| /*M/////////////////////////////////////////////////////////////////////////////////////// |
| // |
| // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| // |
| // By downloading, copying, installing or using the software you agree to this license. |
| // If you do not agree to this license, do not download, install, |
| // copy or use the software. |
| // |
| // |
| // Intel License Agreement |
| // For Open Source Computer Vision Library |
| // |
| // Copyright (C) 2002, Intel Corporation, all rights reserved. |
| // Third party copyrights are property of their respective owners. |
| // |
| // Redistribution and use in source and binary forms, with or without modification, |
| // are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // * The name of Intel Corporation may not be used to endorse or promote products |
| // derived from this software without specific prior written permission. |
| // |
| // This software is provided by the copyright holders and contributors "as is" and |
| // any express or implied warranties, including, but not limited to, the implied |
| // warranties of merchantability and fitness for a particular purpose are disclaimed. |
| // In no event shall the Intel Corporation or contributors be liable for any direct, |
| // indirect, incidental, special, exemplary, or consequential damages |
| // (including, but not limited to, procurement of substitute goods or services; |
| // loss of use, data, or profits; or business interruption) however caused |
| // and on any theory of liability, whether in contract, strict liability, |
| // or tort (including negligence or otherwise) arising in any way out of |
| // the use of this software, even if advised of the possibility of such damage. |
| // |
| //M*/ |
| |
| #include "_cvaux.h" |
| |
| #if _MSC_VER >= 1200 |
| #pragma warning(disable:4786) // Disable MSVC warnings in the standard library. |
| #pragma warning(disable:4100) |
| #pragma warning(disable:4512) |
| #endif |
| #include <stdio.h> |
| #include <map> |
| #include <algorithm> |
| #if _MSC_VER >= 1200 |
| #pragma warning(default:4100) |
| #pragma warning(default:4512) |
| #endif |
| |
| #define ARRAY_SIZEOF(a) (sizeof(a)/sizeof((a)[0])) |
| |
| static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size); |
| static void DrawEtalon(IplImage *img, CvPoint2D32f *corners, |
| int corner_count, CvSize etalon_size, int draw_ordered); |
| static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]); |
| static void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]); |
| static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p); |
| static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1, |
| CvPoint3D32f o2, CvPoint3D32f p2, |
| CvPoint3D32f &r1, CvPoint3D32f &r2); |
| |
| ///////////////////////////////// |
| // cv3dTrackerCalibrateCameras // |
| ///////////////////////////////// |
| CV_IMPL CvBool cv3dTrackerCalibrateCameras(int num_cameras, |
| const Cv3dTrackerCameraIntrinsics camera_intrinsics[], // size is num_cameras |
| CvSize etalon_size, |
| float square_size, |
| IplImage *samples[], // size is num_cameras |
| Cv3dTrackerCameraInfo camera_info[]) // size is num_cameras |
| { |
| CV_FUNCNAME("cv3dTrackerCalibrateCameras"); |
