| /************************************************* |
| * Perl-Compatible Regular Expressions * |
| *************************************************/ |
| |
| /* PCRE is a library of functions to support regular expressions whose syntax |
| and semantics are as close as possible to those of the Perl 5 language. |
| |
| Written by Philip Hazel |
| Original API code Copyright (c) 1997-2012 University of Cambridge |
| New API code Copyright (c) 2016-2022 University of Cambridge |
| |
| ----------------------------------------------------------------------------- |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| |
| * Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| |
| * Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| * Neither the name of the University of Cambridge nor the names of its |
| contributors may be used to endorse or promote products derived from |
| this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| ----------------------------------------------------------------------------- |
| */ |
| |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #define NLBLOCK cb /* Block containing newline information */ |
| #define PSSTART start_pattern /* Field containing processed string start */ |
| #define PSEND end_pattern /* Field containing processed string end */ |
| |
| #include "pcre2_internal.h" |
| |
| /* In rare error cases debugging might require calling pcre2_printint(). */ |
| |
| #if 0 |
| #ifdef EBCDIC |
| #define PRINTABLE(c) ((c) >= 64 && (c) < 255) |
| #else |
| #define PRINTABLE(c) ((c) >= 32 && (c) < 127) |
| #endif |
| #include "pcre2_printint.c" |
| #define DEBUG_CALL_PRINTINT |
| #endif |
| |
| /* Other debugging code can be enabled by these defines. */ |
| |
| /* #define DEBUG_SHOW_CAPTURES */ |
| /* #define DEBUG_SHOW_PARSED */ |
| |
| /* There are a few things that vary with different code unit sizes. Handle them |
| by defining macros in order to minimize #if usage. */ |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| #define STRING_UTFn_RIGHTPAR STRING_UTF8_RIGHTPAR, 5 |
| #define XDIGIT(c) xdigitab[c] |
| |
| #else /* Either 16-bit or 32-bit */ |
| #define XDIGIT(c) (MAX_255(c)? xdigitab[c] : 0xff) |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 16 |
| #define STRING_UTFn_RIGHTPAR STRING_UTF16_RIGHTPAR, 6 |
| |
| #else /* 32-bit */ |
| #define STRING_UTFn_RIGHTPAR STRING_UTF32_RIGHTPAR, 6 |
| #endif |
| #endif |
| |
| /* Macros to store and retrieve a PCRE2_SIZE value in the parsed pattern, which |
| consists of uint32_t elements. Assume that if uint32_t can't hold it, two of |
| them will be able to (i.e. assume a 64-bit world). */ |
| |
| #if PCRE2_SIZE_MAX <= UINT32_MAX |
| #define PUTOFFSET(s,p) *p++ = s |
| #define GETOFFSET(s,p) s = *p++ |
| #define GETPLUSOFFSET(s,p) s = *(++p) |
| #define READPLUSOFFSET(s,p) s = p[1] |
| #define SKIPOFFSET(p) p++ |
| #define SIZEOFFSET 1 |
| #else |
| #define PUTOFFSET(s,p) \ |
| { *p++ = (uint32_t)(s >> 32); *p++ = (uint32_t)(s & 0xffffffff); } |
| #define GETOFFSET(s,p) \ |
| { s = ((PCRE2_SIZE)p[0] << 32) | (PCRE2_SIZE)p[1]; p += 2; } |
| #define GETPLUSOFFSET(s,p) \ |
| { s = ((PCRE2_SIZE)p[1] << 32) | (PCRE2_SIZE)p[2]; p += 2; } |
| #define READPLUSOFFSET(s,p) \ |
| { s = ((PCRE2_SIZE)p[1] << 32) | (PCRE2_SIZE)p[2]; } |
| #define SKIPOFFSET(p) p += 2 |
| #define SIZEOFFSET 2 |
| #endif |
| |
| /* Macros for manipulating elements of the parsed pattern vector. */ |
| |
| #define META_CODE(x) (x & 0xffff0000u) |
| #define META_DATA(x) (x & 0x0000ffffu) |
| #define META_DIFF(x,y) ((x-y)>>16) |
| |
| /* Function definitions to allow mutual recursion */ |
| |
| #ifdef SUPPORT_UNICODE |
| static unsigned int |
| add_list_to_class_internal(uint8_t *, PCRE2_UCHAR **, uint32_t, |
| compile_block *, const uint32_t *, unsigned int); |
| #endif |
| |
| static int |
| compile_regex(uint32_t, PCRE2_UCHAR **, uint32_t **, int *, uint32_t, |
| uint32_t *, uint32_t *, uint32_t *, uint32_t *, branch_chain *, |
| compile_block *, PCRE2_SIZE *); |
| |
| static int |
| get_branchlength(uint32_t **, int *, int *, parsed_recurse_check *, |
| compile_block *); |
| |
| static BOOL |
| set_lookbehind_lengths(uint32_t **, int *, int *, parsed_recurse_check *, |
| compile_block *); |
| |
| static int |
| check_lookbehinds(uint32_t *, uint32_t **, parsed_recurse_check *, |
| compile_block *, int *); |
| |
| |
| /************************************************* |
| * Code parameters and static tables * |
| *************************************************/ |
| |
| #define MAX_GROUP_NUMBER 65535u |
| #define MAX_REPEAT_COUNT 65535u |
| #define REPEAT_UNLIMITED (MAX_REPEAT_COUNT+1) |
| |
| /* COMPILE_WORK_SIZE specifies the size of stack workspace, which is used in |
| different ways in the different pattern scans. The parsing and group- |
| identifying pre-scan uses it to handle nesting, and needs it to be 16-bit |
| aligned for this. Having defined the size in code units, we set up |
| C16_WORK_SIZE as the number of elements in the 16-bit vector. |
| |
| During the first compiling phase, when determining how much memory is required, |
| the regex is partly compiled into this space, but the compiled parts are |
| discarded as soon as they can be, so that hopefully there will never be an |
| overrun. The code does, however, check for an overrun, which can occur for |
| pathological patterns. The size of the workspace depends on LINK_SIZE because |
| the length of compiled items varies with this. |
| |
| In the real compile phase, this workspace is not currently used. */ |
| |
| #define COMPILE_WORK_SIZE (3000*LINK_SIZE) /* Size in code units */ |
| |
| #define C16_WORK_SIZE \ |
| ((COMPILE_WORK_SIZE * sizeof(PCRE2_UCHAR))/sizeof(uint16_t)) |
| |
| /* A uint32_t vector is used for caching information about the size of |
| capturing groups, to improve performance. A default is created on the stack of |
| this size. */ |
| |
| #define GROUPINFO_DEFAULT_SIZE 256 |
| |
| /* The overrun tests check for a slightly smaller size so that they detect the |
| overrun before it actually does run off the end of the data block. */ |
| |
| #define WORK_SIZE_SAFETY_MARGIN (100) |
| |
| /* This value determines the size of the initial vector that is used for |
| remembering named groups during the pre-compile. It is allocated on the stack, |
| but if it is too small, it is expanded, in a similar way to the workspace. The |
| value is the number of slots in the list. */ |
| |
| #define NAMED_GROUP_LIST_SIZE 20 |
| |
| /* The pre-compiling pass over the pattern creates a parsed pattern in a vector |
| of uint32_t. For short patterns this lives on the stack, with this size. Heap |
| memory is used for longer patterns. */ |
| |
| #define PARSED_PATTERN_DEFAULT_SIZE 1024 |
| |
| /* Maximum length value to check against when making sure that the variable |
| that holds the compiled pattern length does not overflow. We make it a bit less |
| than INT_MAX to allow for adding in group terminating code units, so that we |
| don't have to check them every time. */ |
| |
| #define OFLOW_MAX (INT_MAX - 20) |
| |
| /* Code values for parsed patterns, which are stored in a vector of 32-bit |
| unsigned ints. Values less than META_END are literal data values. The coding |
| for identifying the item is in the top 16-bits, leaving 16 bits for the |
| additional data that some of them need. The META_CODE, META_DATA, and META_DIFF |
| macros are used to manipulate parsed pattern elements. |
| |
| NOTE: When these definitions are changed, the table of extra lengths for each |
| code (meta_extra_lengths, just below) must be updated to remain in step. */ |
| |
| #define META_END 0x80000000u /* End of pattern */ |
| |
| #define META_ALT 0x80010000u /* alternation */ |
| #define META_ATOMIC 0x80020000u /* atomic group */ |
| #define META_BACKREF 0x80030000u /* Back ref */ |
| #define META_BACKREF_BYNAME 0x80040000u /* \k'name' */ |
| #define META_BIGVALUE 0x80050000u /* Next is a literal > META_END */ |
| #define META_CALLOUT_NUMBER 0x80060000u /* (?C with numerical argument */ |
| #define META_CALLOUT_STRING 0x80070000u /* (?C with string argument */ |
| #define META_CAPTURE 0x80080000u /* Capturing parenthesis */ |
| #define META_CIRCUMFLEX 0x80090000u /* ^ metacharacter */ |
