| /*M/////////////////////////////////////////////////////////////////////////////////////// |
| // |
| // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| // |
| // By downloading, copying, installing or using the software you agree to this license. |
| // If you do not agree to this license, do not download, install, |
| // copy or use the software. |
| // |
| // |
| // License Agreement |
| // For Open Source Computer Vision Library |
| // |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
| // Third party copyrights are property of their respective owners. |
| // |
| // Redistribution and use in source and binary forms, with or without modification, |
| // are permitted provided that the following conditions are met: |
| // |
| // * Redistribution's of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // * Redistribution's in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // * The name of the copyright holders may not be used to endorse or promote products |
| // derived from this software without specific prior written permission. |
| // |
| // This software is provided by the copyright holders and contributors "as is" and |
| // any express or implied warranties, including, but not limited to, the implied |
| // warranties of merchantability and fitness for a particular purpose are disclaimed. |
| // In no event shall the Intel Corporation or contributors be liable for any direct, |
| // indirect, incidental, special, exemplary, or consequential damages |
| // (including, but not limited to, procurement of substitute goods or services; |
| // loss of use, data, or profits; or business interruption) however caused |
| // and on any theory of liability, whether in contract, strict liability, |
| // or tort (including negligence or otherwise) arising in any way out of |
| // the use of this software, even if advised of the possibility of such damage. |
| // |
| //M*/ |
| |
| #include "test_precomp.hpp" |
| |
| #ifdef HAVE_CUDA |
| |
| using namespace cvtest; |
| |
| //#define DUMP |
| |
| struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo> |
| { |
| cv::cuda::DeviceInfo devInfo; |
| cv::Ptr<cv::cuda::HOG> hog; |
| |
| #ifdef DUMP |
| std::ofstream f; |
| #else |
| std::ifstream f; |
| #endif |
| |
| int wins_per_img_x; |
| int wins_per_img_y; |
| int blocks_per_win_x; |
| int blocks_per_win_y; |
| int block_hist_size; |
| |
| virtual void SetUp() |
| { |
| devInfo = GetParam(); |
| |
| cv::cuda::setDevice(devInfo.deviceID()); |
| |
| hog = cv::cuda::HOG::create(); |
| } |
| |
| #ifdef DUMP |
| void dump(const std::vector<cv::Point>& locations) |
| { |
| int nlocations = locations.size(); |
| f.write((char*)&nlocations, sizeof(nlocations)); |
| |
| for (int i = 0; i < locations.size(); ++i) |
| f.write((char*)&locations[i], sizeof(locations[i])); |
| } |
| #else |
| void compare(const std::vector<cv::Point>& locations) |
| { |
| // skip block_hists check |
| int rows, cols; |
| f.read((char*)&rows, sizeof(rows)); |
| f.read((char*)&cols, sizeof(cols)); |
| for (int i = 0; i < rows; ++i) |
| { |
| for (int j = 0; j < cols; ++j) |
| { |
| float val; |
| f.read((char*)&val, sizeof(val)); |
| } |
| } |
| |
| int nlocations; |
| f.read((char*)&nlocations, sizeof(nlocations)); |
| ASSERT_EQ(nlocations, static_cast<int>(locations.size())); |
| |
| for (int i = 0; i < nlocations; ++i) |
| { |
| cv::Point location; |
| f.read((char*)&location, sizeof(location)); |
| ASSERT_EQ(location, locations[i]); |
| } |
| } |
| #endif |
| |
| void testDetect(const cv::Mat& img) |
| { |
| hog->setGammaCorrection(false); |