| const int num_points = etalon_size.width * etalon_size.height; |
| int cameras_done = 0; // the number of cameras whose positions have been determined |
| CvPoint3D32f *object_points = NULL; // real-world coordinates of checkerboard points |
| CvPoint2D32f *points = NULL; // 2d coordinates of checkerboard points as seen by a camera |
| IplImage *gray_img = NULL; // temporary image for color conversion |
| IplImage *tmp_img = NULL; // temporary image used by FindChessboardCornerGuesses |
| int c, i, j; |
| |
| if (etalon_size.width < 3 || etalon_size.height < 3) |
| CV_ERROR(CV_StsBadArg, "Chess board size is invalid"); |
| |
| for (c = 0; c < num_cameras; c++) |
| { |
| // CV_CHECK_IMAGE is not available in the cvaux library |
| // so perform the checks inline. |
| |
| //CV_CALL(CV_CHECK_IMAGE(samples[c])); |
| |
| if( samples[c] == NULL ) |
| CV_ERROR( CV_HeaderIsNull, "Null image" ); |
| |
| if( samples[c]->dataOrder != IPL_DATA_ORDER_PIXEL && samples[c]->nChannels > 1 ) |
| CV_ERROR( CV_BadOrder, "Unsupported image format" ); |
| |
| if( samples[c]->maskROI != 0 || samples[c]->tileInfo != 0 ) |
| CV_ERROR( CV_StsBadArg, "Unsupported image format" ); |
| |
| if( samples[c]->imageData == 0 ) |
| CV_ERROR( CV_BadDataPtr, "Null image data" ); |
| |
| if( samples[c]->roi && |
| ((samples[c]->roi->xOffset | samples[c]->roi->yOffset |
| | samples[c]->roi->width | samples[c]->roi->height) < 0 || |
| samples[c]->roi->xOffset + samples[c]->roi->width > samples[c]->width || |
| samples[c]->roi->yOffset + samples[c]->roi->height > samples[c]->height || |
| (unsigned) (samples[c]->roi->coi) > (unsigned) (samples[c]->nChannels))) |
| CV_ERROR( CV_BadROISize, "Invalid ROI" ); |
| |
| // End of CV_CHECK_IMAGE inline expansion |
| |
| if (samples[c]->depth != IPL_DEPTH_8U) |
| CV_ERROR(CV_BadDepth, "Channel depth of source image must be 8"); |
| |
| if (samples[c]->nChannels != 3 && samples[c]->nChannels != 1) |
| CV_ERROR(CV_BadNumChannels, "Source image must have 1 or 3 channels"); |
| } |
| |
| CV_CALL(object_points = (CvPoint3D32f *)cvAlloc(num_points * sizeof(CvPoint3D32f))); |
| CV_CALL(points = (CvPoint2D32f *)cvAlloc(num_points * sizeof(CvPoint2D32f))); |
| |
| // fill in the real-world coordinates of the checkerboard points |
| FillObjectPoints(object_points, etalon_size, square_size); |
| |
| for (c = 0; c < num_cameras; c++) |
| { |
| CvSize image_size = cvSize(samples[c]->width, samples[c]->height); |
| IplImage *img; |
| |
| // The input samples are not required to all have the same size or color |
| // format. If they have different sizes, the temporary images are |
| // reallocated as necessary. |
| if (samples[c]->nChannels == 3) |
| { |
| // convert to gray |
| if (gray_img == NULL || gray_img->width != samples[c]->width || |
| gray_img->height != samples[c]->height ) |
| { |
| if (gray_img != NULL) |
| cvReleaseImage(&gray_img); |
| CV_CALL(gray_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1)); |
| } |
| |
| CV_CALL(cvCvtColor(samples[c], gray_img, CV_BGR2GRAY)); |
| |
| img = gray_img; |
| } |
| else |
| { |
| // no color conversion required |
| img = samples[c]; |
| } |
| |
| if (tmp_img == NULL || tmp_img->width != samples[c]->width || |