| #define META_CLASS 0x800a0000u /* start non-empty class */ |
| #define META_CLASS_EMPTY 0x800b0000u /* empty class */ |
| #define META_CLASS_EMPTY_NOT 0x800c0000u /* negative empty class */ |
| #define META_CLASS_END 0x800d0000u /* end of non-empty class */ |
| #define META_CLASS_NOT 0x800e0000u /* start non-empty negative class */ |
| #define META_COND_ASSERT 0x800f0000u /* (?(?assertion)... */ |
| #define META_COND_DEFINE 0x80100000u /* (?(DEFINE)... */ |
| #define META_COND_NAME 0x80110000u /* (?(<name>)... */ |
| #define META_COND_NUMBER 0x80120000u /* (?(digits)... */ |
| #define META_COND_RNAME 0x80130000u /* (?(R&name)... */ |
| #define META_COND_RNUMBER 0x80140000u /* (?(Rdigits)... */ |
| #define META_COND_VERSION 0x80150000u /* (?(VERSION<op>x.y)... */ |
| #define META_DOLLAR 0x80160000u /* $ metacharacter */ |
| #define META_DOT 0x80170000u /* . metacharacter */ |
| #define META_ESCAPE 0x80180000u /* \d and friends */ |
| #define META_KET 0x80190000u /* closing parenthesis */ |
| #define META_NOCAPTURE 0x801a0000u /* no capture parens */ |
| #define META_OPTIONS 0x801b0000u /* (?i) and friends */ |
| #define META_POSIX 0x801c0000u /* POSIX class item */ |
| #define META_POSIX_NEG 0x801d0000u /* negative POSIX class item */ |
| #define META_RANGE_ESCAPED 0x801e0000u /* range with at least one escape */ |
| #define META_RANGE_LITERAL 0x801f0000u /* range defined literally */ |
| #define META_RECURSE 0x80200000u /* Recursion */ |
| #define META_RECURSE_BYNAME 0x80210000u /* (?&name) */ |
| #define META_SCRIPT_RUN 0x80220000u /* (*script_run:...) */ |
| |
| /* These must be kept together to make it easy to check that an assertion |
| is present where expected in a conditional group. */ |
| |
| #define META_LOOKAHEAD 0x80230000u /* (?= */ |
| #define META_LOOKAHEADNOT 0x80240000u /* (?! */ |
| #define META_LOOKBEHIND 0x80250000u /* (?<= */ |
| #define META_LOOKBEHINDNOT 0x80260000u /* (?<! */ |
| |
| /* These cannot be conditions */ |
| |
| #define META_LOOKAHEAD_NA 0x80270000u /* (*napla: */ |
| #define META_LOOKBEHIND_NA 0x80280000u /* (*naplb: */ |
| |
| /* These must be kept in this order, with consecutive values, and the _ARG |
| versions of COMMIT, PRUNE, SKIP, and THEN immediately after their non-argument |
| versions. */ |
| |
| #define META_MARK 0x80290000u /* (*MARK) */ |
| #define META_ACCEPT 0x802a0000u /* (*ACCEPT) */ |
| #define META_FAIL 0x802b0000u /* (*FAIL) */ |
| #define META_COMMIT 0x802c0000u /* These */ |
| #define META_COMMIT_ARG 0x802d0000u /* pairs */ |
| #define META_PRUNE 0x802e0000u /* must */ |
| #define META_PRUNE_ARG 0x802f0000u /* be */ |
| #define META_SKIP 0x80300000u /* kept */ |
| #define META_SKIP_ARG 0x80310000u /* in */ |
| #define META_THEN 0x80320000u /* this */ |
| #define META_THEN_ARG 0x80330000u /* order */ |
| |
| /* These must be kept in groups of adjacent 3 values, and all together. */ |
| |
| #define META_ASTERISK 0x80340000u /* * */ |
| #define META_ASTERISK_PLUS 0x80350000u /* *+ */ |
| #define META_ASTERISK_QUERY 0x80360000u /* *? */ |
| #define META_PLUS 0x80370000u /* + */ |
| #define META_PLUS_PLUS 0x80380000u /* ++ */ |
| #define META_PLUS_QUERY 0x80390000u /* +? */ |
| #define META_QUERY 0x803a0000u /* ? */ |
| #define META_QUERY_PLUS 0x803b0000u /* ?+ */ |
| #define META_QUERY_QUERY 0x803c0000u /* ?? */ |
| #define META_MINMAX 0x803d0000u /* {n,m} repeat */ |
| #define META_MINMAX_PLUS 0x803e0000u /* {n,m}+ repeat */ |
| #define META_MINMAX_QUERY 0x803f0000u /* {n,m}? repeat */ |
| |
| #define META_FIRST_QUANTIFIER META_ASTERISK |
| #define META_LAST_QUANTIFIER META_MINMAX_QUERY |
| |
| /* This is a special "meta code" that is used only to distinguish (*asr: from |
| (*sr: in the table of aphabetic assertions. It is never stored in the parsed |
| pattern because (*asr: is turned into (*sr:(*atomic: at that stage. There is |
| therefore no need for it to have a length entry, so use a high value. */ |
| |
| #define META_ATOMIC_SCRIPT_RUN 0x8fff0000u |
| |
| /* Table of extra lengths for each of the meta codes. Must be kept in step with |
| the definitions above. For some items these values are a basic length to which |
| a variable amount has to be added. */ |
| |
| static unsigned char meta_extra_lengths[] = { |
| 0, /* META_END */ |
| 0, /* META_ALT */ |
| 0, /* META_ATOMIC */ |
| 0, /* META_BACKREF - more if group is >= 10 */ |
| 1+SIZEOFFSET, /* META_BACKREF_BYNAME */ |
| 1, /* META_BIGVALUE */ |
| 3, /* META_CALLOUT_NUMBER */ |
| 3+SIZEOFFSET, /* META_CALLOUT_STRING */ |
| 0, /* META_CAPTURE */ |
| 0, /* META_CIRCUMFLEX */ |
| 0, /* META_CLASS */ |
| 0, /* META_CLASS_EMPTY */ |
| 0, /* META_CLASS_EMPTY_NOT */ |
| 0, /* META_CLASS_END */ |
| 0, /* META_CLASS_NOT */ |
| 0, /* META_COND_ASSERT */ |
| SIZEOFFSET, /* META_COND_DEFINE */ |
| 1+SIZEOFFSET, /* META_COND_NAME */ |
| 1+SIZEOFFSET, /* META_COND_NUMBER */ |
| 1+SIZEOFFSET, /* META_COND_RNAME */ |
| 1+SIZEOFFSET, /* META_COND_RNUMBER */ |
| 3, /* META_COND_VERSION */ |
| 0, /* META_DOLLAR */ |
| 0, /* META_DOT */ |
| 0, /* META_ESCAPE - more for ESC_P, ESC_p, ESC_g, ESC_k */ |
| 0, /* META_KET */ |
| 0, /* META_NOCAPTURE */ |
| 1, /* META_OPTIONS */ |
| 1, /* META_POSIX */ |
| 1, /* META_POSIX_NEG */ |
| 0, /* META_RANGE_ESCAPED */ |
| 0, /* META_RANGE_LITERAL */ |
| SIZEOFFSET, /* META_RECURSE */ |
| 1+SIZEOFFSET, /* META_RECURSE_BYNAME */ |
| 0, /* META_SCRIPT_RUN */ |
| 0, /* META_LOOKAHEAD */ |
| 0, /* META_LOOKAHEADNOT */ |
| SIZEOFFSET, /* META_LOOKBEHIND */ |
| SIZEOFFSET, /* META_LOOKBEHINDNOT */ |
| 0, /* META_LOOKAHEAD_NA */ |
| SIZEOFFSET, /* META_LOOKBEHIND_NA */ |
| 1, /* META_MARK - plus the string length */ |
| 0, /* META_ACCEPT */ |
| 0, /* META_FAIL */ |
| 0, /* META_COMMIT */ |
| 1, /* META_COMMIT_ARG - plus the string length */ |
| 0, /* META_PRUNE */ |
| 1, /* META_PRUNE_ARG - plus the string length */ |
| 0, /* META_SKIP */ |
| 1, /* META_SKIP_ARG - plus the string length */ |
| 0, /* META_THEN */ |
| 1, /* META_THEN_ARG - plus the string length */ |
| 0, /* META_ASTERISK */ |
| 0, /* META_ASTERISK_PLUS */ |
| 0, /* META_ASTERISK_QUERY */ |
| 0, /* META_PLUS */ |
| 0, /* META_PLUS_PLUS */ |
| 0, /* META_PLUS_QUERY */ |
| 0, /* META_QUERY */ |
| 0, /* META_QUERY_PLUS */ |
| 0, /* META_QUERY_QUERY */ |
| 2, /* META_MINMAX */ |
| 2, /* META_MINMAX_PLUS */ |
| 2 /* META_MINMAX_QUERY */ |
| }; |
| |
| /* Types for skipping parts of a parsed pattern. */ |
| |
| enum { PSKIP_ALT, PSKIP_CLASS, PSKIP_KET }; |
| |
| /* Macro for setting individual bits in class bitmaps. It took some |
| experimenting to figure out how to stop gcc 5.3.0 from warning with |
| -Wconversion. This version gets a warning: |
| |
| #define SETBIT(a,b) a[(b)/8] |= (uint8_t)(1u << ((b)&7)) |
| |
| Let's hope the apparently less efficient version isn't actually so bad if the |
| compiler is clever with identical subexpressions. */ |
| |
| #define SETBIT(a,b) a[(b)/8] = (uint8_t)(a[(b)/8] | (1u << ((b)&7))) |
| |
| /* Values and flags for the unsigned xxcuflags variables that accompany xxcu |
| variables, which are concerned with first and required code units. A value |
| greater than or equal to REQ_NONE means "no code unit set"; otherwise the |
| matching xxcu variable is set, and the low valued bits are relevant. */ |
| |
| #define REQ_UNSET 0xffffffffu /* Not yet found anything */ |
| #define REQ_NONE 0xfffffffeu /* Found not fixed character */ |
| #define REQ_CASELESS 0x00000001u /* Code unit in xxcu is caseless */ |
| #define REQ_VARY 0x00000002u /* Code unit is followed by non-literal */ |
| |
| /* These flags are used in the groupinfo vector. */ |
| |
| #define GI_SET_FIXED_LENGTH 0x80000000u |
| #define GI_NOT_FIXED_LENGTH 0x40000000u |
| #define GI_FIXED_LENGTH_MASK 0x0000ffffu |
| |
| /* This simple test for a decimal digit works for both ASCII/Unicode and EBCDIC |
| and is fast (a good compiler can turn it into a subtraction and unsigned |
| comparison). */ |
| |
| #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9) |
| |
| /* Table to identify hex digits. The tables in chartables are dependent on the |
| locale, and may mark arbitrary characters as digits. We want to recognize only |
| 0-9, a-z, and A-Z as hex digits, which is why we have a private table here. It |
| costs 256 bytes, but it is a lot faster than doing character value tests (at |
