUFFLE(3,1,0,2)); //c2,a3,b3,c3 |
| tmp1 = _mm_unpacklo_ps(tmp2,val->val[0]); //b0,a0,c0,a1 |
| v.val[0] = _mm_shuffle_ps(tmp0,tmp1, _MM_SHUFFLE(3,2,1,0)); //a0,b0,c0,a1, |
| |
| vst1q_f32( ptr, v.val[0]); |
| vst1q_f32( (ptr + 4), v.val[1]); |
| vst1q_f32( (ptr + 8), v.val[2]); |
| } |
| #define vst3q_f32(ptr, val) vst3q_f32_ptr(ptr, &val) |
| |
| //void vst3q_p8(__transfersize(48) poly8_t * ptr, poly8x16x3_t val);// VST3.8 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_p8_ptr(__transfersize(48) poly8_t * ptr, poly8x16x3_t * val); |
| #define vst3q_p8 vst3q_u8 |
| |
| //void vst3q_p16(__transfersize(24) poly16_t * ptr, poly16x8x3_t val);// VST3.16 {d0, d2, d4}, [r0] |
| _NEON2SSESTORAGE void vst3q_p16_ptr(__transfersize(24) poly16_t * ptr, poly16x8x3_t * val); |
| #define vst3q_p16 vst3q_u16 |
| |
| _NEON2SSESTORAGE void vst3_u8(__transfersize(24) uint8_t * ptr, uint8x8x3_t val);// VST3.8 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE void vst3_u8(__transfersize(24) uint8_t * ptr, uint8x8x3_t val) |
| { |
| __m128i tmp, sh0, sh1, val0, val2; |
| _NEON2SSE_ALIGN_16 static const int8_t mask0[16] = { 0, 8, 16, 1, 9, 17, 2, 10, 18, 3, 11, 19, 4, 12, 20, 5}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask1[16] = {13, 21, 6, 14, 22, 7, 15, 23, 0,0,0,0,0,0,0,0}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask0_sel[16] = {0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0}; |
| _NEON2SSE_ALIGN_16 static const uint8_t mask1_sel[16] = {0, 0xff, 0, 0, 0xff, 0, 0, 0xff, 0,0,0,0,0,0,0,0}; |
| tmp = _mm_unpacklo_epi64(_pM128i(val.val[0]), _pM128i(val.val[1]) ); |
| sh0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask0); //for bi>15 bi is wrapped (bi-=15) |
| val2 = _pM128i(val.val[2]); |
| sh1 = _mm_shuffle_epi8(val2, *(__m128i*)mask0); |
| val0 = _MM_BLENDV_EPI8(sh0, sh1, *(__m128i*)mask0_sel); |
| vst1q_u8(ptr, val0); //store as 128 bit structure |
| sh0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask1); //for bi>15 bi is wrapped (bi-=15) |
| sh1 = _mm_shuffle_epi8(val2, *(__m128i*)mask1); |
| val2 = _MM_BLENDV_EPI8(sh0, sh1, *(__m128i*)mask1_sel); |
| _M64((*(__m64_128*)(ptr + 16)), val2); //need it to fit into *ptr memory |
| } |
| |
| _NEON2SSESTORAGE void vst3_u16(__transfersize(12) uint16_t * ptr, uint16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE void vst3_u16(__transfersize(12) uint16_t * ptr, uint16x4x3_t val) |
| { |
| __m128i tmp, val0, val1, val2; |
| _NEON2SSE_ALIGN_16 static const int8_t mask0[16] = {0,1, 8,9, 16,17, 2,3, 10,11, 18,19, 4,5, 12,13}; |
| _NEON2SSE_ALIGN_16 static const int8_t mask1[16] = {20,21, 6,7, 14,15, 22,23, 0,0,0,0,0,0,0,0}; |
| _NEON2SSE_ALIGN_16 static const uint16_t mask0f[8] = {0xffff, 0xffff, 0, 0xffff, 0xffff, 0, 0xffff, 0xffff}; //if all ones we take the result from v.val[0] otherwise from v.val[1] |
| _NEON2SSE_ALIGN_16 static const uint16_t mask1f[8] = {0xffff, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; //if all ones we take the result from v.val[1] otherwise from v.val[0] |
| tmp = _mm_unpacklo_epi64(_pM128i(val.val[0]), _pM128i(val.val[1])); |
| val0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask0); |
| val2 = _pM128i(val.val[2]); |
| val1 = _mm_shuffle_epi8(val2, *(__m128i*)mask0); |
| val0 = _MM_BLENDV_EPI8(val1, val0, *(__m128i*)mask0f); |
| vst1q_u16(ptr, val0); //store as 128 bit structure |
| val0 = _mm_shuffle_epi8(tmp, *(__m128i*)mask1); |
| val1 = _mm_shuffle_epi8(val2, *(__m128i*)mask1); |
| val1 = _MM_BLENDV_EPI8(val0, val1, *(__m128i*)mask1f); //change the operands order |
| _M64((*(__m64_128*)(ptr + 8)), val1); //need it to fit into *ptr memory |
| } |
| |
| _NEON2SSESTORAGE void vst3_u32(__transfersize(6) uint32_t * ptr, uint32x2x3_t val);// VST3.32 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE void vst3_u32(__transfersize(6) uint32_t * ptr, uint32x2x3_t val) |
| { |
| //val.val[0]:0,3,val.val[1]:1,4; val.val[2]:2,5,x,x; |
| __m128i val0, val1; |
| val0 = _mm_unpacklo_epi64(_pM128i(val.val[1]), _pM128i(val.val[2])); //val[0]: 1,4,2,5 |
| val0 = _mm_shuffle_epi32(val0, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //1,2,4,5 |
| val1 = _mm_srli_si128(val0, 8); //4,5, x,x |
| _M64((*(__m64_128*)(ptr + 4)), val1); |
| val0 = _mm_unpacklo_epi32(_pM128i(val.val[0]), val0); //0,1,3,2 |
| val0 = _mm_shuffle_epi32(val0, 0 | (1 << 2) | (3 << 4) | (2 << 6)); //0,1,2, 3 |
| vst1q_u32(ptr, val0); //store as 128 bit structure |
| } |
| |
| _NEON2SSESTORAGE void vst3_u64(__transfersize(3) uint64_t * ptr, uint64x1x3_t val);// VST1.64 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE void vst3_u64(__transfersize(3) uint64_t * ptr, uint64x1x3_t val) |
| { |
| *(ptr) = val.val[0].m64_u64[0]; |
| *(ptr + 1) = val.val[1].m64_u64[0]; |
| *(ptr + 2) = val.val[2].m64_u64[0]; |
| } |
| |
| _NEON2SSESTORAGE void vst3_s8(__transfersize(24) int8_t * ptr, int8x8x3_t val); // VST3.8 {d0, d1, d2}, [r0] |
| #define vst3_s8(ptr, val) vst3_u8((uint8_t*)ptr, val) |
| |
| _NEON2SSESTORAGE void vst3_s16(__transfersize(12) int16_t * ptr, int16x4x3_t val); // VST3.16 {d0, d1, d2}, [r0] |
| #define vst3_s16(ptr, val) vst3_u16((uint16_t*)ptr, val) |
| |
| _NEON2SSESTORAGE void vst3_s32(__transfersize(6) int32_t * ptr, int32x2x3_t val); // VST3.32 {d0, d1, d2}, [r0] |
| #define vst3_s32(ptr, val) vst3_u32((uint32_t*)ptr, val) |
| |
| _NEON2SSESTORAGE void vst3_s64(__transfersize(3) int64_t * ptr, int64x1x3_t val); // VST1.64 {d0, d1, d2}, [r0] |
| #define vst3_s64(ptr, val) vst3_u64((uint64_t*)ptr, val) |
| |
| //void vst3_f16(__transfersize(12) __fp16 * ptr, float16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0] |
| _NEON2SSESTORAGE void vst3_f16_ptr(__transfersize(12) __fp16 * ptr, float16x4x3_t * val); // VST3.16 {d0, d1, d2}, [r0] |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE void vst3_f32(__transfersize(6) float32_t * ptr, float32x2x3_t val);// VST3.32 {d0, d1, d2}, [r0] |
| _NEON2SSE_INLINE void vst3_f32(__transfersize(6) float32_t * ptr, float32x2x3_t val) |
| { |
| //val->val[0]:0,3,val->val[1]:1,4; val->val[2]:2,5,x,x; -> 0,2, 4,1, 3,5 |
| *(ptr) = val.val[0].m64_f32[0]; |
| *(ptr + 1) = val.val[1].m64_f32[0]; |
| *(ptr + 2) = val.val[2].m64_f32[0]; |
| *(ptr + 3) = val.val[0].m64_f32[1]; |
| *(ptr + 4) = val.val[1].m64_f32[1]; |
| *(ptr + 5) = val.val[2].m64_f32[1]; |
| } |
| |
| _NEON2SSESTORAGE void vst3_p8(__transfersize(24) poly8_t * ptr, poly8x8x3_t val);// VST3.8 {d0, d1, d2}, [r0] |
| #define vst3_p8 vst3_u8 |
| |
| _NEON2SSESTORAGE void vst3_p16(__transfersize(12) poly16_t * ptr, poly16x4x3_t val);// VST3.16 {d0, d1, d2}, [r0] |
| #define vst3_p16 vst3_u16 |
| |
| //*************** Quadruples store ******************************** |
| //********************************************************************* |
| //void vst4q_u8(__transfersize(64) uint8_t * ptr, uint8x16x4_t val)// VST4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE void vst4q_u8_ptr(__transfersize(64) uint8_t * ptr, uint8x16x4_t* val) |
| { |
| __m128i tmp1, tmp2, res; |
| tmp1 = _mm_unpacklo_epi8(val->val[0], val->val[1]); // 0,1, 4,5, 8,9, 12,13, 16,17, 20,21, 24,25, 28,29 |
| tmp2 = _mm_unpacklo_epi8(val->val[2], val->val[3]); // 2,3, 6,7, 10,11, 14,15, 18,19, 22,23, 26,27, 30,31 |
| res = _mm_unpacklo_epi16(tmp1, tmp2); //0,1, 2,3, 4,5, 6,7, 8,9, 10,11, 12,13, 14,15 |
| vst1q_u8(ptr, res); |
| res = _mm_unpackhi_epi16(tmp1, tmp2); //16,17, 18,19, 20,21, 22,23, 24,25, 26,27, 28,29, 30,31 |
| vst1q_u8((ptr + 16), res); |
| tmp1 = _mm_unpackhi_epi8(val->val[0], val->val[1]); // |
| tmp2 = _mm_unpackhi_epi8(val->val[2], val->val[3]); // |
| res = _mm_unpacklo_epi16(tmp1, tmp2); // |
| vst1q_u8((ptr + 32), res); |
| res = _mm_unpackhi_epi16(tmp1, tmp2); // |
| vst1q_u8((ptr + 48), res); |
| } |
| #define vst4q_u8(ptr, val) vst4q_u8_ptr(ptr, &val) |
| |
| //void vst4q_u16(__transfersize(32) uint16_t * ptr, uint16x8x4_t val)// VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE void vst4q_u16_ptr(__transfersize(32) uint16_t * ptr, uint16x8x4_t* val) |
| { |
| uint16x8x4_t v; |
| __m128i tmp1, tmp2; |
| tmp1 = _mm_unpacklo_epi16(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 |
| tmp2 = _mm_unpacklo_epi16(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 |
| v.val[0] = _mm_unpacklo_epi32(tmp1, tmp2); |
| v.val[1] = _mm_unpackhi_epi32(tmp1, tmp2); |
| tmp1 = _mm_unpackhi_epi16(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 |
| tmp2 = _mm_unpackhi_epi16(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 |
| v.val[2] = _mm_unpacklo_epi32(tmp1, tmp2); |
| v.val[3] = _mm_unpackhi_epi32(tmp1, tmp2); |
| vst1q_u16(ptr, v.val[0]); |
| vst1q_u16((ptr + 8), v.val[1]); |
| vst1q_u16((ptr + 16),v.val[2]); |
| vst1q_u16((ptr + 24), v.val[3]); |
| } |
| #define vst4q_u16(ptr, val) vst4q_u16_ptr(ptr, &val) |
| |
| //void vst4q_u32(__transfersize(16) uint32_t * ptr, uint32x4x4_t val)// VST4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE void vst4q_u32_ptr(__transfersize(16) uint32_t * ptr, uint32x4x4_t* val) |
| { |
| uint16x8x4_t v; |
| __m128i tmp1, tmp2; |
| tmp1 = _mm_unpacklo_epi32(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 |
| tmp2 = _mm_unpacklo_epi32(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 |
| v.val[0] = _mm_unpacklo_epi64(tmp1, tmp2); |
| v.val[1] = _mm_unpackhi_epi64(tmp1, tmp2); |
| tmp1 = _mm_unpackhi_epi32(val->val[0], val->val[1]); //0,1, 4,5, 8,9, 12,13 |
| tmp2 = _mm_unpackhi_epi32(val->val[2], val->val[3]); //2,3, 6,7 , 10,11, 14,15 |
| v.val[2] = _mm_unpacklo_epi64(tmp1, tmp2); |
| v.val[3] = _mm_unpackhi_epi64(tmp1, tmp2); |
| vst1q_u32(ptr, v.val[0]); |
| vst1q_u32((ptr + 4), v.val[1]); |
| vst1q_u32((ptr + 8), v.val[2]); |
| vst1q_u32((ptr + 12), v.val[3]); |
| } |
| #define vst4q_u32(ptr, val) vst4q_u32_ptr(ptr, &val) |
| |
| //void vst4q_s8(__transfersize(64) int8_t * ptr, int8x16x4_t val); |
| _NEON2SSESTORAGE void vst4q_s8_ptr(__transfersize(64) int8_t * ptr, int8x16x4_t * val); |
| #define vst4q_s8(ptr, val) vst4q_u8((uint8_t*)(ptr), val) |
| |
| //void vst4q_s16(__transfersize(32) int16_t * ptr, int16x8x4_t val); |
| _NEON2SSESTORAGE void vst4q_s16_ptr(__transfersize(32) int16_t * ptr, int16x8x4_t * val); |
| #define vst4q_s16(ptr, val) vst4q_u16((uint16_t*)(ptr), val) |
| |
| //void vst4q_s32(__transfersize(16) int32_t * ptr, int32x4x4_t val); |
| _NEON2SSESTORAGE void vst4q_s32_ptr(__transfersize(16) int32_t * ptr, int32x4x4_t * val); |
| #define vst4q_s32(ptr, val) vst4q_u32((uint32_t*)(ptr), val) |
| |
| //void vst4q_f16(__transfersize(32) __fp16 * ptr, float16x8x4_t val);// VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_f16_ptr(__transfersize(32) __fp16 * ptr, float16x8x4_t * val); |
| // IA32 SIMD doesn't work with 16bit floats currently |
| |
| //void vst4q_f32(__transfersize(16) float32_t * ptr, float32x4x4_t val)// VST4.32 {d0, d2, d4, d6}, [r0] |
| _NEON2SSE_INLINE void vst4q_f32_ptr(__transfersize(16) float32_t * ptr, float32x4x4_t* val) |
| { |
| __m128 tmp3, tmp2, tmp1, tmp0; |
| float32x4x4_t v; |
| tmp0 = _mm_unpacklo_ps(val->val[0], val->val[1]); |
| tmp2 = _mm_unpacklo_ps(val->val[2], val->val[3]); |
| tmp1 = _mm_unpackhi_ps(val->val[0], val->val[1]); |
| tmp3 = _mm_unpackhi_ps(val->val[2], val->val[3]); |
| v.val[0] = _mm_movelh_ps(tmp0, tmp2); |
| v.val[1] = _mm_movehl_ps(tmp2, tmp0); |
| v.val[2] = _mm_movelh_ps(tmp1, tmp3); |
| v.val[3] = _mm_movehl_ps(tmp3, tmp1); |
| vst1q_f32(ptr, v.val[0]); |
| vst1q_f32((ptr + 4), v.val[1]); |
| vst1q_f32((ptr + 8), v.val[2]); |
| vst1q_f32((ptr + 12), v.val[3]); |
| } |
| #define vst4q_f32(ptr, val) vst4q_f32_ptr(ptr, &val) |
| |
| //void vst4q_p8(__transfersize(64) poly8_t * ptr, poly8x16x4_t val);// VST4.8 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_p8_ptr(__transfersize(64) poly8_t * ptr, poly8x16x4_t * val); |
| #define vst4q_p8 vst4q_u8 |
| |
| //void vst4q_p16(__transfersize(32) poly16_t * ptr, poly16x8x4_t val);// VST4.16 {d0, d2, d4, d6}, [r0] |
| _NEON2SSESTORAGE void vst4q_p16_ptr(__transfersize(32) poly16_t * ptr, poly16x8x4_t * val); |
| #define vst4q_p16 vst4q_s16 |
| |
| _NEON2SSESTORAGE void vst4_u8(__transfersize(32) uint8_t * ptr, uint8x8x4_t val);// VST4.8 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE void vst4_u8(__transfersize(32) uint8_t * ptr, uint8x8x4_t val) |
| { |
| __m128i sh0, sh1, val0, val2; |
| sh0 = _mm_unpacklo_epi8(_pM128i(val.val[0]),_pM128i(val.val[1])); // a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,a5,b5, a6,b6,a7,b7, |
| sh1 = _mm_unpacklo_epi8(_pM128i(val.val[2]),_pM128i(val.val[3])); // c0,d0,c1,d1,c2,d2,c3,d3, c4,d4,c5,d5,c6,d6,c7,d7 |
| val0 = _mm_unpacklo_epi16(sh0,sh1); // a0,b0,c0,d0,a1,b1,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3, |
| val2 = _mm_unpackhi_epi16(sh0,sh1); //a4,b4,c4,d4,a5,b5,c5,d5, a6,b6,c6,d6,a7,b7,c7,d7 |
| vst1q_u8(ptr, val0); |
| vst1q_u8((ptr + 16), val2); |
| } |
| |
| _NEON2SSESTORAGE void vst4_u16(__transfersize(16) uint16_t * ptr, uint16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE void vst4_u16(__transfersize(16) uint16_t * ptr, uint16x4x4_t val) |
| { |
| __m128i sh0, sh1, val0, val2; |
| sh0 = _mm_unpacklo_epi16(_pM128i(val.val[0]),_pM128i(val.val[1])); //a0,a1,b0,b1,c0,c1,d0,d1, |
| sh1 = _mm_unpacklo_epi16(_pM128i(val.val[2]),_pM128i(val.val[3])); //a2,a3,b2,b3,c2,c3,d2,d3 |
| val0 = _mm_unpacklo_epi32(sh0,sh1); // a0,a1,a2,a3,b0,b1,b2,b3 |
| val2 = _mm_unpackhi_epi32(sh0,sh1); // c0,c1,c2,c3,d0,d1,d2,d3 |
| vst1q_u16(ptr, val0); //store as 128 bit structure |
| vst1q_u16((ptr + 8), val2); |
| } |
| |
| _NEON2SSESTORAGE void vst4_u32(__transfersize(8) uint32_t * ptr, uint32x2x4_t val);// VST4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE void vst4_u32(__transfersize(8) uint32_t * ptr, uint32x2x4_t val) |
| { |
| //0,4, 1,5, 2,6, 3,7 |
| __m128i sh0, sh1, val0, val1; |
| sh0 = _mm_unpacklo_epi32(_pM128i(val.val[0]), _pM128i(val.val[1])); //0,1,4,5 |
| sh1 = _mm_unpacklo_epi32(_pM128i(val.val[2]), _pM128i(val.val[3])); //2,3,6,7 |
| val0 = _mm_unpacklo_epi64(sh0,sh1); // |
| val1 = _mm_unpackhi_epi64(sh0,sh1); // |
| vst1q_u32(ptr, val0); //store as 128 bit structure |
| vst1q_u32((ptr + 4), val1); |
| } |
| |
| _NEON2SSESTORAGE void vst4_u64(__transfersize(4) uint64_t * ptr, uint64x1x4_t val);// VST1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE void vst4_u64(__transfersize(4) uint64_t * ptr, uint64x1x4_t val) |
| { |
| *(ptr) = val.val[0].m64_u64[0]; |
| *(ptr + 1) = val.val[1].m64_u64[0]; |
| *(ptr + 2) = val.val[2].m64_u64[0]; |
| *(ptr + 3) = val.val[3].m64_u64[0]; |
| } |
| |
| //void vst4_s8(__transfersize(32) int8_t * ptr, int8x8x4_t val) //VST4.8 {d0, d1, d2, d3}, [r0] |
| #define vst4_s8(ptr, val) vst4_u8((uint8_t*)ptr, val) |
| |
| //void vst4_s16(__transfersize(16) int16_t * ptr, int16x4x4_t val) // VST4.16 {d0, d1, d2, d3}, [r0] |
| #define vst4_s16(ptr, val) vst4_u16((uint16_t*)ptr, val) |
| |
| //void vst4_s32(__transfersize(8) int32_t * ptr, int32x2x4_t val) // VST4.32 {d0, d1, d2, d3}, [r0] |
| #define vst4_s32(ptr, val) vst4_u32((uint32_t*)ptr, val) |
| |
| //void vst4_s64(__transfersize(4) int64_t * ptr, int64x1x4_t val); // VST1.64 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_s64_ptr(__transfersize(4) int64_t * ptr, int64x1x4_t * val); |
| #define vst4_s64(ptr, val) vst4_u64((uint64_t*)ptr, val) |
| |
| //void vst4_f16(__transfersize(16) __fp16 * ptr, float16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0] |
| _NEON2SSESTORAGE void vst4_f16_ptr(__transfersize(16) __fp16 * ptr, float16x4x4_t * val); |
| // IA32 SIMD doesn't work with 16bit floats currently, so need to go to 32 bit and then work with two 128bit registers. See vld1q_f16 for example |
| |
| _NEON2SSESTORAGE void vst4_f32(__transfersize(8) float32_t * ptr, float32x2x4_t val);// VST4.32 {d0, d1, d2, d3}, [r0] |
| _NEON2SSE_INLINE void vst4_f32(__transfersize(8) float32_t * ptr, float32x2x4_t val) |
| { |
| //0,4, 1,5, 2,6, 3,7 -> 0,1, 2,3, 4,5, 6,7 |
| *(ptr) = val.val[0].m64_f32[0]; |
| *(ptr + 1) = val.val[1].m64_f32[0]; |
| *(ptr + 2) = val.val[2].m64_f32[0]; |
| *(ptr + 3) = val.val[3].m64_f32[0]; |
| *(ptr + 4) = val.val[0].m64_f32[1]; |
| *(ptr + 5) = val.val[1].m64_f32[1]; |
| *(ptr + 6) = val.val[2].m64_f32[1]; |
| *(ptr + 7) = val.val[3].m64_f32[1]; |
| } |
| |
| _NEON2SSESTORAGE void vst4_p8(__transfersize(32) poly8_t * ptr, poly8x8x4_t val);// VST4.8 {d0, d1, d2, d3}, [r0] |
| #define vst4_p8 vst4_u8 |
| |
| _NEON2SSESTORAGE void vst4_p16(__transfersize(16) poly16_t * ptr, poly16x4x4_t val);// VST4.16 {d0, d1, d2, d3}, [r0] |
| #define vst4_p16 vst4_u16 |
| |
| //*********** Store a lane of a vector into memory (extract given lane) for a couple of vectors ********************* |
| //******************************************************************************************************************** |
| //void vst2q_lane_u16(__transfersize(2) uint16_t * ptr, uint16x8x2_t val, __constrange(0,7) int lane)// VST2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst2q_lane_u16_ptr(__transfersize(2) uint16_t * ptr, uint16x8x2_t* val, __constrange(0,7) int lane) |
| { |
| vst1q_lane_s16(ptr, val->val[0], lane); |
| vst1q_lane_s16((ptr + 1), val->val[1], lane); |
| } |
| #define vst2q_lane_u16(ptr, val, lane) vst2q_lane_u16_ptr(ptr, &val, lane) |
| |
| //void vst2q_lane_u32(__transfersize(2) uint32_t * ptr, uint32x4x2_t val, __constrange(0,3) int lane)// VST2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst2q_lane_u32_ptr(__transfersize(2) uint32_t* ptr, uint32x4x2_t* val, __constrange(0,3) int lane) |
| { |
| vst1q_lane_u32(ptr, val->val[0], lane); |
| vst1q_lane_u32((ptr + 1), val->val[1], lane); |
| } |
| #define vst2q_lane_u32(ptr, val, lane) vst2q_lane_u32_ptr(ptr, &val, lane) |
| |
| //void vst2q_lane_s16(__transfersize(2) int16_t * ptr, int16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_s16_ptr(__transfersize(2) int16_t * ptr, int16x8x2_t * val, __constrange(0,7) int lane); |
| #define vst2q_lane_s16(ptr, val, lane) vst2q_lane_u16((uint16_t*)ptr, val, lane) |
| |
| //void vst2q_lane_s32(__transfersize(2) int32_t * ptr, int32x4x2_t val, __constrange(0,3) int lane);// VST2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_s32_ptr(__transfersize(2) int32_t * ptr, int32x4x2_t * val, __constrange(0,3) int lane); |
| #define vst2q_lane_s32(ptr, val, lane) vst2q_lane_u32((uint32_t*)ptr, val, lane) |
| |
| //void vst2q_lane_f16(__transfersize(2) __fp16 * ptr, float16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_f16_ptr(__transfersize(2) __fp16 * ptr, float16x8x2_t * val, __constrange(0,7) int lane); |
| //current IA SIMD doesn't support float16 |
| |
| //void vst2q_lane_f32(__transfersize(2) float32_t * ptr, float32x4x2_t val, __constrange(0,3) int lane)// VST2.32 {d0[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst2q_lane_f32_ptr(__transfersize(2) float32_t* ptr, float32x4x2_t* val, __constrange(0,3) int lane) |
| { |
| vst1q_lane_f32(ptr, val->val[0], lane); |
| vst1q_lane_f32((ptr + 1), val->val[1], lane); |
| } |
| #define vst2q_lane_f32(ptr,src,lane) vst2q_lane_f32_ptr(ptr,&src,lane) |
| |
| //void vst2q_lane_p16(__transfersize(2) poly16_t * ptr, poly16x8x2_t val, __constrange(0,7) int lane);// VST2.16 {d0[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst2q_lane_p16_ptr(__transfersize(2) poly16_t * ptr, poly16x8x2_t * val, __constrange(0,7) int lane); |
| #define vst2q_lane_p16 vst2q_lane_s16 |
| |
| _NEON2SSESTORAGE void vst2_lane_u8(__transfersize(2) uint8_t * ptr, uint8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE void vst2_lane_u8(__transfersize(2) uint8_t * ptr, uint8x8x2_t val, __constrange(0,7) int lane) // VST2.8 {d0[0], d1[0]}, [r0] |
| { |
| *(ptr) = val.val[0].m64_u8[lane]; |
| *(ptr + 1) = val.val[1].m64_u8[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst2_lane_u16(__transfersize(2) uint16_t * ptr, uint16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE void vst2_lane_u16(__transfersize(2) uint16_t * ptr, uint16x4x2_t val, __constrange(0,3) int lane) |
| { |
| *(ptr) = val.val[0].m64_u16[lane]; |
| *(ptr + 1) = val.val[1].m64_u16[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst2_lane_u32(__transfersize(2) uint32_t * ptr, uint32x2x2_t val, __constrange(0,1) int lane);// VST2.32 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE void vst2_lane_u32(__transfersize(2) uint32_t * ptr, uint32x2x2_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.val[0].m64_u32[lane]; |
| *(ptr + 1) = val.val[1].m64_u32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst2_lane_s8(__transfersize(2) int8_t * ptr, int8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0] |
| #define vst2_lane_s8(ptr, val, lane) vst2_lane_u8((uint8_t*)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst2_lane_s16(__transfersize(2) int16_t * ptr, int16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0] |
| #define vst2_lane_s16(ptr, val, lane) vst2_lane_u16((uint16_t*)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst2_lane_s32(__transfersize(2) int32_t * ptr, int32x2x2_t val, __constrange(0,1) int lane);// VST2.32 {d0[0], d1[0]}, [r0] |
| #define vst2_lane_s32(ptr, val, lane) vst2_lane_u32((uint32_t*)ptr, val, lane) |
| |
| //void vst2_lane_f16(__transfersize(2) __fp16 * ptr, float16x4x2_t val, __constrange(0,3) int lane); // VST2.16 {d0[0], d1[0]}, [r0] |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst2_lane_f32(__transfersize(2) float32_t * ptr, float32x2x2_t val, __constrange(0,1) int lane); // VST2.32 {d0[0], d1[0]}, [r0] |
| _NEON2SSE_INLINE void vst2_lane_f32(__transfersize(2) float32_t * ptr, float32x2x2_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.val[0].m64_f32[lane]; |
| *(ptr + 1) = val.val[1].m64_f32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst2_lane_p8(__transfersize(2) poly8_t * ptr, poly8x8x2_t val, __constrange(0,7) int lane);// VST2.8 {d0[0], d1[0]}, [r0] |
| #define vst2_lane_p8 vst2_lane_u8 |
| |
| _NEON2SSESTORAGE void vst2_lane_p16(__transfersize(2) poly16_t * ptr, poly16x4x2_t val, __constrange(0,3) int lane);// VST2.16 {d0[0], d1[0]}, [r0] |
| #define vst2_lane_p16 vst2_lane_u16 |
| |
| //************************* Triple lanes stores ******************************************************* |
| //******************************************************************************************************* |
| //void vst3q_lane_u16(__transfersize(3) uint16_t * ptr, uint16x8x3_t val, __constrange(0,7) int lane)// VST3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE void vst3q_lane_u16_ptr(__transfersize(3) uint16_t * ptr, uint16x8x3_t* val, __constrange(0,7) int lane) |
| { |
| vst2q_lane_u16_ptr(ptr, (uint16x8x2_t*)val, lane); |
| vst1q_lane_u16((ptr + 2), val->val[2], lane); |
| } |
| #define vst3q_lane_u16(ptr, val, lane) vst3q_lane_u16_ptr(ptr, &val, lane) |
| |
| //void vst3q_lane_u32(__transfersize(3) uint32_t * ptr, uint32x4x3_t val, __constrange(0,3) int lane)// VST3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE void vst3q_lane_u32_ptr(__transfersize(3) uint32_t * ptr, uint32x4x3_t* val, __constrange(0,3) int lane) |
| { |
| vst2q_lane_u32_ptr(ptr, (uint32x4x2_t*)val, lane); |
| vst1q_lane_u32((ptr + 2), val->val[2], lane); |
| } |
| #define vst3q_lane_u32(ptr, val, lane) vst3q_lane_u32_ptr(ptr, &val, lane) |
| |
| //void vst3q_lane_s16(__transfersize(3) int16_t * ptr, int16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_s16_ptr(__transfersize(3) int16_t * ptr, int16x8x3_t * val, __constrange(0,7) int lane); |
| #define vst3q_lane_s16(ptr, val, lane) vst3q_lane_u16((uint16_t *)ptr, val, lane) |
| |
| //void vst3q_lane_s32(__transfersize(3) int32_t * ptr, int32x4x3_t val, __constrange(0,3) int lane);// VST3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_s32_ptr(__transfersize(3) int32_t * ptr, int32x4x3_t * val, __constrange(0,3) int lane); |
| #define vst3q_lane_s32(ptr, val, lane) vst3q_lane_u32((uint32_t *)ptr, val, lane) |
| |
| //void vst3q_lane_f16(__transfersize(3) __fp16 * ptr, float16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x8x3_t * val, __constrange(0,7) int lane); |
| //current IA SIMD doesn't support float16 |
| |
| //void vst3q_lane_f32(__transfersize(3) float32_t * ptr, float32x4x3_t val, __constrange(0,3) int lane)// VST3.32 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSE_INLINE void vst3q_lane_f32_ptr(__transfersize(3) float32_t * ptr, float32x4x3_t* val, __constrange(0,3) int lane) |
| { |
| vst1q_lane_f32(ptr, val->val[0], lane); |
| vst1q_lane_f32((ptr + 1), val->val[1], lane); |
| vst1q_lane_f32((ptr + 2), val->val[2], lane); |
| } |
| #define vst3q_lane_f32(ptr,val,lane) vst3q_lane_f32_ptr(ptr,&val,lane) |
| |
| //void vst3q_lane_p16(__transfersize(3) poly16_t * ptr, poly16x8x3_t val, __constrange(0,7) int lane);// VST3.16 {d0[0], d2[0], d4[0]}, [r0] |
| _NEON2SSESTORAGE void vst3q_lane_p16_ptr(__transfersize(3) poly16_t * ptr, poly16x8x3_t * val, __constrange(0,7) int lane); |
| #define vst3q_lane_p16 vst3q_lane_s16 |
| |
| _NEON2SSESTORAGE void vst3_lane_u8(__transfersize(3) uint8_t * ptr, uint8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst3_lane_u8(__transfersize(3) uint8_t * ptr, uint8x8x3_t val, __constrange(0,7) int lane) |
| { |
| *(ptr) = val.val[0].m64_u8[lane]; |
| *(ptr + 1) = val.val[1].m64_u8[lane]; |
| *(ptr + 2) = val.val[2].m64_u8[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst3_lane_u16(__transfersize(3) uint16_t * ptr, uint16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst3_lane_u16(__transfersize(3) uint16_t * ptr, uint16x4x3_t val, __constrange(0,3) int lane) |
| { |
| *(ptr) = val.val[0].m64_u16[lane]; |
| *(ptr + 1) = val.val[1].m64_u16[lane]; |
| *(ptr + 2) = val.val[2].m64_u16[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst3_lane_u32(__transfersize(3) uint32_t * ptr, uint32x2x3_t val, __constrange(0,1) int lane);// VST3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst3_lane_u32(__transfersize(3) uint32_t * ptr, uint32x2x3_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.val[0].m64_u32[lane]; |
| *(ptr + 1) = val.val[1].m64_u32[lane]; |
| *(ptr + 2) = val.val[2].m64_u32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst3_lane_s8(__transfersize(3) int8_t * ptr, int8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0] |
| #define vst3_lane_s8(ptr, val, lane) vst3_lane_u8((uint8_t *)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst3_lane_s16(__transfersize(3) int16_t * ptr, int16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] |
| #define vst3_lane_s16(ptr, val, lane) vst3_lane_u16((uint16_t *)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst3_lane_s32(__transfersize(3) int32_t * ptr, int32x2x3_t val, __constrange(0,1) int lane);// VST3.32 {d0[0], d1[0], d2[0]}, [r0] |
| #define vst3_lane_s32(ptr, val, lane) vst3_lane_u32((uint32_t *)ptr, val, lane) |
| |
| //void vst3_lane_f16(__transfersize(3) __fp16 * ptr, float16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSESTORAGE void vst3_lane_f16_ptr(__transfersize(3) __fp16 * ptr, float16x4x3_t * val, __constrange(0,3) int lane); |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst3_lane_f32(__transfersize(3) float32_t * ptr, float32x2x3_t val, __constrange(0,1) int lane);// VST3.32 {d0[0], d1[0], d2[0]}, [r0] |
| _NEON2SSE_INLINE void vst3_lane_f32(__transfersize(3) float32_t * ptr, float32x2x3_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.val[0].m64_f32[lane]; |
| *(ptr + 1) = val.val[1].m64_f32[lane]; |
| *(ptr + 2) = val.val[2].m64_f32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst3_lane_p8(__transfersize(3) poly8_t * ptr, poly8x8x3_t val, __constrange(0,7) int lane);// VST3.8 {d0[0], d1[0], d2[0]}, [r0] |
| #define vst3_lane_p8 vst3_lane_u8 |
| |
| _NEON2SSESTORAGE void vst3_lane_p16(__transfersize(3) poly16_t * ptr, poly16x4x3_t val, __constrange(0,3) int lane);// VST3.16 {d0[0], d1[0], d2[0]}, [r0] |
| #define vst3_lane_p16 vst3_lane_u16 |
| |
| //******************************** Quadruple lanes stores *********************************************** |
| //******************************************************************************************************* |