| tmp_img->height != samples[c]->height ) |
| { |
| if (tmp_img != NULL) |
| cvReleaseImage(&tmp_img); |
| CV_CALL(tmp_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1)); |
| } |
| |
| int count = num_points; |
| bool found = cvFindChessBoardCornerGuesses(img, tmp_img, 0, |
| etalon_size, points, &count) != 0; |
| if (count == 0) |
| continue; |
| |
| // If found is true, it means all the points were found (count = num_points). |
| // If found is false but count is non-zero, it means that not all points were found. |
| |
| cvFindCornerSubPix(img, points, count, cvSize(5,5), cvSize(-1,-1), |
| cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.01f)); |
| |
| // If the image origin is BL (bottom-left), fix the y coordinates |
| // so they are relative to the true top of the image. |
| if (samples[c]->origin == IPL_ORIGIN_BL) |
| { |
| for (i = 0; i < count; i++) |
| points[i].y = samples[c]->height - 1 - points[i].y; |
| } |
| |
| if (found) |
| { |
| // Make sure x coordinates are increasing and y coordinates are decreasing. |
| // (The y coordinate of point (0,0) should be the greatest, because the point |
| // on the checkerboard that is the origin is nearest the bottom of the image.) |
| // This is done after adjusting the y coordinates according to the image origin. |
| if (points[0].x > points[1].x) |
| { |
| // reverse points in each row |
| for (j = 0; j < etalon_size.height; j++) |
| { |
| CvPoint2D32f *row = &points[j*etalon_size.width]; |
| for (i = 0; i < etalon_size.width/2; i++) |
| std::swap(row[i], row[etalon_size.width-i-1]); |
| } |
| } |
| |
| if (points[0].y < points[etalon_size.width].y) |
| { |
| // reverse points in each column |
| for (i = 0; i < etalon_size.width; i++) |
| { |
| for (j = 0; j < etalon_size.height/2; j++) |
| std::swap(points[i+j*etalon_size.width], |
| points[i+(etalon_size.height-j-1)*etalon_size.width]); |
| } |
| } |
| } |
| |
| DrawEtalon(samples[c], points, count, etalon_size, found); |
| |
| if (!found) |
| continue; |
| |
| float rotVect[3]; |
| float rotMatr[9]; |
| float transVect[3]; |
| |
| cvFindExtrinsicCameraParams(count, |
| image_size, |
| points, |
| object_points, |
| const_cast<float *>(camera_intrinsics[c].focal_length), |
| camera_intrinsics[c].principal_point, |
| const_cast<float *>(camera_intrinsics[c].distortion), |
| rotVect, |
| transVect); |
| |
| // Check result against an arbitrary limit to eliminate impossible values. |
| // (If the chess board were truly that far away, the camera wouldn't be able to |
| // see the squares.) |
| if (transVect[0] > 1000*square_size |
| || transVect[1] > 1000*square_size |
| || transVect[2] > 1000*square_size) |
| { |
| // ignore impossible results |
| continue; |
| } |
| |
| CvMat rotMatrDescr = cvMat(3, 3, CV_32FC1, rotMatr); |
| CvMat rotVectDescr = cvMat(3, 1, CV_32FC1, rotVect); |
| |
| /* Calc rotation matrix by Rodrigues Transform */ |
| cvRodrigues2( &rotVectDescr, &rotMatrDescr ); |
| |
| //combine the two transformations into one matrix |
| //order is important! rotations are not commutative |
| float tmat[4][4] = { { 1.f, 0.f, 0.f, 0.f }, |
| { 0.f, 1.f, 0.f, 0.f }, |
| { 0.f, 0.f, 1.f, 0.f }, |
| { transVect[0], transVect[1], transVect[2], 1.f } }; |
| |
