| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <[email protected]> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # September 2010. |
| # |
| # The module implements "4-bit" GCM GHASH function and underlying |
| # single multiplication operation in GF(2^128). "4-bit" means that it |
| # uses 256 bytes per-key table [+128 bytes shared table]. Performance |
| # was measured to be ~18 cycles per processed byte on z10, which is |
| # almost 40% better than gcc-generated code. It should be noted that |
| # 18 cycles is worse result than expected: loop is scheduled for 12 |
| # and the result should be close to 12. In the lack of instruction- |
| # level profiling data it's impossible to tell why... |
| |
| # November 2010. |
| # |
| # Adapt for -m31 build. If kernel supports what's called "highgprs" |
| # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit |
| # instructions and achieve "64-bit" performance even in 31-bit legacy |
| # application context. The feature is not specific to any particular |
| # processor, as long as it's "z-CPU". Latter implies that the code |
| # remains z/Architecture specific. On z990 it was measured to perform |
| # 2.8x better than 32-bit code generated by gcc 4.3. |
| |
| # March 2011. |
| # |
| # Support for hardware KIMD-GHASH is verified to produce correct |
| # result and therefore is engaged. On z196 it was measured to process |
| # 8KB buffer ~7 faster than software implementation. It's not as |
| # impressive for smaller buffer sizes and for smallest 16-bytes buffer |
| # it's actually almost 2 times slower. Which is the reason why |
| # KIMD-GHASH is not used in gcm_gmult_4bit. |
| |
| $flavour = shift; |
| |
| if ($flavour =~ /3[12]/) { |
| $SIZE_T=4; |
| $g=""; |
| } else { |
| $SIZE_T=8; |
| $g="g"; |
| } |
| |
| while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} |
| open STDOUT,">$output"; |
| |
| $softonly=0; |
| |
| $Zhi="%r0"; |
| $Zlo="%r1"; |
| |
| $Xi="%r2"; # argument block |
| $Htbl="%r3"; |
| $inp="%r4"; |
| $len="%r5"; |
| |
| $rem0="%r6"; # variables |
| $rem1="%r7"; |
| $nlo="%r8"; |
| $nhi="%r9"; |
| $xi="%r10"; |
| $cnt="%r11"; |
| $tmp="%r12"; |
| $x78="%r13"; |
| $rem_4bit="%r14"; |
| |
| $sp="%r15"; |
| |
| $code.=<<___; |
| .text |
| |
| .globl gcm_gmult_4bit |
| .align 32 |
| gcm_gmult_4bit: |
| ___ |
| $code.=<<___ if(!$softonly && 0); # hardware is slow for single block... |
| larl %r1,OPENSSL_s390xcap_P |
| lg %r0,0(%r1) |
| tmhl %r0,0x4000 # check for message-security-assist |
| jz .Lsoft_gmult |
| lghi %r0,0 |
| la %r1,16($sp) |
| .long 0xb93e0004 # kimd %r0,%r4 |
| lg %r1,24($sp) |
| tmhh %r1,0x4000 # check for function 65 |
| jz .Lsoft_gmult |
| stg %r0,16($sp) # arrange 16 bytes of zero input |
| stg %r0,24($sp) |
| lghi %r0,65 # function 65 |
| la %r1,0($Xi) # H lies right after Xi in gcm128_context |
| la $inp,16($sp) |
| lghi $len,16 |
| .long 0xb93e0004 # kimd %r0,$inp |
| brc 1,.-4 # pay attention to "partial completion" |
| br %r14 |
| .align 32 |
| .Lsoft_gmult: |
| ___ |
| $code.=<<___; |
| stm${g} %r6,%r14,6*$SIZE_T($sp) |
| |
| aghi $Xi,-1 |
| lghi $len,1 |
| lghi $x78,`0xf<<3` |
| larl $rem_4bit,rem_4bit |
| |
| lg $Zlo,8+1($Xi) # Xi |
| j .Lgmult_shortcut |
| .type gcm_gmult_4bit,\@function |
| .size gcm_gmult_4bit,(.-gcm_gmult_4bit) |
| |