| //void vst4q_lane_u16(__transfersize(4) uint16_t * ptr, uint16x8x4_t val, __constrange(0,7) int lane)// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSE_INLINE void vst4q_lane_u16_ptr(__transfersize(4) uint16_t * ptr, uint16x8x4_t* val4, __constrange(0,7) int lane) |
| { |
| vst2q_lane_u16_ptr(ptr, (uint16x8x2_t*)val4->val, lane); |
| vst2q_lane_u16_ptr((ptr + 2),((uint16x8x2_t*)val4->val + 1), lane); |
| } |
| #define vst4q_lane_u16(ptr, val, lane) vst4q_lane_u16_ptr(ptr, &val, lane) |
| |
| //void vst4q_lane_u32(__transfersize(4) uint32_t * ptr, uint32x4x4_t val, __constrange(0,3) int lane)// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSE_INLINE void vst4q_lane_u32_ptr(__transfersize(4) uint32_t * ptr, uint32x4x4_t* val4, __constrange(0,3) int lane) |
| { |
| vst2q_lane_u32_ptr(ptr, (uint32x4x2_t*)val4->val, lane); |
| vst2q_lane_u32_ptr((ptr + 2), ((uint32x4x2_t*)val4->val + 1), lane); |
| } |
| #define vst4q_lane_u32(ptr, val, lane) vst4q_lane_u32_ptr(ptr, &val, lane) |
| |
| //void vst4q_lane_s16(__transfersize(4) int16_t * ptr, int16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_s16_ptr(__transfersize(4) int16_t * ptr, int16x8x4_t * val, __constrange(0,7) int lane); |
| #define vst4q_lane_s16(ptr,val,lane) vst4q_lane_u16((uint16_t *)ptr,val,lane) |
| |
| //void vst4q_lane_s32(__transfersize(4) int32_t * ptr, int32x4x4_t val, __constrange(0,3) int lane);// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_s32_ptr(__transfersize(4) int32_t * ptr, int32x4x4_t * val, __constrange(0,3) int lane); |
| #define vst4q_lane_s32(ptr,val,lane) vst4q_lane_u32((uint32_t *)ptr,val,lane) |
| |
| //void vst4q_lane_f16(__transfersize(4) __fp16 * ptr, float16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x8x4_t * val, __constrange(0,7) int lane); |
| //current IA SIMD doesn't support float16 |
| |
| //void vst4q_lane_f32(__transfersize(4) float32_t * ptr, float32x4x4_t val, __constrange(0,3) int lane)// VST4.32 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSE_INLINE void vst4q_lane_f32_ptr(__transfersize(4) float32_t * ptr, float32x4x4_t* val, __constrange(0,3) int lane) |
| { |
| vst1q_lane_f32(ptr, val->val[0], lane); |
| vst1q_lane_f32((ptr + 1), val->val[1], lane); |
| vst1q_lane_f32((ptr + 2), val->val[2], lane); |
| vst1q_lane_f32((ptr + 3), val->val[3], lane); |
| } |
| #define vst4q_lane_f32(ptr,val,lane) vst4q_lane_f32_ptr(ptr,&val,lane) |
| |
| //void vst4q_lane_p16(__transfersize(4) poly16_t * ptr, poly16x8x4_t val, __constrange(0,7) int lane);// VST4.16 {d0[0], d2[0], d4[0], d6[0]}, [r0] |
| _NEON2SSESTORAGE void vst4q_lane_p16_ptr(__transfersize(4) poly16_t * ptr, poly16x8x4_t * val, __constrange(0,7) int lane); |
| #define vst4q_lane_p16 vst4q_lane_u16 |
| |
| _NEON2SSESTORAGE void vst4_lane_u8(__transfersize(4) uint8_t * ptr, uint8x8x4_t val, __constrange(0,7) int lane);// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE void vst4_lane_u8(__transfersize(4) uint8_t * ptr, uint8x8x4_t val, __constrange(0,7) int lane) |
| { |
| *(ptr) = val.val[0].m64_u8[lane]; |
| *(ptr + 1) = val.val[1].m64_u8[lane]; |
| *(ptr + 2) = val.val[2].m64_u8[lane]; |
| *(ptr + 3) = val.val[3].m64_u8[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst4_lane_u16(__transfersize(4) uint16_t * ptr, uint16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE void vst4_lane_u16(__transfersize(4) uint16_t * ptr, uint16x4x4_t val, __constrange(0,3) int lane) |
| { |
| *(ptr) = val.val[0].m64_u16[lane]; |
| *(ptr + 1) = val.val[1].m64_u16[lane]; |
| *(ptr + 2) = val.val[2].m64_u16[lane]; |
| *(ptr + 3) = val.val[3].m64_u16[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst4_lane_u32(__transfersize(4) uint32_t * ptr, uint32x2x4_t val, __constrange(0,1) int lane);// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE void vst4_lane_u32(__transfersize(4) uint32_t * ptr, uint32x2x4_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.val[0].m64_u32[lane]; |
| *(ptr + 1) = val.val[1].m64_u32[lane]; |
| *(ptr + 2) = val.val[2].m64_u32[lane]; |
| *(ptr + 3) = val.val[3].m64_u32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst4_lane_s8(__transfersize(4) int8_t * ptr, int8x8x4_t val, __constrange(0,7) int lane);// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vst4_lane_s8(ptr, val, lane) vst4_lane_u8((uint8_t*)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst4_lane_s16(__transfersize(4) int16_t * ptr, int16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vst4_lane_s16(ptr, val, lane) vst4_lane_u16((uint16_t*)ptr, val, lane) |
| |
| _NEON2SSESTORAGE void vst4_lane_s32(__transfersize(4) int32_t * ptr, int32x2x4_t val, __constrange(0,1) int lane);// VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vst4_lane_s32(ptr, val, lane) vst4_lane_u32((uint32_t*)ptr, val, lane) |
| |
| //void vst4_lane_f16(__transfersize(4) __fp16 * ptr, float16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSESTORAGE void vst4_lane_f16_ptr(__transfersize(4) __fp16 * ptr, float16x4x4_t * val, __constrange(0,3) int lane); |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE void vst4_lane_f32(__transfersize(4) float32_t * ptr, float32x2x4_t val, __constrange(0,1) int lane); // VST4.32 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| _NEON2SSE_INLINE void vst4_lane_f32(__transfersize(4) float32_t * ptr, float32x2x4_t val, __constrange(0,1) int lane) |
| { |
| *(ptr) = val.val[0].m64_f32[lane]; |
| *(ptr + 1) = val.val[1].m64_f32[lane]; |
| *(ptr + 2) = val.val[2].m64_f32[lane]; |
| *(ptr + 3) = val.val[3].m64_f32[lane]; |
| } |
| |
| _NEON2SSESTORAGE void vst4_lane_p8(__transfersize(4) poly8_t * ptr, poly8x8x4_t val, __constrange(0,7) int lane);// VST4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vst4_lane_p8 vst4_lane_u8 |
| |
| _NEON2SSESTORAGE void vst4_lane_p16(__transfersize(4) poly16_t * ptr, poly16x4x4_t val, __constrange(0,3) int lane);// VST4.16 {d0[0], d1[0], d2[0], d3[0]}, [r0] |
| #define vst4_lane_p16 vst4_lane_u16 |
| |
| //************************************************************************************************** |
| //************************ Extract lanes from a vector ******************************************** |
| //************************************************************************************************** |
| //These intrinsics extract a single lane (element) from a vector. |
| _NEON2SSESTORAGE uint8_t vget_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0] |
| #define vget_lane_u8(vec, lane) vec.m64_u8[lane] |
| |
| _NEON2SSESTORAGE uint16_t vget_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VMOV.s16 r0, d0[0] |
| #define vget_lane_u16(vec, lane) vec.m64_u16[lane] |
| |
| |
| _NEON2SSESTORAGE uint32_t vget_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0] |
| #define vget_lane_u32(vec, lane) vec.m64_u32[lane] |
| |
| _NEON2SSESTORAGE int8_t vget_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VMOV.S8 r0, d0[0] |
| #define vget_lane_s8(vec, lane) vec.m64_i8[lane] |
| |
| _NEON2SSESTORAGE int16_t vget_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VMOV.S16 r0, d0[0] |
| #define vget_lane_s16(vec, lane) vec.m64_i16[lane] |
| |
| _NEON2SSESTORAGE int32_t vget_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0] |
| #define vget_lane_s32(vec, lane) vec.m64_i32[lane] |
| |
| _NEON2SSESTORAGE poly8_t vget_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VMOV.U8 r0, d0[0] |
| #define vget_lane_p8 vget_lane_u8 |
| |
| _NEON2SSESTORAGE poly16_t vget_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VMOV.s16 r0, d0[0] |
| #define vget_lane_p16 vget_lane_u16 |
| |
| _NEON2SSESTORAGE float32_t vget_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 r0, d0[0] |
| #define vget_lane_f32(vec, lane) vec.m64_f32[lane] |
| |
| _NEON2SSESTORAGE uint8_t vgetq_lane_u8(uint8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] |
| #define vgetq_lane_u8 (uint8_t) _MM_EXTRACT_EPI8 |
| |
| _NEON2SSESTORAGE uint16_t vgetq_lane_u16(uint16x8_t vec, __constrange(0,7) int lane); // VMOV.s16 r0, d0[0] |
| #define vgetq_lane_u16 (uint16_t) _MM_EXTRACT_EPI16 |
| |
| _NEON2SSESTORAGE uint32_t vgetq_lane_u32(uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] |
| #define vgetq_lane_u32 (uint32_t) _MM_EXTRACT_EPI32 |
| |
| _NEON2SSESTORAGE int8_t vgetq_lane_s8(int8x16_t vec, __constrange(0,15) int lane); // VMOV.S8 r0, d0[0] |
| #define vgetq_lane_s8 _MM_EXTRACT_EPI8 |
| |
| _NEON2SSESTORAGE int16_t vgetq_lane_s16(int16x8_t vec, __constrange(0,7) int lane); // VMOV.S16 r0, d0[0] |
| #define vgetq_lane_s16 _MM_EXTRACT_EPI16 |
| |
| _NEON2SSESTORAGE int32_t vgetq_lane_s32(int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] |
| #define vgetq_lane_s32 _MM_EXTRACT_EPI32 |
| |
| _NEON2SSESTORAGE poly8_t vgetq_lane_p8(poly8x16_t vec, __constrange(0,15) int lane); // VMOV.U8 r0, d0[0] |
| #define vgetq_lane_p8 vgetq_lane_u8 |
| |
| _NEON2SSESTORAGE poly16_t vgetq_lane_p16(poly16x8_t vec, __constrange(0,7) int lane); // VMOV.s16 r0, d0[0] |
| #define vgetq_lane_p16 vgetq_lane_u16 |
| |
| _NEON2SSESTORAGE float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 r0, d0[0] |
| _NEON2SSE_INLINE float32_t vgetq_lane_f32(float32x4_t vec, __constrange(0,3) int lane) |
| { |
| int32_t ilane; |
| ilane = _MM_EXTRACT_PS(vec,lane); |
| return *(float*)&ilane; |
| } |
| |
| _NEON2SSESTORAGE int64_t vget_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0 |
| #define vget_lane_s64(vec, lane) vec.m64_i64[0] |
| |
| _NEON2SSESTORAGE uint64_t vget_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV r0,r0,d0 |
| #define vget_lane_u64(vec, lane) vec.m64_u64[0] |
| |
| |
| _NEON2SSESTORAGE int64_t vgetq_lane_s64(int64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 |
| #define vgetq_lane_s64 _MM_EXTRACT_EPI64 |
| |
| _NEON2SSESTORAGE uint64_t vgetq_lane_u64(uint64x2_t vec, __constrange(0,1) int lane); // VMOV r0,r0,d0 |
| #define vgetq_lane_u64 (uint64_t) _MM_EXTRACT_EPI64 |
| |
| // ***************** Set lanes within a vector ******************************************** |
| // ************************************************************************************** |
| //These intrinsics set a single lane (element) within a vector. |
| //same functions as vld1_lane_xx ones, but take the value to be set directly. |
| |
| _NEON2SSESTORAGE uint8x8_t vset_lane_u8(uint8_t value, uint8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSE_INLINE uint8x8_t vset_lane_u8(uint8_t value, uint8x8_t vec, __constrange(0,7) int lane) |
| { |
| uint8_t val; |
| val = value; |
| return vld1_lane_u8(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vset_lane_u16(uint16_t value, uint16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSE_INLINE uint16x4_t vset_lane_u16(uint16_t value, uint16x4_t vec, __constrange(0,3) int lane) |
| { |
| uint16_t val; |
| val = value; |
| return vld1_lane_u16(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vset_lane_u32(uint32_t value, uint32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSE_INLINE uint32x2_t vset_lane_u32(uint32_t value, uint32x2_t vec, __constrange(0,1) int lane) |
| { |
| uint32_t val; |
| val = value; |
| return vld1_lane_u32(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vset_lane_s8(int8_t value, int8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSE_INLINE int8x8_t vset_lane_s8(int8_t value, int8x8_t vec, __constrange(0,7) int lane) |
| { |
| int8_t val; |
| val = value; |
| return vld1_lane_s8(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vset_lane_s16(int16_t value, int16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSE_INLINE int16x4_t vset_lane_s16(int16_t value, int16x4_t vec, __constrange(0,3) int lane) |
| { |
| int16_t val; |
| val = value; |
| return vld1_lane_s16(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vset_lane_s32(int32_t value, int32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSE_INLINE int32x2_t vset_lane_s32(int32_t value, int32x2_t vec, __constrange(0,1) int lane) |
| { |
| int32_t val; |
| val = value; |
| return vld1_lane_s32(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE poly8x8_t vset_lane_p8(poly8_t value, poly8x8_t vec, __constrange(0,7) int lane); // VMOV.8 d0[0],r0 |
| #define vset_lane_p8 vset_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vset_lane_p16(poly16_t value, poly16x4_t vec, __constrange(0,3) int lane); // VMOV.16 d0[0],r0 |
| #define vset_lane_p16 vset_lane_u16 |
| |
| _NEON2SSESTORAGE float32x2_t vset_lane_f32(float32_t value, float32x2_t vec, __constrange(0,1) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSE_INLINE float32x2_t vset_lane_f32(float32_t value, float32x2_t vec, __constrange(0,1) int lane) |
| { |
| float32_t val; |
| val = value; |
| return vld1_lane_f32(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSE_INLINE uint8x16_t vsetq_lane_u8(uint8_t value, uint8x16_t vec, __constrange(0,15) int lane) |
| { |
| uint8_t val; |
| val = value; |
| return vld1q_lane_u8(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSE_INLINE uint16x8_t vsetq_lane_u16(uint16_t value, uint16x8_t vec, __constrange(0,7) int lane) |
| { |
| uint16_t val; |
| val = value; |
| return vld1q_lane_u16(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSE_INLINE uint32x4_t vsetq_lane_u32(uint32_t value, uint32x4_t vec, __constrange(0,3) int lane) |
| { |
| uint32_t val; |
| val = value; |
| return vld1q_lane_u32(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 |
| _NEON2SSE_INLINE int8x16_t vsetq_lane_s8(int8_t value, int8x16_t vec, __constrange(0,15) int lane) |
| { |
| int8_t val; |
| val = value; |
| return vld1q_lane_s8(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 |
| _NEON2SSE_INLINE int16x8_t vsetq_lane_s16(int16_t value, int16x8_t vec, __constrange(0,7) int lane) |
| { |
| int16_t val; |
| val = value; |
| return vld1q_lane_s16(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSE_INLINE int32x4_t vsetq_lane_s32(int32_t value, int32x4_t vec, __constrange(0,3) int lane) |
| { |
| int32_t val; |
| val = value; |
| return vld1q_lane_s32(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE poly8x16_t vsetq_lane_p8(poly8_t value, poly8x16_t vec, __constrange(0,15) int lane); // VMOV.8 d0[0],r0 |
| #define vsetq_lane_p8 vsetq_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vsetq_lane_p16(poly16_t value, poly16x8_t vec, __constrange(0,7) int lane); // VMOV.16 d0[0],r0 |
| #define vsetq_lane_p16 vsetq_lane_u16 |
| |
| _NEON2SSESTORAGE float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane); // VMOV.32 d0[0],r0 |
| _NEON2SSE_INLINE float32x4_t vsetq_lane_f32(float32_t value, float32x4_t vec, __constrange(0,3) int lane) |
| { |
| float32_t val; |
| val = value; |
| return vld1q_lane_f32(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vset_lane_s64(int64_t value, int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE int64x1_t vset_lane_s64(int64_t value, int64x1_t vec, __constrange(0,0) int lane) |
| { |
| int64_t val; |
| val = value; |
| return vld1_lane_s64(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vset_lane_u64(uint64_t value, uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE uint64x1_t vset_lane_u64(uint64_t value, uint64x1_t vec, __constrange(0,0) int lane) |
| { |
| uint64_t val; |
| val = value; |
| return vld1_lane_u64(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE int64x2_t vsetq_lane_s64(int64_t value, int64x2_t vec, __constrange(0,1) int lane) |
| { |
| uint64_t val; |
| val = value; |
| return vld1q_lane_s64(&val, vec, lane); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vsetq_lane_u64(uint64_t value, uint64x2_t vec, __constrange(0,1) int lane); // VMOV d0,r0,r0 |
| #define vsetq_lane_u64 vsetq_lane_s64 |
| |
| // ******************************************************************************* |
| // **************** Initialize a vector from bit pattern *************************** |
| // ******************************************************************************* |
| //These intrinsics create a vector from a literal bit pattern. |
| _NEON2SSESTORAGE int8x8_t vcreate_s8(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE int8x8_t vcreate_s8(uint64_t a) |
| { |
| return (*(__m64_128*)&(a)); //here we couldn't use macro due to possible immediate value usage |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vcreate_s16(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_s16 vcreate_s8 |
| |
| _NEON2SSESTORAGE int32x2_t vcreate_s32(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_s32 vcreate_s8 |
| |
| _NEON2SSESTORAGE float16x4_t vcreate_f16(uint64_t a); // VMOV d0,r0,r0 |
| //no IA32 SIMD avalilable |
| |
| _NEON2SSESTORAGE float32x2_t vcreate_f32(uint64_t a); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE float32x2_t vcreate_f32(uint64_t a) |
| { |
| return (*(__m64_128*)&(a)); //here we couldn't use macro due to possible immediate value usage |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vcreate_u8(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_u8 vcreate_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vcreate_u16(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_u16 vcreate_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vcreate_u32(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_u32 vcreate_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vcreate_u64(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_u64 vcreate_s8 |
| |
| |
| _NEON2SSESTORAGE poly8x8_t vcreate_p8(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_p8 vcreate_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vcreate_p16(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_p16 vcreate_u16 |
| |
| _NEON2SSESTORAGE int64x1_t vcreate_s64(uint64_t a); // VMOV d0,r0,r0 |
| #define vcreate_s64 vcreate_u64 |
| |
| //********************* Set all lanes to same value ******************************** |
| //********************************************************************************* |
| //These intrinsics set all lanes to the same value. |
| _NEON2SSESTORAGE uint8x8_t vdup_n_u8(uint8_t value); // VDUP.8 d0,r0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint8x8_t vdup_n_u8(uint8_t value), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint8x8_t res; |
| int i; |
| for (i = 0; i<8; i++) { |
| res.m64_u8[i] = value; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vdup_n_u16(uint16_t value); // VDUP.16 d0,r0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint16x4_t vdup_n_u16(uint16_t value), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint16x4_t res; |
| int i; |
| for (i = 0; i<4; i++) { |
| res.m64_u16[i] = value; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vdup_n_u32(uint32_t value); // VDUP.32 d0,r0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(uint32x2_t vdup_n_u32(uint32_t value), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| uint32x2_t res; |
| res.m64_u32[0] = value; |
| res.m64_u32[1] = value; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vdup_n_s8(int8_t value); // VDUP.8 d0,r0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vdup_n_s8(int8_t value), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int8x8_t res; |
| int i; |
| for (i = 0; i<8; i++) { |
| res.m64_i8[i] = value; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vdup_n_s16(int16_t value); // VDUP.16 d0,r0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int16x4_t vdup_n_s16(int16_t value), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int16x4_t res; |
| int i; |
| for (i = 0; i<4; i++) { |
| res.m64_i16[i] = value; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vdup_n_s32(int32_t value); // VDUP.32 d0,r0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vdup_n_s32(int32_t value), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32x2_t res; |
| res.m64_i32[0] = value; |
| res.m64_i32[1] = value; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE poly8x8_t vdup_n_p8(poly8_t value); // VDUP.8 d0,r0 |
| #define vdup_n_p8 vdup_n_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vdup_n_p16(poly16_t value); // VDUP.16 d0,r0 |
| #define vdup_n_p16 vdup_n_s16 |
| |
| _NEON2SSESTORAGE float32x2_t vdup_n_f32(float32_t value); // VDUP.32 d0,r0 |
| _NEON2SSE_INLINE float32x2_t vdup_n_f32(float32_t value) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = value; |
| res.m64_f32[1] = value; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vdupq_n_u8(uint8_t value); // VDUP.8 q0,r0 |
| #define vdupq_n_u8(value) _mm_set1_epi8((uint8_t) (value)) |
| |
| _NEON2SSESTORAGE uint16x8_t vdupq_n_u16(uint16_t value); // VDUP.16 q0,r0 |
| #define vdupq_n_u16(value) _mm_set1_epi16((uint16_t) (value)) |
| |
| _NEON2SSESTORAGE uint32x4_t vdupq_n_u32(uint32_t value); // VDUP.32 q0,r0 |
| #define vdupq_n_u32(value) _mm_set1_epi32((uint32_t) (value)) |
| |
| _NEON2SSESTORAGE int8x16_t vdupq_n_s8(int8_t value); // VDUP.8 q0,r0 |
| #define vdupq_n_s8 _mm_set1_epi8 |
| |
| _NEON2SSESTORAGE int16x8_t vdupq_n_s16(int16_t value); // VDUP.16 q0,r0 |
| #define vdupq_n_s16 _mm_set1_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vdupq_n_s32(int32_t value); // VDUP.32 q0,r0 |
| #define vdupq_n_s32 _mm_set1_epi32 |
| |
| _NEON2SSESTORAGE poly8x16_t vdupq_n_p8(poly8_t value); // VDUP.8 q0,r0 |
| #define vdupq_n_p8 vdupq_n_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vdupq_n_p16(poly16_t value); // VDUP.16 q0,r0 |
| #define vdupq_n_p16 vdupq_n_u16 |
| |
| _NEON2SSESTORAGE float32x4_t vdupq_n_f32(float32_t value); // VDUP.32 q0,r0 |
| #define vdupq_n_f32 _mm_set1_ps |
| |
| _NEON2SSESTORAGE int64x1_t vdup_n_s64(int64_t value); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE int64x1_t vdup_n_s64(int64_t value) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = value; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint64x1_t vdup_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE uint64x1_t vdup_n_u64(uint64_t value) |
| { |
| uint64x1_t res; |
| res.m64_u64[0] = value; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vdupq_n_s64(int64_t value); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE int64x2_t vdupq_n_s64(int64_t value) |
| { |
| _NEON2SSE_ALIGN_16 int64_t value2[2] = {value, value}; //value may be an immediate |
| return LOAD_SI128(value2); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vdupq_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| _NEON2SSE_INLINE uint64x2_t vdupq_n_u64(uint64_t value) |
| { |
| _NEON2SSE_ALIGN_16 uint64_t val[2] = {value, value}; //value may be an immediate |
| return LOAD_SI128(val); |
| } |
| |
| //**** Set all lanes to same value ************************ |
| //Same functions as above - just aliaces.******************** |
| //Probably they reflect the fact that 128-bit functions versions use VMOV instruction ********** |
| _NEON2SSESTORAGE uint8x8_t vmov_n_u8(uint8_t value); // VDUP.8 d0,r0 |
| #define vmov_n_u8 vdup_n_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vmov_n_u16(uint16_t value); // VDUP.16 d0,r0 |
| #define vmov_n_u16 vdup_n_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vmov_n_u32(uint32_t value); // VDUP.32 d0,r0 |
| #define vmov_n_u32 vdup_n_u32 |
| |
| _NEON2SSESTORAGE int8x8_t vmov_n_s8(int8_t value); // VDUP.8 d0,r0 |
| #define vmov_n_s8 vdup_n_s8 |
| |
| _NEON2SSESTORAGE int16x4_t vmov_n_s16(int16_t value); // VDUP.16 d0,r0 |
| #define vmov_n_s16 vdup_n_s16 |
| |
| _NEON2SSESTORAGE int32x2_t vmov_n_s32(int32_t value); // VDUP.32 d0,r0 |
| #define vmov_n_s32 vdup_n_s32 |
| |
| _NEON2SSESTORAGE poly8x8_t vmov_n_p8(poly8_t value); // VDUP.8 d0,r0 |
| #define vmov_n_p8 vdup_n_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vmov_n_p16(poly16_t value); // VDUP.16 d0,r0 |
| #define vmov_n_p16 vdup_n_s16 |
| |
| _NEON2SSESTORAGE float32x2_t vmov_n_f32(float32_t value); // VDUP.32 d0,r0 |
| #define vmov_n_f32 vdup_n_f32 |
| |
| _NEON2SSESTORAGE uint8x16_t vmovq_n_u8(uint8_t value); // VDUP.8 q0,r0 |
| #define vmovq_n_u8 vdupq_n_u8 |
| |
| _NEON2SSESTORAGE uint16x8_t vmovq_n_u16(uint16_t value); // VDUP.16 q0,r0 |
| #define vmovq_n_u16 vdupq_n_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmovq_n_u32(uint32_t value); // VDUP.32 q0,r0 |
| #define vmovq_n_u32 vdupq_n_u32 |
| |
| _NEON2SSESTORAGE int8x16_t vmovq_n_s8(int8_t value); // VDUP.8 q0,r0 |
| #define vmovq_n_s8 vdupq_n_s8 |
| |
| _NEON2SSESTORAGE int16x8_t vmovq_n_s16(int16_t value); // VDUP.16 q0,r0 |
| #define vmovq_n_s16 vdupq_n_s16 |
| |
| _NEON2SSESTORAGE int32x4_t vmovq_n_s32(int32_t value); // VDUP.32 q0,r0 |
| #define vmovq_n_s32 vdupq_n_s32 |
| |
| _NEON2SSESTORAGE poly8x16_t vmovq_n_p8(poly8_t value); // VDUP.8 q0,r0 |
| #define vmovq_n_p8 vdupq_n_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vmovq_n_p16(poly16_t value); // VDUP.16 q0,r0 |
| #define vmovq_n_p16 vdupq_n_s16 |
| |
| _NEON2SSESTORAGE float32x4_t vmovq_n_f32(float32_t value); // VDUP.32 q0,r0 |
| #define vmovq_n_f32 vdupq_n_f32 |
| |
| _NEON2SSESTORAGE int64x1_t vmov_n_s64(int64_t value); // VMOV d0,r0,r0 |
| #define vmov_n_s64 vdup_n_s64 |
| |
| _NEON2SSESTORAGE uint64x1_t vmov_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| #define vmov_n_u64 vdup_n_u64 |
| |
| _NEON2SSESTORAGE int64x2_t vmovq_n_s64(int64_t value); // VMOV d0,r0,r0 |
| #define vmovq_n_s64 vdupq_n_s64 |
| |
| _NEON2SSESTORAGE uint64x2_t vmovq_n_u64(uint64_t value); // VMOV d0,r0,r0 |
| #define vmovq_n_u64 vdupq_n_u64 |
| |
| //**************Set all lanes to the value of one lane of a vector ************* |
| //**************************************************************************** |
| //here shuffle is better solution than lane extraction followed by set1 function |
| _NEON2SSESTORAGE uint8x8_t vdup_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0] |
| _NEON2SSE_INLINE uint8x8_t vdup_lane_u8(uint8x8_t vec, __constrange(0,7) int lane) |
| { |
| uint8x8_t res; |
| uint8_t valane; |
| int i = 0; |
| valane = vec.m64_u8[lane]; |
| for (i = 0; i<8; i++) { |
| res.m64_u8[i] = valane; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vdup_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0] |
| _NEON2SSE_INLINE uint16x4_t vdup_lane_u16(uint16x4_t vec, __constrange(0,3) int lane) |
| { |
| uint16x4_t res; |
| uint16_t valane; |
| valane = vec.m64_u16[lane]; |
| res.m64_u16[0] = valane; |
| res.m64_u16[1] = valane; |
| res.m64_u16[2] = valane; |
| res.m64_u16[3] = valane; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vdup_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0] |
| _NEON2SSE_INLINE uint32x2_t vdup_lane_u32(uint32x2_t vec, __constrange(0,1) int lane) |
| { |
| uint32x2_t res; |
| res.m64_u32[0] = vec.m64_u32[lane]; |
| res.m64_u32[1] = res.m64_u32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vdup_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0] |
| #define vdup_lane_s8 vdup_lane_u8 |
| |
| _NEON2SSESTORAGE int16x4_t vdup_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0] |
| #define vdup_lane_s16 vdup_lane_u16 |
| |
| _NEON2SSESTORAGE int32x2_t vdup_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0] |
| #define vdup_lane_s32 vdup_lane_u32 |
| |
| _NEON2SSESTORAGE poly8x8_t vdup_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 d0,d0[0] |
| #define vdup_lane_p8 vdup_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vdup_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 d0,d0[0] |
| #define vdup_lane_p16 vdup_lane_s16 |
| |
| _NEON2SSESTORAGE float32x2_t vdup_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 d0,d0[0] |
| _NEON2SSE_INLINE float32x2_t vdup_lane_f32(float32x2_t vec, __constrange(0,1) int lane) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = vec.m64_f32[lane]; |
| res.m64_f32[1] = res.m64_f32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vdupq_lane_u8(uint8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0] |
| _NEON2SSE_INLINE uint8x16_t vdupq_lane_u8(uint8x8_t vec, __constrange(0,7) int lane) // VDUP.8 q0,d0[0] |
| { |
| const int8_t lane8 = (int8_t) lane; |
| _NEON2SSE_ALIGN_16 int8_t lanemask8[16] = {lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8, lane8}; |
| return _mm_shuffle_epi8 (_pM128i(vec), *(__m128i*) lanemask8); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vdupq_lane_u16(uint16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0] |