| float rmat[4][4] = { { rotMatr[0], rotMatr[1], rotMatr[2], 0.f }, |
| { rotMatr[3], rotMatr[4], rotMatr[5], 0.f }, |
| { rotMatr[6], rotMatr[7], rotMatr[8], 0.f }, |
| { 0.f, 0.f, 0.f, 1.f } }; |
| |
| |
| MultMatrix(camera_info[c].mat, tmat, rmat); |
| |
| // change the transformation of the cameras to put them in the world coordinate |
| // system we want to work with. |
| |
| // Start with an identity matrix; then fill in the values to accomplish |
| // the desired transformation. |
| float smat[4][4] = { { 1.f, 0.f, 0.f, 0.f }, |
| { 0.f, 1.f, 0.f, 0.f }, |
| { 0.f, 0.f, 1.f, 0.f }, |
| { 0.f, 0.f, 0.f, 1.f } }; |
| |
| // First, reflect through the origin by inverting all three axes. |
| smat[0][0] = -1.f; |
| smat[1][1] = -1.f; |
| smat[2][2] = -1.f; |
| MultMatrix(tmat, camera_info[c].mat, smat); |
| |
| // Scale x and y coordinates by the focal length (allowing for non-square pixels |
| // and/or non-symmetrical lenses). |
| smat[0][0] = 1.0f / camera_intrinsics[c].focal_length[0]; |
| smat[1][1] = 1.0f / camera_intrinsics[c].focal_length[1]; |
| smat[2][2] = 1.0f; |
| MultMatrix(camera_info[c].mat, smat, tmat); |
| |
| camera_info[c].principal_point = camera_intrinsics[c].principal_point; |
| camera_info[c].valid = true; |
| |
| cameras_done++; |
| } |
| |
| exit: |
| cvReleaseImage(&gray_img); |
| cvReleaseImage(&tmp_img); |
| cvFree(&object_points); |
| cvFree(&points); |
| |
| return cameras_done == num_cameras; |
| } |
| |
| // fill in the real-world coordinates of the checkerboard points |
| static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size) |
| { |
| int x, y, i; |
| |
| for (y = 0, i = 0; y < etalon_size.height; y++) |
| { |
| for (x = 0; x < etalon_size.width; x++, i++) |
| { |
| obj_points[i].x = square_size * x; |
| obj_points[i].y = square_size * y; |
| obj_points[i].z = 0; |
| } |
| } |
| } |
| |
| |
| // Mark the points found on the input image |
| // The marks are drawn multi-colored if all the points were found. |
| static void DrawEtalon(IplImage *img, CvPoint2D32f *corners, |
| int corner_count, CvSize etalon_size, int draw_ordered) |
| { |
| const int r = 4; |
| int i; |
| int x, y; |
| CvPoint prev_pt = { 0, 0 }; |
| static const CvScalar rgb_colors[] = { |
| {{0,0,255}}, |
| {{0,128,255}}, |
| {{0,200,200}}, |
| {{0,255,0}}, |
| {{200,200,0}}, |
| {{255,0,0}}, |
| {{255,0,255}} }; |
| static const CvScalar gray_colors[] = { |
| {{80}}, {{120}}, {{160}}, {{200}}, {{100}}, {{140}}, {{180}} |
| }; |
| const CvScalar* colors = img->nChannels == 3 ? rgb_colors : gray_colors; |
| |
| CvScalar color = colors[0]; |
| for (y = 0, i = 0; y < etalon_size.height; y++) |
| { |
| if (draw_ordered) |
| color = colors[y % ARRAY_SIZEOF(rgb_colors)]; |
| |
| for (x = 0; x < etalon_size.width && i < corner_count; x++, i++) |
| { |
| CvPoint pt; |
| pt.x = cvRound(corners[i].x); |
| pt.y = cvRound(corners[i].y); |
| if (img->origin == IPL_ORIGIN_BL) |
| pt.y = img->height - 1 - pt.y; |
| |
| if (draw_ordered) |
| { |
| if (i != 0) |
| cvLine(img, prev_pt, pt, color, 1, CV_AA); |
| prev_pt = pt; |
| } |
| |
| cvLine( img, cvPoint(pt.x - r, pt.y - r), |
| cvPoint(pt.x + r, pt.y + r), color, 1, CV_AA ); |
| cvLine( img, cvPoint(pt.x - r, pt.y + r), |