| least in some simple cases I timed), and in some applications one wants PCRE2 |
| to compile efficiently as well as match efficiently. The value in the table is |
| the binary hex digit value, or 0xff for non-hex digits. */ |
| |
| /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
| UTF-8 mode. */ |
| |
| #ifndef EBCDIC |
| static const uint8_t xdigitab[] = |
| { |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 0- 7 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 8- 15 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 16- 23 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 24- 31 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* - ' */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* ( - / */ |
| 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, /* 0 - 7 */ |
| 0x08,0x09,0xff,0xff,0xff,0xff,0xff,0xff, /* 8 - ? */ |
| 0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* @ - G */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* H - O */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* P - W */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* X - _ */ |
| 0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* ` - g */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* h - o */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* p - w */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* x -127 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 128-135 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 136-143 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 144-151 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 152-159 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 160-167 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 168-175 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 176-183 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 184-191 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 192-199 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 2ff-207 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 208-215 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 216-223 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 224-231 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 232-239 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 240-247 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};/* 248-255 */ |
| |
| #else |
| |
| /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
| |
| static const uint8_t xdigitab[] = |
| { |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 0- 7 0 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 8- 15 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 16- 23 10 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 24- 31 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 32- 39 20 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 40- 47 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 48- 55 30 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 56- 63 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* - 71 40 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 72- | */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* & - 87 50 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 88- 95 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* - -103 60 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 104- ? */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 112-119 70 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 120- " */ |
| 0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* 128- g 80 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* h -143 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 144- p 90 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* q -159 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 160- x A0 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* y -175 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* ^ -183 B0 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 184-191 */ |
| 0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* { - G C0 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* H -207 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* } - P D0 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* Q -223 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* \ - X E0 */ |
| 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* Y -239 */ |
| 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, /* 0 - 7 F0 */ |
| 0x08,0x09,0xff,0xff,0xff,0xff,0xff,0xff};/* 8 -255 */ |
| #endif /* EBCDIC */ |
| |
| |
| /* Table for handling alphanumeric escaped characters. Positive returns are |
| simple data values; negative values are for special things like \d and so on. |
| Zero means further processing is needed (for things like \x), or the escape is |
| invalid. */ |
| |
| /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
| in UTF-8 mode. It runs from '0' to 'z'. */ |
| |
| #ifndef EBCDIC |
| #define ESCAPES_FIRST CHAR_0 |
| #define ESCAPES_LAST CHAR_z |
| #define UPPER_CASE(c) (c-32) |
| |
| static const short int escapes[] = { |
| 0, 0, |
| 0, 0, |
| 0, 0, |
| 0, 0, |
| 0, 0, |
| CHAR_COLON, CHAR_SEMICOLON, |
| CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
| CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
| CHAR_COMMERCIAL_AT, -ESC_A, |
| -ESC_B, -ESC_C, |
| -ESC_D, -ESC_E, |
| 0, -ESC_G, |
| -ESC_H, 0, |
| 0, -ESC_K, |
| 0, 0, |
| -ESC_N, 0, |
| -ESC_P, -ESC_Q, |
| -ESC_R, -ESC_S, |
| 0, 0, |
| -ESC_V, -ESC_W, |
| -ESC_X, 0, |
| -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
| CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
| CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
| CHAR_GRAVE_ACCENT, CHAR_BEL, |
| -ESC_b, 0, |
| -ESC_d, CHAR_ESC, |
| CHAR_FF, 0, |
| -ESC_h, 0, |
| 0, -ESC_k, |
| 0, 0, |
| CHAR_LF, 0, |
| -ESC_p, 0, |
| CHAR_CR, -ESC_s, |
| CHAR_HT, 0, |
| -ESC_v, -ESC_w, |
| 0, 0, |
| -ESC_z |
| }; |
| |
| #else |
| |
| /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. |
| It runs from 'a' to '9'. For some minimal testing of EBCDIC features, the code |
| is sometimes compiled on an ASCII system. In this case, we must not use CHAR_a |
| because it is defined as 'a', which of course picks up the ASCII value. */ |
| |
| #if 'a' == 0x81 /* Check for a real EBCDIC environment */ |
| #define ESCAPES_FIRST CHAR_a |
| #define ESCAPES_LAST CHAR_9 |
| #define UPPER_CASE(c) (c+64) |
| #else /* Testing in an ASCII environment */ |
| #define ESCAPES_FIRST ((unsigned char)'\x81') /* EBCDIC 'a' */ |
| #define ESCAPES_LAST ((unsigned char)'\xf9') /* EBCDIC '9' */ |
| #define UPPER_CASE(c) (c-32) |
| #endif |
| |
| static const short int escapes[] = { |
| /* 80 */ CHAR_BEL, -ESC_b, 0, -ESC_d, CHAR_ESC, CHAR_FF, 0, |
| /* 88 */ -ESC_h, 0, 0, '{', 0, 0, 0, 0, |
| /* 90 */ 0, 0, -ESC_k, 0, 0, CHAR_LF, 0, -ESC_p, |
| /* 98 */ 0, CHAR_CR, 0, '}', 0, 0, 0, 0, |
| /* A0 */ 0, '~', -ESC_s, CHAR_HT, 0, -ESC_v, -ESC_w, 0, |
| /* A8 */ 0, -ESC_z, 0, 0, 0, '[', 0, 0, |
| /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
| /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
| /* C0 */ '{', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, |
| /* C8 */ -ESC_H, 0, 0, 0, 0, 0, 0, 0, |
| /* D0 */ '}', 0, -ESC_K, 0, 0, -ESC_N, 0, -ESC_P, |
| /* D8 */ -ESC_Q, -ESC_R, 0, 0, 0, 0, 0, 0, |
| /* E0 */ '\\', 0, -ESC_S, 0, 0, -ESC_V, -ESC_W, -ESC_X, |
| /* E8 */ 0, -ESC_Z, 0, 0, 0, 0, 0, 0, |
| /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
| /* F8 */ 0, 0 |
| }; |
| |
| /* We also need a table of characters that may follow \c in an EBCDIC |
| environment for characters 0-31. */ |
| |
| static unsigned char ebcdic_escape_c[] = "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_"; |
| |
| #endif /* EBCDIC */ |
| |
| |
| /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
| searched linearly. Put all the names into a single string, in order to reduce |
| the number of relocations when a shared library is dynamically linked. The |
| string is built from string macros so that it works in UTF-8 mode on EBCDIC |
| platforms. */ |
| |
| typedef struct verbitem { |
| unsigned int len; /* Length of verb name */ |
| uint32_t meta; /* Base META_ code */ |
| int has_arg; /* Argument requirement */ |