| _NEON2SSE_INLINE uint16x8_t vdupq_lane_u16(uint16x4_t vec, __constrange(0,3) int lane) // VDUP.16 q0,d0[0] |
| { |
| //we could use 8bit shuffle for 16 bit as well |
| const int8_t lane16 = ((int8_t) lane) << 1; |
| const int8_t lane16_1 = lane16 + 1; |
| _NEON2SSE_ALIGN_16 int8_t lanemask_e16[16] = {lane16, lane16_1, lane16, lane16_1, lane16, lane16_1, lane16, lane16_1, |
| lane16, lane16_1, lane16, lane16_1, lane16, lane16_1, lane16, lane16_1}; |
| return _mm_shuffle_epi8 (_pM128i(vec), *(__m128i*)lanemask_e16); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vdupq_lane_u32(uint32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0] |
| _NEON2SSE_INLINE uint32x4_t vdupq_lane_u32(uint32x2_t vec, __constrange(0,1) int lane) |
| { |
| //need to use function not macro to make it gcc friendly and meet the immediate const requirement for _mm_shuffle_epi32 |
| if (lane == 1) |
| return _mm_shuffle_epi32 (_pM128i(vec), (1 | (1 << 2) | (1 << 4) | (1 << 6)) ); |
| else |
| return _mm_shuffle_epi32 (_pM128i(vec), 0); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vdupq_lane_s8(int8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0] |
| #define vdupq_lane_s8 vdupq_lane_u8 |
| |
| _NEON2SSESTORAGE int16x8_t vdupq_lane_s16(int16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0] |
| #define vdupq_lane_s16 vdupq_lane_u16 |
| |
| _NEON2SSESTORAGE int32x4_t vdupq_lane_s32(int32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0] |
| #define vdupq_lane_s32 vdupq_lane_u32 |
| |
| _NEON2SSESTORAGE poly8x16_t vdupq_lane_p8(poly8x8_t vec, __constrange(0,7) int lane); // VDUP.8 q0,d0[0] |
| #define vdupq_lane_p8 vdupq_lane_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vdupq_lane_p16(poly16x4_t vec, __constrange(0,3) int lane); // VDUP.16 q0,d0[0] |
| #define vdupq_lane_p16 vdupq_lane_s16 |
| |
| _NEON2SSESTORAGE float32x4_t vdupq_lane_f32(float32x2_t vec, __constrange(0,1) int lane); // VDUP.32 q0,d0[0] |
| #define vdupq_lane_f32(vec, lane) _mm_load1_ps((vec.m64_f32 + lane)) |
| |
| _NEON2SSESTORAGE int64x1_t vdup_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0 |
| #define vdup_lane_s64(vec,lane) vec |
| |
| _NEON2SSESTORAGE uint64x1_t vdup_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV d0,d0 |
| #define vdup_lane_u64(vec,lane) vec |
| |
| _NEON2SSESTORAGE int64x2_t vdupq_lane_s64(int64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0 |
| _NEON2SSE_INLINE int64x2_t vdupq_lane_s64(int64x1_t vec, __constrange(0,0) int lane) |
| { |
| __m128i vec128; |
| vec128 = _pM128i(vec); |
| return _mm_unpacklo_epi64(vec128,vec128); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vdupq_lane_u64(uint64x1_t vec, __constrange(0,0) int lane); // VMOV q0,q0 |
| #define vdupq_lane_u64 vdupq_lane_s64 |
| |
| // ******************************************************************** |
| // ******************** Combining vectors ***************************** |
| // ******************************************************************** |
| //These intrinsics join two 64 bit vectors into a single 128bit vector. |
| _NEON2SSESTORAGE int8x16_t vcombine_s8(int8x8_t low, int8x8_t high); // VMOV d0,d0 |
| _NEON2SSE_INLINE int8x16_t vcombine_s8(int8x8_t low, int8x8_t high) |
| { |
| return _mm_unpacklo_epi64 (_pM128i(low), _pM128i(high) ); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vcombine_s16(int16x4_t low, int16x4_t high); // VMOV d0,d0 |
| #define vcombine_s16 vcombine_s8 |
| |
| _NEON2SSESTORAGE int32x4_t vcombine_s32(int32x2_t low, int32x2_t high); // VMOV d0,d0 |
| #define vcombine_s32 vcombine_s8 |
| |
| _NEON2SSESTORAGE int64x2_t vcombine_s64(int64x1_t low, int64x1_t high); // VMOV d0,d0 |
| #define vcombine_s64 vcombine_s8 |
| |
| _NEON2SSESTORAGE float16x8_t vcombine_f16(float16x4_t low, float16x4_t high); // VMOV d0,d0 |
| //current IA SIMD doesn't support float16 |
| |
| _NEON2SSESTORAGE float32x4_t vcombine_f32(float32x2_t low, float32x2_t high); // VMOV d0,d0 |
| _NEON2SSE_INLINE float32x4_t vcombine_f32(float32x2_t low, float32x2_t high) |
| { |
| __m128i res; |
| res = _mm_unpacklo_epi64(_pM128i(low), _pM128i(high) ); |
| return _M128(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vcombine_u8(uint8x8_t low, uint8x8_t high); // VMOV d0,d0 |
| #define vcombine_u8 vcombine_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vcombine_u16(uint16x4_t low, uint16x4_t high); // VMOV d0,d0 |
| #define vcombine_u16 vcombine_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vcombine_u32(uint32x2_t low, uint32x2_t high); // VMOV d0,d0 |
| #define vcombine_u32 vcombine_s32 |
| |
| _NEON2SSESTORAGE uint64x2_t vcombine_u64(uint64x1_t low, uint64x1_t high); // VMOV d0,d0 |
| #define vcombine_u64 vcombine_s64 |
| |
| _NEON2SSESTORAGE poly8x16_t vcombine_p8(poly8x8_t low, poly8x8_t high); // VMOV d0,d0 |
| #define vcombine_p8 vcombine_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vcombine_p16(poly16x4_t low, poly16x4_t high); // VMOV d0,d0 |
| #define vcombine_p16 vcombine_u16 |
| |
| //********************************************************************** |
| //************************* Splitting vectors ************************** |
| //********************************************************************** |
| //**************** Get high part ****************************************** |
| //These intrinsics split a 128 bit vector into 2 component 64 bit vectors |
| _NEON2SSESTORAGE int8x8_t vget_high_s8(int8x16_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int8x8_t vget_high_s8(int8x16_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = _mm_unpackhi_epi64(a,a); //SSE2 |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vget_high_s16(int16x8_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int16x4_t vget_high_s16(int16x8_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = _mm_unpackhi_epi64(a,a); //SSE2 |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vget_high_s32(int32x4_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int32x2_t vget_high_s32(int32x4_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _mm_unpackhi_epi64(a,a); //SSE2 |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vget_high_s64(int64x2_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int64x1_t vget_high_s64(int64x2_t a) |
| { |
| int64x1_t res64; |
| __m128i res; |
| res = _mm_unpackhi_epi64(a,a); //SSE2 |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float16x4_t vget_high_f16(float16x8_t a); // VMOV d0,d0 |
| // IA32 SIMD doesn't work with 16bit floats currently |
| |
| _NEON2SSESTORAGE float32x2_t vget_high_f32(float32x4_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE float32x2_t vget_high_f32(float32x4_t a) |
| { |
| __m128i res; |
| __m64_128 res64; |
| res = _mm_unpackhi_epi64(_M128i(a),_M128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vget_high_u8(uint8x16_t a); // VMOV d0,d0 |
| #define vget_high_u8 vget_high_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vget_high_u16(uint16x8_t a); // VMOV d0,d0 |
| #define vget_high_u16 vget_high_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vget_high_u32(uint32x4_t a); // VMOV d0,d0 |
| #define vget_high_u32 vget_high_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vget_high_u64(uint64x2_t a); // VMOV d0,d0 |
| #define vget_high_u64 vget_high_s64 |
| |
| _NEON2SSESTORAGE poly8x8_t vget_high_p8(poly8x16_t a); // VMOV d0,d0 |
| #define vget_high_p8 vget_high_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vget_high_p16(poly16x8_t a); // VMOV d0,d0 |
| #define vget_high_p16 vget_high_u16 |
| |
| //********************** Get low part ********************** |
| //********************************************************** |
| _NEON2SSESTORAGE int8x8_t vget_low_s8(int8x16_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int8x8_t vget_low_s8(int8x16_t a) // VMOV d0,d0 |
| { |
| int16x4_t res64; |
| return64(a); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vget_low_s16(int16x8_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int16x4_t vget_low_s16(int16x8_t a) // VMOV d0,d0 |
| { |
| int16x4_t res64; |
| return64(a); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vget_low_s32(int32x4_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int32x2_t vget_low_s32(int32x4_t a) // VMOV d0,d0 |
| { |
| int32x2_t res64; |
| return64(a); |
| } |
| |
| _NEON2SSESTORAGE int64x1_t vget_low_s64(int64x2_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE int64x1_t vget_low_s64(int64x2_t a) // VMOV d0,d0 |
| { |
| int64x1_t res64; |
| return64 (a); |
| } |
| |
| _NEON2SSESTORAGE float16x4_t vget_low_f16(float16x8_t a); // VMOV d0,d0 |
| // IA32 SIMD doesn't work with 16bit floats currently |
| |
| _NEON2SSESTORAGE float32x2_t vget_low_f32(float32x4_t a); // VMOV d0,d0 |
| _NEON2SSE_INLINE float32x2_t vget_low_f32(float32x4_t a) |
| { |
| float32x2_t res64; |
| _M64f(res64, a); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vget_low_u8(uint8x16_t a); // VMOV d0,d0 |
| #define vget_low_u8 vget_low_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vget_low_u16(uint16x8_t a); // VMOV d0,d0 |
| #define vget_low_u16 vget_low_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vget_low_u32(uint32x4_t a); // VMOV d0,d0 |
| #define vget_low_u32 vget_low_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vget_low_u64(uint64x2_t a); // VMOV d0,d0 |
| #define vget_low_u64 vget_low_s64 |
| |
| _NEON2SSESTORAGE poly8x8_t vget_low_p8(poly8x16_t a); // VMOV d0,d0 |
| #define vget_low_p8 vget_low_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vget_low_p16(poly16x8_t a); // VMOV d0,d0 |
| #define vget_low_p16 vget_low_s16 |
| |
| //************************************************************************** |
| //************************ Converting vectors ********************************** |
| //************************************************************************** |
| //************* Convert from float *************************************** |
| // need to set _MM_SET_ROUNDING_MODE ( x) accordingly |
| _NEON2SSESTORAGE int32x2_t vcvt_s32_f32(float32x2_t a); // VCVT.S32.F32 d0, d0 |
| _NEON2SSE_INLINE int32x2_t vcvt_s32_f32(float32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _mm_cvtps_epi32(_pM128(a)); //use low 64 bits of result only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vcvt_u32_f32(float32x2_t a); // VCVT.U32.F32 d0, d0 |
| _NEON2SSE_INLINE uint32x2_t vcvt_u32_f32(float32x2_t a) |
| { |
| uint32x2_t res64; |
| __m128i res; |
| res = vcvtq_u32_f32(_pM128(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vcvtq_s32_f32(float32x4_t a); // VCVT.S32.F32 q0, q0 |
| _NEON2SSE_INLINE int32x4_t vcvtq_s32_f32(float32x4_t a) |
| { |
| __m128 dif; |
| __m128i res; |
| //_mm_cvttps_epi32 incorrectly treats the case a > =2.14748364e+009, therefore the special processing is necessary |
| _NEON2SSE_ALIGN_16 static const float32_t fmax[] = { 2.14748364e+009f, 2.14748364e+009f, 2.14748364e+009f, 2.14748364e+009f }; |
| dif = _mm_cmpge_ps(a, *(__m128*)fmax); |
| res = _mm_cvttps_epi32(a); |
| return _mm_xor_si128(res, _M128i(dif)); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcvtq_u32_f32(float32x4_t a); // VCVT.U32.F32 q0, q0 |
| _NEON2SSE_INLINE uint32x4_t vcvtq_u32_f32(float32x4_t a) // VCVT.U32.F32 q0, q0 |
| { |
| //No single instruction SSE solution but we could implement it as following: |
| __m128i res1, res2, zero, mask; |
| __m128 max, min, dif; |
| _NEON2SSE_ALIGN_16 static const float32_t fmax[] = { 2.14748364e+009f, 2.14748364e+009f, 2.14748364e+009f, 2.14748364e+009f }; |
| _NEON2SSE_ALIGN_16 static const float32_t fmax_unsigned[] = { 4.29496729e+009f, 4.29496729e+009f, 4.29496729e+009f, 4.29496729e+009f }; |
| zero = _mm_setzero_si128(); |
| mask = _mm_cmpgt_epi32(_M128i(a), zero); |
| min = _mm_and_ps(_M128(mask), a); |
| max = _mm_min_ps(min, *(__m128*)fmax_unsigned); //clamped in 0 - 4.29496729+009 |
| |
| dif = _mm_sub_ps(max, *(__m128*)fmax); |
| mask = _mm_cmpgt_epi32(_M128i(dif),zero); |
| dif = _mm_and_ps(_M128(mask), dif); |
| |
| res1 = _mm_cvttps_epi32(dif); |
| res2 = vcvtq_s32_f32(max); |
| return _mm_add_epi32(res1, res2); |
| } |
| |
| // ***** Convert to the fixed point with the number of fraction bits specified by b *********** |
| //************************************************************************************************* |
| _NEON2SSESTORAGE int32x2_t vcvt_n_s32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.S32.F32 d0, d0, #32 |
| _NEON2SSE_INLINE int32x2_t vcvt_n_s32_f32(float32x2_t a, __constrange(1,32) int b) |
| { |
| int32x2_t res64; |
| return64(vcvtq_n_s32_f32(_pM128(a),b)); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vcvt_n_u32_f32(float32x2_t a, __constrange(1,32) int b); // VCVT.U32.F32 d0, d0, #32 |
| _NEON2SSE_INLINE uint32x2_t vcvt_n_u32_f32(float32x2_t a, __constrange(1,32) int b) |
| { |
| uint32x2_t res; |
| float convconst; |
| convconst = (float)((uint32_t)1 << b); |
| res.m64_u32[0] = (uint32_t) (a.m64_f32[0] * convconst); |
| res.m64_u32[1] = (uint32_t) (a.m64_f32[1] * convconst); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.S32.F32 q0, q0, #32 |
| _NEON2SSE_INLINE int32x4_t vcvtq_n_s32_f32(float32x4_t a, __constrange(1,32) int b) |
| { |
| float convconst; |
| _NEON2SSE_ALIGN_16 static const uint32_t cmask[] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| __m128 cconst128; |
| __m128i mask, res; |
| convconst = (float)(1 << b); |
| cconst128 = vdupq_n_f32(convconst); |
| res = _mm_cvttps_epi32(_mm_mul_ps(a,cconst128)); |
| mask = _mm_cmpeq_epi32 (res, *(__m128i*)cmask); |
| return _mm_xor_si128 (res, mask); //res saturated for 0x80000000 |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b); // VCVT.U32.F32 q0, q0, #32 |
| _NEON2SSE_INLINE uint32x4_t vcvtq_n_u32_f32(float32x4_t a, __constrange(1,32) int b) |
| { |
| float convconst; |
| __m128 cconst128; |
| convconst = (float)(1 << b); |
| cconst128 = vdupq_n_f32(convconst); |
| return vcvtq_u32_f32(_mm_mul_ps(a,cconst128)); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x4_t vcvtnq_s32_f32(float32x4_t a); // VCVTN.S32.F32 q0, q0 |
| _NEON2SSE_INLINE int32x4_t vcvtnq_s32_f32(float32x4_t a) |
| { |
| return _mm_cvtps_epi32(a); |
| } |
| |
| //***************** Convert to float ************************* |
| //************************************************************* |
| _NEON2SSESTORAGE float32x2_t vcvt_f32_s32(int32x2_t a); // VCVT.F32.S32 d0, d0 |
| _NEON2SSE_INLINE float32x2_t vcvt_f32_s32(int32x2_t a) //use low 64 bits |
| { |
| float32x2_t res; |
| res.m64_f32[0] = (float) a.m64_i32[0]; |
| res.m64_f32[1] = (float) a.m64_i32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vcvt_f32_u32(uint32x2_t a); // VCVT.F32.U32 d0, d0 |
| _NEON2SSE_INLINE float32x2_t vcvt_f32_u32(uint32x2_t a) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = (float) a.m64_u32[0]; |
| res.m64_f32[1] = (float) a.m64_u32[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vcvtq_f32_s32(int32x4_t a); // VCVT.F32.S32 q0, q0 |
| #define vcvtq_f32_s32(a) _mm_cvtepi32_ps(a) |
| |
| _NEON2SSESTORAGE float32x4_t vcvtq_f32_u32(uint32x4_t a); // VCVT.F32.U32 q0, q0 |
| _NEON2SSE_INLINE float32x4_t vcvtq_f32_u32(uint32x4_t a) // VCVT.F32.U32 q0, q0 |
| { |
| //solution may be not optimal |
| __m128 two16, fHi, fLo; |
| __m128i hi, lo; |
| two16 = _mm_set1_ps((float)0x10000); //2^16 |
| // Avoid double rounding by doing two exact conversions |
| // of high and low 16-bit segments |
| hi = _mm_srli_epi32(a, 16); |
| lo = _mm_srli_epi32(_mm_slli_epi32(a, 16), 16); |
| fHi = _mm_mul_ps(_mm_cvtepi32_ps(hi), two16); |
| fLo = _mm_cvtepi32_ps(lo); |
| // do single rounding according to current rounding mode |
| return _mm_add_ps(fHi, fLo); |
| } |
| |
| // ***** Convert to the float from fixed point with the number of fraction bits specified by b *********** |
| _NEON2SSESTORAGE float32x2_t vcvt_n_f32_s32(int32x2_t a, __constrange(1,32) int b); // VCVT.F32.S32 d0, d0, #32 |
| _NEON2SSE_INLINE float32x2_t vcvt_n_f32_s32(int32x2_t a, __constrange(1,32) int b) |
| { |
| float32x2_t res; |
| float convconst; |
| convconst = (float)(1. / ((uint32_t)1 << b)); |
| res.m64_f32[0] = a.m64_i32[0] * convconst; |
| res.m64_f32[1] = a.m64_i32[1] * convconst; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vcvt_n_f32_u32(uint32x2_t a, __constrange(1,32) int b); // VCVT.F32.U32 d0, d0, #32 |
| _NEON2SSE_INLINE float32x2_t vcvt_n_f32_u32(uint32x2_t a, __constrange(1,32) int b) // VCVT.F32.U32 d0, d0, #32 |
| { |
| float32x2_t res; |
| float convconst; |
| convconst = (float)(1. / ((uint32_t)1 << b)); |
| res.m64_f32[0] = a.m64_u32[0] * convconst; |
| res.m64_f32[1] = a.m64_u32[1] * convconst; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b); // VCVT.F32.S32 q0, q0, #32 |
| _NEON2SSE_INLINE float32x4_t vcvtq_n_f32_s32(int32x4_t a, __constrange(1,32) int b) |
| { |
| float convconst; |
| __m128 cconst128, af; |
| convconst = (float)(1. / ((uint32_t)1 << b)); |
| af = _mm_cvtepi32_ps(a); |
| cconst128 = vdupq_n_f32(convconst); |
| return _mm_mul_ps(af,cconst128); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b); // VCVT.F32.U32 q0, q0, #32 |
| _NEON2SSE_INLINE float32x4_t vcvtq_n_f32_u32(uint32x4_t a, __constrange(1,32) int b) |
| { |
| float convconst; |
| __m128 cconst128, af; |
| convconst = (float)(1. / (1 << b)); |
| af = vcvtq_f32_u32(a); |
| cconst128 = vdupq_n_f32(convconst); |
| return _mm_mul_ps(af,cconst128); |
| } |
| |
| //**************Convert between floats *********************** |
| //************************************************************ |
| _NEON2SSESTORAGE float16x4_t vcvt_f16_f32(float32x4_t a); // VCVT.F16.F32 d0, q0 |
| //Intel SIMD doesn't support 16bits floats curently |
| |
| _NEON2SSESTORAGE float32x4_t vcvt_f32_f16(float16x4_t a); // VCVT.F32.F16 q0, d0 |
| //Intel SIMD doesn't support 16bits floats curently, the only solution is to store 16bit floats and load as 32 bits |
| |
| //************Vector narrow integer conversion (truncation) ****************** |
| //**************************************************************************** |
| _NEON2SSESTORAGE int8x8_t vmovn_s16(int16x8_t a); // VMOVN.I16 d0,q0 |
| _NEON2SSE_INLINE int8x8_t vmovn_s16(int16x8_t a) // VMOVN.I16 d0,q0 |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = _mm_shuffle_epi8 (a, *(__m128i*) mask8_16_even_odd); //use 64 low bits only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmovn_s32(int32x4_t a); // VMOVN.I32 d0,q0 |
| _NEON2SSE_INLINE int16x4_t vmovn_s32(int32x4_t a) // VMOVN.I32 d0,q0 |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = _mm_shuffle_epi8 (a, *(__m128i*) mask8_32_even_odd); //use 64 low bits only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmovn_s64(int64x2_t a); // VMOVN.I64 d0,q0 |
| _NEON2SSE_INLINE int32x2_t vmovn_s64(int64x2_t a) |
| { |
| //may be not effective compared with a serial implementation |
| int32x2_t res64; |
| __m128i res; |
| res = _mm_shuffle_epi32 (a, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //use 64 low bits only, _MM_SHUFFLE(3, 1, 2, 0) |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmovn_u16(uint16x8_t a); // VMOVN.I16 d0,q0 |
| #define vmovn_u16 vmovn_s16 |
| |
| _NEON2SSESTORAGE uint16x4_t vmovn_u32(uint32x4_t a); // VMOVN.I32 d0,q0 |
| #define vmovn_u32 vmovn_s32 |
| |
| _NEON2SSESTORAGE uint32x2_t vmovn_u64(uint64x2_t a); // VMOVN.I64 d0,q0 |
| #define vmovn_u64 vmovn_s64 |
| |
| //**************** Vector long move *********************** |
| //*********************************************************** |
| _NEON2SSESTORAGE int16x8_t vmovl_s8(int8x8_t a); // VMOVL.S8 q0,d0 |
| _NEON2SSE_INLINE int16x8_t vmovl_s8(int8x8_t a) |
| { |
| return _MM_CVTEPI8_EPI16(_pM128i(a)); //SSE4.1 |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmovl_s16(int16x4_t a); // VMOVL.S16 q0,d0 |
| _NEON2SSE_INLINE int32x4_t vmovl_s16(int16x4_t a) |
| { |
| return _MM_CVTEPI16_EPI32(_pM128i(a)); //SSE4.1 |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmovl_s32(int32x2_t a); // VMOVL.S32 q0,d0 |
| _NEON2SSE_INLINE int64x2_t vmovl_s32(int32x2_t a) |
| { |
| return _MM_CVTEPI32_EPI64(_pM128i(a)); //SSE4.1 |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmovl_u8(uint8x8_t a); // VMOVL.U8 q0,d0 |
| _NEON2SSE_INLINE uint16x8_t vmovl_u8(uint8x8_t a) |
| { |
| return _MM_CVTEPU8_EPI16(_pM128i(a)); //SSE4.1 |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmovl_u16(uint16x4_t a); // VMOVL.s16 q0,d0 |
| _NEON2SSE_INLINE uint32x4_t vmovl_u16(uint16x4_t a) |
| { |
| return _MM_CVTEPU16_EPI32(_pM128i(a)); //SSE4.1 |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmovl_u32(uint32x2_t a); // VMOVL.U32 q0,d0 |
| _NEON2SSE_INLINE uint64x2_t vmovl_u32(uint32x2_t a) |
| { |
| return _MM_CVTEPU32_EPI64(_pM128i(a)); //SSE4.1 |
| } |
| |
| //*************Vector saturating narrow integer***************** |
| //************************************************************** |
| _NEON2SSESTORAGE int8x8_t vqmovn_s16(int16x8_t a); // VQMOVN.S16 d0,q0 |
| _NEON2SSE_INLINE int8x8_t vqmovn_s16(int16x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = _mm_packs_epi16(a, a); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqmovn_s32(int32x4_t a); // VQMOVN.S32 d0,q0 |
| _NEON2SSE_INLINE int16x4_t vqmovn_s32(int32x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = _mm_packs_epi32(a, a); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqmovn_s64(int64x2_t a); // VQMOVN.S64 d0,q0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqmovn_s64(int64x2_t a),_NEON2SSE_REASON_SLOW_SERIAL) //no effective SIMD solution |
| { |
| int32x2_t res; |
| _NEON2SSE_ALIGN_16 int64_t atmp[2]; |
| _mm_store_si128((__m128i*)atmp, a); |
| if(atmp[0]>SINT_MAX) atmp[0] = SINT_MAX; |
| if(atmp[0]<SINT_MIN) atmp[0] = SINT_MIN; |
| if(atmp[1]>SINT_MAX) atmp[1] = SINT_MAX; |
| if(atmp[1]<SINT_MIN) atmp[1] = SINT_MIN; |
| res.m64_i32[0] = (int32_t)atmp[0]; |
| res.m64_i32[1] = (int32_t)atmp[1]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vqmovn_u16(uint16x8_t a); // VQMOVN.s16 d0,q0 |
| _NEON2SSE_INLINE uint8x8_t vqmovn_u16(uint16x8_t a) // VQMOVN.s16 d0,q0 |
| { |
| //no uint16 to uint8 conversion in SSE, need truncate to max signed first. Also trying to avoid _mm_shuffle_epi8 because of its big latency for old Atom CPUs |
| uint8x8_t res64; |
| __m128i c7fff, a_trunc, mask_trunc; |
| c7fff = _mm_set1_epi16 (0x7fff); // 15-th bit set to zero |
| a_trunc = _mm_and_si128(a, c7fff); // a truncated to max signed |
| mask_trunc = _mm_cmpgt_epi16(a_trunc, a); //if after the shift we have bigger value than before then the 15-th bit had been set initially. |
| mask_trunc = _mm_and_si128(mask_trunc, c7fff); //zero or c7fff if the 15-th bit had been set initially |
| a_trunc = _mm_or_si128(a_trunc, mask_trunc); |
| a_trunc = _mm_packus_epi16 (a_trunc, a_trunc); //use low 64bits only |
| return64(a_trunc); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqmovn_u32(uint32x4_t a); // VQMOVN.U32 d0,q0 |
| _NEON2SSE_INLINE uint16x4_t vqmovn_u32(uint32x4_t a) // VQMOVN.U32 d0,q0 |
| { |
| #ifdef USE_SSE4 |
| //no uint32 to uint16 conversion in SSE, need truncate to max signed first |
| uint16x4_t res64; |
| __m128i c7fffffff, a_trunc, mask_trunc; |
| c7fffffff = _mm_set1_epi32((uint32_t)0x7fffffff); // 31-th bit set to zero |
| a_trunc = _mm_and_si128(a, c7fffffff); // a truncated to max signed |
| mask_trunc = _mm_cmpgt_epi16(a_trunc, a); //if after the shift we have bigger value than before then the 15-th bit had been set initially. |
| mask_trunc = _mm_and_si128(mask_trunc, c7fffffff); //zero or c7fff if the 15-th bit had been set initially |
| a_trunc = _mm_or_si128(a_trunc, mask_trunc); |
| a_trunc = _MM_PACKUS1_EPI32 (a_trunc); //use low 64bits only |
| return64(a_trunc); |
| #else |
| uint16x4_t res64; |
| __m128i res_hi, mask; |
| mask = _mm_setzero_si128(); |
| res_hi = _mm_srli_epi32(a, 16); |
| res_hi = _mm_cmpeq_epi16(res_hi, mask); |
| mask = _mm_cmpeq_epi16(mask,mask); //all fff |
| mask = _mm_andnot_si128(res_hi,mask); //inverst res_hi to get >16 bits numbers |
| res_hi = _mm_or_si128(a, mask); //saturated res |
| res_hi = _mm_shuffle_epi8 (res_hi, *(__m128i*) mask8_32_even_odd); //go to 16 bits |
| return64(res_hi); |
| #endif |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqmovn_u64(uint64x2_t a); // VQMOVN.U64 d0,q0 |
| _NEON2SSE_INLINE uint32x2_t vqmovn_u64(uint64x2_t a) |
| { |
| //serial solution may be faster |
| uint32x2_t res64; |
| __m128i res_hi, mask; |
| mask = _mm_setzero_si128(); |
| res_hi = _mm_srli_epi64(a, 32); |
| res_hi = _mm_cmpeq_epi32(res_hi, mask); |
| mask = _mm_cmpeq_epi32(mask,mask); //all fff |
| mask = _mm_andnot_si128(res_hi,mask); //inverst res_hi to get >32 bits numbers |
| res_hi = _mm_or_si128(a, mask); |
| res_hi = _mm_shuffle_epi32(res_hi, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(res_hi); |
| } |
| //************* Vector saturating narrow integer signed->unsigned ************** |
| //***************************************************************************** |
| _NEON2SSESTORAGE uint8x8_t vqmovun_s16(int16x8_t a); // VQMOVUN.S16 d0,q0 |
| _NEON2SSE_INLINE uint8x8_t vqmovun_s16(int16x8_t a) |
| { |
| uint8x8_t res64; |
| __m128i res; |
| res = _mm_packus_epi16(a, a); //use low 64bits only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vqmovun_s32(int32x4_t a); // VQMOVUN.S32 d0,q0 |
| _NEON2SSE_INLINE uint16x4_t vqmovun_s32(int32x4_t a) |
| { |
| uint16x4_t res64; |
| __m128i res; |
| res = _MM_PACKUS1_EPI32(a); //use low 64bits only |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vqmovun_s64(int64x2_t a); // VQMOVUN.S64 d0,q0 |
| _NEON2SSE_INLINE uint32x2_t vqmovun_s64(int64x2_t a) |
| { |
| uint32x2_t res64; |
| __m128i res_hi,res_lo, zero, cmp; |
| zero = _mm_setzero_si128(); |
| res_hi = _mm_srli_epi64(a, 32); |
| cmp = _mm_cmpgt_epi32(zero, res_hi); //if cmp<0 the result should be zero |
| res_lo = _mm_andnot_si128(cmp,a); //if cmp zero - do nothing, otherwise cmp <0 and the result is 0 |
| cmp = _mm_cmpgt_epi32(res_hi,zero); //if cmp positive |
| res_lo = _mm_or_si128(res_lo, cmp); //if cmp positive we are out of 32bits need to saturaate to 0xffffffff |
| res_lo = _mm_shuffle_epi32(res_lo, 0 | (2 << 2) | (1 << 4) | (3 << 6)); //shuffle the data to get 2 32-bits |
| return64(res_lo); |
| } |
| |
| // ******************************************************** |
| // **************** Table look up ************************** |
| // ******************************************************** |
| //VTBL (Vector Table Lookup) uses byte indexes in a control vector to look up byte values |
| //in a table and generate a new vector. Indexes out of range return 0. |
| //for Intel SIMD we need to set the MSB to 1 for zero return |
| _NEON2SSESTORAGE uint8x8_t vtbl1_u8(uint8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbl1_u8(uint8x8_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| __m128i c7, maskgt, bmask, b128; |
| c7 = _mm_set1_epi8 (7); |
| b128 = _pM128i(b); |
| maskgt = _mm_cmpgt_epi8(b128,c7); |
| bmask = _mm_or_si128(b128,maskgt); |
| bmask = _mm_shuffle_epi8(_pM128i(a),bmask); |
| return64(bmask); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vtbl1_s8(int8x8_t a, int8x8_t b); // VTBL.8 d0, {d0}, d0 |
| #define vtbl1_s8 vtbl1_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vtbl1_p8(poly8x8_t a, uint8x8_t b); // VTBL.8 d0, {d0}, d0 |
| #define vtbl1_p8 vtbl1_u8 |
| |
| _NEON2SSESTORAGE uint8x8_t vtbl2_u8(uint8x8x2_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbl2_u8(uint8x8x2_t a, uint8x8_t b) |
| { |
| uint8x8_t res64; |
| __m128i c15, a01, maskgt15, bmask, b128; |
| c15 = _mm_set1_epi8 (15); |
| b128 = _pM128i(b); |
| maskgt15 = _mm_cmpgt_epi8(b128,c15); |
| bmask = _mm_or_si128(b128, maskgt15); |
| a01 = _mm_unpacklo_epi64(_pM128i(a.val[0]), _pM128i(a.val[1])); |
| a01 = _mm_shuffle_epi8(a01, bmask); |
| return64(a01); |
| } |
| |
| //int8x8_t vtbl2_s8(int8x8x2_t a, int8x8_t b); // VTBL.8 d0, {d0, d1}, d0 |
| #define vtbl2_s8 vtbl2_u8 |
| |
| //poly8x8_t vtbl2_p8(poly8x8x2_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1}, d0 |
| #define vtbl2_p8 vtbl2_u8 |
| |
| _NEON2SSESTORAGE uint8x8_t vtbl3_u8(uint8x8x3_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbl3_u8(uint8x8x3_t a, uint8x8_t b) |
