blob: d151a017c856f11ef40b50a5f4a628985aa8de48 [file] [log] [blame]
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include <array>
#include <cassert>
#include <cstring>
#include "pffft.h"
namespace {
#if defined(TRANSFORM_REAL)
// Real FFT.
constexpr pffft_transform_t kTransform = PFFFT_REAL;
constexpr size_t kSizeOfOneSample = sizeof(float);
#elif defined(TRANSFORM_COMPLEX)
// Complex FFT.
constexpr pffft_transform_t kTransform = PFFFT_COMPLEX;
constexpr size_t kSizeOfOneSample = 2 * sizeof(float); // Real plus imaginary.
#else
#error FFT transform type not defined.
#endif
bool IsValidSize(size_t n) {
if (n == 0) { return false; }
// PFFFT only supports transforms for inputs of length N of the form
// N = (2^a)*(3^b)*(5^c) where a >= 5, b >=0, c >= 0.
constexpr std::array<int, 3> kFactors = {2, 3, 5};
std::array<int, kFactors.size()> factorization{};
for (size_t i = 0; i < kFactors.size(); ++i) {
const int factor = kFactors[i];
while (n % factor == 0) {
n /= factor;
factorization[i]++;
}
}
return factorization[0] >= 5 && n == 1;
}
float* AllocatePffftBuffer(size_t number_of_bytes) {
return static_cast<float*>(pffft_aligned_malloc(number_of_bytes));
}
} // namespace
// Entry point for LibFuzzer.
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
// Set the number of FFT points to use |data| as input vector.
// The latter is truncated if the number of bytes is not an integer
// multiple of the size of one sample (which is either a real or a complex
// floating point number).
const size_t fft_size = size / kSizeOfOneSample;
if (!IsValidSize(fft_size)) {
return 0;
}
const size_t number_of_bytes = fft_size * kSizeOfOneSample;
assert(number_of_bytes <= size);
// Allocate input and output buffers.
float* in = AllocatePffftBuffer(number_of_bytes);
float* out = AllocatePffftBuffer(number_of_bytes);
// Copy input data.
std::memcpy(in, reinterpret_cast<const float*>(data), number_of_bytes);
// Setup FFT.
PFFFT_Setup* pffft_setup = pffft_new_setup(fft_size, kTransform);
// Call different PFFFT functions to maximize the coverage.
pffft_transform(pffft_setup, in, out, nullptr, PFFFT_FORWARD);
pffft_zconvolve_accumulate(pffft_setup, out, out, out, 1.f);
pffft_transform_ordered(pffft_setup, in, out, nullptr, PFFFT_BACKWARD);
// Release memory.
pffft_aligned_free(in);
pffft_aligned_free(out);
pffft_destroy_setup(pffft_setup);
return 0;
}