| } verbitem; |
| |
| static const char verbnames[] = |
| "\0" /* Empty name is a shorthand for MARK */ |
| STRING_MARK0 |
| STRING_ACCEPT0 |
| STRING_F0 |
| STRING_FAIL0 |
| STRING_COMMIT0 |
| STRING_PRUNE0 |
| STRING_SKIP0 |
| STRING_THEN; |
| |
| static const verbitem verbs[] = { |
| { 0, META_MARK, +1 }, /* > 0 => must have an argument */ |
| { 4, META_MARK, +1 }, |
| { 6, META_ACCEPT, -1 }, /* < 0 => Optional argument, convert to pre-MARK */ |
| { 1, META_FAIL, -1 }, |
| { 4, META_FAIL, -1 }, |
| { 6, META_COMMIT, 0 }, |
| { 5, META_PRUNE, 0 }, /* Optional argument; bump META code if found */ |
| { 4, META_SKIP, 0 }, |
| { 4, META_THEN, 0 } |
| }; |
| |
| static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
| |
| /* Verb opcodes, indexed by their META code offset from META_MARK. */ |
| |
| static const uint32_t verbops[] = { |
| OP_MARK, OP_ACCEPT, OP_FAIL, OP_COMMIT, OP_COMMIT_ARG, OP_PRUNE, |
| OP_PRUNE_ARG, OP_SKIP, OP_SKIP_ARG, OP_THEN, OP_THEN_ARG }; |
| |
| /* Table of "alpha assertions" like (*pla:...), similar to the (*VERB) table. */ |
| |
| typedef struct alasitem { |
| unsigned int len; /* Length of name */ |
| uint32_t meta; /* Base META_ code */ |
| } alasitem; |
| |
| static const char alasnames[] = |
| STRING_pla0 |
| STRING_plb0 |
| STRING_napla0 |
| STRING_naplb0 |
| STRING_nla0 |
| STRING_nlb0 |
| STRING_positive_lookahead0 |
| STRING_positive_lookbehind0 |
| STRING_non_atomic_positive_lookahead0 |
| STRING_non_atomic_positive_lookbehind0 |
| STRING_negative_lookahead0 |
| STRING_negative_lookbehind0 |
| STRING_atomic0 |
| STRING_sr0 |
| STRING_asr0 |
| STRING_script_run0 |
| STRING_atomic_script_run; |
| |
| static const alasitem alasmeta[] = { |
| { 3, META_LOOKAHEAD }, |
| { 3, META_LOOKBEHIND }, |
| { 5, META_LOOKAHEAD_NA }, |
| { 5, META_LOOKBEHIND_NA }, |
| { 3, META_LOOKAHEADNOT }, |
| { 3, META_LOOKBEHINDNOT }, |
| { 18, META_LOOKAHEAD }, |
| { 19, META_LOOKBEHIND }, |
| { 29, META_LOOKAHEAD_NA }, |
| { 30, META_LOOKBEHIND_NA }, |
| { 18, META_LOOKAHEADNOT }, |
| { 19, META_LOOKBEHINDNOT }, |
| { 6, META_ATOMIC }, |
| { 2, META_SCRIPT_RUN }, /* sr = script run */ |
| { 3, META_ATOMIC_SCRIPT_RUN }, /* asr = atomic script run */ |
| { 10, META_SCRIPT_RUN }, /* script run */ |
| { 17, META_ATOMIC_SCRIPT_RUN } /* atomic script run */ |
| }; |
| |
| static const int alascount = sizeof(alasmeta)/sizeof(alasitem); |
| |
| /* Offsets from OP_STAR for case-independent and negative repeat opcodes. */ |
| |
| static uint32_t chartypeoffset[] = { |
| OP_STAR - OP_STAR, OP_STARI - OP_STAR, |
| OP_NOTSTAR - OP_STAR, OP_NOTSTARI - OP_STAR }; |
| |
| /* Tables of names of POSIX character classes and their lengths. The names are |
| now all in a single string, to reduce the number of relocations when a shared |
| library is dynamically loaded. The list of lengths is terminated by a zero |
| length entry. The first three must be alpha, lower, upper, as this is assumed |
| for handling case independence. The indices for graph, print, and punct are |
| needed, so identify them. */ |
| |
| static const char posix_names[] = |
| STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
| STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
| STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
| STRING_word0 STRING_xdigit; |
| |
| static const uint8_t posix_name_lengths[] = { |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
| |
| #define PC_GRAPH 8 |
| #define PC_PRINT 9 |
| #define PC_PUNCT 10 |
| |
| /* Table of class bit maps for each POSIX class. Each class is formed from a |
| base map, with an optional addition or removal of another map. Then, for some |
| classes, there is some additional tweaking: for [:blank:] the vertical space |
| characters are removed, and for [:alpha:] and [:alnum:] the underscore |
| character is removed. The triples in the table consist of the base map offset, |
| second map offset or -1 if no second map, and a non-negative value for map |
| addition or a negative value for map subtraction (if there are two maps). The |
| absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
| remove vertical space characters, 2 => remove underscore. */ |
| |
| static const int posix_class_maps[] = { |
| cbit_word, cbit_digit, -2, /* alpha */ |
| cbit_lower, -1, 0, /* lower */ |
| cbit_upper, -1, 0, /* upper */ |
| cbit_word, -1, 2, /* alnum - word without underscore */ |
| cbit_print, cbit_cntrl, 0, /* ascii */ |
| cbit_space, -1, 1, /* blank - a GNU extension */ |
| cbit_cntrl, -1, 0, /* cntrl */ |
| cbit_digit, -1, 0, /* digit */ |
| cbit_graph, -1, 0, /* graph */ |
| cbit_print, -1, 0, /* print */ |
| cbit_punct, -1, 0, /* punct */ |
| cbit_space, -1, 0, /* space */ |
| cbit_word, -1, 0, /* word - a Perl extension */ |
| cbit_xdigit,-1, 0 /* xdigit */ |
| }; |
| |
| #ifdef SUPPORT_UNICODE |
| |
| /* The POSIX class Unicode property substitutes that are used in UCP mode must |
| be in the order of the POSIX class names, defined above. */ |
| |
| static int posix_substitutes[] = { |
| PT_GC, ucp_L, /* alpha */ |
| PT_PC, ucp_Ll, /* lower */ |
| PT_PC, ucp_Lu, /* upper */ |
| PT_ALNUM, 0, /* alnum */ |
| -1, 0, /* ascii, treat as non-UCP */ |
| -1, 1, /* blank, treat as \h */ |
| PT_PC, ucp_Cc, /* cntrl */ |
| PT_PC, ucp_Nd, /* digit */ |
| PT_PXGRAPH, 0, /* graph */ |
| PT_PXPRINT, 0, /* print */ |
| PT_PXPUNCT, 0, /* punct */ |
| PT_PXSPACE, 0, /* space */ /* Xps is POSIX space, but from 8.34 */ |
| PT_WORD, 0, /* word */ /* Perl and POSIX space are the same */ |
| -1, 0 /* xdigit, treat as non-UCP */ |
| }; |
| #define POSIX_SUBSIZE (sizeof(posix_substitutes) / (2*sizeof(uint32_t))) |
| #endif /* SUPPORT_UNICODE */ |
| |
| /* Masks for checking option settings. When PCRE2_LITERAL is set, only a subset |
| are allowed. */ |
| |
| #define PUBLIC_LITERAL_COMPILE_OPTIONS \ |
| (PCRE2_ANCHORED|PCRE2_AUTO_CALLOUT|PCRE2_CASELESS|PCRE2_ENDANCHORED| \ |
| PCRE2_FIRSTLINE|PCRE2_LITERAL|PCRE2_MATCH_INVALID_UTF| \ |
| PCRE2_NO_START_OPTIMIZE|PCRE2_NO_UTF_CHECK|PCRE2_USE_OFFSET_LIMIT|PCRE2_UTF) |
| |
| #define PUBLIC_COMPILE_OPTIONS \ |
| (PUBLIC_LITERAL_COMPILE_OPTIONS| \ |
| PCRE2_ALLOW_EMPTY_CLASS|PCRE2_ALT_BSUX|PCRE2_ALT_CIRCUMFLEX| \ |
| PCRE2_ALT_VERBNAMES|PCRE2_DOLLAR_ENDONLY|PCRE2_DOTALL|PCRE2_DUPNAMES| \ |
| PCRE2_EXTENDED|PCRE2_EXTENDED_MORE|PCRE2_MATCH_UNSET_BACKREF| \ |
| PCRE2_MULTILINE|PCRE2_NEVER_BACKSLASH_C|PCRE2_NEVER_UCP| \ |
| PCRE2_NEVER_UTF|PCRE2_NO_AUTO_CAPTURE|PCRE2_NO_AUTO_POSSESS| \ |
| PCRE2_NO_DOTSTAR_ANCHOR|PCRE2_UCP|PCRE2_UNGREEDY) |
| |
| #define PUBLIC_LITERAL_COMPILE_EXTRA_OPTIONS \ |
| (PCRE2_EXTRA_MATCH_LINE|PCRE2_EXTRA_MATCH_WORD) |
| |
| #define PUBLIC_COMPILE_EXTRA_OPTIONS \ |
| (PUBLIC_LITERAL_COMPILE_EXTRA_OPTIONS| \ |
| PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES|PCRE2_EXTRA_BAD_ESCAPE_IS_LITERAL| \ |
| PCRE2_EXTRA_ESCAPED_CR_IS_LF|PCRE2_EXTRA_ALT_BSUX| \ |
| PCRE2_EXTRA_ALLOW_LOOKAROUND_BSK) |
| |
| /* Compile time error code numbers. They are given names so that they can more |
| easily be tracked. When a new number is added, the tables called eint1 and |
| eint2 in pcre2posix.c may need to be updated, and a new error text must be |
| added to compile_error_texts in pcre2_error.c. Also, the error codes in |
| pcre2.h.in must be updated - their values are exactly 100 greater than these |
| values. */ |
| |
| enum { ERR0 = COMPILE_ERROR_BASE, |
| ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9, ERR10, |
| ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17, ERR18, ERR19, ERR20, |
| ERR21, ERR22, ERR23, ERR24, ERR25, ERR26, ERR27, ERR28, ERR29, ERR30, |
| ERR31, ERR32, ERR33, ERR34, ERR35, ERR36, ERR37, ERR38, ERR39, ERR40, |
| ERR41, ERR42, ERR43, ERR44, ERR45, ERR46, ERR47, ERR48, ERR49, ERR50, |
| ERR51, ERR52, ERR53, ERR54, ERR55, ERR56, ERR57, ERR58, ERR59, ERR60, |
| ERR61, ERR62, ERR63, ERR64, ERR65, ERR66, ERR67, ERR68, ERR69, ERR70, |
| ERR71, ERR72, ERR73, ERR74, ERR75, ERR76, ERR77, ERR78, ERR79, ERR80, |
| ERR81, ERR82, ERR83, ERR84, ERR85, ERR86, ERR87, ERR88, ERR89, ERR90, |
| ERR91, ERR92, ERR93, ERR94, ERR95, ERR96, ERR97, ERR98, ERR99 }; |
| |
| /* This is a table of start-of-pattern options such as (*UTF) and settings such |
| as (*LIMIT_MATCH=nnnn) and (*CRLF). For completeness and backward |