| { |
| //solution may be not optimal |
| uint8x8_t res64; |
| __m128i c15, c23, maskgt23, bmask, maskgt15, sh0, sh1, a01, b128; |
| c15 = _mm_set1_epi8 (15); |
| c23 = _mm_set1_epi8 (23); |
| b128 = _pM128i(b); |
| maskgt23 = _mm_cmpgt_epi8(b128,c23); |
| bmask = _mm_or_si128(b128, maskgt23); |
| maskgt15 = _mm_cmpgt_epi8(b128,c15); |
| a01 = _mm_unpacklo_epi64(_pM128i(a.val[0]),_pM128i(a.val[1])); |
| sh0 = _mm_shuffle_epi8(a01, bmask); |
| sh1 = _mm_shuffle_epi8(_pM128i(a.val[2]), bmask); //for bi>15 bi is wrapped (bi-=15) |
| sh0 = _MM_BLENDV_EPI8(sh0, sh1, maskgt15); //SSE4.1 |
| return64(sh0); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vtbl3_s8(int8x8x3_t a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0 |
| #define vtbl3_s8 vtbl3_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vtbl3_p8(poly8x8x3_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2}, d0 |
| #define vtbl3_p8 vtbl3_u8 |
| |
| _NEON2SSESTORAGE uint8x8_t vtbl4_u8(uint8x8x4_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbl4_u8(uint8x8x4_t a, uint8x8_t b) |
| { |
| //solution may be not optimal |
| uint8x8_t res64; |
| __m128i c15, c31, maskgt31, bmask, maskgt15, sh0, sh1, a01, a23, b128; |
| c15 = _mm_set1_epi8 (15); |
| c31 = _mm_set1_epi8 (31); |
| b128 = _pM128i(b); |
| maskgt31 = _mm_cmpgt_epi8(b128,c31); |
| bmask = _mm_or_si128(b128, maskgt31); |
| maskgt15 = _mm_cmpgt_epi8(b128,c15); |
| a01 = _mm_unpacklo_epi64(_pM128i(a.val[0]),_pM128i(a.val[1])); |
| a23 = _mm_unpacklo_epi64(_pM128i(a.val[2]),_pM128i(a.val[3])); |
| sh0 = _mm_shuffle_epi8(a01, bmask); |
| sh1 = _mm_shuffle_epi8(a23, bmask); //for bi>15 bi is wrapped (bi-=15) |
| sh0 = _MM_BLENDV_EPI8 (sh0, sh1, maskgt15); //SSE4.1 |
| return64(sh0); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vtbl4_s8(int8x8x4_t a, int8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0 |
| #define vtbl4_s8 vtbl4_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vtbl4_p8(poly8x8x4_t a, uint8x8_t b); // VTBL.8 d0, {d0, d1, d2, d3}, d0 |
| #define vtbl4_p8 vtbl4_u8 |
| |
| //****************** Extended table look up intrinsics *************************** |
| //********************************************************************************** |
| //VTBX (Vector Table Extension) works in the same way as VTBL do, |
| // except that indexes out of range leave the destination element unchanged. |
| |
| _NEON2SSESTORAGE uint8x8_t vtbx1_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbx1_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c) |
| { |
| uint8x8_t res64; |
| __m128i c7, maskgt, sh, c128; |
| c7 = _mm_set1_epi8 (7); |
| c128 = _pM128i(c); |
| maskgt = _mm_cmpgt_epi8(c128,c7); |
| c7 = _mm_and_si128(maskgt,_pM128i(a)); |
| sh = _mm_shuffle_epi8(_pM128i(b),c128); |
| sh = _mm_andnot_si128(maskgt,sh); |
| sh = _mm_or_si128(sh,c7); |
| return64(sh); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vtbx1_s8(int8x8_t a, int8x8_t b, int8x8_t c); // VTBX.8 d0, {d0}, d0 |
| #define vtbx1_s8 vtbx1_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vtbx1_p8(poly8x8_t a, poly8x8_t b, uint8x8_t c); // VTBX.8 d0, {d0}, d0 |
| #define vtbx1_p8 vtbx1_u8 |
| |
| _NEON2SSESTORAGE uint8x8_t vtbx2_u8(uint8x8_t a, uint8x8x2_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbx2_u8(uint8x8_t a, uint8x8x2_t b, uint8x8_t c) |
| { |
| uint8x8_t res64; |
| __m128i c15, b01, maskgt15, sh, c128; |
| c15 = _mm_set1_epi8 (15); |
| c128 = _pM128i(c); |
| maskgt15 = _mm_cmpgt_epi8(c128, c15); |
| c15 = _mm_and_si128(maskgt15, _pM128i(a)); |
| b01 = _mm_unpacklo_epi64(_pM128i(b.val[0]), _pM128i(b.val[1])); |
| sh = _mm_shuffle_epi8(b01, c128); |
| sh = _mm_andnot_si128(maskgt15, sh); |
| sh = _mm_or_si128(sh,c15); |
| return64(sh); |
| } |
| |
| //int8x8_t vtbx2_s8(int8x8_t a, int8x8x2_t b, int8x8_t c); // VTBX.8 d0, {d0, d1}, d0 |
| #define vtbx2_s8 vtbx2_u8 |
| |
| //poly8x8_t vtbx2_p8(poly8x8_t a, poly8x8x2_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1}, d0 |
| #define vtbx2_p8 vtbx2_u8 |
| |
| _NEON2SSESTORAGE uint8x8_t vtbx3_u8(uint8x8_t a, uint8x8x3_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbx3_u8(uint8x8_t a, uint8x8x3_t b, uint8x8_t c) |
| { |
| //solution may be not optimal |
| uint8x8_t res64; |
| __m128i c15, c23, maskgt15, maskgt23, sh0, sh1, b01, c128; |
| c15 = _mm_set1_epi8 (15); |
| c23 = _mm_set1_epi8 (23); |
| c128 = _pM128i(c); |
| maskgt15 = _mm_cmpgt_epi8(c128,c15); |
| maskgt23 = _mm_cmpgt_epi8(c128,c23); |
| c23 = _mm_and_si128(maskgt23, _pM128i(a)); |
| b01 = _mm_unpacklo_epi64(_pM128i(b.val[0]),_pM128i(b.val[1])); |
| sh0 = _mm_shuffle_epi8(b01, c128); |
| sh1 = _mm_shuffle_epi8(_pM128i(b.val[2]), c128); //for bi>15 bi is wrapped (bi-=15) |
| sh0 = _MM_BLENDV_EPI8(sh0, sh1, maskgt15); |
| sh0 = _mm_andnot_si128(maskgt23,sh0); |
| sh0 = _mm_or_si128(sh0,c23); |
| return64(sh0); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vtbx3_s8(int8x8_t a, int8x8x3_t b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0 |
| #define vtbx3_s8 vtbx3_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vtbx3_p8(poly8x8_t a, poly8x8x3_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2}, d0 |
| #define vtbx3_p8 vtbx3_u8 |
| |
| _NEON2SSESTORAGE uint8x8_t vtbx4_u8(uint8x8_t a, uint8x8x4_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0 |
| _NEON2SSE_INLINE uint8x8_t vtbx4_u8(uint8x8_t a, uint8x8x4_t b, uint8x8_t c) |
| { |
| //solution may be not optimal |
| uint8x8_t res64; |
| __m128i c15, c31, maskgt15, maskgt31, sh0, sh1, b01, b23, c128; |
| c15 = _mm_set1_epi8 (15); |
| c31 = _mm_set1_epi8 (31); |
| c128 = _pM128i(c); |
| maskgt15 = _mm_cmpgt_epi8(c128,c15); |
| maskgt31 = _mm_cmpgt_epi8(c128,c31); |
| c31 = _mm_and_si128(maskgt31, _pM128i(a)); |
| |
| b01 = _mm_unpacklo_epi64(_pM128i(b.val[0]),_pM128i(b.val[1])); |
| b23 = _mm_unpacklo_epi64(_pM128i(b.val[2]),_pM128i(b.val[3])); |
| sh0 = _mm_shuffle_epi8(b01, c128); |
| sh1 = _mm_shuffle_epi8(b23, c128); //for bi>15 bi is wrapped (bi-=15) |
| sh0 = _MM_BLENDV_EPI8(sh0, sh1, maskgt15); |
| sh0 = _mm_andnot_si128(maskgt31,sh0); |
| sh0 = _mm_or_si128(sh0,c31); |
| return64(sh0); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vtbx4_s8(int8x8_t a, int8x8x4_t b, int8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0 |
| #define vtbx4_s8 vtbx4_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vtbx4_p8(poly8x8_t a, poly8x8x4_t b, uint8x8_t c); // VTBX.8 d0, {d0, d1, d2, d3}, d0 |
| #define vtbx4_p8 vtbx4_u8 |
| |
| //************************************************************************************************* |
| // *************************** Operations with a scalar value ********************************* |
| //************************************************************************************************* |
| |
| //******* Vector multiply accumulate by scalar ************************************************* |
| //********************************************************************************************** |
| _NEON2SSESTORAGE int16x4_t vmla_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0, d0[0] |
| _NEON2SSE_INLINE int16x4_t vmla_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLA.I16 d0, d0, d0[0] |
| { |
| int16_t c; |
| int16x4_t scalar; |
| c = vget_lane_s16(v, l); |
| scalar = vdup_n_s16(c); |
| return vmla_s16(a, b, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmla_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0, d0[0] |
| _NEON2SSE_INLINE int32x2_t vmla_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLA.I32 d0, d0, d0[0] |
| { |
| int32_t c; |
| int32x2_t scalar; |
| c = vget_lane_s32(v, l); |
| scalar = vdup_n_s32(c); |
| return vmla_s32(a, b, scalar); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmla_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 d0, d0, d0[0] |
| #define vmla_lane_u16 vmla_lane_s16 |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vmla_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 d0, d0, d0[0] |
| #define vmla_lane_u32 vmla_lane_s32 |
| |
| _NEON2SSESTORAGE float32x2_t vmla_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 d0, d0, d0[0] |
| _NEON2SSE_INLINE float32x2_t vmla_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l) |
| { |
| float32_t vlane; |
| float32x2_t c; |
| vlane = vget_lane_f32(v, l); |
| c = vdup_n_f32(vlane); |
| return vmla_f32(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmlaq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0, d0[0] |
| _NEON2SSE_INLINE int16x8_t vmlaq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l) // VMLA.I16 q0, q0, d0[0] |
| { |
| int16_t vlane; |
| int16x8_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdupq_n_s16(vlane); |
| return vmlaq_s16(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlaq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlaq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l) // VMLA.I32 q0, q0, d0[0] |
| { |
| int32_t vlane; |
| int32x4_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdupq_n_s32(vlane); |
| return vmlaq_s32(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlaq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0, d0[0] |
| #define vmlaq_lane_u16 vmlaq_lane_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmlaq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0, d0[0] |
| #define vmlaq_lane_u32 vmlaq_lane_s32 |
| |
| _NEON2SSESTORAGE float32x4_t vmlaq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 q0, q0, d0[0] |
| _NEON2SSE_INLINE float32x4_t vmlaq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l) // VMLA.F32 q0, q0, d0[0] |
| { |
| float32_t vlane; |
| float32x4_t c; |
| vlane = vget_lane_f32(v, l); |
| c = vdupq_n_f32(vlane); |
| return vmlaq_f32(a,b,c); |
| } |
| |
| //***************** Vector widening multiply accumulate by scalar ********************** |
| //*************************************************************************************** |
| _NEON2SSESTORAGE int32x4_t vmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLAL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLAL.S16 q0, d0, d0[0] |
| { |
| int16_t vlane; |
| int16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vmlal_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLAL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE int64x2_t vmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLAL.S32 q0, d0, d0[0] |
| { |
| int32_t vlane; |
| int32x2_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdup_n_s32(vlane); |
| return vmlal_s32(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlal_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLAL.s16 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmlal_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l) // VMLAL.s16 q0, d0, d0[0] |
| { |
| uint16_t vlane; |
| uint16x4_t c; |
| vlane = vget_lane_u16(v, l); |
| c = vdup_n_u16(vlane); |
| return vmlal_u16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmlal_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLAL.U32 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint64x2_t vmlal_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l) // VMLAL.U32 q0, d0, d0[0] |
| { |
| uint32_t vlane; |
| uint32x2_t c; |
| vlane = vget_lane_u32(v, l); |
| c = vdup_n_u32(vlane); |
| return vmlal_u32(a, b, c); |
| } |
| |
| // ******** Vector widening saturating doubling multiply accumulate by scalar ******************************* |
| // ************************************************************************************************ |
| _NEON2SSESTORAGE int32x4_t vqdmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLAL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vqdmlal_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) |
| { |
| int16_t vlane; |
| int16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vqdmlal_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLAL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE int64x2_t vqdmlal_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) |
| { |
| int32_t vlane; |
| uint32x2_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdup_n_s32(vlane); |
| return vqdmlal_s32(a, b, c); |
| } |
| |
| // ****** Vector multiply subtract by scalar ***************** |
| // ************************************************************* |
| _NEON2SSESTORAGE int16x4_t vmls_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0, d0[0] |
| _NEON2SSE_INLINE int16x4_t vmls_lane_s16(int16x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLS.I16 d0, d0, d0[0] |
| { |
| int16_t vlane; |
| int16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vmls_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmls_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0, d0[0] |
| _NEON2SSE_INLINE int32x2_t vmls_lane_s32(int32x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLS.I32 d0, d0, d0[0] |
| { |
| int32_t vlane; |
| int32x2_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdup_n_s32(vlane); |
| return vmls_s32(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmls_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLS.I16 d0, d0, d0[0] |
| _NEON2SSE_INLINE uint16x4_t vmls_lane_u16(uint16x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l) // VMLS.I16 d0, d0, d0[0] |
| { |
| uint16_t vlane; |
| uint16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vmls_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vmls_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLS.I32 d0, d0, d0[0] |
| _NEON2SSE_INLINE uint32x2_t vmls_lane_u32(uint32x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l) // VMLS.I32 d0, d0, d0[0] |
| { |
| uint32_t vlane; |
| uint32x2_t c; |
| vlane = vget_lane_u32(v, l); |
| c = vdup_n_u32(vlane); |
| return vmls_u32(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmls_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l); // VMLS.F32 d0, d0, d0[0] |
| _NEON2SSE_INLINE float32x2_t vmls_lane_f32(float32x2_t a, float32x2_t b, float32x2_t v, __constrange(0,1) int l) |
| { |
| float32_t vlane; |
| float32x2_t c; |
| vlane = (float) vget_lane_f32(v, l); |
| c = vdup_n_f32(vlane); |
| return vmls_f32(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmlsq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l); // VMLS.I16 q0, q0, d0[0] |
| _NEON2SSE_INLINE int16x8_t vmlsq_lane_s16(int16x8_t a, int16x8_t b, int16x4_t v, __constrange(0,3) int l) // VMLS.I16 q0, q0, d0[0] |
| { |
| int16_t vlane; |
| int16x8_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdupq_n_s16(vlane); |
| return vmlsq_s16(a, b,c); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlsq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l); // VMLS.I32 q0, q0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlsq_lane_s32(int32x4_t a, int32x4_t b, int32x2_t v, __constrange(0,1) int l) // VMLS.I32 q0, q0, d0[0] |
| { |
| int32_t vlane; |
| int32x4_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdupq_n_s32(vlane); |
| return vmlsq_s32(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlsq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l); // VMLA.I16 q0, q0, d0[0] |
| _NEON2SSE_INLINE uint16x8_t vmlsq_lane_u16(uint16x8_t a, uint16x8_t b, uint16x4_t v, __constrange(0,3) int l) // VMLA.I16 q0, q0, d0[0] |
| { |
| uint16_t vlane; |
| uint16x8_t c; |
| vlane = vget_lane_u16(v, l); |
| c = vdupq_n_u16(vlane); |
| return vmlsq_u16(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlsq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l); // VMLA.I32 q0, q0, d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmlsq_lane_u32(uint32x4_t a, uint32x4_t b, uint32x2_t v, __constrange(0,1) int l) // VMLA.I32 q0, q0, d0[0] |
| { |
| uint32_t vlane; |
| uint32x4_t c; |
| vlane = vget_lane_u32(v, l); |
| c = vdupq_n_u32(vlane); |
| return vmlsq_u32(a,b,c); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vmlsq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l); // VMLA.F32 q0, q0, d0[0] |
| _NEON2SSE_INLINE float32x4_t vmlsq_lane_f32(float32x4_t a, float32x4_t b, float32x2_t v, __constrange(0,1) int l) // VMLA.F32 q0, q0, d0[0] |
| { |
| float32_t vlane; |
| float32x4_t c; |
| vlane = (float) vget_lane_f32(v, l); |
| c = vdupq_n_f32(vlane); |
| return vmlsq_f32(a,b,c); |
| } |
| |
| // **** Vector widening multiply subtract by scalar **** |
| // **************************************************** |
| _NEON2SSESTORAGE int32x4_t vmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VMLAL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) // VMLAL.S16 q0, d0, d0[0] |
| { |
| int16_t vlane; |
| int16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vmlsl_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VMLAL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE int64x2_t vmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l) // VMLAL.S32 q0, d0, d0[0] |
| { |
| int32_t vlane; |
| int32x2_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdup_n_s32(vlane); |
| return vmlsl_s32(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlsl_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l); // VMLAL.s16 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmlsl_lane_u16(uint32x4_t a, uint16x4_t b, uint16x4_t v, __constrange(0,3) int l) // VMLAL.s16 q0, d0, d0[0] |
| { |
| uint16_t vlane; |
| uint16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vmlsl_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmlsl_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l); // VMLAL.U32 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint64x2_t vmlsl_lane_u32(uint64x2_t a, uint32x2_t b, uint32x2_t v, __constrange(0,1) int l) // VMLAL.U32 q0, d0, d0[0] |
| { |
| uint32_t vlane; |
| uint32x2_t c; |
| vlane = vget_lane_u32(v, l); |
| c = vdup_n_u32(vlane); |
| return vmlsl_u32(a, b, c); |
| } |
| |
| //********* Vector widening saturating doubling multiply subtract by scalar ************************** |
| //****************************************************************************************************** |
| _NEON2SSESTORAGE int32x4_t vqdmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l); // VQDMLSL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vqdmlsl_lane_s16(int32x4_t a, int16x4_t b, int16x4_t v, __constrange(0,3) int l) |
| { |
| int16_t vlane; |
| int16x4_t c; |
| vlane = vget_lane_s16(v, l); |
| c = vdup_n_s16(vlane); |
| return vqdmlsl_s16(a, b, c); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l); // VQDMLSL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlsl_lane_s32(int64x2_t a, int32x2_t b, int32x2_t v, __constrange(0,1) int l), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32_t vlane; |
| int32x2_t c; |
| vlane = vget_lane_s32(v, l); |
| c = vdup_n_s32(vlane); |
| return vqdmlsl_s32(a, b, c); |
| } |
| //********** Vector multiply with scalar ***************************** |
| _NEON2SSESTORAGE int16x4_t vmul_n_s16(int16x4_t a, int16_t b); // VMUL.I16 d0,d0,d0[0] |
| _NEON2SSE_INLINE int16x4_t vmul_n_s16(int16x4_t a, int16_t b) // VMUL.I16 d0,d0,d0[0] |
| { |
| int16x4_t b16x4; |
| b16x4 = vdup_n_s16(b); |
| return vmul_s16(a, b16x4); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmul_n_s32(int32x2_t a, int32_t b); // VMUL.I32 d0,d0,d0[0] |
| _NEON2SSE_INLINE int32x2_t vmul_n_s32(int32x2_t a, int32_t b) // VMUL.I32 d0,d0,d0[0] |
| { |
| //serial solution looks faster |
| int32x2_t b32x2; |
| b32x2 = vdup_n_s32(b); |
| return vmul_s32(a, b32x2); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmul_n_f32(float32x2_t a, float32_t b); // VMUL.F32 d0,d0,d0[0] |
| _NEON2SSE_INLINE float32x2_t vmul_n_f32(float32x2_t a, float32_t b) // VMUL.F32 d0,d0,d0[0] |
| { |
| float32x2_t b32x2; |
| b32x2 = vdup_n_f32(b); |
| return vmul_f32(a, b32x2); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmul_n_u16(uint16x4_t a, uint16_t b); // VMUL.I16 d0,d0,d0[0] |
| _NEON2SSE_INLINE uint16x4_t vmul_n_u16(uint16x4_t a, uint16_t b) // VMUL.I16 d0,d0,d0[0] |
| { |
| uint16x4_t b16x4; |
| b16x4 = vdup_n_s16(b); |
| return vmul_s16(a, b16x4); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vmul_n_u32(uint32x2_t a, uint32_t b); // VMUL.I32 d0,d0,d0[0] |
| _NEON2SSE_INLINE uint32x2_t vmul_n_u32(uint32x2_t a, uint32_t b) // VMUL.I32 d0,d0,d0[0] |
| { |
| //serial solution looks faster |
| uint32x2_t b32x2; |
| b32x2 = vdup_n_u32(b); |
| return vmul_u32(a, b32x2); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmulq_n_s16(int16x8_t a, int16_t b); // VMUL.I16 q0,q0,d0[0] |
| _NEON2SSE_INLINE int16x8_t vmulq_n_s16(int16x8_t a, int16_t b) // VMUL.I16 q0,q0,d0[0] |
| { |
| int16x8_t b16x8; |
| b16x8 = vdupq_n_s16(b); |
| return vmulq_s16(a, b16x8); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmulq_n_s32(int32x4_t a, int32_t b); // VMUL.I32 q0,q0,d0[0] |
| _NEON2SSE_INLINE int32x4_t vmulq_n_s32(int32x4_t a, int32_t b) // VMUL.I32 q0,q0,d0[0] |
| { |
| int32x4_t b32x4; |
| b32x4 = vdupq_n_s32(b); |
| return vmulq_s32(a, b32x4); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vmulq_n_f32(float32x4_t a, float32_t b); // VMUL.F32 q0,q0,d0[0] |
| _NEON2SSE_INLINE float32x4_t vmulq_n_f32(float32x4_t a, float32_t b) // VMUL.F32 q0,q0,d0[0] |
| { |
| float32x4_t b32x4; |
| b32x4 = vdupq_n_f32(b); |
| return vmulq_f32(a, b32x4); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b); // VMUL.I16 q0,q0,d0[0] |
| _NEON2SSE_INLINE uint16x8_t vmulq_n_u16(uint16x8_t a, uint16_t b) // VMUL.I16 q0,q0,d0[0] |
| { |
| uint16x8_t b16x8; |
| b16x8 = vdupq_n_s16(b); |
| return vmulq_s16(a, b16x8); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b); // VMUL.I32 q0,q0,d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmulq_n_u32(uint32x4_t a, uint32_t b) // VMUL.I32 q0,q0,d0[0] |
| { |
| uint32x4_t b32x4; |
| b32x4 = vdupq_n_u32(b); |
| return vmulq_u32(a, b32x4); |
| } |
| |
| //********** Vector multiply lane ***************************** |
| _NEON2SSESTORAGE int16x4_t vmul_lane_s16 (int16x4_t a, int16x4_t b, __constrange(0,3) int c); |
| _NEON2SSE_INLINE int16x4_t vmul_lane_s16 (int16x4_t a, int16x4_t b, __constrange(0,3) int c) |
| { |
| int16x4_t b16x4; |
| int16_t vlane; |
| vlane = vget_lane_s16(b, c); |
| b16x4 = vdup_n_s16(vlane); |
| return vmul_s16(a, b16x4); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmul_lane_s32 (int32x2_t a, int32x2_t b, __constrange(0,1) int c); |
| _NEON2SSE_INLINE int32x2_t vmul_lane_s32 (int32x2_t a, int32x2_t b, __constrange(0,1) int c) |
| { |
| int32x2_t b32x2; |
| int32_t vlane; |
| vlane = vget_lane_s32(b, c); |
| b32x2 = vdup_n_s32(vlane); |
| return vmul_s32(a, b32x2); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmul_lane_f32 (float32x2_t a, float32x2_t b, __constrange(0,1) int c); |
| _NEON2SSE_INLINE float32x2_t vmul_lane_f32 (float32x2_t a, float32x2_t b, __constrange(0,1) int c) |
| { |
| float32x2_t b32x2; |
| float32_t vlane; |
| vlane = vget_lane_f32(b, c); |
| b32x2 = vdup_n_f32(vlane); |
| return vmul_f32(a, b32x2); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmul_lane_u16 (uint16x4_t a, uint16x4_t b, __constrange(0,3) int c); |
| #define vmul_lane_u16 vmul_lane_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vmul_lane_u32 (uint32x2_t a, uint32x2_t b, __constrange(0,1) int c); |
| #define vmul_lane_u32 vmul_lane_s32 |
| |
| _NEON2SSESTORAGE int16x8_t vmulq_lane_s16(int16x8_t a, int16x4_t b, __constrange(0,3) int c); |
| _NEON2SSE_INLINE int16x8_t vmulq_lane_s16 (int16x8_t a, int16x4_t b, __constrange(0,3) int c) |
| { |
| int16x8_t b16x8; |
| int16_t vlane; |
| vlane = vget_lane_s16(b, c); |
| b16x8 = vdupq_n_s16(vlane); |
| return vmulq_s16(a, b16x8); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmulq_lane_s32 (int32x4_t a, int32x2_t b, __constrange(0,1) int c); |
| _NEON2SSE_INLINE int32x4_t vmulq_lane_s32 (int32x4_t a, int32x2_t b, __constrange(0,1) int c) |
| { |
| int32x4_t b32x4; |
| int32_t vlane; |
| vlane = vget_lane_s32(b, c); |
| b32x4 = vdupq_n_s32(vlane); |
| return vmulq_s32(a, b32x4); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vmulq_lane_f32 (float32x4_t a, float32x2_t b, __constrange(0,1) int c); |
| _NEON2SSE_INLINE float32x4_t vmulq_lane_f32 (float32x4_t a, float32x2_t b, __constrange(0,1) int c) |
| { |
| float32x4_t b32x4; |
| float32_t vlane; |
| vlane = vget_lane_f32(b, c); |
| b32x4 = vdupq_n_f32(vlane); |
| return vmulq_f32(a, b32x4); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmulq_lane_u16 (uint16x8_t a, uint16x4_t b, __constrange(0,3) int c); |
| #define vmulq_lane_u16 vmulq_lane_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmulq_lane_u32 (uint32x4_t a, uint32x2_t b, __constrange(0,1) int c); |
| #define vmulq_lane_u32 vmulq_lane_s32 |
| |
| //**** Vector long multiply with scalar ************ |
| _NEON2SSESTORAGE int32x4_t vmull_n_s16(int16x4_t vec1, int16_t val2); // VMULL.S16 q0,d0,d0[0] |
| _NEON2SSE_INLINE int32x4_t vmull_n_s16(int16x4_t vec1, int16_t val2) // VMULL.S16 q0,d0,d0[0] |
| { |
| int16x4_t b16x4; |
| b16x4 = vdup_n_s16(val2); |
| return vmull_s16(vec1, b16x4); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmull_n_s32(int32x2_t vec1, int32_t val2); // VMULL.S32 q0,d0,d0[0] |
| _NEON2SSE_INLINE int64x2_t vmull_n_s32(int32x2_t vec1, int32_t val2) // VMULL.S32 q0,d0,d0[0] |
| { |
| int32x2_t b32x2; |
| b32x2 = vdup_n_s32(val2); |
| return vmull_s32(vec1, b32x2); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmull_n_u16(uint16x4_t vec1, uint16_t val2); // VMULL.s16 q0,d0,d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmull_n_u16(uint16x4_t vec1, uint16_t val2) // VMULL.s16 q0,d0,d0[0] |
| { |
| uint16x4_t b16x4; |
| b16x4 = vdup_n_s16(val2); |
| return vmull_s16(vec1, b16x4); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmull_n_u32(uint32x2_t vec1, uint32_t val2); // VMULL.U32 q0,d0,d0[0] |
| _NEON2SSE_INLINE uint64x2_t vmull_n_u32(uint32x2_t vec1, uint32_t val2) // VMULL.U32 q0,d0,d0[0] |
| { |
| uint32x2_t b32x2; |
| b32x2 = vdup_n_u32(val2); |
| return vmull_u32(vec1, b32x2); |
| } |
| |
| //**** Vector long multiply by scalar **** |
| _NEON2SSESTORAGE int32x4_t vmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VMULL.S16 q0,d0,d0[0] |
| _NEON2SSE_INLINE int32x4_t vmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VMULL.S16 q0,d0,d0[0] |
| { |
| int16_t vlane; |
| int16x4_t b; |
| vlane = vget_lane_s16(val2, val3); |
| b = vdup_n_s16(vlane); |
| return vmull_s16(vec1, b); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VMULL.S32 q0,d0,d0[0] |
| _NEON2SSE_INLINE int64x2_t vmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3) // VMULL.S32 q0,d0,d0[0] |
| { |
| int32_t vlane; |
| int32x2_t b; |
| vlane = vget_lane_s32(val2, val3); |
| b = vdup_n_s32(vlane); |
| return vmull_s32(vec1, b); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmull_lane_u16(uint16x4_t vec1, uint16x4_t val2, __constrange(0, 3) int val3); // VMULL.s16 q0,d0,d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmull_lane_u16(uint16x4_t vec1, uint16x4_t val2, __constrange(0, 3) int val3) // VMULL.s16 q0,d0,d0[0] |
| { |
| uint16_t vlane; |
| uint16x4_t b; |
| vlane = vget_lane_s16(val2, val3); |
| b = vdup_n_s16(vlane); |
| return vmull_s16(vec1, b); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmull_lane_u32(uint32x2_t vec1, uint32x2_t val2, __constrange(0, 1) int val3); // VMULL.U32 q0,d0,d0[0] |
| _NEON2SSE_INLINE uint64x2_t vmull_lane_u32(uint32x2_t vec1, uint32x2_t val2, __constrange(0, 1) int val3) // VMULL.U32 q0,d0,d0[0] |
| { |
| uint32_t vlane; |
| uint32x2_t b; |
| vlane = vget_lane_u32(val2, val3); |
| b = vdup_n_u32(vlane); |
| return vmull_u32(vec1, b); |
| } |
| |
| //********* Vector saturating doubling long multiply with scalar ******************* |
| _NEON2SSESTORAGE int32x4_t vqdmull_n_s16(int16x4_t vec1, int16_t val2); // VQDMULL.S16 q0,d0,d0[0] |
| _NEON2SSE_INLINE int32x4_t vqdmull_n_s16(int16x4_t vec1, int16_t val2) |
| { |
| //the serial soulution may be faster due to saturation |
| int16x4_t b; |
| b = vdup_n_s16(val2); |
| return vqdmull_s16(vec1, b); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmull_n_s32(int32x2_t vec1, int32_t val2); // VQDMULL.S32 q0,d0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmull_n_s32(int32x2_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32x2_t b; |