| cvPoint(pt.x + r, pt.y - r), color, 1, CV_AA ); |
| cvCircle( img, pt, r+1, color, 1, CV_AA ); |
| } |
| } |
| } |
| |
| // Find the midpoint of the line segment between two points. |
| static CvPoint3D32f midpoint(const CvPoint3D32f &p1, const CvPoint3D32f &p2) |
| { |
| return cvPoint3D32f((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2); |
| } |
| |
| static void operator +=(CvPoint3D32f &p1, const CvPoint3D32f &p2) |
| { |
| p1.x += p2.x; |
| p1.y += p2.y; |
| p1.z += p2.z; |
| } |
| |
| static CvPoint3D32f operator /(const CvPoint3D32f &p, int d) |
| { |
| return cvPoint3D32f(p.x/d, p.y/d, p.z/d); |
| } |
| |
| static const Cv3dTracker2dTrackedObject *find(const Cv3dTracker2dTrackedObject v[], int num_objects, int id) |
| { |
| for (int i = 0; i < num_objects; i++) |
| { |
| if (v[i].id == id) |
| return &v[i]; |
| } |
| return NULL; |
| } |
| |
| #define CAMERA_POS(c) (cvPoint3D32f((c).mat[3][0], (c).mat[3][1], (c).mat[3][2])) |
| |
| ////////////////////////////// |
| // cv3dTrackerLocateObjects // |
| ////////////////////////////// |
| CV_IMPL int cv3dTrackerLocateObjects(int num_cameras, int num_objects, |
| const Cv3dTrackerCameraInfo camera_info[], // size is num_cameras |
| const Cv3dTracker2dTrackedObject tracking_info[], // size is num_objects*num_cameras |
| Cv3dTrackerTrackedObject tracked_objects[]) // size is num_objects |
| { |
| /*CV_FUNCNAME("cv3dTrackerLocateObjects");*/ |
| int found_objects = 0; |
| |
| // count how many cameras could see each object |
| std::map<int, int> count; |
| for (int c = 0; c < num_cameras; c++) |
| { |
| if (!camera_info[c].valid) |
| continue; |
| |
| for (int i = 0; i < num_objects; i++) |
| { |
| const Cv3dTracker2dTrackedObject *o = &tracking_info[c*num_objects+i]; |
| if (o->id != -1) |
| count[o->id]++; |
| } |
| } |
| |
| // process each object that was seen by at least two cameras |
| for (std::map<int, int>::iterator i = count.begin(); i != count.end(); i++) |
| { |
| if (i->second < 2) |
| continue; // ignore object seen by only one camera |
| int id = i->first; |
| |
| // find an approximation of the objects location for each pair of cameras that |
| // could see this object, and average them |
| CvPoint3D32f total = cvPoint3D32f(0, 0, 0); |
| int weight = 0; |
| |
| for (int c1 = 0; c1 < num_cameras-1; c1++) |
| { |
| if (!camera_info[c1].valid) |
| continue; |
| |
| const Cv3dTracker2dTrackedObject *o1 = find(&tracking_info[c1*num_objects], |
| num_objects, id); |
| if (o1 == NULL) |
| continue; // this camera didn't see this object |
| |
| CvPoint3D32f p1a = CAMERA_POS(camera_info[c1]); |
| CvPoint3D32f p1b = ImageCStoWorldCS(camera_info[c1], o1->p); |
| |
| for (int c2 = c1 + 1; c2 < num_cameras; c2++) |
| { |
| if (!camera_info[c2].valid) |
| continue; |
| |
| const Cv3dTracker2dTrackedObject *o2 = find(&tracking_info[c2*num_objects], |
| num_objects, id); |
| if (o2 == NULL) |
| continue; // this camera didn't see this object |
| |
| CvPoint3D32f p2a = CAMERA_POS(camera_info[c2]); |
| CvPoint3D32f p2b = ImageCStoWorldCS(camera_info[c2], o2->p); |
| |
| // these variables are initialized simply to avoid erroneous error messages |
| // from the compiler |
| CvPoint3D32f r1 = cvPoint3D32f(0, 0, 0); |