| hog->setSVMDetector(hog->getDefaultPeopleDetector()); |
| |
| std::vector<cv::Point> locations; |
| |
| // Test detect |
| hog->detect(loadMat(img), locations); |
| |
| #ifdef DUMP |
| dump(locations); |
| #else |
| compare(locations); |
| #endif |
| |
| // Test detect on smaller image |
| cv::Mat img2; |
| cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2)); |
| hog->detect(loadMat(img2), locations); |
| |
| #ifdef DUMP |
| dump(locations); |
| #else |
| compare(locations); |
| #endif |
| |
| // Test detect on greater image |
| cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2)); |
| hog->detect(loadMat(img2), locations); |
| |
| #ifdef DUMP |
| dump(locations); |
| #else |
| compare(locations); |
| #endif |
| } |
| }; |
| |
| // desabled while resize does not fixed |
| CUDA_TEST_P(HOG, DISABLED_Detect) |
| { |
| cv::Mat img_rgb = readImage("hog/road.png"); |
| ASSERT_FALSE(img_rgb.empty()); |
| |
| f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
| ASSERT_TRUE(f.is_open()); |
| |
| // Test on color image |
| cv::Mat img; |
| cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA); |
| testDetect(img); |
| |
| // Test on gray image |
| cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY); |
| testDetect(img); |
| } |
| |
| CUDA_TEST_P(HOG, GetDescriptors) |
| { |
| // Load image (e.g. train data, composed from windows) |
| cv::Mat img_rgb = readImage("hog/train_data.png"); |
| ASSERT_FALSE(img_rgb.empty()); |
| |
| // Convert to C4 |
| cv::Mat img; |
| cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA); |
| |
| cv::cuda::GpuMat d_img(img); |
| |
| // Convert train images into feature vectors (train table) |
| cv::cuda::GpuMat descriptors, descriptors_by_cols; |
| |
| hog->setWinStride(Size(64, 128)); |
| |
| hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_ROW_BY_ROW); |
| hog->compute(d_img, descriptors); |
| |
| hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_COL_BY_COL); |
| hog->compute(d_img, descriptors_by_cols); |
| |
| // Check size of the result train table |
| wins_per_img_x = 3; |
| wins_per_img_y = 2; |
| blocks_per_win_x = 7; |
| blocks_per_win_y = 15; |
| block_hist_size = 36; |
| cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size, |
| wins_per_img_x * wins_per_img_y); |
| ASSERT_EQ(descr_size_expected, descriptors.size()); |
| |
| // Check both formats of output descriptors are handled correctly |
| cv::Mat dr(descriptors); |
| cv::Mat dc(descriptors_by_cols); |
| for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i) |
| { |
| const float* l = dr.rowRange(i, i + 1).ptr<float>(); |
| const float* r = dc.rowRange(i, i + 1).ptr<float>(); |
| for (int y = 0; y < blocks_per_win_y; ++y) |
| for (int x = 0; x < blocks_per_win_x; ++x) |
| for (int k = 0; k < block_hist_size; ++k) |
| ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k], |
| r[(x * blocks_per_win_y + y) * block_hist_size + k]); |
| } |
| } |
| |
| INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES); |
| |
| //============== caltech hog tests =====================// |
| |
| struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> > |
| { |
| cv::cuda::DeviceInfo devInfo; |
| cv::Mat img; |
| |
| virtual void SetUp() |
| { |
| devInfo = GET_PARAM(0); |
| cv::cuda::setDevice(devInfo.deviceID()); |
| |
| img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE); |
| ASSERT_FALSE(img.empty()); |
| } |
| }; |
| |
| CUDA_TEST_P(CalTech, HOG) |
| { |
| cv::cuda::GpuMat d_img(img); |
| cv::Mat markedImage(img.clone()); |
| |
| cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create(); |