| b = vdup_n_s32(val2); |
| return vqdmull_s32(vec1,b); //slow serial function!!!! |
| } |
| |
| //************* Vector saturating doubling long multiply by scalar *********************************************** |
| _NEON2SSESTORAGE int32x4_t vqdmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULL.S16 q0,d0,d0[0] |
| _NEON2SSE_INLINE int32x4_t vqdmull_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) |
| { |
| int16_t c; |
| int16x4_t scalar; |
| c = vget_lane_s16(val2, val3); |
| scalar = vdup_n_s16(c); |
| return vqdmull_s16(vec1, scalar); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x2_t vqdmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULL.S32 q0,d0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmull_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32_t c; |
| int32x2_t scalar; |
| c = vget_lane_s32(val2, val3); |
| scalar = vdup_n_s32(c); |
| return vqdmull_s32(vec1,scalar); //slow serial function!!!! |
| } |
| |
| // *****Vector saturating doubling multiply high with scalar ***** |
| _NEON2SSESTORAGE int16x4_t vqdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQDMULH.S16 d0,d0,d0[0] |
| _NEON2SSE_INLINE int16x4_t vqdmulh_n_s16(int16x4_t vec1, int16_t val2) |
| { |
| int16x4_t res64; |
| return64(vqdmulhq_n_s16(_pM128i(vec1), val2)); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQDMULH.S32 d0,d0,d0[0] |
| _NEON2SSE_INLINE int32x2_t vqdmulh_n_s32(int32x2_t vec1, int32_t val2) |
| { |
| int32x2_t res64; |
| return64(vqdmulhq_n_s32(_pM128i(vec1), val2)); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQDMULH.S16 q0,q0,d0[0] |
| _NEON2SSE_INLINE int16x8_t vqdmulhq_n_s16(int16x8_t vec1, int16_t val2) // VQDMULH.S16 q0,q0,d0[0] |
| { |
| //solution may be not optimal |
| int16x8_t scalar; |
| scalar = vdupq_n_s16(val2); |
| return vqdmulhq_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQDMULH.S32 q0,q0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_n_s32(int32x4_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| int32x4_t scalar; |
| scalar = vdupq_n_s32(val2); |
| return vqdmulhq_s32(vec1, scalar); |
| } |
| |
| //***** Vector saturating doubling multiply high by scalar **************** |
| _NEON2SSESTORAGE int16x4_t vqdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULH.S16 d0,d0,d0[0] |
| _NEON2SSE_INLINE int16x4_t vqdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VQDMULH.S16 d0,d0,d0[0] |
| { |
| //solution may be not optimal |
| int16_t vlane; |
| int16x4_t scalar; |
| vlane = vget_lane_s16(val2, val3); |
| scalar = vdup_n_s16(vlane); |
| return vqdmulh_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULH.S32 d0,d0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| int32_t vlane; |
| int32x2_t scalar; |
| vlane = vget_lane_s32(val2, val3); |
| scalar = vdup_n_s32(vlane); |
| return vqdmulh_s32(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQDMULH.S16 q0,q0,d0[0] |
| _NEON2SSE_INLINE int16x8_t vqdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VQDMULH.S16 q0,q0,d0[0] |
| { |
| //solution may be not optimal |
| int16_t vlane; |
| int16x8_t scalar; |
| vlane = vget_lane_s16(val2, val3); |
| scalar = vdupq_n_s16(vlane ); |
| return vqdmulhq_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQDMULH.S32 q0,q0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| //solution may be not optimal |
| int32_t vlane; |
| int32x4_t scalar; |
| vlane = vgetq_lane_s32(_pM128i(val2), val3); |
| scalar = vdupq_n_s32(vlane ); |
| return vqdmulhq_s32(vec1, scalar); |
| } |
| |
| //******** Vector saturating rounding doubling multiply high with scalar *** |
| _NEON2SSESTORAGE int16x4_t vqrdmulh_n_s16(int16x4_t vec1, int16_t val2); // VQRDMULH.S16 d0,d0,d0[0] |
| _NEON2SSE_INLINE int16x4_t vqrdmulh_n_s16(int16x4_t vec1, int16_t val2) // VQRDMULH.S16 d0,d0,d0[0] |
| { |
| //solution may be not optimal |
| int16x4_t scalar; |
| scalar = vdup_n_s16(val2); |
| return vqrdmulh_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqrdmulh_n_s32(int32x2_t vec1, int32_t val2); // VQRDMULH.S32 d0,d0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrdmulh_n_s32(int32x2_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| int32x2_t scalar; |
| scalar = vdup_n_s32(val2); |
| return vqrdmulh_s32(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2); // VQRDMULH.S16 q0,q0,d0[0] |
| _NEON2SSE_INLINE int16x8_t vqrdmulhq_n_s16(int16x8_t vec1, int16_t val2) // VQRDMULH.S16 q0,q0,d0[0] |
| { |
| //solution may be not optimal |
| int16x8_t scalar; |
| scalar = vdupq_n_s16(val2); |
| return vqrdmulhq_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2); // VQRDMULH.S32 q0,q0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_n_s32(int32x4_t vec1, int32_t val2), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| int32x4_t scalar; |
| scalar = vdupq_n_s32(val2); |
| return vqrdmulhq_s32(vec1, scalar); |
| } |
| |
| //********* Vector rounding saturating doubling multiply high by scalar **** |
| _NEON2SSESTORAGE int16x4_t vqrdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 d0,d0,d0[0] |
| _NEON2SSE_INLINE int16x4_t vqrdmulh_lane_s16(int16x4_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VQRDMULH.S16 d0,d0,d0[0] |
| { |
| //solution may be not optimal |
| int16_t vlane; |
| int16x4_t scalar; |
| vlane = vget_lane_s16(val2, val3); |
| scalar = vdup_n_s16(vlane); |
| return vqrdmulh_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqrdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 d0,d0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vqrdmulh_lane_s32(int32x2_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| int32_t vlane; |
| int32x2_t scalar; |
| vlane = vget_lane_s32(val2, val3); |
| scalar = vdup_n_s32(vlane); |
| return vqrdmulh_s32(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqrdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3); // VQRDMULH.S16 q0,q0,d0[0] |
| _NEON2SSE_INLINE int16x8_t vqrdmulhq_lane_s16(int16x8_t vec1, int16x4_t val2, __constrange(0, 3) int val3) // VQRDMULH.S16 q0,q0,d0[0] |
| { |
| //solution may be not optimal |
| int16_t vlane; |
| int16x8_t scalar; |
| vlane = vget_lane_s16(val2, val3); |
| scalar = vdupq_n_s16(vlane); |
| return vqrdmulhq_s16(vec1, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqrdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3); // VQRDMULH.S32 q0,q0,d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x4_t vqrdmulhq_lane_s32(int32x4_t vec1, int32x2_t val2, __constrange(0, 1) int val3), _NEON2SSE_REASON_SLOW_UNEFFECTIVE) |
| { |
| //solution may be not optimal |
| int32_t vlane; |
| int32x4_t scalar; |
| vlane = vgetq_lane_s32(_pM128i(val2), val3); |
| scalar = vdupq_n_s32(vlane ); |
| return vqrdmulhq_s32(vec1, scalar); |
| } |
| |
| //**************Vector multiply accumulate with scalar ******************* |
| _NEON2SSESTORAGE int16x4_t vmla_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLA.I16 d0, d0, d0[0] |
| _NEON2SSE_INLINE int16x4_t vmla_n_s16(int16x4_t a, int16x4_t b, int16_t c) // VMLA.I16 d0, d0, d0[0] |
| { |
| int16x4_t scalar; |
| scalar = vdup_n_s16(c); |
| return vmla_s16(a, b, scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmla_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLA.I32 d0, d0, d0[0] |
| _NEON2SSE_INLINE int32x2_t vmla_n_s32(int32x2_t a, int32x2_t b, int32_t c) // VMLA.I32 d0, d0, d0[0] |
| { |
| int32x2_t scalar; |
| scalar = vdup_n_s32(c); |
| return vmla_s32(a, b, scalar); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmla_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLA.I16 d0, d0, d0[0] |
| #define vmla_n_u16 vmla_n_s16 |
| |
| |
| _NEON2SSESTORAGE uint32x2_t vmla_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLA.I32 d0, d0, d0[0] |
| #define vmla_n_u32 vmla_n_s32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vmla_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLA.F32 d0, d0, d0[0] |
| _NEON2SSE_INLINE float32x2_t vmla_n_f32(float32x2_t a, float32x2_t b, float32_t c) // VMLA.F32 d0, d0, d0[0] |
| { |
| float32x2_t scalar; |
| scalar = vdup_n_f32(c); |
| return vmla_f32(a, b, scalar); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLA.I16 q0, q0, d0[0] |
| _NEON2SSE_INLINE int16x8_t vmlaq_n_s16(int16x8_t a, int16x8_t b, int16_t c) // VMLA.I16 q0, q0, d0[0] |
| { |
| int16x8_t scalar; |
| scalar = vdupq_n_s16(c); |
| return vmlaq_s16(a,b,scalar); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLA.I32 q0, q0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlaq_n_s32(int32x4_t a, int32x4_t b, int32_t c) // VMLA.I32 q0, q0, d0[0] |
| { |
| int32x4_t scalar; |
| scalar = vdupq_n_s32(c); |
| return vmlaq_s32(a,b,scalar); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlaq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLA.I16 q0, q0, d0[0] |
| #define vmlaq_n_u16 vmlaq_n_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmlaq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLA.I32 q0, q0, d0[0] |
| #define vmlaq_n_u32 vmlaq_n_s32 |
| |
| _NEON2SSESTORAGE float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLA.F32 q0, q0, d0[0] |
| _NEON2SSE_INLINE float32x4_t vmlaq_n_f32(float32x4_t a, float32x4_t b, float32_t c) // VMLA.F32 q0, q0, d0[0] |
| { |
| float32x4_t scalar; |
| scalar = vdupq_n_f32(c); |
| return vmlaq_f32(a,b,scalar); |
| } |
| |
| //************Vector widening multiply accumulate with scalar**************************** |
| _NEON2SSESTORAGE int32x4_t vmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLAL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c) // VMLAL.S16 q0, d0, d0[0] |
| { |
| int16x4_t vc; |
| vc = vdup_n_s16(c); |
| return vmlal_s16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLAL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE int64x2_t vmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c) // VMLAL.S32 q0, d0, d0[0] |
| { |
| int32x2_t vc; |
| vc = vdup_n_s32(c); |
| return vmlal_s32(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlal_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLAL.s16 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmlal_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c) // VMLAL.s16 q0, d0, d0[0] |
| { |
| uint16x4_t vc; |
| vc = vdup_n_u16(c); |
| return vmlal_u16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmlal_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLAL.U32 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint64x2_t vmlal_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c) // VMLAL.U32 q0, d0, d0[0] |
| { |
| uint32x2_t vc; |
| vc = vdup_n_u32(c); |
| return vmlal_u32(a, b, vc); |
| } |
| |
| //************ Vector widening saturating doubling multiply accumulate with scalar ************** |
| _NEON2SSESTORAGE int32x4_t vqdmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLAL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vqdmlal_n_s16(int32x4_t a, int16x4_t b, int16_t c) |
| { |
| //not optimal SIMD soulution, serial may be faster |
| int16x4_t vc; |
| vc = vdup_n_s16(c); |
| return vqdmlal_s16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLAL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlal_n_s32(int64x2_t a, int32x2_t b, int32_t c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32x2_t vc; |
| vc = vdup_n_s32(c); |
| return vqdmlal_s32(a, b, vc); |
| } |
| |
| //******** Vector multiply subtract with scalar ************** |
| _NEON2SSESTORAGE int16x4_t vmls_n_s16(int16x4_t a, int16x4_t b, int16_t c); // VMLS.I16 d0, d0, d0[0] |
| _NEON2SSE_INLINE int16x4_t vmls_n_s16(int16x4_t a, int16x4_t b, int16_t c) // VMLS.I16 d0, d0, d0[0] |
| { |
| int16x4_t vc; |
| vc = vdup_n_s16(c); |
| return vmls_s16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmls_n_s32(int32x2_t a, int32x2_t b, int32_t c); // VMLS.I32 d0, d0, d0[0] |
| _NEON2SSE_INLINE int32x2_t vmls_n_s32(int32x2_t a, int32x2_t b, int32_t c) // VMLS.I32 d0, d0, d0[0] |
| { |
| int32x2_t vc; |
| vc = vdup_n_s32(c); |
| return vmls_s32(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vmls_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c); // VMLS.I16 d0, d0, d0[0] |
| _NEON2SSE_INLINE uint16x4_t vmls_n_u16(uint16x4_t a, uint16x4_t b, uint16_t c) // VMLS.I16 d0, d0, d0[0] |
| { |
| uint16x4_t vc; |
| vc = vdup_n_s16(c); |
| return vmls_s16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vmls_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c); // VMLS.I32 d0, d0, d0[0] |
| _NEON2SSE_INLINE uint32x2_t vmls_n_u32(uint32x2_t a, uint32x2_t b, uint32_t c) // VMLS.I32 d0, d0, d0[0] |
| { |
| uint32x2_t vc; |
| vc = vdup_n_u32(c); |
| return vmls_u32(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vmls_n_f32(float32x2_t a, float32x2_t b, float32_t c); // VMLS.F32 d0, d0, d0[0] |
| _NEON2SSE_INLINE float32x2_t vmls_n_f32(float32x2_t a, float32x2_t b, float32_t c) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = a.m64_f32[0] - b.m64_f32[0] * c; |
| res.m64_f32[1] = a.m64_f32[1] - b.m64_f32[1] * c; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c); // VMLS.I16 q0, q0, d0[0] |
| _NEON2SSE_INLINE int16x8_t vmlsq_n_s16(int16x8_t a, int16x8_t b, int16_t c) // VMLS.I16 q0, q0, d0[0] |
| { |
| int16x8_t vc; |
| vc = vdupq_n_s16(c); |
| return vmlsq_s16(a, b,vc); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c); // VMLS.I32 q0, q0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlsq_n_s32(int32x4_t a, int32x4_t b, int32_t c) // VMLS.I32 q0, q0, d0[0] |
| { |
| int32x4_t vc; |
| vc = vdupq_n_s32(c); |
| return vmlsq_s32(a,b,vc); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c); // VMLS.I16 q0, q0, d0[0] |
| _NEON2SSE_INLINE uint16x8_t vmlsq_n_u16(uint16x8_t a, uint16x8_t b, uint16_t c) // VMLS.I16 q0, q0, d0[0] |
| { |
| uint16x8_t vc; |
| vc = vdupq_n_u16(c); |
| return vmlsq_u16(a,b,vc); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c); // VMLS.I32 q0, q0, d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmlsq_n_u32(uint32x4_t a, uint32x4_t b, uint32_t c) // VMLS.I32 q0, q0, d0[0] |
| { |
| uint32x4_t vc; |
| vc = vdupq_n_u32(c); |
| return vmlsq_u32(a,b,vc); |
| } |
| |
| _NEON2SSESTORAGE float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c); // VMLS.F32 q0, q0, d0[0] |
| _NEON2SSE_INLINE float32x4_t vmlsq_n_f32(float32x4_t a, float32x4_t b, float32_t c) |
| { |
| float32x4_t vc; |
| vc = vdupq_n_f32(c); |
| return vmlsq_f32(a,b,vc); |
| } |
| |
| //**** Vector widening multiply subtract with scalar ****** |
| _NEON2SSESTORAGE int32x4_t vmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VMLSL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c) // VMLSL.S16 q0, d0, d0[0] |
| { |
| int16x4_t vc; |
| vc = vdup_n_s16(c); |
| return vmlsl_s16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VMLSL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE int64x2_t vmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c) // VMLSL.S32 q0, d0, d0[0] |
| { |
| int32x2_t vc; |
| vc = vdup_n_s32(c); |
| return vmlsl_s32(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vmlsl_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c); // VMLSL.s16 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint32x4_t vmlsl_n_u16(uint32x4_t a, uint16x4_t b, uint16_t c) // VMLSL.s16 q0, d0, d0[0] |
| { |
| uint16x4_t vc; |
| vc = vdup_n_u16(c); |
| return vmlsl_u16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE uint64x2_t vmlsl_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c); // VMLSL.U32 q0, d0, d0[0] |
| _NEON2SSE_INLINE uint64x2_t vmlsl_n_u32(uint64x2_t a, uint32x2_t b, uint32_t c) // VMLSL.U32 q0, d0, d0[0] |
| { |
| uint32x2_t vc; |
| vc = vdup_n_u32(c); |
| return vmlsl_u32(a, b, vc); |
| } |
| |
| //***** Vector widening saturating doubling multiply subtract with scalar ********* |
| //********************************************************************************** |
| _NEON2SSESTORAGE int32x4_t vqdmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c); // VQDMLSL.S16 q0, d0, d0[0] |
| _NEON2SSE_INLINE int32x4_t vqdmlsl_n_s16(int32x4_t a, int16x4_t b, int16_t c) |
| { |
| int16x4_t vc; |
| vc = vdup_n_s16(c); |
| return vqdmlsl_s16(a, b, vc); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vqdmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c); // VQDMLSL.S32 q0, d0, d0[0] |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int64x2_t vqdmlsl_n_s32(int64x2_t a, int32x2_t b, int32_t c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32x2_t vc; |
| vc = vdup_n_s32(c); |
| return vqdmlsl_s32(a, b, vc); |
| } |
| |
| //******************* Vector extract *********************************************** |
| //************************************************************************************* |
| //VEXT (Vector Extract) extracts elements from the bottom end of the second operand |
| //vector and the top end of the first, concatenates them, and places the result in the destination vector |
| //c elements from the bottom end of the second operand and (8-c) from the top end of the first |
| _NEON2SSESTORAGE int8x8_t vext_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int8x8_t vext_s8(int8x8_t a, int8x8_t b, __constrange(0,7) int c),_NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int8x8_t res; |
| int i; |
| for (i = 0; i<8 - c; i++) { |
| res.m64_i8[i] = a.m64_i8[i + c]; |
| } |
| for(i = 0; i<c; i++) { |
| res.m64_i8[8 - c + i] = b.m64_i8[i]; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vext_u8(uint8x8_t a, uint8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0 |
| #define vext_u8 vext_s8 |
| //same result tested |
| |
| _NEON2SSESTORAGE poly8x8_t vext_p8(poly8x8_t a, poly8x8_t b, __constrange(0,7) int c); // VEXT.8 d0,d0,d0,#0 |
| #define vext_p8 vext_u8 |
| |
| _NEON2SSESTORAGE int16x4_t vext_s16(int16x4_t a, int16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0 |
| _NEON2SSE_INLINE int16x4_t _NEON2SSE_PERFORMANCE_WARNING (vext_s16(int16x4_t a, int16x4_t b, __constrange(0,3) int c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int16x4_t res; |
| int i; |
| for (i = 0; i<4 - c; i++) { |
| res.m64_i16[i] = a.m64_i16[i + c]; |
| } |
| for(i = 0; i<c; i++) { |
| res.m64_i16[4 - c + i] = b.m64_i16[i]; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint16x4_t vext_u16(uint16x4_t a, uint16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0 |
| #define vext_u16 vext_s16 |
| |
| _NEON2SSESTORAGE poly16x4_t vext_p16(poly16x4_t a, poly16x4_t b, __constrange(0,3) int c); // VEXT.16 d0,d0,d0,#0 |
| #define vext_p16 vext_s16 |
| |
| _NEON2SSESTORAGE int32x2_t vext_s32(int32x2_t a, int32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(int32x2_t vext_s32(int32x2_t a, int32x2_t b, __constrange(0,1) int c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int32x2_t res; |
| if (c==0) { |
| res.m64_i32[0] = a.m64_i32[0]; |
| res.m64_i32[1] = a.m64_i32[1]; |
| } else { |
| res.m64_i32[0] = a.m64_i32[1]; |
| res.m64_i32[1] = b.m64_i32[0]; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vext_f32(float32x2_t a, float32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0 |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float32x2_t vext_f32(float32x2_t a, float32x2_t b, __constrange(0,1) int c), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| float32x2_t res; |
| if (c==0) { |
| res.m64_f32[0] = a.m64_f32[0]; |
| res.m64_f32[1] = a.m64_f32[1]; |
| } else { |
| res.m64_f32[0] = a.m64_f32[1]; |
| res.m64_f32[1] = b.m64_f32[0]; |
| } |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint32x2_t vext_u32(uint32x2_t a, uint32x2_t b, __constrange(0,1) int c); // VEXT.32 d0,d0,d0,#0 |
| #define vext_u32 vext_s32 |
| |
| |
| _NEON2SSESTORAGE int64x1_t vext_s64(int64x1_t a, int64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0 |
| #define vext_s64(a,b,c) a |
| |
| _NEON2SSESTORAGE uint64x1_t vext_u64(uint64x1_t a, uint64x1_t b, __constrange(0,0) int c); // VEXT.64 d0,d0,d0,#0 |
| #define vext_u64(a,b,c) a |
| |
| _NEON2SSESTORAGE int8x16_t vextq_s8(int8x16_t a, int8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 |
| #define vextq_s8(a,b,c) _MM_ALIGNR_EPI8 (b,a,c) |
| |
| _NEON2SSESTORAGE uint8x16_t vextq_u8(uint8x16_t a, uint8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 |
| #define vextq_u8(a,b,c) _MM_ALIGNR_EPI8 (b,a,c) |
| |
| _NEON2SSESTORAGE poly8x16_t vextq_p8(poly8x16_t a, poly8x16_t b, __constrange(0,15) int c); // VEXT.8 q0,q0,q0,#0 |
| #define vextq_p8 vextq_s8 |
| |
| _NEON2SSESTORAGE int16x8_t vextq_s16(int16x8_t a, int16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 |
| #define vextq_s16(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 2) |
| |
| _NEON2SSESTORAGE uint16x8_t vextq_u16(uint16x8_t a, uint16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 |
| #define vextq_u16(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 2) |
| |
| _NEON2SSESTORAGE poly16x8_t vextq_p16(poly16x8_t a, poly16x8_t b, __constrange(0,7) int c); // VEXT.16 q0,q0,q0,#0 |
| #define vextq_p16 vextq_s16 |
| |
| _NEON2SSESTORAGE int32x4_t vextq_s32(int32x4_t a, int32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 |
| #define vextq_s32(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 4) |
| |
| _NEON2SSESTORAGE uint32x4_t vextq_u32(uint32x4_t a, uint32x4_t b, __constrange(0,3) int c); // VEXT.32 q0,q0,q0,#0 |
| #define vextq_u32(a,b,c) _MM_ALIGNR_EPI8 (b,a,c * 4) |
| |
| _NEON2SSESTORAGE float32x4_t vextq_f32(float32x4_t a, float32x4_t b, __constrange(0,3) float c); // VEXT.32 q0,q0,q0,#0 |
| #define vextq_f32(a,b,c) _M128(vextq_s32(_M128i(a),_M128i(b),c) ) |
| |
| _NEON2SSESTORAGE int64x2_t vextq_s64(int64x2_t a, int64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 |
| #define vextq_s64(a,b,c) _MM_ALIGNR_EPI8(b,a,c * 8) |
| |
| _NEON2SSESTORAGE uint64x2_t vextq_u64(uint64x2_t a, uint64x2_t b, __constrange(0,1) int c); // VEXT.64 q0,q0,q0,#0 |
| #define vextq_u64(a,b,c) _MM_ALIGNR_EPI8(b,a,c * 8) |
| |
| //************ Reverse vector elements (swap endianness)***************** |
| //************************************************************************* |
| //VREVn.m reverses the order of the m-bit lanes within a set that is n bits wide. |
| _NEON2SSESTORAGE int8x8_t vrev64_s8(int8x8_t vec); // VREV64.8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vrev64_s8(int8x8_t vec) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vrev64q_s8(_pM128i(vec)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrev64_s16(int16x4_t vec); // VREV64.16 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vrev64_s16(int16x4_t vec) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vrev64q_s16(_pM128i(vec)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vrev64_s32(int32x2_t vec); // VREV64.32 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vrev64_s32(int32x2_t vec) |
| { |
| int32x2_t res; |
| res.m64_i32[0] = vec.m64_i32[1]; |
| res.m64_i32[1] = vec.m64_i32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrev64_u8(uint8x8_t vec); // VREV64.8 d0,d0 |
| #define vrev64_u8 vrev64_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vrev64_u16(uint16x4_t vec); // VREV64.16 d0,d0 |
| #define vrev64_u16 vrev64_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vrev64_u32(uint32x2_t vec); // VREV64.32 d0,d0 |
| #define vrev64_u32 vrev64_s32 |
| |
| _NEON2SSESTORAGE poly8x8_t vrev64_p8(poly8x8_t vec); // VREV64.8 d0,d0 |
| #define vrev64_p8 vrev64_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vrev64_p16(poly16x4_t vec); // VREV64.16 d0,d0 |
| #define vrev64_p16 vrev64_u16 |
| |
| _NEON2SSESTORAGE float32x2_t vrev64_f32(float32x2_t vec); // VREV64.32 d0,d0 |
| _NEON2SSE_INLINE float32x2_t vrev64_f32(float32x2_t vec) |
| { |
| float32x2_t res; |
| res.m64_f32[0] = vec.m64_f32[1]; |
| res.m64_f32[1] = vec.m64_f32[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vrev64q_s8(int8x16_t vec); // VREV64.8 q0,q0 |
| _NEON2SSE_INLINE int8x16_t vrev64q_s8(int8x16_t vec) // VREV64.8 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const int8_t mask_rev_e8[16] = {7,6,5,4,3,2,1,0, 15,14,13,12,11,10,9, 8}; |
| return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev_e8); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vrev64q_s16(int16x8_t vec); // VREV64.16 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vrev64q_s16(int16x8_t vec) // VREV64.16 q0,q0 |
| { |
| //no _mm_shuffle_epi16, _mm_shuffle_epi8 to be used with the corresponding mask |
| _NEON2SSE_ALIGN_16 static const int8_t mask_rev_e16[16] = {6,7, 4,5,2,3,0,1,14,15,12,13,10,11,8,9}; |
| return _mm_shuffle_epi8 (vec, *(__m128i*)mask_rev_e16); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vrev64q_s32(int32x4_t vec); // VREV64.32 q0,q0 |
| _NEON2SSE_INLINE int32x4_t vrev64q_s32(int32x4_t vec) // VREV64.32 q0,q0 |
| { |
| return _mm_shuffle_epi32 (vec, 1 | (0 << 2) | (3 << 4) | (2 << 6) ); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrev64q_u8(uint8x16_t vec); // VREV64.8 q0,q0 |
| #define vrev64q_u8 vrev64q_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vrev64q_u16(uint16x8_t vec); // VREV64.16 q0,q0 |
| #define vrev64q_u16 vrev64q_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vrev64q_u32(uint32x4_t vec); // VREV64.32 q0,q0 |
| #define vrev64q_u32 vrev64q_s32 |
| |
| _NEON2SSESTORAGE poly8x16_t vrev64q_p8(poly8x16_t vec); // VREV64.8 q0,q0 |
| #define vrev64q_p8 vrev64q_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vrev64q_p16(poly16x8_t vec); // VREV64.16 q0,q0 |
| #define vrev64q_p16 vrev64q_u16 |
| |
| _NEON2SSESTORAGE float32x4_t vrev64q_f32(float32x4_t vec); // VREV64.32 q0,q0 |
| #define vrev64q_f32(vec) _mm_shuffle_ps (vec, vec, _MM_SHUFFLE(2,3, 0,1)) |
| |
| //******************** 32 bit shuffles ********************** |
| //************************************************************ |
| _NEON2SSESTORAGE int8x8_t vrev32_s8(int8x8_t vec); // VREV32.8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vrev32_s8(int8x8_t vec) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vrev32q_s8(_pM128i(vec)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vrev32_s16(int16x4_t vec); // VREV32.16 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vrev32_s16(int16x4_t vec) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vrev32q_s16(_pM128i(vec)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrev32_u8(uint8x8_t vec); // VREV32.8 d0,d0 |
| #define vrev32_u8 vrev32_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vrev32_u16(uint16x4_t vec); // VREV32.16 d0,d0 |
| #define vrev32_u16 vrev32_s16 |
| |
| _NEON2SSESTORAGE poly8x8_t vrev32_p8(poly8x8_t vec); // VREV32.8 d0,d0 |
| #define vrev32_p8 vrev32_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vrev32_p16(poly16x4_t vec); // VREV32.16 d0,d0 |
| #define vrev32_p16 vrev32_u16 |
| |
| _NEON2SSESTORAGE int8x16_t vrev32q_s8(int8x16_t vec); // VREV32.8 q0,q0 |
| _NEON2SSE_INLINE int8x16_t vrev32q_s8(int8x16_t vec) // VREV32.8 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const int8_t mask_rev_e8[16] = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12}; |
| return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev_e8); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vrev32q_s16(int16x8_t vec); // VREV32.16 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vrev32q_s16(int16x8_t vec) // VREV32.16 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const int8_t mask_rev_e8[16] = {2,3,0,1, 6,7, 4,5, 10,11, 8,9, 14,15,12,13}; |
| return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev_e8); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrev32q_u8(uint8x16_t vec); // VREV32.8 q0,q0 |
| #define vrev32q_u8 vrev32q_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vrev32q_u16(uint16x8_t vec); // VREV32.16 q0,q0 |
| #define vrev32q_u16 vrev32q_s16 |
| |
| _NEON2SSESTORAGE poly8x16_t vrev32q_p8(poly8x16_t vec); // VREV32.8 q0,q0 |
| #define vrev32q_p8 vrev32q_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vrev32q_p16(poly16x8_t vec); // VREV32.16 q0,q0 |
| #define vrev32q_p16 vrev32q_u16 |
| |
| //************* 16 bit shuffles ********************** |
| //****************************************************** |