| CvPoint3D32f r2 = cvPoint3D32f(0, 0, 0); |
| |
| // find the intersection of the two lines (or the points of closest |
| // approach, if they don't intersect) |
| if (!intersection(p1a, p1b, p2a, p2b, r1, r2)) |
| continue; |
| |
| total += midpoint(r1, r2); |
| weight++; |
| } |
| } |
| |
| CvPoint3D32f center = total/weight; |
| tracked_objects[found_objects++] = cv3dTrackerTrackedObject(id, center); |
| } |
| |
| return found_objects; |
| } |
| |
| #define EPS 1e-9 |
| |
| // Compute the determinant of the 3x3 matrix represented by 3 row vectors. |
| static inline double det(CvPoint3D32f v1, CvPoint3D32f v2, CvPoint3D32f v3) |
| { |
| return v1.x*v2.y*v3.z + v1.z*v2.x*v3.y + v1.y*v2.z*v3.x |
| - v1.z*v2.y*v3.x - v1.x*v2.z*v3.y - v1.y*v2.x*v3.z; |
| } |
| |
| static CvPoint3D32f operator +(CvPoint3D32f a, CvPoint3D32f b) |
| { |
| return cvPoint3D32f(a.x + b.x, a.y + b.y, a.z + b.z); |
| } |
| |
| static CvPoint3D32f operator -(CvPoint3D32f a, CvPoint3D32f b) |
| { |
| return cvPoint3D32f(a.x - b.x, a.y - b.y, a.z - b.z); |
| } |
| |
| static CvPoint3D32f operator *(CvPoint3D32f v, double f) |
| { |
| return cvPoint3D32f(f*v.x, f*v.y, f*v.z); |
| } |
| |
| |
| // Find the intersection of two lines, or if they don't intersect, |
| // the points of closest approach. |
| // The lines are defined by (o1,p1) and (o2, p2). |
| // If they intersect, r1 and r2 will be the same. |
| // Returns false on error. |
| static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1, |
| CvPoint3D32f o2, CvPoint3D32f p2, |
| CvPoint3D32f &r1, CvPoint3D32f &r2) |
| { |
| CvPoint3D32f x = o2 - o1; |
| CvPoint3D32f d1 = p1 - o1; |
| CvPoint3D32f d2 = p2 - o2; |
| |
| CvPoint3D32f cross = cvPoint3D32f(d1.y*d2.z - d1.z*d2.y, |
| d1.z*d2.x - d1.x*d2.z, |
| d1.x*d2.y - d1.y*d2.x); |
| double den = cross.x*cross.x + cross.y*cross.y + cross.z*cross.z; |
| |
| if (den < EPS) |
| return false; |
| |
| double t1 = det(x, d2, cross) / den; |
| double t2 = det(x, d1, cross) / den; |
| |
| r1 = o1 + d1 * t1; |
| r2 = o2 + d2 * t2; |
| |
| return true; |
| } |
| |
| // Convert from image to camera space by transforming point p in |
| // the image plane by the camera matrix. |
| static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p) |
| { |
| float tp[4]; |
| tp[0] = (float)p.x - camera_info.principal_point.x; |
| tp[1] = (float)p.y - camera_info.principal_point.y; |
| tp[2] = 1.f; |
| tp[3] = 1.f; |
| |
| float tr[4]; |
| //multiply tp by mat to get tr |
| MultVectorMatrix(tr, tp, camera_info.mat); |
| |
| return cvPoint3D32f(tr[0]/tr[3], tr[1]/tr[3], tr[2]/tr[3]); |
| } |
| |
| // Multiply affine transformation m1 by the affine transformation m2 and |
| // return the result in rm. |
| static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]) |
| { |
| for (int i=0; i<=3; i++) |
| for (int j=0; j<=3; j++) |
| { |
| rm[i][j]= 0.0; |
| for (int k=0; k <= 3; k++) |
| rm[i][j] += m1[i][k]*m2[k][j]; |
| } |
| } |
| |
| // Multiply the vector v by the affine transformation matrix m and return the |
| // result in rv. |
| void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]) |
| { |
| for (int i=0; i<=3; i++) |
| { |
| rv[i] = 0.f; |
| for (int j=0;j<=3;j++) |
| rv[i] += v[j] * m[j][i]; |
| } |
| } |