| .globl gcm_ghash_4bit |
| .align 32 |
| gcm_ghash_4bit: |
| ___ |
| $code.=<<___ if(!$softonly); |
| larl %r1,OPENSSL_s390xcap_P |
| lg %r0,0(%r1) |
| tmhl %r0,0x4000 # check for message-security-assist |
| jz .Lsoft_ghash |
| lghi %r0,0 |
| la %r1,16($sp) |
| .long 0xb93e0004 # kimd %r0,%r4 |
| lg %r1,24($sp) |
| tmhh %r1,0x4000 # check for function 65 |
| jz .Lsoft_ghash |
| lghi %r0,65 # function 65 |
| la %r1,0($Xi) # H lies right after Xi in gcm128_context |
| .long 0xb93e0004 # kimd %r0,$inp |
| brc 1,.-4 # pay attention to "partial completion" |
| br %r14 |
| .align 32 |
| .Lsoft_ghash: |
| ___ |
| $code.=<<___ if ($flavour =~ /3[12]/); |
| llgfr $len,$len |
| ___ |
| $code.=<<___; |
| stm${g} %r6,%r14,6*$SIZE_T($sp) |
| |
| aghi $Xi,-1 |
| srlg $len,$len,4 |
| lghi $x78,`0xf<<3` |
| larl $rem_4bit,rem_4bit |
| |
| lg $Zlo,8+1($Xi) # Xi |
| lg $Zhi,0+1($Xi) |
| lghi $tmp,0 |
| .Louter: |
| xg $Zhi,0($inp) # Xi ^= inp |
| xg $Zlo,8($inp) |
| xgr $Zhi,$tmp |
| stg $Zlo,8+1($Xi) |
| stg $Zhi,0+1($Xi) |
| |
| .Lgmult_shortcut: |
| lghi $tmp,0xf0 |
| sllg $nlo,$Zlo,4 |
| srlg $xi,$Zlo,8 # extract second byte |
| ngr $nlo,$tmp |
| lgr $nhi,$Zlo |
| lghi $cnt,14 |
| ngr $nhi,$tmp |
| |
| lg $Zlo,8($nlo,$Htbl) |
| lg $Zhi,0($nlo,$Htbl) |
| |
| sllg $nlo,$xi,4 |
| sllg $rem0,$Zlo,3 |
| ngr $nlo,$tmp |
| ngr $rem0,$x78 |
| ngr $xi,$tmp |
| |
| sllg $tmp,$Zhi,60 |
| srlg $Zlo,$Zlo,4 |
| srlg $Zhi,$Zhi,4 |
| xg $Zlo,8($nhi,$Htbl) |
| xg $Zhi,0($nhi,$Htbl) |
| lgr $nhi,$xi |
| sllg $rem1,$Zlo,3 |
| xgr $Zlo,$tmp |
| ngr $rem1,$x78 |
| j .Lghash_inner |
| .align 16 |
| .Lghash_inner: |
| srlg $Zlo,$Zlo,4 |
| sllg $tmp,$Zhi,60 |
| xg $Zlo,8($nlo,$Htbl) |
| srlg $Zhi,$Zhi,4 |
| llgc $xi,0($cnt,$Xi) |
| xg $Zhi,0($nlo,$Htbl) |
| sllg $nlo,$xi,4 |
| xg $Zhi,0($rem0,$rem_4bit) |
| nill $nlo,0xf0 |
| sllg $rem0,$Zlo,3 |
| xgr $Zlo,$tmp |
| ngr $rem0,$x78 |
| nill $xi,0xf0 |
| |
| sllg $tmp,$Zhi,60 |
| srlg $Zlo,$Zlo,4 |
| srlg $Zhi,$Zhi,4 |
| xg $Zlo,8($nhi,$Htbl) |
| xg $Zhi,0($nhi,$Htbl) |
| lgr $nhi,$xi |
| xg $Zhi,0($rem1,$rem_4bit) |
| sllg $rem1,$Zlo,3 |
| xgr $Zlo,$tmp |
| ngr $rem1,$x78 |
| brct $cnt,.Lghash_inner |
| |
| sllg $tmp,$Zhi,60 |
| srlg $Zlo,$Zlo,4 |
| srlg $Zhi,$Zhi,4 |
| xg $Zlo,8($nlo,$Htbl) |
| xg $Zhi,0($nlo,$Htbl) |
| sllg $xi,$Zlo,3 |
| xg $Zhi,0($rem0,$rem_4bit) |
| xgr $Zlo,$tmp |
| ngr $xi,$x78 |
| |
| sllg $tmp,$Zhi,60 |
| srlg $Zlo,$Zlo,4 |
| srlg $Zhi,$Zhi,4 |
| xg $Zlo,8($nhi,$Htbl) |
| xg $Zhi,0($nhi,$Htbl) |
| xgr $Zlo,$tmp |
| xg $Zhi,0($rem1,$rem_4bit) |
| |
| lg $tmp,0($xi,$rem_4bit) |
| la $inp,16($inp) |
| sllg $tmp,$tmp,4 # correct last rem_4bit[rem] |
| brctg $len,.Louter |
| |
| xgr $Zhi,$tmp |
| stg $Zlo,8+1($Xi) |
| stg $Zhi,0+1($Xi) |
| lm${g} %r6,%r14,6*$SIZE_T($sp) |
| br %r14 |
| .type gcm_ghash_4bit,\@function |
| .size gcm_ghash_4bit,(.-gcm_ghash_4bit) |
| |
| .align 64 |
| rem_4bit: |
| .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 |
| .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 |
| .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 |
| .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 |
| .type rem_4bit,\@object |
| .size rem_4bit,(.-rem_4bit) |
| .string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>" |
| ___ |
| |
| $code =~ s/\`([^\`]*)\`/eval $1/gem; |
| print $code; |
| close STDOUT; |