| d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector()); |
| d_hog->setNumLevels(d_hog->getNumLevels() + 32); |
| |
| std::vector<cv::Rect> found_locations; |
| d_hog->detectMultiScale(d_img, found_locations); |
| |
| #if defined (LOG_CASCADE_STATISTIC) |
| for (int i = 0; i < (int)found_locations.size(); i++) |
| { |
| cv::Rect r = found_locations[i]; |
| |
| std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl; |
| cv::rectangle(markedImage, r , CV_RGB(255, 0, 0)); |
| } |
| |
| cv::imshow("Res", markedImage); |
| cv::waitKey(); |
| #endif |
| } |
| |
| INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES, |
| ::testing::Values<std::string>("caltech/image_00000009_0.png", "caltech/image_00000032_0.png", |
| "caltech/image_00000165_0.png", "caltech/image_00000261_0.png", "caltech/image_00000469_0.png", |
| "caltech/image_00000527_0.png", "caltech/image_00000574_0.png"))); |
| |
| |
| |
| |
| ////////////////////////////////////////////////////////////////////////////////////////// |
| /// LBP classifier |
| |
| PARAM_TEST_CASE(LBP_Read_classifier, cv::cuda::DeviceInfo, int) |
| { |
| cv::cuda::DeviceInfo devInfo; |
| |
| virtual void SetUp() |
| { |
| devInfo = GET_PARAM(0); |
| cv::cuda::setDevice(devInfo.deviceID()); |
| } |
| }; |
| |
| CUDA_TEST_P(LBP_Read_classifier, Accuracy) |
| { |
| std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml"; |
| |
| cv::Ptr<cv::cuda::CascadeClassifier> d_cascade; |
| |
| ASSERT_NO_THROW( |
| d_cascade = cv::cuda::CascadeClassifier::create(classifierXmlPath); |
| ); |
| |
| ASSERT_FALSE(d_cascade.empty()); |
| } |
| |
| INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_Read_classifier, |
| testing::Combine(ALL_DEVICES, testing::Values<int>(0))); |
| |
| |
| PARAM_TEST_CASE(LBP_classify, cv::cuda::DeviceInfo, int) |
| { |
| cv::cuda::DeviceInfo devInfo; |
| |
| virtual void SetUp() |
| { |
| devInfo = GET_PARAM(0); |
| cv::cuda::setDevice(devInfo.deviceID()); |
| } |
| }; |
| |
| CUDA_TEST_P(LBP_classify, Accuracy) |
| { |
| std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml"; |
| std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png"; |
| |
| cv::CascadeClassifier cpuClassifier(classifierXmlPath); |
| ASSERT_FALSE(cpuClassifier.empty()); |
| |
| cv::Mat image = cv::imread(imagePath); |
| image = image.colRange(0, image.cols/2); |
| cv::Mat grey; |
| cvtColor(image, grey, cv::COLOR_BGR2GRAY); |
| ASSERT_FALSE(image.empty()); |
| |
| std::vector<cv::Rect> rects; |
| cpuClassifier.detectMultiScale(grey, rects); |
| cv::Mat markedImage = image.clone(); |
| |
| std::vector<cv::Rect>::iterator it = rects.begin(); |
| for (; it != rects.end(); ++it) |
| cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0)); |
| |
| cv::Ptr<cv::cuda::CascadeClassifier> gpuClassifier = |
| cv::cuda::CascadeClassifier::create(classifierXmlPath); |
| |
| cv::cuda::GpuMat tested(grey); |
| cv::cuda::GpuMat gpu_rects_buf; |
| gpuClassifier->detectMultiScale(tested, gpu_rects_buf); |
| |
| std::vector<cv::Rect> gpu_rects; |
| gpuClassifier->convert(gpu_rects_buf, gpu_rects); |
| |
| #if defined (LOG_CASCADE_STATISTIC) |
| for (size_t i = 0; i < gpu_rects.size(); i++) |
| { |
| cv::Rect r = gpu_rects[i]; |
| |
| std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl; |
| cv::rectangle(markedImage, r , CV_RGB(255, 0, 0)); |
| } |
| |
| cv::imshow("Res", markedImage); |
| cv::waitKey(); |
| #endif |
| } |
| |
| INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_classify, |
| testing::Combine(ALL_DEVICES, testing::Values<int>(0))); |
| |
| #endif // HAVE_CUDA |