| _NEON2SSESTORAGE int8x8_t vrev16_s8(int8x8_t vec); // VREV16.8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vrev16_s8(int8x8_t vec) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vrev16q_s8(_pM128i(vec)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vrev16_u8(uint8x8_t vec); // VREV16.8 d0,d0 |
| #define vrev16_u8 vrev16_s8 |
| |
| _NEON2SSESTORAGE poly8x8_t vrev16_p8(poly8x8_t vec); // VREV16.8 d0,d0 |
| #define vrev16_p8 vrev16_u8 |
| |
| _NEON2SSESTORAGE int8x16_t vrev16q_s8(int8x16_t vec); // VREV16.8 q0,q0 |
| _NEON2SSE_INLINE int8x16_t vrev16q_s8(int8x16_t vec) // VREV16.8 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const int8_t mask_rev8[16] = {1,0, 3,2, 5,4, 7,6, 9,8, 11, 10, 13, 12, 15, 14}; |
| return _mm_shuffle_epi8 (vec, *(__m128i*) mask_rev8); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vrev16q_u8(uint8x16_t vec); // VREV16.8 q0,q0 |
| #define vrev16q_u8 vrev16q_s8 |
| |
| _NEON2SSESTORAGE poly8x16_t vrev16q_p8(poly8x16_t vec); // VREV16.8 q0,q0 |
| #define vrev16q_p8 vrev16q_u8 |
| |
| //********************************************************************* |
| //**************** Other single operand arithmetic ******************* |
| //********************************************************************* |
| |
| //*********** Absolute: Vd[i] = |Va[i]| ********************************** |
| //************************************************************************ |
| _NEON2SSESTORAGE int8x8_t vabs_s8(int8x8_t a); // VABS.S8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vabs_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = _mm_abs_epi8(_pM128i(a)); |
| return64(res); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vabs_s16(int16x4_t a); // VABS.S16 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vabs_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = _mm_abs_epi16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vabs_s32(int32x2_t a); // VABS.S32 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vabs_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = _mm_abs_epi32(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vabs_f32(float32x2_t a); // VABS.F32 d0,d0 |
| _NEON2SSE_INLINE float32x2_t vabs_f32(float32x2_t a) // VABS.F32 d0,d0 |
| { |
| float32x4_t res; |
| __m64_128 res64; |
| _NEON2SSE_ALIGN_16 static const int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; |
| res = _mm_and_ps (_pM128(a), *(__m128*)c7fffffff); //use 64 low bits only |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vabsq_s8(int8x16_t a); // VABS.S8 q0,q0 |
| #define vabsq_s8 _mm_abs_epi8 |
| |
| _NEON2SSESTORAGE int16x8_t vabsq_s16(int16x8_t a); // VABS.S16 q0,q0 |
| #define vabsq_s16 _mm_abs_epi16 |
| |
| _NEON2SSESTORAGE int32x4_t vabsq_s32(int32x4_t a); // VABS.S32 q0,q0 |
| #define vabsq_s32 _mm_abs_epi32 |
| |
| _NEON2SSESTORAGE float32x4_t vabsq_f32(float32x4_t a); // VABS.F32 q0,q0 |
| _NEON2SSE_INLINE float32x4_t vabsq_f32(float32x4_t a) // VABS.F32 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const int32_t c7fffffff[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; |
| return _mm_and_ps (a, *(__m128*)c7fffffff); |
| } |
| |
| #ifdef _NEON2SSE_64BIT |
| _NEON2SSESTORAGE int64x2_t vabsq_s64(int64x2_t a); // VABS.S64 q0,q0 |
| _NEON2SSE_INLINE int64x2_t vabsq_s64(int64x2_t a) // VABS.S64 q0,q0 |
| { |
| __m128i sign = _mm_srai_epi32 (_mm_shuffle_epi32 (a, 0xf5), 31); |
| return _mm_sub_epi64 (_mm_xor_si128 (a, sign), sign); |
| } |
| |
| _NEON2SSESTORAGE float64x2_t vabsq_f64(float64x2_t a); // VABS.F64 q0,q0 |
| _NEON2SSE_INLINE float64x2_t vabsq_f64(float64x2_t a) // VABS.F64 q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const int64_t mask[2] = {0x7fffffffffffffffLL, 0x7fffffffffffffffLL}; |
| return _mm_and_pd (a, *(__m128d*)mask); |
| } |
| #endif |
| |
| //****** Saturating absolute: Vd[i] = sat(|Va[i]|) ********************* |
| //********************************************************************** |
| //For signed-integer data types, the absolute value of the most negative value is not representable by the data type, saturation takes place |
| _NEON2SSESTORAGE int8x8_t vqabs_s8(int8x8_t a); // VQABS.S8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vqabs_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vqabsq_s8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqabs_s16(int16x4_t a); // VQABS.S16 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vqabs_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vqabsq_s16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqabs_s32(int32x2_t a); // VQABS.S32 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vqabs_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = vqabsq_s32(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqabsq_s8(int8x16_t a); // VQABS.S8 q0,q0 |
| _NEON2SSE_INLINE int8x16_t vqabsq_s8(int8x16_t a) // VQABS.S8 q0,q0 |
| { |
| __m128i c_128, abs, abs_cmp; |
| c_128 = _mm_set1_epi8 ((int8_t)0x80); //-128 |
| abs = _mm_abs_epi8 (a); |
| abs_cmp = _mm_cmpeq_epi8 (abs, c_128); |
| return _mm_xor_si128 (abs, abs_cmp); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqabsq_s16(int16x8_t a); // VQABS.S16 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vqabsq_s16(int16x8_t a) // VQABS.S16 q0,q0 |
| { |
| __m128i c_32768, abs, abs_cmp; |
| c_32768 = _mm_set1_epi16 ((int16_t)0x8000); //-32768 |
| abs = _mm_abs_epi16 (a); |
| abs_cmp = _mm_cmpeq_epi16 (abs, c_32768); |
| return _mm_xor_si128 (abs, abs_cmp); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqabsq_s32(int32x4_t a); // VQABS.S32 q0,q0 |
| _NEON2SSE_INLINE int32x4_t vqabsq_s32(int32x4_t a) // VQABS.S32 q0,q0 |
| { |
| __m128i c80000000, abs, abs_cmp; |
| c80000000 = _mm_set1_epi32 (0x80000000); //most negative value |
| abs = _mm_abs_epi32 (a); |
| abs_cmp = _mm_cmpeq_epi32 (abs, c80000000); |
| return _mm_xor_si128 (abs, abs_cmp); |
| } |
| |
| //*************** Negate: Vd[i] = - Va[i] ************************************* |
| //***************************************************************************** |
| //several Negate implementations possible for SIMD. |
| //e.//function _mm_sign function(a, negative numbers vector), but the following one gives good performance: |
| _NEON2SSESTORAGE int8x8_t vneg_s8(int8x8_t a); // VNE//d0,d0 |
| _NEON2SSE_INLINE int8x8_t vneg_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vnegq_s8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vneg_s16(int16x4_t a); // VNE//d0,d0 |
| _NEON2SSE_INLINE int16x4_t vneg_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vnegq_s16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vneg_s32(int32x2_t a); // VNE//d0,d0 |
| _NEON2SSE_INLINE int32x2_t vneg_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = vnegq_s32(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vneg_f32(float32x2_t a); // VNE//d0,d0 |
| _NEON2SSE_INLINE float32x2_t vneg_f32(float32x2_t a) // VNE//d0,d0 |
| { |
| float32x4_t res; |
| __m64_128 res64; |
| _NEON2SSE_ALIGN_16 static const uint32_t c80000000[4] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| res = _mm_xor_ps (_pM128(a), *(__m128*) c80000000); //use low 64 bits |
| _M64f(res64, res); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vnegq_s8(int8x16_t a); // VNE//q0,q0 |
| _NEON2SSE_INLINE int8x16_t vnegq_s8(int8x16_t a) // VNE//q0,q0 |
| { |
| __m128i zero; |
| zero = _mm_setzero_si128 (); |
| return _mm_sub_epi8 (zero, a); |
| } //or _mm_sign_epi8 (a, negative numbers vector) |
| |
| _NEON2SSESTORAGE int16x8_t vnegq_s16(int16x8_t a); // VNE//q0,q0 |
| _NEON2SSE_INLINE int16x8_t vnegq_s16(int16x8_t a) // VNE//q0,q0 |
| { |
| __m128i zero; |
| zero = _mm_setzero_si128 (); |
| return _mm_sub_epi16 (zero, a); |
| } //or _mm_sign_epi16 (a, negative numbers vector) |
| |
| _NEON2SSESTORAGE int32x4_t vnegq_s32(int32x4_t a); // VNE//q0,q0 |
| _NEON2SSE_INLINE int32x4_t vnegq_s32(int32x4_t a) // VNE//q0,q0 |
| { |
| __m128i zero; |
| zero = _mm_setzero_si128 (); |
| return _mm_sub_epi32 (zero, a); |
| } //or _mm_sign_epi32 (a, negative numbers vector) |
| |
| _NEON2SSESTORAGE float32x4_t vnegq_f32(float32x4_t a); // VNE//q0,q0 |
| _NEON2SSE_INLINE float32x4_t vnegq_f32(float32x4_t a) // VNE//q0,q0 |
| { |
| _NEON2SSE_ALIGN_16 static const uint32_t c80000000[4] = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| return _mm_xor_ps (a, *(__m128*) c80000000); |
| } |
| |
| //************** Saturating Negate: sat(Vd[i] = - Va[i]) ************************** |
| //*************************************************************************************** |
| //For signed-integer data types, the negation of the most negative value can't be produced without saturation, while with saturation it is max positive |
| _NEON2SSESTORAGE int8x8_t vqneg_s8(int8x8_t a); // VQNE//d0,d0 |
| _NEON2SSE_INLINE int8x8_t vqneg_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vqnegq_s8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vqneg_s16(int16x4_t a); // VQNE//d0,d0 |
| _NEON2SSE_INLINE int16x4_t vqneg_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vqnegq_s16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vqneg_s32(int32x2_t a); // VQNE//d0,d0 |
| _NEON2SSE_INLINE int32x2_t vqneg_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = vqnegq_s32(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vqnegq_s8(int8x16_t a); // VQNE//q0,q0 |
| _NEON2SSE_INLINE int8x16_t vqnegq_s8(int8x16_t a) // VQNE//q0,q0 |
| { |
| __m128i zero; |
| zero = _mm_setzero_si128 (); |
| return _mm_subs_epi8 (zero, a); //saturating substraction |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vqnegq_s16(int16x8_t a); // VQNE//q0,q0 |
| _NEON2SSE_INLINE int16x8_t vqnegq_s16(int16x8_t a) // VQNE//q0,q0 |
| { |
| __m128i zero; |
| zero = _mm_setzero_si128 (); |
| return _mm_subs_epi16 (zero, a); //saturating substraction |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vqnegq_s32(int32x4_t a); // VQNE//q0,q0 |
| _NEON2SSE_INLINE int32x4_t vqnegq_s32(int32x4_t a) // VQNE//q0,q0 |
| { |
| //solution may be not optimal compared with a serial |
| __m128i c80000000, zero, sub, cmp; |
| c80000000 = _mm_set1_epi32 (0x80000000); //most negative value |
| zero = _mm_setzero_si128 (); |
| sub = _mm_sub_epi32 (zero, a); //substraction |
| cmp = _mm_cmpeq_epi32 (a, c80000000); |
| return _mm_xor_si128 (sub, cmp); |
| } |
| |
| //****************** Count leading zeros ******************************** |
| //************************************************************************** |
| //no corresponding vector intrinsics in IA32, need to implement it. While the implementation is effective for 8 bits, it may be not for 16 and 32 bits |
| _NEON2SSESTORAGE int8x8_t vclz_s8(int8x8_t a); // VCLZ.I8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vclz_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vclzq_s8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vclz_s16(int16x4_t a); // VCLZ.I16 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vclz_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vclzq_s16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vclz_s32(int32x2_t a); // VCLZ.I32 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vclz_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = vclzq_s32(_pM128i(a)); |
| return64(res); |
| } |
| |
| |
| _NEON2SSESTORAGE uint8x8_t vclz_u8(uint8x8_t a); // VCLZ.I8 d0,d0 |
| #define vclz_u8 vclz_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vclz_u16(uint16x4_t a); // VCLZ.I16 d0,d0 |
| #define vclz_u16 vclz_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vclz_u32(uint32x2_t a); // VCLZ.I32 d0,d0 |
| #define vclz_u32 vclz_s32 |
| |
| _NEON2SSESTORAGE int8x16_t vclzq_s8(int8x16_t a); // VCLZ.I8 q0,q0 |
| _NEON2SSE_INLINE int8x16_t vclzq_s8(int8x16_t a) |
| { |
| _NEON2SSE_ALIGN_16 static const int8_t mask_CLZ[16] = { /* 0 */ 4,/* 1 */ 3,/* 2 */ 2,/* 3 */ 2, |
| /* 4 */ 1,/* 5 */ 1,/* 6 */ 1,/* 7 */ 1, |
| /* 8 */ 0,/* 9 */ 0,/* a */ 0,/* b */ 0, |
| /* c */ 0,/* d */ 0,/* e */ 0,/* f */ 0 }; |
| __m128i maskLOW, c4, lowclz, mask, hiclz; |
| maskLOW = _mm_set1_epi8(0x0f); //low 4 bits, don't need masking low to avoid zero if MSB is set - it happens automatically |
| c4 = _mm_set1_epi8(4); |
| lowclz = _mm_shuffle_epi8( *(__m128i*)mask_CLZ, a); //uses low 4 bits anyway |
| mask = _mm_srli_epi16(a, 4); //get high 4 bits as low bits |
| mask = _mm_and_si128(mask, maskLOW); //low 4 bits, need masking to avoid zero if MSB is set |
| hiclz = _mm_shuffle_epi8( *(__m128i*) mask_CLZ, mask); //uses low 4 bits anyway |
| mask = _mm_cmpeq_epi8(hiclz, c4); // shows the need to add lowclz zeros |
| lowclz = _mm_and_si128(lowclz,mask); |
| return _mm_add_epi8(lowclz, hiclz); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vclzq_s16(int16x8_t a); // VCLZ.I16 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vclzq_s16(int16x8_t a) |
| { |
| __m128i c7, res8x16, res8x16_swap; |
| _NEON2SSE_ALIGN_16 static const int8_t mask8_sab[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; |
| _NEON2SSE_ALIGN_16 static const uint16_t mask8bit[8] = {0x00ff, 0x00ff, 0x00ff, 0x00ff,0x00ff, 0x00ff, 0x00ff, 0x00ff}; |
| c7 = _mm_srli_epi16(*(__m128i*)mask8bit, 5); //7 |
| res8x16 = vclzq_s8(a); |
| res8x16_swap = _mm_shuffle_epi8 (res8x16, *(__m128i*) mask8_sab); //horisontal pairs swap |
| res8x16 = _mm_and_si128(res8x16, *(__m128i*)mask8bit); //lowclz |
| res8x16_swap = _mm_and_si128(res8x16_swap, *(__m128i*)mask8bit); //hiclz |
| c7 = _mm_cmpgt_epi16(res8x16_swap, c7); // shows the need to add lowclz zeros |
| res8x16 = _mm_and_si128(res8x16, c7); //lowclz |
| return _mm_add_epi16(res8x16_swap, res8x16); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vclzq_s32(int32x4_t a); // VCLZ.I32 q0,q0 |
| _NEON2SSE_INLINE int32x4_t vclzq_s32(int32x4_t a) |
| { |
| __m128i c55555555, c33333333, c0f0f0f0f, c3f, c32, tmp, tmp1, res; |
| c55555555 = _mm_set1_epi32(0x55555555); |
| c33333333 = _mm_set1_epi32(0x33333333); |
| c0f0f0f0f = _mm_set1_epi32(0x0f0f0f0f); |
| c3f = _mm_set1_epi32(0x3f); |
| c32 = _mm_set1_epi32(32); |
| tmp = _mm_srli_epi32(a, 1); |
| res = _mm_or_si128(tmp, a); //atmp[i] |= (atmp[i] >> 1); |
| tmp = _mm_srli_epi32(res, 2); |
| res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 2); |
| tmp = _mm_srli_epi32(res, 4); |
| res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 4); |
| tmp = _mm_srli_epi32(res, 8); |
| res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 8); |
| tmp = _mm_srli_epi32(res, 16); |
| res = _mm_or_si128(tmp, res); //atmp[i] |= (atmp[i] >> 16); |
| |
| tmp = _mm_srli_epi32(res, 1); |
| tmp = _mm_and_si128(tmp, c55555555); |
| res = _mm_sub_epi32(res, tmp); //atmp[i] -= ((atmp[i] >> 1) & 0x55555555); |
| |
| tmp = _mm_srli_epi32(res, 2); |
| tmp = _mm_and_si128(tmp, c33333333); |
| tmp1 = _mm_and_si128(res, c33333333); |
| res = _mm_add_epi32(tmp, tmp1); //atmp[i] = (((atmp[i] >> 2) & 0x33333333) + (atmp[i] & 0x33333333)); |
| |
| tmp = _mm_srli_epi32(res, 4); |
| tmp = _mm_add_epi32(tmp, res); |
| res = _mm_and_si128(tmp, c0f0f0f0f); //atmp[i] = (((atmp[i] >> 4) + atmp[i]) & 0x0f0f0f0f); |
| |
| tmp = _mm_srli_epi32(res, 8); |
| res = _mm_add_epi32(tmp, res); //atmp[i] += (atmp[i] >> 8); |
| |
| tmp = _mm_srli_epi32(res, 16); |
| res = _mm_add_epi32(tmp, res); //atmp[i] += (atmp[i] >> 16); |
| |
| res = _mm_and_si128(res, c3f); //atmp[i] = atmp[i] & 0x0000003f; |
| |
| return _mm_sub_epi32(c32, res); //res[i] = 32 - atmp[i]; |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vclzq_u8(uint8x16_t a); // VCLZ.I8 q0,q0 |
| #define vclzq_u8 vclzq_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vclzq_u16(uint16x8_t a); // VCLZ.I16 q0,q0 |
| #define vclzq_u16 vclzq_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vclzq_u32(uint32x4_t a); // VCLZ.I32 q0,q0 |
| #define vclzq_u32 vclzq_s32 |
| |
| //************** Count leading sign bits ************************** |
| //******************************************************************** |
| //VCLS (Vector Count Leading Sign bits) counts the number of consecutive bits following |
| // the topmost bit, that are the same as the topmost bit, in each element in a vector |
| //No corresponding vector intrinsics in IA32, need to implement it. |
| //While the implementation is effective for 8 bits, it may be not for 16 and 32 bits |
| _NEON2SSESTORAGE int8x8_t vcls_s8(int8x8_t a); // VCLS.S8 d0,d0 |
| _NEON2SSE_INLINE int8x8_t vcls_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vclsq_s8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vcls_s16(int16x4_t a); // VCLS.S16 d0,d0 |
| _NEON2SSE_INLINE int16x4_t vcls_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vclsq_s16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vcls_s32(int32x2_t a); // VCLS.S32 d0,d0 |
| _NEON2SSE_INLINE int32x2_t vcls_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = vclsq_s32(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vclsq_s8(int8x16_t a); // VCLS.S8 q0,q0 |
| _NEON2SSE_INLINE int8x16_t vclsq_s8(int8x16_t a) |
| { |
| __m128i cff, c80, c1, a_mask, a_neg, a_pos, a_comb; |
| cff = _mm_cmpeq_epi8 (a,a); //0xff |
| c80 = _mm_set1_epi8((int8_t)0x80); |
| c1 = _mm_set1_epi8(1); |
| a_mask = _mm_and_si128(a, c80); |
| a_mask = _mm_cmpeq_epi8(a_mask, c80); //0xff if negative input and 0 if positive |
| a_neg = _mm_xor_si128(a, cff); |
| a_neg = _mm_and_si128(a_mask, a_neg); |
| a_pos = _mm_andnot_si128(a_mask, a); |
| a_comb = _mm_or_si128(a_pos, a_neg); |
| a_comb = vclzq_s8(a_comb); |
| return _mm_sub_epi8(a_comb, c1); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vclsq_s16(int16x8_t a); // VCLS.S16 q0,q0 |
| _NEON2SSE_INLINE int16x8_t vclsq_s16(int16x8_t a) |
| { |
| __m128i cffff, c8000, c1, a_mask, a_neg, a_pos, a_comb; |
| cffff = _mm_cmpeq_epi16(a,a); |
| c8000 = _mm_slli_epi16(cffff, 15); //0x8000 |
| c1 = _mm_srli_epi16(cffff,15); //0x1 |
| a_mask = _mm_and_si128(a, c8000); |
| a_mask = _mm_cmpeq_epi16(a_mask, c8000); //0xffff if negative input and 0 if positive |
| a_neg = _mm_xor_si128(a, cffff); |
| a_neg = _mm_and_si128(a_mask, a_neg); |
| a_pos = _mm_andnot_si128(a_mask, a); |
| a_comb = _mm_or_si128(a_pos, a_neg); |
| a_comb = vclzq_s16(a_comb); |
| return _mm_sub_epi16(a_comb, c1); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vclsq_s32(int32x4_t a); // VCLS.S32 q0,q0 |
| _NEON2SSE_INLINE int32x4_t vclsq_s32(int32x4_t a) |
| { |
| __m128i cffffffff, c80000000, c1, a_mask, a_neg, a_pos, a_comb; |
| cffffffff = _mm_cmpeq_epi32(a,a); |
| c80000000 = _mm_slli_epi32(cffffffff, 31); //0x80000000 |
| c1 = _mm_srli_epi32(cffffffff,31); //0x1 |
| a_mask = _mm_and_si128(a, c80000000); |
| a_mask = _mm_cmpeq_epi32(a_mask, c80000000); //0xffffffff if negative input and 0 if positive |
| a_neg = _mm_xor_si128(a, cffffffff); |
| a_neg = _mm_and_si128(a_mask, a_neg); |
| a_pos = _mm_andnot_si128(a_mask, a); |
| a_comb = _mm_or_si128(a_pos, a_neg); |
| a_comb = vclzq_s32(a_comb); |
| return _mm_sub_epi32(a_comb, c1); |
| } |
| |
| //************************* Count number of set bits ******************************** |
| //************************************************************************************* |
| //No corresponding SIMD solution. One option is to get a elements, convert it to 32 bits and then use SSE4.2 _mm_popcnt__u32 (unsigned int v) for each element |
| //another option is to do the following algorithm: |
| |
| _NEON2SSESTORAGE uint8x8_t vcnt_u8(uint8x8_t a); // VCNT.8 d0,d0 |
| _NEON2SSE_INLINE uint8x8_t vcnt_u8(uint8x8_t a) |
| { |
| uint8x8_t res64; |
| __m128i res; |
| res = vcntq_u8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int8x8_t vcnt_s8(int8x8_t a); // VCNT.8 d0,d0 |
| #define vcnt_s8 vcnt_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vcnt_p8(poly8x8_t a); // VCNT.8 d0,d0 |
| #define vcnt_p8 vcnt_u8 |
| |
| _NEON2SSESTORAGE uint8x16_t vcntq_u8(uint8x16_t a); // VCNT.8 q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vcntq_u8(uint8x16_t a) |
| { |
| _NEON2SSE_ALIGN_16 static const int8_t mask_POPCOUNT[16] = { /* 0 */ 0,/* 1 */ 1,/* 2 */ 1,/* 3 */ 2, |
| /* 4 */ 1,/* 5 */ 2,/* 6 */ 2,/* 7 */ 3, |
| /* 8 */ 1,/* 9 */ 2,/* a */ 2,/* b */ 3, |
| /* c */ 2,/* d */ 3,/* e */ 3,/* f */ 4}; |
| __m128i maskLOW, mask, lowpopcnt, hipopcnt; |
| maskLOW = _mm_set1_epi8(0x0f); //low 4 bits, need masking to avoid zero if MSB is set |
| mask = _mm_and_si128(a, maskLOW); |
| lowpopcnt = _mm_shuffle_epi8( *(__m128i*)mask_POPCOUNT, mask); //uses low 4 bits anyway |
| mask = _mm_srli_epi16(a, 4); //get high 4 bits as low bits |
| mask = _mm_and_si128(mask, maskLOW); //low 4 bits, need masking to avoid zero if MSB is set |
| hipopcnt = _mm_shuffle_epi8( *(__m128i*) mask_POPCOUNT, mask); //uses low 4 bits anyway |
| return _mm_add_epi8(lowpopcnt, hipopcnt); |
| } |
| |
| _NEON2SSESTORAGE int8x16_t vcntq_s8(int8x16_t a); // VCNT.8 q0,q0 |
| #define vcntq_s8 vcntq_u8 |
| |
| _NEON2SSESTORAGE poly8x16_t vcntq_p8(poly8x16_t a); // VCNT.8 q0,q0 |
| #define vcntq_p8 vcntq_u8 |
| |
| //************************************************************************************** |
| //*********************** Logical operations **************************************** |
| //************************************************************************************** |
| //************************** Bitwise not *********************************** |
| //several Bitwise not implementations possible for SIMD. Eg "xor" with all ones, but the following one gives good performance |
| _NEON2SSESTORAGE int8x8_t vmvn_s8(int8x8_t a); // VMVN d0,d0 |
| _NEON2SSE_INLINE int8x8_t vmvn_s8(int8x8_t a) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vmvnq_s8(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vmvn_s16(int16x4_t a); // VMVN d0,d0 |
| _NEON2SSE_INLINE int16x4_t vmvn_s16(int16x4_t a) |
| { |
| int16x4_t res64; |
| __m128i res; |
| res = vmvnq_s16(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vmvn_s32(int32x2_t a); // VMVN d0,d0 |
| _NEON2SSE_INLINE int32x2_t vmvn_s32(int32x2_t a) |
| { |
| int32x2_t res64; |
| __m128i res; |
| res = vmvnq_s32(_pM128i(a)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vmvn_u8(uint8x8_t a); // VMVN d0,d0 |
| #define vmvn_u8 vmvn_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vmvn_u16(uint16x4_t a); // VMVN d0,d0 |
| #define vmvn_u16 vmvn_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vmvn_u32(uint32x2_t a); // VMVN d0,d0 |
| #define vmvn_u32 vmvn_s32 |
| |
| _NEON2SSESTORAGE poly8x8_t vmvn_p8(poly8x8_t a); // VMVN d0,d0 |
| #define vmvn_p8 vmvn_u8 |
| |
| _NEON2SSESTORAGE int8x16_t vmvnq_s8(int8x16_t a); // VMVN q0,q0 |
| _NEON2SSE_INLINE int8x16_t vmvnq_s8(int8x16_t a) // VMVN q0,q0 |
| { |
| __m128i c1; |
| c1 = _mm_cmpeq_epi8 (a,a); //0xff |
| return _mm_andnot_si128 (a, c1); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vmvnq_s16(int16x8_t a); // VMVN q0,q0 |
| _NEON2SSE_INLINE int16x8_t vmvnq_s16(int16x8_t a) // VMVN q0,q0 |
| { |
| __m128i c1; |
| c1 = _mm_cmpeq_epi16 (a,a); //0xffff |
| return _mm_andnot_si128 (a, c1); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vmvnq_s32(int32x4_t a); // VMVN q0,q0 |
| _NEON2SSE_INLINE int32x4_t vmvnq_s32(int32x4_t a) // VMVN q0,q0 |
| { |
| __m128i c1; |
| c1 = _mm_cmpeq_epi32 (a,a); //0xffffffff |
| return _mm_andnot_si128 (a, c1); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vmvnq_u8(uint8x16_t a); // VMVN q0,q0 |
| #define vmvnq_u8 vmvnq_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vmvnq_u16(uint16x8_t a); // VMVN q0,q0 |
| #define vmvnq_u16 vmvnq_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vmvnq_u32(uint32x4_t a); // VMVN q0,q0 |
| #define vmvnq_u32 vmvnq_s32 |
| |
| _NEON2SSESTORAGE poly8x16_t vmvnq_p8(poly8x16_t a); // VMVN q0,q0 |
| #define vmvnq_p8 vmvnq_u8 |
| |
| //****************** Bitwise and *********************** |
| //****************************************************** |
| _NEON2SSESTORAGE int8x8_t vand_s8(int8x8_t a, int8x8_t b); // VAND d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vand_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_and_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vand_s16(int16x4_t a, int16x4_t b); // VAND d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vand_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_and_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int32x2_t vand_s32(int32x2_t a, int32x2_t b); // VAND d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vand_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(_mm_and_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vand_s64(int64x1_t a, int64x1_t b); // VAND d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vand_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = a.m64_i64[0] & b.m64_i64[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vand_u8(uint8x8_t a, uint8x8_t b); // VAND d0,d0,d0 |
| #define vand_u8 vand_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vand_u16(uint16x4_t a, uint16x4_t b); // VAND d0,d0,d0 |
| #define vand_u16 vand_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vand_u32(uint32x2_t a, uint32x2_t b); // VAND d0,d0,d0 |
| #define vand_u32 vand_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vand_u64(uint64x1_t a, uint64x1_t b); // VAND d0,d0,d0 |
| #define vand_u64 vand_s64 |
| |
| |
| _NEON2SSESTORAGE int8x16_t vandq_s8(int8x16_t a, int8x16_t b); // VAND q0,q0,q0 |
| #define vandq_s8 _mm_and_si128 |
| |
| _NEON2SSESTORAGE int16x8_t vandq_s16(int16x8_t a, int16x8_t b); // VAND q0,q0,q0 |
| #define vandq_s16 _mm_and_si128 |
| |
| _NEON2SSESTORAGE int32x4_t vandq_s32(int32x4_t a, int32x4_t b); // VAND q0,q0,q0 |
| #define vandq_s32 _mm_and_si128 |
| |
| _NEON2SSESTORAGE int64x2_t vandq_s64(int64x2_t a, int64x2_t b); // VAND q0,q0,q0 |
| #define vandq_s64 _mm_and_si128 |
| |
| _NEON2SSESTORAGE uint8x16_t vandq_u8(uint8x16_t a, uint8x16_t b); // VAND q0,q0,q0 |
| #define vandq_u8 _mm_and_si128 |
| |
| _NEON2SSESTORAGE uint16x8_t vandq_u16(uint16x8_t a, uint16x8_t b); // VAND q0,q0,q0 |
| #define vandq_u16 _mm_and_si128 |
| |
| _NEON2SSESTORAGE uint32x4_t vandq_u32(uint32x4_t a, uint32x4_t b); // VAND q0,q0,q0 |
| #define vandq_u32 _mm_and_si128 |
| |
| _NEON2SSESTORAGE uint64x2_t vandq_u64(uint64x2_t a, uint64x2_t b); // VAND q0,q0,q0 |
| #define vandq_u64 _mm_and_si128 |
| |
| //******************** Bitwise or ********************************* |
| //****************************************************************** |
| _NEON2SSESTORAGE int8x8_t vorr_s8(int8x8_t a, int8x8_t b); // VORR d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vorr_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_or_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vorr_s16(int16x4_t a, int16x4_t b); // VORR d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vorr_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(_mm_or_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vorr_s32(int32x2_t a, int32x2_t b); // VORR d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vorr_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(_mm_or_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vorr_s64(int64x1_t a, int64x1_t b); // VORR d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vorr_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = a.m64_i64[0] | b.m64_i64[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vorr_u8(uint8x8_t a, uint8x8_t b); // VORR d0,d0,d0 |
| #define vorr_u8 vorr_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vorr_u16(uint16x4_t a, uint16x4_t b); // VORR d0,d0,d0 |
| #define vorr_u16 vorr_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vorr_u32(uint32x2_t a, uint32x2_t b); // VORR d0,d0,d0 |
| #define vorr_u32 vorr_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vorr_u64(uint64x1_t a, uint64x1_t b); // VORR d0,d0,d0 |
| #define vorr_u64 vorr_s64 |
| |
| _NEON2SSESTORAGE int8x16_t vorrq_s8(int8x16_t a, int8x16_t b); // VORR q0,q0,q0 |
| #define vorrq_s8 _mm_or_si128 |
| |
| _NEON2SSESTORAGE int16x8_t vorrq_s16(int16x8_t a, int16x8_t b); // VORR q0,q0,q0 |
| #define vorrq_s16 _mm_or_si128 |
| |
| _NEON2SSESTORAGE int32x4_t vorrq_s32(int32x4_t a, int32x4_t b); // VORR q0,q0,q0 |
| #define vorrq_s32 _mm_or_si128 |
| |
| _NEON2SSESTORAGE int64x2_t vorrq_s64(int64x2_t a, int64x2_t b); // VORR q0,q0,q0 |