| compatibility, (*UTFn) is supported in the relevant libraries, but (*UTF) is |
| generic and always supported. */ |
| |
| enum { PSO_OPT, /* Value is an option bit */ |
| PSO_FLG, /* Value is a flag bit */ |
| PSO_NL, /* Value is a newline type */ |
| PSO_BSR, /* Value is a \R type */ |
| PSO_LIMH, /* Read integer value for heap limit */ |
| PSO_LIMM, /* Read integer value for match limit */ |
| PSO_LIMD }; /* Read integer value for depth limit */ |
| |
| typedef struct pso { |
| const uint8_t *name; |
| uint16_t length; |
| uint16_t type; |
| uint32_t value; |
| } pso; |
| |
| /* NB: STRING_UTFn_RIGHTPAR contains the length as well */ |
| |
| static pso pso_list[] = { |
| { (uint8_t *)STRING_UTFn_RIGHTPAR, PSO_OPT, PCRE2_UTF }, |
| { (uint8_t *)STRING_UTF_RIGHTPAR, 4, PSO_OPT, PCRE2_UTF }, |
| { (uint8_t *)STRING_UCP_RIGHTPAR, 4, PSO_OPT, PCRE2_UCP }, |
| { (uint8_t *)STRING_NOTEMPTY_RIGHTPAR, 9, PSO_FLG, PCRE2_NOTEMPTY_SET }, |
| { (uint8_t *)STRING_NOTEMPTY_ATSTART_RIGHTPAR, 17, PSO_FLG, PCRE2_NE_ATST_SET }, |
| { (uint8_t *)STRING_NO_AUTO_POSSESS_RIGHTPAR, 16, PSO_OPT, PCRE2_NO_AUTO_POSSESS }, |
| { (uint8_t *)STRING_NO_DOTSTAR_ANCHOR_RIGHTPAR, 18, PSO_OPT, PCRE2_NO_DOTSTAR_ANCHOR }, |
| { (uint8_t *)STRING_NO_JIT_RIGHTPAR, 7, PSO_FLG, PCRE2_NOJIT }, |
| { (uint8_t *)STRING_NO_START_OPT_RIGHTPAR, 13, PSO_OPT, PCRE2_NO_START_OPTIMIZE }, |
| { (uint8_t *)STRING_LIMIT_HEAP_EQ, 11, PSO_LIMH, 0 }, |
| { (uint8_t *)STRING_LIMIT_MATCH_EQ, 12, PSO_LIMM, 0 }, |
| { (uint8_t *)STRING_LIMIT_DEPTH_EQ, 12, PSO_LIMD, 0 }, |
| { (uint8_t *)STRING_LIMIT_RECURSION_EQ, 16, PSO_LIMD, 0 }, |
| { (uint8_t *)STRING_CR_RIGHTPAR, 3, PSO_NL, PCRE2_NEWLINE_CR }, |
| { (uint8_t *)STRING_LF_RIGHTPAR, 3, PSO_NL, PCRE2_NEWLINE_LF }, |
| { (uint8_t *)STRING_CRLF_RIGHTPAR, 5, PSO_NL, PCRE2_NEWLINE_CRLF }, |
| { (uint8_t *)STRING_ANY_RIGHTPAR, 4, PSO_NL, PCRE2_NEWLINE_ANY }, |
| { (uint8_t *)STRING_NUL_RIGHTPAR, 4, PSO_NL, PCRE2_NEWLINE_NUL }, |
| { (uint8_t *)STRING_ANYCRLF_RIGHTPAR, 8, PSO_NL, PCRE2_NEWLINE_ANYCRLF }, |
| { (uint8_t *)STRING_BSR_ANYCRLF_RIGHTPAR, 12, PSO_BSR, PCRE2_BSR_ANYCRLF }, |
| { (uint8_t *)STRING_BSR_UNICODE_RIGHTPAR, 12, PSO_BSR, PCRE2_BSR_UNICODE } |
| }; |
| |
| /* This table is used when converting repeating opcodes into possessified |
| versions as a result of an explicit possessive quantifier such as ++. A zero |
| value means there is no possessified version - in those cases the item in |
| question must be wrapped in ONCE brackets. The table is truncated at OP_CALLOUT |
| because all relevant opcodes are less than that. */ |
| |
| static const uint8_t opcode_possessify[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 15 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 16 - 31 */ |
| |
| 0, /* NOTI */ |
| OP_POSSTAR, 0, /* STAR, MINSTAR */ |
| OP_POSPLUS, 0, /* PLUS, MINPLUS */ |
| OP_POSQUERY, 0, /* QUERY, MINQUERY */ |
| OP_POSUPTO, 0, /* UPTO, MINUPTO */ |
| 0, /* EXACT */ |
| 0, 0, 0, 0, /* POS{STAR,PLUS,QUERY,UPTO} */ |
| |
| OP_POSSTARI, 0, /* STARI, MINSTARI */ |
| OP_POSPLUSI, 0, /* PLUSI, MINPLUSI */ |
| OP_POSQUERYI, 0, /* QUERYI, MINQUERYI */ |
| OP_POSUPTOI, 0, /* UPTOI, MINUPTOI */ |
| 0, /* EXACTI */ |
| 0, 0, 0, 0, /* POS{STARI,PLUSI,QUERYI,UPTOI} */ |
| |
| OP_NOTPOSSTAR, 0, /* NOTSTAR, NOTMINSTAR */ |
| OP_NOTPOSPLUS, 0, /* NOTPLUS, NOTMINPLUS */ |
| OP_NOTPOSQUERY, 0, /* NOTQUERY, NOTMINQUERY */ |
| OP_NOTPOSUPTO, 0, /* NOTUPTO, NOTMINUPTO */ |
| 0, /* NOTEXACT */ |
| 0, 0, 0, 0, /* NOTPOS{STAR,PLUS,QUERY,UPTO} */ |
| |
| OP_NOTPOSSTARI, 0, /* NOTSTARI, NOTMINSTARI */ |
| OP_NOTPOSPLUSI, 0, /* NOTPLUSI, NOTMINPLUSI */ |
| OP_NOTPOSQUERYI, 0, /* NOTQUERYI, NOTMINQUERYI */ |
| OP_NOTPOSUPTOI, 0, /* NOTUPTOI, NOTMINUPTOI */ |
| 0, /* NOTEXACTI */ |
| 0, 0, 0, 0, /* NOTPOS{STARI,PLUSI,QUERYI,UPTOI} */ |
| |
| OP_TYPEPOSSTAR, 0, /* TYPESTAR, TYPEMINSTAR */ |
| OP_TYPEPOSPLUS, 0, /* TYPEPLUS, TYPEMINPLUS */ |
| OP_TYPEPOSQUERY, 0, /* TYPEQUERY, TYPEMINQUERY */ |
| OP_TYPEPOSUPTO, 0, /* TYPEUPTO, TYPEMINUPTO */ |
| 0, /* TYPEEXACT */ |
| 0, 0, 0, 0, /* TYPEPOS{STAR,PLUS,QUERY,UPTO} */ |
| |
| OP_CRPOSSTAR, 0, /* CRSTAR, CRMINSTAR */ |
| OP_CRPOSPLUS, 0, /* CRPLUS, CRMINPLUS */ |
| OP_CRPOSQUERY, 0, /* CRQUERY, CRMINQUERY */ |
| OP_CRPOSRANGE, 0, /* CRRANGE, CRMINRANGE */ |
| 0, 0, 0, 0, /* CRPOS{STAR,PLUS,QUERY,RANGE} */ |
| |
| 0, 0, 0, /* CLASS, NCLASS, XCLASS */ |
| 0, 0, /* REF, REFI */ |
| 0, 0, /* DNREF, DNREFI */ |
| 0, 0 /* RECURSE, CALLOUT */ |
| }; |
| |
| |
| #ifdef DEBUG_SHOW_PARSED |
| /************************************************* |
| * Show the parsed pattern for debugging * |
| *************************************************/ |
| |
| /* For debugging the pre-scan, this code, which outputs the parsed data vector, |
| can be enabled. */ |
| |
| static void show_parsed(compile_block *cb) |
| { |
| uint32_t *pptr = cb->parsed_pattern; |
| |
| for (;;) |
| { |
| int max, min; |
| PCRE2_SIZE offset; |
| uint32_t i; |
| uint32_t length; |
| uint32_t meta_arg = META_DATA(*pptr); |
| |
| fprintf(stderr, "+++ %02d %.8x ", (int)(pptr - cb->parsed_pattern), *pptr); |
| |
| if (*pptr < META_END) |
| { |
| if (*pptr > 32 && *pptr < 128) fprintf(stderr, "%c", *pptr); |
| pptr++; |
| } |
| |
| else switch (META_CODE(*pptr++)) |
| { |
| default: |
| fprintf(stderr, "**** OOPS - unknown META value - giving up ****\n"); |
| return; |
| |
| case META_END: |
| fprintf(stderr, "META_END\n"); |
| return; |
| |
| case META_CAPTURE: |
| fprintf(stderr, "META_CAPTURE %d", meta_arg); |
| break; |
| |
| case META_RECURSE: |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "META_RECURSE %d %zd", meta_arg, offset); |
| break; |
| |
| case META_BACKREF: |
| if (meta_arg < 10) |
| offset = cb->small_ref_offset[meta_arg]; |
| else |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "META_BACKREF %d %zd", meta_arg, offset); |
| break; |
| |
| case META_ESCAPE: |
| if (meta_arg == ESC_P || meta_arg == ESC_p) |
| { |
| uint32_t ptype = *pptr >> 16; |
| uint32_t pvalue = *pptr++ & 0xffff; |
| fprintf(stderr, "META \\%c %d %d", (meta_arg == ESC_P)? 'P':'p', |
| ptype, pvalue); |
| } |
| else |
| { |
| uint32_t cc; |
| /* There's just one escape we might have here that isn't negated in the |
| escapes table. */ |
| if (meta_arg == ESC_g) cc = CHAR_g; |
| else for (cc = ESCAPES_FIRST; cc <= ESCAPES_LAST; cc++) |
| { |
| if (meta_arg == (uint32_t)(-escapes[cc - ESCAPES_FIRST])) break; |
| } |
| if (cc > ESCAPES_LAST) cc = CHAR_QUESTION_MARK; |
| fprintf(stderr, "META \\%c", cc); |
| } |
| break; |
| |
| case META_MINMAX: |
| min = *pptr++; |
| max = *pptr++; |
| if (max != REPEAT_UNLIMITED) |
| fprintf(stderr, "META {%d,%d}", min, max); |
| else |
| fprintf(stderr, "META {%d,}", min); |
| break; |
| |
| case META_MINMAX_QUERY: |
| min = *pptr++; |
| max = *pptr++; |
| if (max != REPEAT_UNLIMITED) |
| fprintf(stderr, "META {%d,%d}?", min, max); |
| else |
| fprintf(stderr, "META {%d,}?", min); |
| break; |
| |
| case META_MINMAX_PLUS: |
| min = *pptr++; |
| max = *pptr++; |
| if (max != REPEAT_UNLIMITED) |
| fprintf(stderr, "META {%d,%d}+", min, max); |
| else |
| fprintf(stderr, "META {%d,}+", min); |
| break; |
| |
| case META_BIGVALUE: fprintf(stderr, "META_BIGVALUE %.8x", *pptr++); break; |
| case META_CIRCUMFLEX: fprintf(stderr, "META_CIRCUMFLEX"); break; |
| case META_COND_ASSERT: fprintf(stderr, "META_COND_ASSERT"); break; |
| case META_DOLLAR: fprintf(stderr, "META_DOLLAR"); break; |
| case META_DOT: fprintf(stderr, "META_DOT"); break; |
| case META_ASTERISK: fprintf(stderr, "META *"); break; |
| case META_ASTERISK_QUERY: fprintf(stderr, "META *?"); break; |
| case META_ASTERISK_PLUS: fprintf(stderr, "META *+"); break; |
| case META_PLUS: fprintf(stderr, "META +"); break; |
| case META_PLUS_QUERY: fprintf(stderr, "META +?"); break; |
| case META_PLUS_PLUS: fprintf(stderr, "META ++"); break; |
| case META_QUERY: fprintf(stderr, "META ?"); break; |
| case META_QUERY_QUERY: fprintf(stderr, "META ??"); break; |
| case META_QUERY_PLUS: fprintf(stderr, "META ?+"); break; |
| |
| case META_ATOMIC: fprintf(stderr, "META (?>"); break; |
| case META_NOCAPTURE: fprintf(stderr, "META (?:"); break; |
| case META_LOOKAHEAD: fprintf(stderr, "META (?="); break; |
| case META_LOOKAHEADNOT: fprintf(stderr, "META (?!"); break; |