| #define vorrq_s64 _mm_or_si128 |
| |
| _NEON2SSESTORAGE uint8x16_t vorrq_u8(uint8x16_t a, uint8x16_t b); // VORR q0,q0,q0 |
| #define vorrq_u8 _mm_or_si128 |
| |
| _NEON2SSESTORAGE uint16x8_t vorrq_u16(uint16x8_t a, uint16x8_t b); // VORR q0,q0,q0 |
| #define vorrq_u16 _mm_or_si128 |
| |
| _NEON2SSESTORAGE uint32x4_t vorrq_u32(uint32x4_t a, uint32x4_t b); // VORR q0,q0,q0 |
| #define vorrq_u32 _mm_or_si128 |
| |
| _NEON2SSESTORAGE uint64x2_t vorrq_u64(uint64x2_t a, uint64x2_t b); // VORR q0,q0,q0 |
| #define vorrq_u64 _mm_or_si128 |
| |
| //************* Bitwise exclusive or (EOR or XOR) ****************** |
| //******************************************************************* |
| _NEON2SSESTORAGE int8x8_t veor_s8(int8x8_t a, int8x8_t b); // VEOR d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t veor_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_xor_si128(_pM128i(a),_pM128i(b))); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t veor_s16(int16x4_t a, int16x4_t b); // VEOR d0,d0,d0 |
| #define veor_s16 veor_s8 |
| |
| _NEON2SSESTORAGE int32x2_t veor_s32(int32x2_t a, int32x2_t b); // VEOR d0,d0,d0 |
| #define veor_s32 veor_s8 |
| |
| _NEON2SSESTORAGE int64x1_t veor_s64(int64x1_t a, int64x1_t b); // VEOR d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t veor_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = a.m64_i64[0] ^ b.m64_i64[0]; |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t veor_u8(uint8x8_t a, uint8x8_t b); // VEOR d0,d0,d0 |
| #define veor_u8 veor_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t veor_u16(uint16x4_t a, uint16x4_t b); // VEOR d0,d0,d0 |
| #define veor_u16 veor_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t veor_u32(uint32x2_t a, uint32x2_t b); // VEOR d0,d0,d0 |
| #define veor_u32 veor_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t veor_u64(uint64x1_t a, uint64x1_t b); // VEOR d0,d0,d0 |
| #define veor_u64 veor_s64 |
| |
| _NEON2SSESTORAGE int8x16_t veorq_s8(int8x16_t a, int8x16_t b); // VEOR q0,q0,q0 |
| #define veorq_s8 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE int16x8_t veorq_s16(int16x8_t a, int16x8_t b); // VEOR q0,q0,q0 |
| #define veorq_s16 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE int32x4_t veorq_s32(int32x4_t a, int32x4_t b); // VEOR q0,q0,q0 |
| #define veorq_s32 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE int64x2_t veorq_s64(int64x2_t a, int64x2_t b); // VEOR q0,q0,q0 |
| #define veorq_s64 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE uint8x16_t veorq_u8(uint8x16_t a, uint8x16_t b); // VEOR q0,q0,q0 |
| #define veorq_u8 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE uint16x8_t veorq_u16(uint16x8_t a, uint16x8_t b); // VEOR q0,q0,q0 |
| #define veorq_u16 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE uint32x4_t veorq_u32(uint32x4_t a, uint32x4_t b); // VEOR q0,q0,q0 |
| #define veorq_u32 _mm_xor_si128 |
| |
| _NEON2SSESTORAGE uint64x2_t veorq_u64(uint64x2_t a, uint64x2_t b); // VEOR q0,q0,q0 |
| #define veorq_u64 _mm_xor_si128 |
| |
| //********************** Bit Clear ********************************** |
| //******************************************************************* |
| //Logical AND complement (AND negation or AND NOT) |
| _NEON2SSESTORAGE int8x8_t vbic_s8(int8x8_t a, int8x8_t b); // VBIC d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vbic_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(_mm_andnot_si128(_pM128i(b),_pM128i(a))); //notice the arguments "swap" |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vbic_s16(int16x4_t a, int16x4_t b); // VBIC d0,d0,d0 |
| #define vbic_s16 vbic_s8 |
| |
| _NEON2SSESTORAGE int32x2_t vbic_s32(int32x2_t a, int32x2_t b); // VBIC d0,d0,d0 |
| #define vbic_s32 vbic_s8 |
| |
| _NEON2SSESTORAGE int64x1_t vbic_s64(int64x1_t a, int64x1_t b); // VBIC d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vbic_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = a.m64_i64[0] & (~b.m64_i64[0]); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vbic_u8(uint8x8_t a, uint8x8_t b); // VBIC d0,d0,d0 |
| #define vbic_u8 vbic_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vbic_u16(uint16x4_t a, uint16x4_t b); // VBIC d0,d0,d0 |
| #define vbic_u16 vbic_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vbic_u32(uint32x2_t a, uint32x2_t b); // VBIC d0,d0,d0 |
| #define vbic_u32 vbic_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vbic_u64(uint64x1_t a, uint64x1_t b); // VBIC d0,d0,d0 |
| #define vbic_u64 vbic_s64 |
| |
| _NEON2SSESTORAGE int8x16_t vbicq_s8(int8x16_t a, int8x16_t b); // VBIC q0,q0,q0 |
| #define vbicq_s8(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE int16x8_t vbicq_s16(int16x8_t a, int16x8_t b); // VBIC q0,q0,q0 |
| #define vbicq_s16(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE int32x4_t vbicq_s32(int32x4_t a, int32x4_t b); // VBIC q0,q0,q0 |
| #define vbicq_s32(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE int64x2_t vbicq_s64(int64x2_t a, int64x2_t b); // VBIC q0,q0,q0 |
| #define vbicq_s64(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE uint8x16_t vbicq_u8(uint8x16_t a, uint8x16_t b); // VBIC q0,q0,q0 |
| #define vbicq_u8(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE uint16x8_t vbicq_u16(uint16x8_t a, uint16x8_t b); // VBIC q0,q0,q0 |
| #define vbicq_u16(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE uint32x4_t vbicq_u32(uint32x4_t a, uint32x4_t b); // VBIC q0,q0,q0 |
| #define vbicq_u32(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| _NEON2SSESTORAGE uint64x2_t vbicq_u64(uint64x2_t a, uint64x2_t b); // VBIC q0,q0,q0 |
| #define vbicq_u64(a,b) _mm_andnot_si128 (b,a) //notice arguments "swap" |
| |
| //**************** Bitwise OR complement ******************************** |
| //**************************************** ******************************** |
| //no exact IA 32 match, need to implement it as following |
| _NEON2SSESTORAGE int8x8_t vorn_s8(int8x8_t a, int8x8_t b); // VORN d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vorn_s8(int8x8_t a, int8x8_t b) |
| { |
| int8x8_t res64; |
| return64(vornq_s8(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int16x4_t vorn_s16(int16x4_t a, int16x4_t b); // VORN d0,d0,d0 |
| _NEON2SSE_INLINE int16x4_t vorn_s16(int16x4_t a, int16x4_t b) |
| { |
| int16x4_t res64; |
| return64(vornq_s16(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int32x2_t vorn_s32(int32x2_t a, int32x2_t b); // VORN d0,d0,d0 |
| _NEON2SSE_INLINE int32x2_t vorn_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2_t res64; |
| return64(vornq_s32(_pM128i(a), _pM128i(b))); |
| } |
| |
| |
| _NEON2SSESTORAGE int64x1_t vorn_s64(int64x1_t a, int64x1_t b); // VORN d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vorn_s64(int64x1_t a, int64x1_t b) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = a.m64_i64[0] | (~b.m64_i64[0]); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vorn_u8(uint8x8_t a, uint8x8_t b); // VORN d0,d0,d0 |
| #define vorn_u8 vorn_s8 |
| |
| |
| _NEON2SSESTORAGE uint16x4_t vorn_u16(uint16x4_t a, uint16x4_t b); // VORN d0,d0,d0 |
| #define vorn_u16 vorn_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vorn_u32(uint32x2_t a, uint32x2_t b); // VORN d0,d0,d0 |
| #define vorn_u32 vorn_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vorn_u64(uint64x1_t a, uint64x1_t b); // VORN d0,d0,d0 |
| #define vorn_u64 vorn_s64 |
| |
| |
| _NEON2SSESTORAGE int8x16_t vornq_s8(int8x16_t a, int8x16_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vornq_s8(int8x16_t a, int8x16_t b) // VORN q0,q0,q0 |
| { |
| __m128i b1; |
| b1 = vmvnq_s8( b); //bitwise not for b |
| return _mm_or_si128 (a, b1); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vornq_s16(int16x8_t a, int16x8_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE int16x8_t vornq_s16(int16x8_t a, int16x8_t b) // VORN q0,q0,q0 |
| { |
| __m128i b1; |
| b1 = vmvnq_s16( b); //bitwise not for b |
| return _mm_or_si128 (a, b1); |
| } |
| |
| _NEON2SSESTORAGE int32x4_t vornq_s32(int32x4_t a, int32x4_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE int32x4_t vornq_s32(int32x4_t a, int32x4_t b) // VORN q0,q0,q0 |
| { |
| __m128i b1; |
| b1 = vmvnq_s32( b); //bitwise not for b |
| return _mm_or_si128 (a, b1); |
| } |
| |
| _NEON2SSESTORAGE int64x2_t vornq_s64(int64x2_t a, int64x2_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE int64x2_t vornq_s64(int64x2_t a, int64x2_t b) |
| { |
| __m128i c1, b1; |
| c1 = _mm_cmpeq_epi8 (a, a); //all ones 0xfffffff...fffff |
| b1 = _mm_andnot_si128 (b, c1); |
| return _mm_or_si128 (a, b1); |
| } |
| |
| _NEON2SSESTORAGE uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE uint8x16_t vornq_u8(uint8x16_t a, uint8x16_t b) // VORN q0,q0,q0 |
| { |
| __m128i b1; |
| b1 = vmvnq_u8( b); //bitwise not for b |
| return _mm_or_si128 (a, b1); |
| } |
| |
| _NEON2SSESTORAGE uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE uint16x8_t vornq_u16(uint16x8_t a, uint16x8_t b) // VORN q0,q0,q0 |
| { |
| __m128i b1; |
| b1 = vmvnq_s16( b); //bitwise not for b |
| return _mm_or_si128 (a, b1); |
| } |
| |
| _NEON2SSESTORAGE uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b); // VORN q0,q0,q0 |
| _NEON2SSE_INLINE uint32x4_t vornq_u32(uint32x4_t a, uint32x4_t b) // VORN q0,q0,q0 |
| { |
| __m128i b1; |
| b1 = vmvnq_u32( b); //bitwise not for b |
| return _mm_or_si128 (a, b1); |
| } |
| _NEON2SSESTORAGE uint64x2_t vornq_u64(uint64x2_t a, uint64x2_t b); // VORN q0,q0,q0 |
| #define vornq_u64 vornq_s64 |
| |
| //********************* Bitwise Select ***************************** |
| //****************************************************************** |
| //Note This intrinsic can compile to any of VBSL/VBIF/VBIT depending on register allocation.(?????????) |
| |
| //VBSL (Bitwise Select) selects each bit for the destination from the first operand if the |
| //corresponding bit of the destination is 1, or from the second operand if the corresponding bit of the destination is 0. |
| |
| //VBIF (Bitwise Insert if False) inserts each bit from the first operand into the destination |
| //if the corresponding bit of the second operand is 0, otherwise leaves the destination bit unchanged |
| |
| //VBIT (Bitwise Insert if True) inserts each bit from the first operand into the destination |
| //if the corresponding bit of the second operand is 1, otherwise leaves the destination bit unchanged. |
| |
| //VBSL only is implemented for SIMD |
| _NEON2SSESTORAGE int8x8_t vbsl_s8(uint8x8_t a, int8x8_t b, int8x8_t c); // VBSL d0,d0,d0 |
| _NEON2SSE_INLINE int8x8_t vbsl_s8(uint8x8_t a, int8x8_t b, int8x8_t c) |
| { |
| int8x8_t res64; |
| __m128i res; |
| res = vbslq_s8(_pM128i(a), _pM128i(b), _pM128i(c)); |
| return64(res); |
| } |
| |
| _NEON2SSESTORAGE int16x4_t vbsl_s16(uint16x4_t a, int16x4_t b, int16x4_t c); // VBSL d0,d0,d0 |
| #define vbsl_s16 vbsl_s8 |
| |
| _NEON2SSESTORAGE int32x2_t vbsl_s32(uint32x2_t a, int32x2_t b, int32x2_t c); // VBSL d0,d0,d0 |
| #define vbsl_s32 vbsl_s8 |
| |
| _NEON2SSESTORAGE int64x1_t vbsl_s64(uint64x1_t a, int64x1_t b, int64x1_t c); // VBSL d0,d0,d0 |
| _NEON2SSE_INLINE int64x1_t vbsl_s64(uint64x1_t a, int64x1_t b, int64x1_t c) |
| { |
| int64x1_t res; |
| res.m64_i64[0] = (a.m64_i64[0] & b.m64_i64[0]) | ( (~a.m64_i64[0]) & c.m64_i64[0]); |
| return res; |
| } |
| |
| _NEON2SSESTORAGE uint8x8_t vbsl_u8(uint8x8_t a, uint8x8_t b, uint8x8_t c); // VBSL d0,d0,d0 |
| #define vbsl_u8 vbsl_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vbsl_u16(uint16x4_t a, uint16x4_t b, uint16x4_t c); // VBSL d0,d0,d0 |
| #define vbsl_u16 vbsl_s8 |
| |
| _NEON2SSESTORAGE uint32x2_t vbsl_u32(uint32x2_t a, uint32x2_t b, uint32x2_t c); // VBSL d0,d0,d0 |
| #define vbsl_u32 vbsl_s8 |
| |
| _NEON2SSESTORAGE uint64x1_t vbsl_u64(uint64x1_t a, uint64x1_t b, uint64x1_t c); // VBSL d0,d0,d0 |
| #define vbsl_u64 vbsl_s64 |
| |
| _NEON2SSESTORAGE float32x2_t vbsl_f32(uint32x2_t a, float32x2_t b, float32x2_t c); // VBSL d0,d0,d0 |
| _NEON2SSE_INLINE float32x2_t vbsl_f32(uint32x2_t a, float32x2_t b, float32x2_t c) |
| { |
| __m128 sel1, sel2; |
| __m64_128 res64; |
| sel1 = _mm_and_ps (_pM128(a), _pM128(b)); |
| sel2 = _mm_andnot_ps (_pM128(a), _pM128(c)); |
| sel1 = _mm_or_ps (sel1, sel2); |
| _M64f(res64, sel1); |
| return res64; |
| } |
| |
| _NEON2SSESTORAGE poly8x8_t vbsl_p8(uint8x8_t a, poly8x8_t b, poly8x8_t c); // VBSL d0,d0,d0 |
| #define vbsl_p8 vbsl_s8 |
| |
| _NEON2SSESTORAGE poly16x4_t vbsl_p16(uint16x4_t a, poly16x4_t b, poly16x4_t c); // VBSL d0,d0,d0 |
| #define vbsl_p16 vbsl_s8 |
| |
| _NEON2SSESTORAGE int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c); // VBSL q0,q0,q0 |
| _NEON2SSE_INLINE int8x16_t vbslq_s8(uint8x16_t a, int8x16_t b, int8x16_t c) // VBSL q0,q0,q0 |
| { |
| __m128i sel1, sel2; |
| sel1 = _mm_and_si128 (a, b); |
| sel2 = _mm_andnot_si128 (a, c); |
| return _mm_or_si128 (sel1, sel2); |
| } |
| |
| _NEON2SSESTORAGE int16x8_t vbslq_s16(uint16x8_t a, int16x8_t b, int16x8_t c); // VBSL q0,q0,q0 |
| #define vbslq_s16 vbslq_s8 |
| |
| _NEON2SSESTORAGE int32x4_t vbslq_s32(uint32x4_t a, int32x4_t b, int32x4_t c); // VBSL q0,q0,q0 |
| #define vbslq_s32 vbslq_s8 |
| |
| _NEON2SSESTORAGE int64x2_t vbslq_s64(uint64x2_t a, int64x2_t b, int64x2_t c); // VBSL q0,q0,q0 |
| #define vbslq_s64 vbslq_s8 |
| |
| _NEON2SSESTORAGE uint8x16_t vbslq_u8(uint8x16_t a, uint8x16_t b, uint8x16_t c); // VBSL q0,q0,q0 |
| #define vbslq_u8 vbslq_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vbslq_u16(uint16x8_t a, uint16x8_t b, uint16x8_t c); // VBSL q0,q0,q0 |
| #define vbslq_u16 vbslq_s8 |
| |
| _NEON2SSESTORAGE uint32x4_t vbslq_u32(uint32x4_t a, uint32x4_t b, uint32x4_t c); // VBSL q0,q0,q0 |
| #define vbslq_u32 vbslq_s8 |
| |
| _NEON2SSESTORAGE uint64x2_t vbslq_u64(uint64x2_t a, uint64x2_t b, uint64x2_t c); // VBSL q0,q0,q0 |
| #define vbslq_u64 vbslq_s8 |
| |
| _NEON2SSESTORAGE float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c); // VBSL q0,q0,q0 |
| _NEON2SSE_INLINE float32x4_t vbslq_f32(uint32x4_t a, float32x4_t b, float32x4_t c) // VBSL q0,q0,q0 |
| { |
| __m128 sel1, sel2; |
| sel1 = _mm_and_ps (*(__m128*)&a, b); |
| sel2 = _mm_andnot_ps (*(__m128*)&a, c); |
| return _mm_or_ps (sel1, sel2); |
| } |
| |
| _NEON2SSESTORAGE poly8x16_t vbslq_p8(uint8x16_t a, poly8x16_t b, poly8x16_t c); // VBSL q0,q0,q0 |
| #define vbslq_p8 vbslq_u8 |
| |
| _NEON2SSESTORAGE poly16x8_t vbslq_p16(uint16x8_t a, poly16x8_t b, poly16x8_t c); // VBSL q0,q0,q0 |
| #define vbslq_p16 vbslq_s8 |
| |
| //************************************************************************************ |
| //**************** Transposition operations **************************************** |
| //************************************************************************************ |
| //***************** Vector Transpose ************************************************ |
| //************************************************************************************ |
| //VTRN (Vector Transpose) treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices. |
| // making the result look as (a0, b0, a2, b2, a4, b4,....) (a1, b1, a3, b3, a5, b5,.....) |
| _NEON2SSESTORAGE int8x8x2_t vtrn_s8(int8x8_t a, int8x8_t b); // VTRN.8 d0,d0 |
| _NEON2SSE_INLINE int8x8x2_t vtrn_s8(int8x8_t a, int8x8_t b) // VTRN.8 d0,d0 |
| { |
| int8x8x2_t val; |
| __m128i tmp, val0; |
| tmp = _mm_unpacklo_epi8(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3,...,a7,b7 |
| val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)mask8_32_even_odd); //(a0, b0, a2, b2, a4, b4, a6, b6), (a1,b1, a3,b3, a5,b5, a7,b7) |
| vst1q_s8 (val.val, val0); // _mm_shuffle_epi32 (val.val[0], _SWAP_HI_LOW32); //(a1,b1, a3,b3, a5,b5, a7,b7),(a0, b0, a2, b2, a4, b4, a6, b6), |
| return val; |
| } |
| |
| _NEON2SSESTORAGE int16x4x2_t vtrn_s16(int16x4_t a, int16x4_t b); // VTRN.16 d0,d0 |
| _NEON2SSE_INLINE int16x4x2_t vtrn_s16(int16x4_t a, int16x4_t b) // VTRN.16 d0,d0 |
| { |
| int16x4x2_t val; |
| __m128i tmp, val0; |
| _NEON2SSE_ALIGN_16 static const int8_t maskdlv16[16] = {0,1, 2,3, 8,9, 10,11, 4,5, 6,7, 12,13, 14, 15}; |
| tmp = _mm_unpacklo_epi16(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3 |
| val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)maskdlv16); //a0, b0, a2, b2, a1,b1, a3, b3 |
| vst1q_s16(val.val, val0); // _mm_shuffle_epi32 (val.val[0], _SWAP_HI_LOW32); //(a1,b1, a3,b3),(a0, b0, a2, b2), |
| return val; |
| } |
| |
| _NEON2SSESTORAGE int32x2x2_t vtrn_s32(int32x2_t a, int32x2_t b); // VTRN.32 d0,d0 |
| _NEON2SSE_INLINE int32x2x2_t vtrn_s32(int32x2_t a, int32x2_t b) |
| { |
| int32x2x2_t val; |
| __m128i val0; |
| val0 = _mm_unpacklo_epi32(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1 |
| vst1q_s32(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); //a1,b1, a0,b0, |
| return val; |
| } |
| |
| _NEON2SSESTORAGE uint8x8x2_t vtrn_u8(uint8x8_t a, uint8x8_t b); // VTRN.8 d0,d0 |
| #define vtrn_u8 vtrn_s8 |
| |
| _NEON2SSESTORAGE uint16x4x2_t vtrn_u16(uint16x4_t a, uint16x4_t b); // VTRN.16 d0,d0 |
| #define vtrn_u16 vtrn_s16 |
| |
| _NEON2SSESTORAGE uint32x2x2_t vtrn_u32(uint32x2_t a, uint32x2_t b); // VTRN.32 d0,d0 |
| #define vtrn_u32 vtrn_s32 |
| |
| _NEON2SSESTORAGE float32x2x2_t vtrn_f32(float32x2_t a, float32x2_t b); // VTRN.32 d0,d0 |
| _NEON2SSE_INLINE float32x2x2_t vtrn_f32(float32x2_t a, float32x2_t b) |
| { |
| float32x2x2_t val; |
| val.val[0].m64_f32[0] = a.m64_f32[0]; |
| val.val[0].m64_f32[1] = b.m64_f32[0]; |
| val.val[1].m64_f32[0] = a.m64_f32[1]; |
| val.val[1].m64_f32[1] = b.m64_f32[1]; |
| return val; //a0,b0,a1,b1 |
| } |
| |
| _NEON2SSESTORAGE poly8x8x2_t vtrn_p8(poly8x8_t a, poly8x8_t b); // VTRN.8 d0,d0 |
| #define vtrn_p8 vtrn_u8 |
| |
| _NEON2SSESTORAGE poly16x4x2_t vtrn_p16(poly16x4_t a, poly16x4_t b); // VTRN.16 d0,d0 |
| #define vtrn_p16 vtrn_s16 |
| |
| //int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b); // VTRN.8 q0,q0 |
| _NEON2SSE_INLINE int8x16x2_t vtrnq_s8(int8x16_t a, int8x16_t b) // VTRN.8 q0,q0 |
| { |
| int8x16x2_t r8x16; |
| __m128i a_sh, b_sh; |
| a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_16_even_odd); //a0, a2, a4, a6, a8, a10, a12, a14, a1, a3, a5, a7, a9, a11, a13, a15 |
| b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_16_even_odd); //b0, b2, b4, b6, b8, b10, b12, b14, b1, b3, b5, b7, b9, b11, b13, b15 |
| |
| r8x16.val[0] = _mm_unpacklo_epi8(a_sh, b_sh); //(a0, b0, a2, b2, a4, b4, a6, b6, a8,b8, a10,b10, a12,b12, a14,b14) |
| r8x16.val[1] = _mm_unpackhi_epi8(a_sh, b_sh); // (a1, b1, a3, b3, a5, b5, a7, b7, a9,b9, a11,b11, a13,b13, a15,b15) |
| return r8x16; |
| } |
| |
| _NEON2SSESTORAGE int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b); // VTRN.16 q0,q0 |
| _NEON2SSE_INLINE int16x8x2_t vtrnq_s16(int16x8_t a, int16x8_t b) // VTRN.16 q0,q0 |
| { |
| int16x8x2_t v16x8; |
| __m128i a_sh, b_sh; |
| a_sh = _mm_shuffle_epi8 (a, *(__m128i*) mask8_32_even_odd); //a0, a2, a4, a6, a1, a3, a5, a7 |
| b_sh = _mm_shuffle_epi8 (b, *(__m128i*) mask8_32_even_odd); //b0, b2, b4, b6, b1, b3, b5, b7 |
| v16x8.val[0] = _mm_unpacklo_epi16(a_sh, b_sh); //a0, b0, a2, b2, a4, b4, a6, b6 |
| v16x8.val[1] = _mm_unpackhi_epi16(a_sh, b_sh); //a1, b1, a3, b3, a5, b5, a7, b7 |
| return v16x8; |
| } |
| |
| _NEON2SSESTORAGE int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b); // VTRN.32 q0,q0 |
| _NEON2SSE_INLINE int32x4x2_t vtrnq_s32(int32x4_t a, int32x4_t b) // VTRN.32 q0,q0 |
| { |
| //may be not optimal solution compared with serial |
| int32x4x2_t v32x4; |
| __m128i a_sh, b_sh; |
| a_sh = _mm_shuffle_epi32 (a, 216); //a0, a2, a1, a3 |
| b_sh = _mm_shuffle_epi32 (b, 216); //b0, b2, b1, b3 |
| |
| v32x4.val[0] = _mm_unpacklo_epi32(a_sh, b_sh); //a0, b0, a2, b2 |
| v32x4.val[1] = _mm_unpackhi_epi32(a_sh, b_sh); //a1, b1, a3, b3 |
| return v32x4; |
| } |
| |
| _NEON2SSESTORAGE uint8x16x2_t vtrnq_u8(uint8x16_t a, uint8x16_t b); // VTRN.8 q0,q0 |
| #define vtrnq_u8 vtrnq_s8 |
| |
| _NEON2SSESTORAGE uint16x8x2_t vtrnq_u16(uint16x8_t a, uint16x8_t b); // VTRN.16 q0,q0 |
| #define vtrnq_u16 vtrnq_s16 |
| |
| _NEON2SSESTORAGE uint32x4x2_t vtrnq_u32(uint32x4_t a, uint32x4_t b); // VTRN.32 q0,q0 |
| #define vtrnq_u32 vtrnq_s32 |
| |
| _NEON2SSESTORAGE float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b); // VTRN.32 q0,q0 |
| _NEON2SSE_INLINE float32x4x2_t vtrnq_f32(float32x4_t a, float32x4_t b) // VTRN.32 q0,q0 |
| { |
| //may be not optimal solution compared with serial |
| float32x4x2_t f32x4; |
| __m128 a_sh, b_sh; |
| a_sh = _mm_shuffle_ps (a, a, _MM_SHUFFLE(3,1, 2, 0)); //a0, a2, a1, a3, need to check endiness |
| b_sh = _mm_shuffle_ps (b, b, _MM_SHUFFLE(3,1, 2, 0)); //b0, b2, b1, b3, need to check endiness |
| |
| f32x4.val[0] = _mm_unpacklo_ps(a_sh, b_sh); //a0, b0, a2, b2 |
| f32x4.val[1] = _mm_unpackhi_ps(a_sh, b_sh); //a1, b1, a3, b3 |
| return f32x4; |
| } |
| |
| _NEON2SSESTORAGE poly8x16x2_t vtrnq_p8(poly8x16_t a, poly8x16_t b); // VTRN.8 q0,q0 |
| #define vtrnq_p8 vtrnq_s8 |
| |
| _NEON2SSESTORAGE poly16x8x2_t vtrnq_p16(poly16x8_t a, poly16x8_t b); // VTRN.16 q0,q0 |
| #define vtrnq_p16 vtrnq_s16 |
| |
| //***************** Interleave elements *************************** |
| //***************************************************************** |
| //output has (a0,b0,a1,b1, a2,b2,.....) |
| _NEON2SSESTORAGE int8x8x2_t vzip_s8(int8x8_t a, int8x8_t b); // VZIP.8 d0,d0 |
| _NEON2SSE_INLINE int8x8x2_t vzip_s8(int8x8_t a, int8x8_t b) // VZIP.8 d0,d0 |
| { |
| int8x8x2_t val; |
| __m128i val0; |
| val0 = _mm_unpacklo_epi8(_pM128i(a), _pM128i(b)); |
| vst1q_s8(val.val, val0); //_mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); |
| return val; |
| } |
| |
| _NEON2SSESTORAGE int16x4x2_t vzip_s16(int16x4_t a, int16x4_t b); // VZIP.16 d0,d0 |
| _NEON2SSE_INLINE int16x4x2_t vzip_s16(int16x4_t a, int16x4_t b) // VZIP.16 d0,d0 |
| { |
| int16x4x2_t val; |
| __m128i val0; |
| val0 = _mm_unpacklo_epi16(_pM128i(a), _pM128i(b)); |
| vst1q_s16(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); |
| return val; |
| } |
| |
| _NEON2SSESTORAGE int32x2x2_t vzip_s32(int32x2_t a, int32x2_t b); // VZIP.32 d0,d0 |
| #define vzip_s32 vtrn_s32 |
| |
| _NEON2SSESTORAGE uint8x8x2_t vzip_u8(uint8x8_t a, uint8x8_t b); // VZIP.8 d0,d0 |
| #define vzip_u8 vzip_s8 |
| |
| _NEON2SSESTORAGE uint16x4x2_t vzip_u16(uint16x4_t a, uint16x4_t b); // VZIP.16 d0,d0 |
| #define vzip_u16 vzip_s16 |
| |
| _NEON2SSESTORAGE uint32x2x2_t vzip_u32(uint32x2_t a, uint32x2_t b); // VZIP.32 d0,d0 |
| #define vzip_u32 vzip_s32 |
| |
| _NEON2SSESTORAGE float32x2x2_t vzip_f32(float32x2_t a, float32x2_t b); // VZIP.32 d0,d0 |
| #define vzip_f32 vtrn_f32 |
| |
| _NEON2SSESTORAGE poly8x8x2_t vzip_p8(poly8x8_t a, poly8x8_t b); // VZIP.8 d0,d0 |
| #define vzip_p8 vzip_u8 |
| |
| _NEON2SSESTORAGE poly16x4x2_t vzip_p16(poly16x4_t a, poly16x4_t b); // VZIP.16 d0,d0 |
| #define vzip_p16 vzip_u16 |
| |
| _NEON2SSESTORAGE int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b); // VZIP.8 q0,q0 |
| _NEON2SSE_INLINE int8x16x2_t vzipq_s8(int8x16_t a, int8x16_t b) // VZIP.8 q0,q0 |
| { |
| int8x16x2_t r8x16; |
| r8x16.val[0] = _mm_unpacklo_epi8(a, b); |
| r8x16.val[1] = _mm_unpackhi_epi8(a, b); |
| return r8x16; |
| } |
| |
| _NEON2SSESTORAGE int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b); // VZIP.16 q0,q0 |
| _NEON2SSE_INLINE int16x8x2_t vzipq_s16(int16x8_t a, int16x8_t b) // VZIP.16 q0,q0 |
| { |
| int16x8x2_t r16x8; |
| r16x8.val[0] = _mm_unpacklo_epi16(a, b); |
| r16x8.val[1] = _mm_unpackhi_epi16(a, b); |
| return r16x8; |
| } |
| |
| _NEON2SSESTORAGE int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b); // VZIP.32 q0,q0 |
| _NEON2SSE_INLINE int32x4x2_t vzipq_s32(int32x4_t a, int32x4_t b) // VZIP.32 q0,q0 |
| { |
| int32x4x2_t r32x4; |
| r32x4.val[0] = _mm_unpacklo_epi32(a, b); |
| r32x4.val[1] = _mm_unpackhi_epi32(a, b); |
| return r32x4; |
| } |
| |
| _NEON2SSESTORAGE uint8x16x2_t vzipq_u8(uint8x16_t a, uint8x16_t b); // VZIP.8 q0,q0 |
| #define vzipq_u8 vzipq_s8 |
| |
| _NEON2SSESTORAGE uint16x8x2_t vzipq_u16(uint16x8_t a, uint16x8_t b); // VZIP.16 q0,q0 |
| #define vzipq_u16 vzipq_s16 |
| |
| _NEON2SSESTORAGE uint32x4x2_t vzipq_u32(uint32x4_t a, uint32x4_t b); // VZIP.32 q0,q0 |
| #define vzipq_u32 vzipq_s32 |
| |
| _NEON2SSESTORAGE float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b); // VZIP.32 q0,q0 |
| _NEON2SSE_INLINE float32x4x2_t vzipq_f32(float32x4_t a, float32x4_t b) // VZIP.32 q0,q0 |
| { |
| float32x4x2_t f32x4; |
| f32x4.val[0] = _mm_unpacklo_ps ( a, b); |
| f32x4.val[1] = _mm_unpackhi_ps ( a, b); |
| return f32x4; |
| } |
| |
| _NEON2SSESTORAGE poly8x16x2_t vzipq_p8(poly8x16_t a, poly8x16_t b); // VZIP.8 q0,q0 |
| #define vzipq_p8 vzipq_u8 |
| |
| _NEON2SSESTORAGE poly16x8x2_t vzipq_p16(poly16x8_t a, poly16x8_t b); // VZIP.16 q0,q0 |
| #define vzipq_p16 vzipq_u16 |
| |
| //*********************** De-Interleave elements ************************* |
| //************************************************************************* |
| //As the result of these functions first val contains (a0,a2,a4,....,b0,b2, b4,...) and the second val (a1,a3,a5,....b1,b3,b5...) |
| //no such functions in IA32 SIMD, shuffle is required |
| _NEON2SSESTORAGE int8x8x2_t vuzp_s8(int8x8_t a, int8x8_t b); // VUZP.8 d0,d0 |
| _NEON2SSE_INLINE int8x8x2_t vuzp_s8(int8x8_t a, int8x8_t b) // VUZP.8 d0,d0 |
| { |
| int8x8x2_t val; |
| __m128i tmp, val0; |
| _NEON2SSE_ALIGN_16 static const int8_t maskdlv8[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11,15}; |
| tmp = _mm_unpacklo_epi8(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3,...,a7,b7 |
| val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)maskdlv8); //(a0, a2, a4, a6, b0, b2, b4, b6), (a1, a3, a5, a7, b1,b3, b5, b7) |
| vst1q_s8(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); |
| return val; |
| } |
| |
| _NEON2SSESTORAGE int16x4x2_t vuzp_s16(int16x4_t a, int16x4_t b); // VUZP.16 d0,d0 |
| _NEON2SSE_INLINE int16x4x2_t vuzp_s16(int16x4_t a, int16x4_t b) // VUZP.16 d0,d0 |
| { |
| int16x4x2_t val; |
| __m128i tmp, val0; |
| _NEON2SSE_ALIGN_16 static const int8_t maskdlv16[16] = {0,1, 8,9, 2,3, 10,11, 4,5, 12,13, 6,7, 14,15}; |
| tmp = _mm_unpacklo_epi16(_pM128i(a), _pM128i(b)); //a0,b0,a1,b1,a2,b2,a3,b3 |
| val0 = _mm_shuffle_epi8 (tmp, *(__m128i*)maskdlv16); //a0,a2, b0, b2, a1,a3, b1,b3 |
| vst1q_s16(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); |
| return val; |
| } |
| |
| _NEON2SSESTORAGE int32x2x2_t vuzp_s32(int32x2_t a, int32x2_t b); // VUZP.32 d0,d0 |
| _NEON2SSE_INLINE int32x2x2_t vuzp_s32(int32x2_t a, int32x2_t b) // VUZP.32 d0,d0 |
| { |
| int32x2x2_t val; |
| __m128i val0; |
| val0 = _mm_unpacklo_epi32(_pM128i(a), _pM128i(b)); //a0,b0, a1,b1 |
| vst1q_s32(val.val, val0); // _mm_shuffle_epi32(val.val[0], _SWAP_HI_LOW32); |
| return val; |
| } |
| |
| _NEON2SSESTORAGE uint8x8x2_t vuzp_u8(uint8x8_t a, uint8x8_t b); // VUZP.8 d0,d0 |
| #define vuzp_u8 vuzp_s8 |
| |
| _NEON2SSESTORAGE uint16x4x2_t vuzp_u16(uint16x4_t a, uint16x4_t b); // VUZP.16 d0,d0 |
| #define vuzp_u16 vuzp_s16 |
| |
| _NEON2SSESTORAGE uint32x2x2_t vuzp_u32(uint32x2_t a, uint32x2_t b); // VUZP.32 d0,d0 |
| #define vuzp_u32 vuzp_s32 |
| |
| _NEON2SSESTORAGE float32x2x2_t vuzp_f32(float32x2_t a, float32x2_t b); // VUZP.32 d0,d0 |
| #define vuzp_f32 vzip_f32 |
| |
| _NEON2SSESTORAGE poly8x8x2_t vuzp_p8(poly8x8_t a, poly8x8_t b); // VUZP.8 d0,d0 |
| #define vuzp_p8 vuzp_u8 |
| |
| _NEON2SSESTORAGE poly16x4x2_t vuzp_p16(poly16x4_t a, poly16x4_t b); // VUZP.16 d0,d0 |
| #define vuzp_p16 vuzp_u16 |
| |
| _NEON2SSESTORAGE int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b); // VUZP.8 q0,q0 |
| _NEON2SSE_INLINE int8x16x2_t vuzpq_s8(int8x16_t a, int8x16_t b) // VUZP.8 q0,q0 |
| { |
| int8x16x2_t v8x16; |
| __m128i a_sh, b_sh; |
| a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_16_even_odd); //a0, a2, a4, a6, a8, a10, a12, a14, a1, a3, a5, a7, a9, a11, a13, a15 |
| b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_16_even_odd); //b0, b2, b4, b6, b8, b10, b12, b14, b1, b3, b5, b7, b9, b11, b13, b15 |
| //we need unpack64 to combine lower (upper) 64 bits from a with lower (upper) 64 bits from b |