| case META_LOOKAHEAD_NA: fprintf(stderr, "META (*napla:"); break; |
| case META_SCRIPT_RUN: fprintf(stderr, "META (*sr:"); break; |
| case META_KET: fprintf(stderr, "META )"); break; |
| case META_ALT: fprintf(stderr, "META | %d", meta_arg); break; |
| |
| case META_CLASS: fprintf(stderr, "META ["); break; |
| case META_CLASS_NOT: fprintf(stderr, "META [^"); break; |
| case META_CLASS_END: fprintf(stderr, "META ]"); break; |
| case META_CLASS_EMPTY: fprintf(stderr, "META []"); break; |
| case META_CLASS_EMPTY_NOT: fprintf(stderr, "META [^]"); break; |
| |
| case META_RANGE_LITERAL: fprintf(stderr, "META - (literal)"); break; |
| case META_RANGE_ESCAPED: fprintf(stderr, "META - (escaped)"); break; |
| |
| case META_POSIX: fprintf(stderr, "META_POSIX %d", *pptr++); break; |
| case META_POSIX_NEG: fprintf(stderr, "META_POSIX_NEG %d", *pptr++); break; |
| |
| case META_ACCEPT: fprintf(stderr, "META (*ACCEPT)"); break; |
| case META_FAIL: fprintf(stderr, "META (*FAIL)"); break; |
| case META_COMMIT: fprintf(stderr, "META (*COMMIT)"); break; |
| case META_PRUNE: fprintf(stderr, "META (*PRUNE)"); break; |
| case META_SKIP: fprintf(stderr, "META (*SKIP)"); break; |
| case META_THEN: fprintf(stderr, "META (*THEN)"); break; |
| |
| case META_OPTIONS: fprintf(stderr, "META_OPTIONS 0x%02x", *pptr++); break; |
| |
| case META_LOOKBEHIND: |
| fprintf(stderr, "META (?<= %d offset=", meta_arg); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_LOOKBEHIND_NA: |
| fprintf(stderr, "META (*naplb: %d offset=", meta_arg); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_LOOKBEHINDNOT: |
| fprintf(stderr, "META (?<! %d offset=", meta_arg); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_CALLOUT_NUMBER: |
| fprintf(stderr, "META (?C%d) next=%d/%d", pptr[2], pptr[0], |
| pptr[1]); |
| pptr += 3; |
| break; |
| |
| case META_CALLOUT_STRING: |
| { |
| uint32_t patoffset = *pptr++; /* Offset of next pattern item */ |
| uint32_t patlength = *pptr++; /* Length of next pattern item */ |
| fprintf(stderr, "META (?Cstring) length=%d offset=", *pptr++); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd next=%d/%d", offset, patoffset, patlength); |
| } |
| break; |
| |
| case META_RECURSE_BYNAME: |
| fprintf(stderr, "META (?(&name) length=%d offset=", *pptr++); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_BACKREF_BYNAME: |
| fprintf(stderr, "META_BACKREF_BYNAME length=%d offset=", *pptr++); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_COND_NUMBER: |
| fprintf(stderr, "META_COND_NUMBER %d offset=", pptr[SIZEOFFSET]); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| pptr++; |
| break; |
| |
| case META_COND_DEFINE: |
| fprintf(stderr, "META (?(DEFINE) offset="); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_COND_VERSION: |
| fprintf(stderr, "META (?(VERSION%s", (*pptr++ == 0)? "=" : ">="); |
| fprintf(stderr, "%d.", *pptr++); |
| fprintf(stderr, "%d)", *pptr++); |
| break; |
| |
| case META_COND_NAME: |
| fprintf(stderr, "META (?(<name>) length=%d offset=", *pptr++); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_COND_RNAME: |
| fprintf(stderr, "META (?(R&name) length=%d offset=", *pptr++); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| /* This is kept as a name, because it might be. */ |
| |
| case META_COND_RNUMBER: |
| fprintf(stderr, "META (?(Rnumber) length=%d offset=", *pptr++); |
| GETOFFSET(offset, pptr); |
| fprintf(stderr, "%zd", offset); |
| break; |
| |
| case META_MARK: |
| fprintf(stderr, "META (*MARK:"); |
| goto SHOWARG; |
| |
| case META_COMMIT_ARG: |
| fprintf(stderr, "META (*COMMIT:"); |
| goto SHOWARG; |
| |
| case META_PRUNE_ARG: |
| fprintf(stderr, "META (*PRUNE:"); |
| goto SHOWARG; |
| |
| case META_SKIP_ARG: |
| fprintf(stderr, "META (*SKIP:"); |
| goto SHOWARG; |
| |
| case META_THEN_ARG: |
| fprintf(stderr, "META (*THEN:"); |
| SHOWARG: |
| length = *pptr++; |
| for (i = 0; i < length; i++) |
| { |
| uint32_t cc = *pptr++; |
| if (cc > 32 && cc < 128) fprintf(stderr, "%c", cc); |
| else fprintf(stderr, "\\x{%x}", cc); |
| } |
| fprintf(stderr, ") length=%u", length); |
| break; |
| } |
| fprintf(stderr, "\n"); |
| } |
| return; |
| } |
| #endif /* DEBUG_SHOW_PARSED */ |
| |
| |
| |
| /************************************************* |
| * Copy compiled code * |
| *************************************************/ |
| |
| /* Compiled JIT code cannot be copied, so the new compiled block has no |
| associated JIT data. */ |
| |
| PCRE2_EXP_DEFN pcre2_code * PCRE2_CALL_CONVENTION |
| pcre2_code_copy(const pcre2_code *code) |
| { |
| PCRE2_SIZE* ref_count; |
| pcre2_code *newcode; |
| |
| if (code == NULL) return NULL; |
| newcode = code->memctl.malloc(code->blocksize, code->memctl.memory_data); |
| if (newcode == NULL) return NULL; |
| memcpy(newcode, code, code->blocksize); |
| newcode->executable_jit = NULL; |
| |
| /* If the code is one that has been deserialized, increment the reference count |
| in the decoded tables. */ |
| |
| if ((code->flags & PCRE2_DEREF_TABLES) != 0) |
| { |
| ref_count = (PCRE2_SIZE *)(code->tables + TABLES_LENGTH); |
| (*ref_count)++; |
| } |
| |
| return newcode; |
| } |
| |
| |
| |
| /************************************************* |
| * Copy compiled code and character tables * |
| *************************************************/ |
| |
| /* Compiled JIT code cannot be copied, so the new compiled block has no |
| associated JIT data. This version of code_copy also makes a separate copy of |
| the character tables. */ |
| |
| PCRE2_EXP_DEFN pcre2_code * PCRE2_CALL_CONVENTION |
| pcre2_code_copy_with_tables(const pcre2_code *code) |
| { |
| PCRE2_SIZE* ref_count; |
| pcre2_code *newcode; |
| uint8_t *newtables; |
| |
| if (code == NULL) return NULL; |
| newcode = code->memctl.malloc(code->blocksize, code->memctl.memory_data); |
| if (newcode == NULL) return NULL; |
| memcpy(newcode, code, code->blocksize); |
| newcode->executable_jit = NULL; |
| |
| newtables = code->memctl.malloc(TABLES_LENGTH + sizeof(PCRE2_SIZE), |
| code->memctl.memory_data); |
| if (newtables == NULL) |
| { |
| code->memctl.free((void *)newcode, code->memctl.memory_data); |
| return NULL; |
| } |
| memcpy(newtables, code->tables, TABLES_LENGTH); |
| ref_count = (PCRE2_SIZE *)(newtables + TABLES_LENGTH); |
| *ref_count = 1; |
| |
| newcode->tables = newtables; |
| newcode->flags |= PCRE2_DEREF_TABLES; |
| return newcode; |
| } |
| |
| |
| |
| /************************************************* |
| * Free compiled code * |
| *************************************************/ |
| |
| PCRE2_EXP_DEFN void PCRE2_CALL_CONVENTION |
| pcre2_code_free(pcre2_code *code) |
| { |
| PCRE2_SIZE* ref_count; |
| |
| if (code != NULL) |
| { |
| #ifdef SUPPORT_JIT |
| if (code->executable_jit != NULL) |
| PRIV(jit_free)(code->executable_jit, &code->memctl); |
| #endif |
| |
| if ((code->flags & PCRE2_DEREF_TABLES) != 0) |
| { |
| /* Decoded tables belong to the codes after deserialization, and they must |
| be freed when there are no more references to them. The *ref_count should |
| always be > 0. */ |
| |
| ref_count = (PCRE2_SIZE *)(code->tables + TABLES_LENGTH); |
| if (*ref_count > 0) |
| { |
| (*ref_count)--; |
| if (*ref_count == 0) |
| code->memctl.free((void *)code->tables, code->memctl.memory_data); |
| } |
| } |
| |
| code->memctl.free(code, code->memctl.memory_data); |
| } |
| } |
| |
| |
| |
| /************************************************* |
| * Read a number, possibly signed * |
| *************************************************/ |
| |
| /* This function is used to read numbers in the pattern. The initial pointer |
| must be the sign or first digit of the number. When relative values (introduced |
| by + or -) are allowed, they are relative group numbers, and the result must be |
| greater than zero. |
| |
| Arguments: |
| ptrptr points to the character pointer variable |
| ptrend points to the end of the input string |
| allow_sign if < 0, sign not allowed; if >= 0, sign is relative to this |
| max_value the largest number allowed |
| max_error the error to give for an over-large number |
| intptr where to put the result |
| errcodeptr where to put an error code |
| |
| Returns: TRUE - a number was read |
| FALSE - errorcode == 0 => no number was found |
| errorcode != 0 => an error occurred |
| */ |