| v8x16.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); ///a0, a2, a4, a6, a8, a10, a12, a14, b0, b2, b4, b6, b8, b10, b12, b14, |
| v8x16.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, a5, a7, a9, a11, a13, a15, b1, b3, b5, b7, b9, b11, b13, b15 |
| return v8x16; |
| } |
| |
| _NEON2SSESTORAGE int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b); // VUZP.16 q0,q0 |
| _NEON2SSE_INLINE int16x8x2_t vuzpq_s16(int16x8_t a, int16x8_t b) // VUZP.16 q0,q0 |
| { |
| int16x8x2_t v16x8; |
| __m128i a_sh, b_sh; |
| a_sh = _mm_shuffle_epi8 (a, *(__m128i*)mask8_32_even_odd); //a0, a2, a4, a6, a1, a3, a5, a7 |
| b_sh = _mm_shuffle_epi8 (b, *(__m128i*)mask8_32_even_odd); //b0, b2, b4, b6, b1, b3, b5, b7 |
| v16x8.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); //a0, a2, a4, a6, b0, b2, b4, b6 |
| v16x8.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, a5, a7, b1, b3, b5, b7 |
| return v16x8; |
| } |
| |
| _NEON2SSESTORAGE int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b); // VUZP.32 q0,q0 |
| _NEON2SSE_INLINE int32x4x2_t vuzpq_s32(int32x4_t a, int32x4_t b) // VUZP.32 q0,q0 |
| { |
| //may be not optimal solution compared with serial |
| int32x4x2_t v32x4; |
| __m128i a_sh, b_sh; |
| a_sh = _mm_shuffle_epi32 (a, 216); //a0, a2, a1, a3 |
| b_sh = _mm_shuffle_epi32 (b, 216); //b0, b2, b1, b3 |
| |
| v32x4.val[0] = _mm_unpacklo_epi64(a_sh, b_sh); //a0, a2, b0, b2 |
| v32x4.val[1] = _mm_unpackhi_epi64(a_sh, b_sh); //a1, a3, b1, b3 |
| return v32x4; |
| } |
| |
| _NEON2SSESTORAGE uint8x16x2_t vuzpq_u8(uint8x16_t a, uint8x16_t b); // VUZP.8 q0,q0 |
| #define vuzpq_u8 vuzpq_s8 |
| |
| _NEON2SSESTORAGE uint16x8x2_t vuzpq_u16(uint16x8_t a, uint16x8_t b); // VUZP.16 q0,q0 |
| #define vuzpq_u16 vuzpq_s16 |
| |
| _NEON2SSESTORAGE uint32x4x2_t vuzpq_u32(uint32x4_t a, uint32x4_t b); // VUZP.32 q0,q0 |
| #define vuzpq_u32 vuzpq_s32 |
| |
| _NEON2SSESTORAGE float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b); // VUZP.32 q0,q0 |
| _NEON2SSE_INLINE float32x4x2_t vuzpq_f32(float32x4_t a, float32x4_t b) // VUZP.32 q0,q0 |
| { |
| float32x4x2_t v32x4; |
| v32x4.val[0] = _mm_shuffle_ps(a, b, _MM_SHUFFLE(2,0, 2, 0)); //a0, a2, b0, b2 , need to check endianess however |
| v32x4.val[1] = _mm_shuffle_ps(a, b, _MM_SHUFFLE(3,1, 3, 1)); //a1, a3, b1, b3, need to check endianess however |
| return v32x4; |
| } |
| |
| _NEON2SSESTORAGE poly8x16x2_t vuzpq_p8(poly8x16_t a, poly8x16_t b); // VUZP.8 q0,q0 |
| #define vuzpq_p8 vuzpq_u8 |
| |
| _NEON2SSESTORAGE poly16x8x2_t vuzpq_p16(poly16x8_t a, poly16x8_t b); // VUZP.16 q0,q0 |
| #define vuzpq_p16 vuzpq_u16 |
| |
| //############################################################################################## |
| //*********************** Reinterpret cast intrinsics.****************************************** |
| //############################################################################################## |
| // Not a part of oficial NEON instruction set but available in gcc compiler ********************* |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_u32 (uint32x2_t t); |
| #define vreinterpret_p8_u32 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_u16 (uint16x4_t t); |
| #define vreinterpret_p8_u16 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_u8 (uint8x8_t t); |
| #define vreinterpret_p8_u8 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_s32 (int32x2_t t); |
| #define vreinterpret_p8_s32 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_s16 (int16x4_t t); |
| #define vreinterpret_p8_s16 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_s8 (int8x8_t t); |
| #define vreinterpret_p8_s8 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_u64 (uint64x1_t t); |
| #define vreinterpret_p8_u64 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_s64 (int64x1_t t); |
| #define vreinterpret_p8_s64 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_f32 (float32x2_t t); |
| #define vreinterpret_p8_f32 |
| |
| _NEON2SSESTORAGE poly8x8_t vreinterpret_p8_p16 (poly16x4_t t); |
| #define vreinterpret_p8_p16 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_u32 (uint32x4_t t); |
| #define vreinterpretq_p8_u32 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_u16 (uint16x8_t t); |
| #define vreinterpretq_p8_u16 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_u8 (uint8x16_t t); |
| #define vreinterpretq_p8_u8 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_s32 (int32x4_t t); |
| #define vreinterpretq_p8_s32 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_s16 (int16x8_t t); |
| #define vreinterpretq_p8_s16 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_s8 (int8x16_t t); |
| #define vreinterpretq_p8_s8 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_u64 (uint64x2_t t); |
| #define vreinterpretq_p8_u64 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_s64 (int64x2_t t); |
| #define vreinterpretq_p8_s64 |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_f32 (float32x4_t t); |
| #define vreinterpretq_p8_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE poly8x16_t vreinterpretq_p8_p16 (poly16x8_t t); |
| #define vreinterpretq_p8_p16 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_u32 (uint32x2_t t); |
| #define vreinterpret_p16_u32 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_u16 (uint16x4_t t); |
| #define vreinterpret_p16_u16 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_u8 (uint8x8_t t); |
| #define vreinterpret_p16_u8 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_s32 (int32x2_t t); |
| #define vreinterpret_p16_s32 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_s16 (int16x4_t t); |
| #define vreinterpret_p16_s16 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_s8 (int8x8_t t); |
| #define vreinterpret_p16_s8 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_u64 (uint64x1_t t); |
| #define vreinterpret_p16_u64 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_s64 (int64x1_t t); |
| #define vreinterpret_p16_s64 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_f32 (float32x2_t t); |
| #define vreinterpret_p16_f32 |
| |
| _NEON2SSESTORAGE poly16x4_t vreinterpret_p16_p8 (poly8x8_t t); |
| #define vreinterpret_p16_p8 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_u32 (uint32x4_t t); |
| #define vreinterpretq_p16_u32 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_u16 (uint16x8_t t); |
| #define vreinterpretq_p16_u16 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_s32 (int32x4_t t); |
| #define vreinterpretq_p16_s32 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_s16 (int16x8_t t); |
| #define vreinterpretq_p16_s16 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_s8 (int8x16_t t); |
| #define vreinterpretq_p16_s8 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_u64 (uint64x2_t t); |
| #define vreinterpretq_p16_u64 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_s64 (int64x2_t t); |
| #define vreinterpretq_p16_s64 |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_f32 (float32x4_t t); |
| #define vreinterpretq_p16_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE poly16x8_t vreinterpretq_p16_p8 (poly8x16_t t); |
| #define vreinterpretq_p16_p8 vreinterpretq_s16_p8 |
| |
| //**** Integer to float ****** |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_u32 (uint32x2_t t); |
| _NEON2SSE_INLINE float32x2_t vreinterpret_f32_u32 (uint32x2_t t) |
| { |
| return (*(__m64_128*)&(t)); |
| } |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_u16 (uint16x4_t t); |
| #define vreinterpret_f32_u16 vreinterpret_f32_u32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_u8 (uint8x8_t t); |
| #define vreinterpret_f32_u8 vreinterpret_f32_u32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_s32 (int32x2_t t); |
| #define vreinterpret_f32_s32 vreinterpret_f32_u32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_s16 (int16x4_t t); |
| #define vreinterpret_f32_s16 vreinterpret_f32_u32 |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_s8 (int8x8_t t); |
| #define vreinterpret_f32_s8 vreinterpret_f32_u32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_u64(uint64x1_t t); |
| #define vreinterpret_f32_u64 vreinterpret_f32_u32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_s64 (int64x1_t t); |
| #define vreinterpret_f32_s64 vreinterpret_f32_u32 |
| |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_p16 (poly16x4_t t); |
| #define vreinterpret_f32_p16 vreinterpret_f32_u32 |
| |
| _NEON2SSESTORAGE float32x2_t vreinterpret_f32_p8 (poly8x8_t t); |
| #define vreinterpret_f32_p8 vreinterpret_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_u32 (uint32x4_t t); |
| #define vreinterpretq_f32_u32(t) _M128(t) |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_u16 (uint16x8_t t); |
| #define vreinterpretq_f32_u16 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_u8 (uint8x16_t t); |
| #define vreinterpretq_f32_u8 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_s32 (int32x4_t t); |
| #define vreinterpretq_f32_s32 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_s16 (int16x8_t t); |
| #define vreinterpretq_f32_s16 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_s8 (int8x16_t t); |
| #define vreinterpretq_f32_s8 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_u64 (uint64x2_t t); |
| #define vreinterpretq_f32_u64 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_s64 (int64x2_t t); |
| #define vreinterpretq_f32_s64 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_p16 (poly16x8_t t); |
| #define vreinterpretq_f32_p16 vreinterpretq_f32_u32 |
| |
| _NEON2SSESTORAGE float32x4_t vreinterpretq_f32_p8 (poly8x16_t t); |
| #define vreinterpretq_f32_p8 vreinterpretq_f32_u32 |
| |
| //*** Integer type conversions ****************** |
| //no conversion necessary for the following functions because it is same data type |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_u32 (uint32x2_t t); |
| #define vreinterpret_s64_u32 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_u16 (uint16x4_t t); |
| #define vreinterpret_s64_u16 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_u8 (uint8x8_t t); |
| #define vreinterpret_s64_u8 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_s32 (int32x2_t t); |
| #define vreinterpret_s64_s32 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_s16 (int16x4_t t); |
| #define vreinterpret_s64_s16 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_s8 (int8x8_t t); |
| #define vreinterpret_s64_s8 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_u64 (uint64x1_t t); |
| #define vreinterpret_s64_u64 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_f32 (float32x2_t t); |
| #define vreinterpret_s64_f32 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_p16 (poly16x4_t t); |
| #define vreinterpret_s64_p16 |
| |
| _NEON2SSESTORAGE int64x1_t vreinterpret_s64_p8 (poly8x8_t t); |
| #define vreinterpret_s64_p8 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_u32 (uint32x4_t t); |
| #define vreinterpretq_s64_u32 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_s16 (uint16x8_t t); |
| #define vreinterpretq_s64_s16 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_u8 (uint8x16_t t); |
| #define vreinterpretq_s64_u8 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_s32 (int32x4_t t); |
| #define vreinterpretq_s64_s32 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_u16 (int16x8_t t); |
| #define vreinterpretq_s64_u16 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_s8 (int8x16_t t); |
| #define vreinterpretq_s64_s8 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_u64 (uint64x2_t t); |
| #define vreinterpretq_s64_u64 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_f32 (float32x4_t t); |
| #define vreinterpretq_s64_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_p16 (poly16x8_t t); |
| #define vreinterpretq_s64_p16 |
| |
| _NEON2SSESTORAGE int64x2_t vreinterpretq_s64_p8 (poly8x16_t t); |
| #define vreinterpretq_s64_p8 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_u32 (uint32x2_t t); |
| #define vreinterpret_u64_u32 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_u16 (uint16x4_t t); |
| #define vreinterpret_u64_u16 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_u8 (uint8x8_t t); |
| #define vreinterpret_u64_u8 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_s32 (int32x2_t t); |
| #define vreinterpret_u64_s32 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_s16 (int16x4_t t); |
| #define vreinterpret_u64_s16 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_s8 (int8x8_t t); |
| #define vreinterpret_u64_s8 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_s64 (int64x1_t t); |
| #define vreinterpret_u64_s64 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_f32 (float32x2_t t); |
| #define vreinterpret_u64_f32 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_p16 (poly16x4_t t); |
| #define vreinterpret_u64_p16 |
| |
| _NEON2SSESTORAGE uint64x1_t vreinterpret_u64_p8 (poly8x8_t t); |
| #define vreinterpret_u64_p8 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_u32 (uint32x4_t t); |
| #define vreinterpretq_u64_u32 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_u16 (uint16x8_t t); |
| #define vreinterpretq_u64_u16 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_u8 (uint8x16_t t); |
| #define vreinterpretq_u64_u8 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_s32 (int32x4_t t); |
| #define vreinterpretq_u64_s32 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_s16 (int16x8_t t); |
| #define vreinterpretq_u64_s16 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_s8 (int8x16_t t); |
| #define vreinterpretq_u64_s8 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_s64 (int64x2_t t); |
| #define vreinterpretq_u64_s64 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_f32 (float32x4_t t); |
| #define vreinterpretq_u64_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_p16 (poly16x8_t t); |
| #define vreinterpretq_u64_p16 |
| |
| _NEON2SSESTORAGE uint64x2_t vreinterpretq_u64_p8 (poly8x16_t t); |
| #define vreinterpretq_u64_p8 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_u32 (uint32x2_t t); |
| #define vreinterpret_s8_u32 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_u16 (uint16x4_t t); |
| #define vreinterpret_s8_u16 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_u8 (uint8x8_t t); |
| #define vreinterpret_s8_u8 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_s32 (int32x2_t t); |
| #define vreinterpret_s8_s32 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_s16 (int16x4_t t); |
| #define vreinterpret_s8_s16 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_u64 (uint64x1_t t); |
| #define vreinterpret_s8_u64 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_s64 (int64x1_t t); |
| #define vreinterpret_s8_s64 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_f32 (float32x2_t t); |
| #define vreinterpret_s8_f32 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_p16 (poly16x4_t t); |
| #define vreinterpret_s8_p16 |
| |
| _NEON2SSESTORAGE int8x8_t vreinterpret_s8_p8 (poly8x8_t t); |
| #define vreinterpret_s8_p8 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_u32 (uint32x4_t t); |
| #define vreinterpretq_s8_u32 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_u16 (uint16x8_t t); |
| #define vreinterpretq_s8_u16 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_u8 (uint8x16_t t); |
| #define vreinterpretq_s8_u8 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_s32 (int32x4_t t); |
| #define vreinterpretq_s8_s32 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_s16 (int16x8_t t); |
| #define vreinterpretq_s8_s16 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_u64 (uint64x2_t t); |
| #define vreinterpretq_s8_u64 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_s64 (int64x2_t t); |
| #define vreinterpretq_s8_s64 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_f32 (float32x4_t t); |
| #define vreinterpretq_s8_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_p16 (poly16x8_t t); |
| #define vreinterpretq_s8_p16 |
| |
| _NEON2SSESTORAGE int8x16_t vreinterpretq_s8_p8 (poly8x16_t t); |
| #define vreinterpretq_s8_p8 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_u32 (uint32x2_t t); |
| #define vreinterpret_s16_u32 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_u16 (uint16x4_t t); |
| #define vreinterpret_s16_u16 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_u8 (uint8x8_t t); |
| #define vreinterpret_s16_u8 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_s32 (int32x2_t t); |
| #define vreinterpret_s16_s32 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_s8 (int8x8_t t); |
| #define vreinterpret_s16_s8 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_u64 (uint64x1_t t); |
| #define vreinterpret_s16_u64 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_s64 (int64x1_t t); |
| #define vreinterpret_s16_s64 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_f32 (float32x2_t t); |
| #define vreinterpret_s16_f32 |
| |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_p16 (poly16x4_t t); |
| #define vreinterpret_s16_p16 |
| |
| _NEON2SSESTORAGE int16x4_t vreinterpret_s16_p8 (poly8x8_t t); |
| #define vreinterpret_s16_p8 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_u32 (uint32x4_t t); |
| #define vreinterpretq_s16_u32 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_u16 (uint16x8_t t); |
| #define vreinterpretq_s16_u16 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_u8 (uint8x16_t t); |
| #define vreinterpretq_s16_u8 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_s32 (int32x4_t t); |
| #define vreinterpretq_s16_s32 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_s8 (int8x16_t t); |
| #define vreinterpretq_s16_s8 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_u64 (uint64x2_t t); |
| #define vreinterpretq_s16_u64 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_s64 (int64x2_t t); |
| #define vreinterpretq_s16_s64 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_f32 (float32x4_t t); |
| #define vreinterpretq_s16_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_p16 (poly16x8_t t); |
| #define vreinterpretq_s16_p16 |
| |
| _NEON2SSESTORAGE int16x8_t vreinterpretq_s16_p8 (poly8x16_t t); |
| #define vreinterpretq_s16_p8 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_u32 (uint32x2_t t); |
| #define vreinterpret_s32_u32 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_u16 (uint16x4_t t); |
| #define vreinterpret_s32_u16 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_u8 (uint8x8_t t); |
| #define vreinterpret_s32_u8 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_s16 (int16x4_t t); |
| #define vreinterpret_s32_s16 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_s8 (int8x8_t t); |
| #define vreinterpret_s32_s8 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_u64 (uint64x1_t t); |
| #define vreinterpret_s32_u64 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_s64 (int64x1_t t); |
| #define vreinterpret_s32_s64 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_f32 (float32x2_t t); |
| #define vreinterpret_s32_f32 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_p16 (poly16x4_t t); |
| #define vreinterpret_s32_p16 |
| |
| _NEON2SSESTORAGE int32x2_t vreinterpret_s32_p8 (poly8x8_t t); |
| #define vreinterpret_s32_p8 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_u32 (uint32x4_t t); |
| #define vreinterpretq_s32_u32 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_u16 (uint16x8_t t); |
| #define vreinterpretq_s32_u16 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_u8 (uint8x16_t t); |
| #define vreinterpretq_s32_u8 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_s16 (int16x8_t t); |
| #define vreinterpretq_s32_s16 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_s8 (int8x16_t t); |
| #define vreinterpretq_s32_s8 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_u64 (uint64x2_t t); |
| #define vreinterpretq_s32_u64 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_s64 (int64x2_t t); |
| #define vreinterpretq_s32_s64 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_f32 (float32x4_t t); |
| #define vreinterpretq_s32_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_p16 (poly16x8_t t); |
| #define vreinterpretq_s32_p16 |
| |
| _NEON2SSESTORAGE int32x4_t vreinterpretq_s32_p8 (poly8x16_t t); |
| #define vreinterpretq_s32_p8 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_u32 (uint32x2_t t); |
| #define vreinterpret_u8_u32 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_u16 (uint16x4_t t); |
| #define vreinterpret_u8_u16 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_s32 (int32x2_t t); |
| #define vreinterpret_u8_s32 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_s16 (int16x4_t t); |
| #define vreinterpret_u8_s16 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_s8 (int8x8_t t); |
| #define vreinterpret_u8_s8 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_u64 (uint64x1_t t); |
| #define vreinterpret_u8_u64 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_s64 (int64x1_t t); |
| #define vreinterpret_u8_s64 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_f32 (float32x2_t t); |
| #define vreinterpret_u8_f32 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_p16 (poly16x4_t t); |
| #define vreinterpret_u8_p16 |
| |
| _NEON2SSESTORAGE uint8x8_t vreinterpret_u8_p8 (poly8x8_t t); |
| #define vreinterpret_u8_p8 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_u32 (uint32x4_t t); |
| #define vreinterpretq_u8_u32 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_u16 (uint16x8_t t); |
| #define vreinterpretq_u8_u16 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_s32 (int32x4_t t); |
| #define vreinterpretq_u8_s32 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_s16 (int16x8_t t); |
| #define vreinterpretq_u8_s16 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_s8 (int8x16_t t); |
| #define vreinterpretq_u8_s8 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_u64 (uint64x2_t t); |
| #define vreinterpretq_u8_u64 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_s64 (int64x2_t t); |
| #define vreinterpretq_u8_s64 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_f32 (float32x4_t t); |
| #define vreinterpretq_u8_f32(t) _M128i(t) |
| |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_p16 (poly16x8_t t); |
| #define vreinterpretq_u8_p16 |
| |
| _NEON2SSESTORAGE uint8x16_t vreinterpretq_u8_p8 (poly8x16_t t); |
| #define vreinterpretq_u8_p8 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_u32 (uint32x2_t t); |
| #define vreinterpret_u16_u32 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_u8 (uint8x8_t t); |
| #define vreinterpret_u16_u8 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_s32 (int32x2_t t); |
| #define vreinterpret_u16_s32 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_s16 (int16x4_t t); |
| #define vreinterpret_u16_s16 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_s8 (int8x8_t t); |
| #define vreinterpret_u16_s8 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_u64 (uint64x1_t t); |
| #define vreinterpret_u16_u64 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_s64 (int64x1_t t); |
| #define vreinterpret_u16_s64 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_f32 (float32x2_t t); |
| #define vreinterpret_u16_f32 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_p16 (poly16x4_t t); |
| #define vreinterpret_u16_p16 |
| |
| _NEON2SSESTORAGE uint16x4_t vreinterpret_u16_p8 (poly8x8_t t); |
| #define vreinterpret_u16_p8 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_u32 (uint32x4_t t); |
| #define vreinterpretq_u16_u32 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_u8 (uint8x16_t t); |
| #define vreinterpretq_u16_u8 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_s32 (int32x4_t t); |
| #define vreinterpretq_u16_s32 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_s16 (int16x8_t t); |
| #define vreinterpretq_u16_s16 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_s8 (int8x16_t t); |
| #define vreinterpretq_u16_s8 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_u64 (uint64x2_t t); |
| #define vreinterpretq_u16_u64 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_s64 (int64x2_t t); |
| #define vreinterpretq_u16_s64 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_f32 (float32x4_t t); |
| #define vreinterpretq_u16_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_p16 (poly16x8_t t); |
| #define vreinterpretq_u16_p16 |
| |
| _NEON2SSESTORAGE uint16x8_t vreinterpretq_u16_p8 (poly8x16_t t); |
| #define vreinterpretq_u16_p8 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_u16 (uint16x4_t t); |
| #define vreinterpret_u32_u16 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_u8 (uint8x8_t t); |
| #define vreinterpret_u32_u8 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_s32 (int32x2_t t); |
| #define vreinterpret_u32_s32 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_s16 (int16x4_t t); |
| #define vreinterpret_u32_s16 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_s8 (int8x8_t t); |
| #define vreinterpret_u32_s8 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_u64 (uint64x1_t t); |
| #define vreinterpret_u32_u64 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_s64 (int64x1_t t); |
| #define vreinterpret_u32_s64 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_f32 (float32x2_t t); |
| #define vreinterpret_u32_f32 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_p16 (poly16x4_t t); |
| #define vreinterpret_u32_p16 |
| |
| _NEON2SSESTORAGE uint32x2_t vreinterpret_u32_p8 (poly8x8_t t); |
| #define vreinterpret_u32_p8 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_u16 (uint16x8_t t); |
| #define vreinterpretq_u32_u16 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_u8 (uint8x16_t t); |
| #define vreinterpretq_u32_u8 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_s32 (int32x4_t t); |
| #define vreinterpretq_u32_s32 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_s16 (int16x8_t t); |
| #define vreinterpretq_u32_s16 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_s8 (int8x16_t t); |
| #define vreinterpretq_u32_s8 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_u64 (uint64x2_t t); |
| #define vreinterpretq_u32_u64 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_s64 (int64x2_t t); |
| #define vreinterpretq_u32_s64 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_f32 (float32x4_t t); |
| #define vreinterpretq_u32_f32(t) _M128i(t) |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_p16 (poly16x8_t t); |
| #define vreinterpretq_u32_p16 |
| |
| _NEON2SSESTORAGE uint32x4_t vreinterpretq_u32_p8 (poly8x16_t t); |
| #define vreinterpretq_u32_p8 |
| |
| //************* Round ****************** |
| _NEON2SSESTORAGE float32x4_t vrndnq_f32(float32x4_t a); |
| #ifdef USE_SSE4 |
| # define vrndnq_f32(a) _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) |
| #else |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING( float32x4_t vrndnq_f32(float32x4_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| int i; |
| _NEON2SSE_ALIGN_16 float32_t res[4]; |
| _mm_store_ps(res, a); |
| for(i = 0; i<4; i++) { |
| res[i] = nearbyintf(res[i]); |
| } |
| return _mm_load_ps(res); |
| } |
| #endif |
| |
| |
| _NEON2SSESTORAGE float64x2_t vrndnq_f64(float64x2_t a); |
| #ifdef USE_SSE4 |
| # define vrndnq_f64(a) _mm_round_pd(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) |
| #else |
| _NEON2SSE_INLINE _NEON2SSE_PERFORMANCE_WARNING(float64x2_t vrndnq_f64(float64x2_t a), _NEON2SSE_REASON_SLOW_SERIAL) |
| { |
| _NEON2SSE_ALIGN_16 float64_t res[2]; |
| _mm_store_pd(res, a); |
| res[0] = nearbyintf(res[0]); |
| res[1] = nearbyintf(res[1]); |
| return _mm_load_pd(res); |
| } |
| #endif |
| |
| |
| |
| //************* Sqrt ****************** |
| _NEON2SSESTORAGE float32x4_t vsqrtq_f32(float32x4_t a); |
| #define vsqrtq_f32 _mm_sqrt_ps |
| |
| _NEON2SSESTORAGE float64x2_t vsqrtq_f64(float64x2_t a); |
| #define vsqrtq_f64 _mm_sqrt_pd |
| |
| |
| #endif /* NEON2SSE_H */ |