| |
| static BOOL |
| read_number(PCRE2_SPTR *ptrptr, PCRE2_SPTR ptrend, int32_t allow_sign, |
| uint32_t max_value, uint32_t max_error, int *intptr, int *errorcodeptr) |
| { |
| int sign = 0; |
| uint32_t n = 0; |
| PCRE2_SPTR ptr = *ptrptr; |
| BOOL yield = FALSE; |
| |
| *errorcodeptr = 0; |
| |
| if (allow_sign >= 0 && ptr < ptrend) |
| { |
| if (*ptr == CHAR_PLUS) |
| { |
| sign = +1; |
| max_value -= allow_sign; |
| ptr++; |
| } |
| else if (*ptr == CHAR_MINUS) |
| { |
| sign = -1; |
| ptr++; |
| } |
| } |
| |
| if (ptr >= ptrend || !IS_DIGIT(*ptr)) return FALSE; |
| while (ptr < ptrend && IS_DIGIT(*ptr)) |
| { |
| n = n * 10 + *ptr++ - CHAR_0; |
| if (n > max_value) |
| { |
| *errorcodeptr = max_error; |
| goto EXIT; |
| } |
| } |
| |
| if (allow_sign >= 0 && sign != 0) |
| { |
| if (n == 0) |
| { |
| *errorcodeptr = ERR26; /* +0 and -0 are not allowed */ |
| goto EXIT; |
| } |
| |
| if (sign > 0) n += allow_sign; |
| else if ((int)n > allow_sign) |
| { |
| *errorcodeptr = ERR15; /* Non-existent subpattern */ |
| goto EXIT; |
| } |
| else n = allow_sign + 1 - n; |
| } |
| |
| yield = TRUE; |
| |
| EXIT: |
| *intptr = n; |
| *ptrptr = ptr; |
| return yield; |
| } |
| |
| |
| |
| /************************************************* |
| * Read repeat counts * |
| *************************************************/ |
| |
| /* Read an item of the form {n,m} and return the values if non-NULL pointers |
| are supplied. Repeat counts must be less than 65536 (MAX_REPEAT_COUNT); a |
| larger value is used for "unlimited". We have to use signed arguments for |
| read_number() because it is capable of returning a signed value. |
| |
| Arguments: |
| ptrptr points to pointer to character after'{' |
| ptrend pointer to end of input |
| minp if not NULL, pointer to int for min |
| maxp if not NULL, pointer to int for max (-1 if no max) |
| returned as -1 if no max |
| errorcodeptr points to error code variable |
| |
| Returns: FALSE if not a repeat quantifier, errorcode set zero |
| FALSE on error, with errorcode set non-zero |
| TRUE on success, with pointer updated to point after '}' |
| */ |
| |
| static BOOL |
| read_repeat_counts(PCRE2_SPTR *ptrptr, PCRE2_SPTR ptrend, uint32_t *minp, |
| uint32_t *maxp, int *errorcodeptr) |
| { |
| PCRE2_SPTR p; |
| BOOL yield = FALSE; |
| BOOL had_comma = FALSE; |
| int32_t min = 0; |
| int32_t max = REPEAT_UNLIMITED; /* This value is larger than MAX_REPEAT_COUNT */ |
| |
| /* Check the syntax */ |
| |
| *errorcodeptr = 0; |
| for (p = *ptrptr;; p++) |
| { |
| uint32_t c; |
| if (p >= ptrend) return FALSE; |
| c = *p; |
| if (IS_DIGIT(c)) continue; |
| if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
| if (c == CHAR_COMMA) |
| { |
| if (had_comma) return FALSE; |
| had_comma = TRUE; |
| } |
| else return FALSE; |
| } |
| |
| /* The only error from read_number() is for a number that is too big. */ |
| |
| p = *ptrptr; |
| if (!read_number(&p, ptrend, -1, MAX_REPEAT_COUNT, ERR5, &min, errorcodeptr)) |
| goto EXIT; |
| |
| if (*p == CHAR_RIGHT_CURLY_BRACKET) |
| { |
| p++; |
| max = min; |
| } |
| else |
| { |
| if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
| { |
| if (!read_number(&p, ptrend, -1, MAX_REPEAT_COUNT, ERR5, &max, |
| errorcodeptr)) |
| goto EXIT; |
| if (max < min) |
| { |
| *errorcodeptr = ERR4; |
| goto EXIT; |
| } |
| } |
| p++; |
| } |
| |
| yield = TRUE; |
| if (minp != NULL) *minp = (uint32_t)min; |
| if (maxp != NULL) *maxp = (uint32_t)max; |
| |
| /* Update the pattern pointer */ |
| |
| EXIT: |
| *ptrptr = p; |
| return yield; |
| } |
| |
| |
| |
| /************************************************* |
| * Handle escapes * |
| *************************************************/ |
| |
| /* This function is called when a \ has been encountered. It either returns a |
| positive value for a simple escape such as \d, or 0 for a data character, which |
| is placed in chptr. A backreference to group n is returned as negative n. On |
| entry, ptr is pointing at the character after \. On exit, it points after the |
| final code unit of the escape sequence. |
| |
| This function is also called from pcre2_substitute() to handle escape sequences |
| in replacement strings. In this case, the cb argument is NULL, and in the case |
| of escapes that have further processing, only sequences that define a data |
| character are recognised. The isclass argument is not relevant; the options |
| argument is the final value of the compiled pattern's options. |
| |
| Arguments: |
| ptrptr points to the input position pointer |
| ptrend points to the end of the input |
| chptr points to a returned data character |
| errorcodeptr points to the errorcode variable (containing zero) |
| options the current options bits |
| isclass TRUE if inside a character class |
| cb compile data block or NULL when called from pcre2_substitute() |
| |
| Returns: zero => a data character |
| positive => a special escape sequence |
| negative => a numerical back reference |
| on error, errorcodeptr is set non-zero |
| */ |
| |
| int |
| PRIV(check_escape)(PCRE2_SPTR *ptrptr, PCRE2_SPTR ptrend, uint32_t *chptr, |
| int *errorcodeptr, uint32_t options, uint32_t extra_options, BOOL isclass, |
| compile_block *cb) |
| { |
| BOOL utf = (options & PCRE2_UTF) != 0; |
| PCRE2_SPTR ptr = *ptrptr; |
| uint32_t c, cc; |
| int escape = 0; |
| int i; |
| |
| /* If backslash is at the end of the string, it's an error. */ |
| |
| if (ptr >= ptrend) |
| { |
| *errorcodeptr = ERR1; |
| return 0; |
| } |
| |
| GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
| *errorcodeptr = 0; /* Be optimistic */ |
| |
| /* Non-alphanumerics are literals, so we just leave the value in c. An initial |
| value test saves a memory lookup for code points outside the alphanumeric |
| range. */ |
| |
| if (c < ESCAPES_FIRST || c > ESCAPES_LAST) {} /* Definitely literal */ |
| |
| /* Otherwise, do a table lookup. Non-zero values need little processing here. A |
| positive value is a literal value for something like \n. A negative value is |
| the negation of one of the ESC_ macros that is passed back for handling by the |
| calling function. Some extra checking is needed for \N because only \N{U+dddd} |
| is supported. If the value is zero, further processing is handled below. */ |
| |
| else if ((i = escapes[c - ESCAPES_FIRST]) != 0) |
| { |
| if (i > 0) |
| { |
| c = (uint32_t)i; |
| if (c == CHAR_CR && (extra_options & PCRE2_EXTRA_ESCAPED_CR_IS_LF) != 0) |
| c = CHAR_LF; |
| } |
| else /* Negative table entry */ |
| { |
| escape = -i; /* Else return a special escape */ |
| if (cb != NULL && (escape == ESC_P || escape == ESC_p || escape == ESC_X)) |
| cb->external_flags |= PCRE2_HASBKPORX; /* Note \P, \p, or \X */ |
| |
| /* Perl supports \N{name} for character names and \N{U+dddd} for numerical |
| Unicode code points, as well as plain \N for "not newline". PCRE does not |
| support \N{name}. However, it does support quantification such as \N{2,3}, |
| so if \N{ is not followed by U+dddd we check for a quantifier. */ |
| |
| if (escape == ESC_N && ptr < ptrend && *ptr == CHAR_LEFT_CURLY_BRACKET) |
| { |
| PCRE2_SPTR p = ptr + 1; |
| |
| /* \N{U+ can be handled by the \x{ code. However, this construction is |
| not valid in EBCDIC environments because it specifies a Unicode |
| character, not a codepoint in the local code. For example \N{U+0041} |
| must be "A" in all environments. Also, in Perl, \N{U+ forces Unicode |
| casing semantics for the entire pattern, so allow it only in UTF (i.e. |
| Unicode) mode. */ |
| |
| if (ptrend - p > 1 && *p == CHAR_U && p[1] == CHAR_PLUS) |
| { |
| #ifdef EBCDIC |
| *errorcodeptr = ERR93; |
| #else |
| if (utf) |
| { |
| ptr = p + 1; |
| escape = 0; /* Not a fancy escape after all */ |
| goto COME_FROM_NU; |
| } |
| else *errorcodeptr = ERR93; |
| #endif |
| } |
| |
| /* Give an error if what follows is not a quantifier, but don't override |
| an error set by the quantifier reader (e.g. number overflow). */ |
| |
| else |
| { |
| if (!read_repeat_counts(&p, ptrend, NULL, NULL, errorcodeptr) && |
| *errorcodeptr == 0) |
| *errorcodeptr = ERR37; |
| } |
| } |
| } |
| } |
| |
| /* Escapes that need further processing, including those that are unknown, have |
| a zero entry in the lookup table. When called from pcre2_substitute(), only \c, |
| \o, and \x are recognized (\u and \U can never appear as they are used for case |
| forcing). */ |
| |
| else |
| { |
| int s; |
| PCRE2_SPTR oldptr; |
| BOOL overflow; |
| BOOL alt_bsux = |
| ((options & PCRE2_ALT_BSUX) | (extra_options & PCRE2_EXTRA_ALT_BSUX)) != 0; |
| |
| /* Filter calls from pcre2_substitute(). */ |
| |
| if (cb == NULL) |
| { |
| if (c != CHAR_c && c != CHAR_o && c != CHAR_x) |
| { |
| *errorcodeptr = ERR3; |
| return 0; |
| } |
| alt_bsux = FALSE; /* Do not modify \x handling */ |
| } |
| |
| switch (c) |
| { |
| /* A number of Perl escapes are not handled by PCRE. We give an explicit |
| error. */ |
| |
| case CHAR_F: |
| case CHAR_l: |
| case CHAR_L: |
| *errorcodeptr = ERR37; |
| break; |
| |
| /* \u is unrecognized when neither PCRE2_ALT_BSUX nor PCRE2_EXTRA_ALT_BSUX |
| is set. Otherwise, \u must be followed by exactly four hex digits or, if |
| PCRE2_EXTRA_ALT_BSUX is set, by any number of hex digits in braces. |
| Otherwise it is a lowercase u letter. This gives some compatibility with |
| ECMAScript (aka JavaScript). */ |
| |
| case CHAR_u: |
| if (!alt_bsux) *errorcodeptr = ERR37; else |
| { |
| uint32_t xc; |
| |
| if (ptr >= ptrend) break; |
| if (*ptr == CHAR_LEFT_CURLY_BRACKET && |
| (extra_options & PCRE2_EXTRA_ALT_BSUX) != 0) |
| { |
| PCRE2_SPTR hptr = ptr + 1; |
| cc = 0; |
| |
| while (hptr < ptrend && (xc = XDIGIT(*hptr)) != 0xff) |
| { |
| if ((cc & 0xf0000000) != 0) /* Test for 32-bit overflow */ |
| { |
| *errorcodeptr = ERR77; |
| ptr = hptr; /* Show where */ |
| break; /* *hptr != } will cause another break below */ |
| } |
| cc = (cc << 4) | xc; |
| hptr++; |
| } |
| |
| if (hptr == ptr + 1 || /* No hex digits */ |
| hptr >= ptrend || /* Hit end of input */ |
| *hptr != CHAR_RIGHT_CURLY_BRACKET) /* No } terminator */ |
| break; /* Hex escape not recognized */ |
| |
| c = cc; /* Accept the code point */ |
| ptr = hptr + 1; |
| } |
| |
| else /* Must be exactly 4 hex digits */ |
| { |
| if (ptrend - ptr < 4) break; /* Less than 4 chars */ |
| if ((cc = XDIGIT(ptr[0])) == 0xff) break; /* Not a hex digit */ |
| if ((xc = XDIGIT(ptr[1])) == 0xff) break; /* Not a hex digit */ |
| cc = (cc << 4) | xc; |
| if ((xc = XDIGIT(ptr[2])) == 0xff) break; /* Not a hex digit */ |
| cc = (cc << 4) | xc; |
| if ((xc = XDIGIT(ptr[3])) == 0xff) break; /* Not a hex digit */ |
| c = (cc << 4) | xc; |
| ptr += 4; |
| } |
| |
| if (utf) |
| { |
| if (c > 0x10ffffU) *errorcodeptr = ERR77; |
| else |
| if (c >= 0xd800 && c <= 0xdfff && |
| (extra_options & PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES) == 0) |
| *errorcodeptr = ERR73; |
| } |
| else if (c > MAX_NON_UTF_CHAR) *errorcodeptr = ERR77; |
| } |
| break; |
| |
| /* \U is unrecognized unless PCRE2_ALT_BSUX or PCRE2_EXTRA_ALT_BSUX is set, |
| in which case it is an upper case letter. */ |
| |
| case CHAR_U: |
| if (!alt_bsux) *errorcodeptr = ERR37; |
| break; |
| |
| /* In a character class, \g is just a literal "g". Outside a character |
| class, \g must be followed by one of a number of specific things: |
| |
| (1) A number, either plain or braced. If positive, it is an absolute |
| backreference. If negative, it is a relative backreference. This is a Perl |
| 5.10 feature. |
| |
| (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
| is part of Perl's movement towards a unified syntax for back references. As |
| this is synonymous with \k{name}, we fudge it up by pretending it really |
| was \k{name}. |
| |
| (3) For Oniguruma compatibility we also support \g followed by a name or a |
| number either in angle brackets or in single quotes. However, these are |
| (possibly recursive) subroutine calls, _not_ backreferences. We return |
| the ESC_g code. |
| |
| Summary: Return a negative number for a numerical back reference, ESC_k for |
| a named back reference, and ESC_g for a named or numbered subroutine call. |
| */ |
| |
| case CHAR_g: |
| if (isclass) break; |
| |
| if (ptr >= ptrend) |
| { |
| *errorcodeptr = ERR57; |
| break; |
| } |
| |
| if (*ptr == CHAR_LESS_THAN_SIGN || *ptr == CHAR_APOSTROPHE) |
| { |
| escape = ESC_g; |
| break; |
| } |
| |
| /* If there is a brace delimiter, try to read a numerical reference. If |
| there isn't one, assume we have a name and treat it as \k. */ |
| |
| if (*ptr == CHAR_LEFT_CURLY_BRACKET) |
| { |
| PCRE2_SPTR p = ptr + 1; |
| if (!read_number(&p, ptrend, cb->bracount, MAX_GROUP_NUMBER, ERR61, &s, |
| errorcodeptr)) |
| { |
| if (*errorcodeptr == 0) escape = ESC_k; /* No number found */ |
| break; |
| } |
| if (p >= ptrend || *p != CHAR_RIGHT_CURLY_BRACKET) |
| { |
| *errorcodeptr = ERR57; |
| break; |
| } |
| ptr = p + 1; |
| } |
| |
| /* Read an undelimited number */ |
| |
| else |
| { |
| if (!read_number(&ptr, ptrend, cb->bracount, MAX_GROUP_NUMBER, ERR61, &s, |
| errorcodeptr)) |
| { |
| if (*errorcodeptr == 0) *errorcodeptr = ERR57; /* No number found */ |
| break; |
| } |
| } |
| |
| if (s <= 0) |
| { |
| *errorcodeptr = ERR15; |
| break; |
| } |
| |
| escape = -s; |
| break; |
| |
| /* The handling of escape sequences consisting of a string of digits |
| starting with one that is not zero is not straightforward. Perl has changed |
| over the years. Nowadays \g{} for backreferences and \o{} for octal are |
| recommended to avoid the ambiguities in the old syntax. |
| |
| Outside a character class, the digits are read as a decimal number. If the |
| number is less than 10, or if there are that many previous extracting left |
| brackets, it is a back reference. Otherwise, up to three octal digits are |
| read to form an escaped character code. Thus \123 is likely to be octal 123 |
| (cf \0123, which is octal 012 followed by the literal 3). |
| |
| Inside a character class, \ followed by a digit is always either a literal |
| 8 or 9 or an octal number. */ |
| |
| case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
| case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
| |
| if (!isclass) |
| { |
| oldptr = ptr; |
| ptr--; /* Back to the digit */ |
| |
| /* As we know we are at a digit, the only possible error from |
| read_number() is a number that is too large to be a group number. In this |
| case we fall through handle this as not a group reference. If we have |
| read a small enough number, check for a back reference. |
| |
| \1 to \9 are always back references. \8x and \9x are too; \1x to \7x |
| are octal escapes if there are not that many previous captures. */ |
| |
| if (read_number(&ptr, ptrend, -1, INT_MAX/10 - 1, 0, &s, errorcodeptr) && |
| (s < 10 || oldptr[-1] >= CHAR_8 || s <= (int)cb->bracount)) |
| { |
| if (s > (int)MAX_GROUP_NUMBER) *errorcodeptr = ERR61; |
| else escape = -s; /* Indicates a back reference */ |
| break; |
| } |
| |
| ptr = oldptr; /* Put the pointer back and fall through */ |
| } |
| |
| /* Handle a digit following \ when the number is not a back reference, or |
| we are within a character class. If the first digit is 8 or 9, Perl used to |
| generate a binary zero and then treat the digit as a following literal. At |
| least by Perl 5.18 this changed so as not to insert the binary zero. */ |
| |
| if (c >= CHAR_8) break; |
| |
| /* Fall through */ |
| |
| /* \0 always starts an octal number, but we may drop through to here with a |
| larger first octal digit. The original code used just to take the least |
| significant 8 bits of octal numbers (I think this is what early Perls used |
| to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode, |
| but no more than 3 octal digits. */ |
| |
| case CHAR_0: |
| c -= CHAR_0; |
| while(i++ < 2 && ptr < ptrend && *ptr >= CHAR_0 && *ptr <= CHAR_7) |
| c = c * 8 + *ptr++ - CHAR_0; |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| if (!utf && c > 0xff) *errorcodeptr = ERR51; |
| #endif |
| break; |
| |
| /* \o is a relatively new Perl feature, supporting a more general way of |
| specifying character codes in octal. The only supported form is \o{ddd}. */ |
| |
| case CHAR_o: |
| if (ptr >= ptrend || *ptr++ != CHAR_LEFT_CURLY_BRACKET) |
| { |
| ptr--; |
| *errorcodeptr = ERR55; |
| } |
| else if (ptr >= ptrend || *ptr == CHAR_RIGHT_CURLY_BRACKET) |
| *errorcodeptr = ERR78; |
| else |
| { |
| c = 0; |
| overflow = FALSE; |
| while (ptr < ptrend && *ptr >= CHAR_0 && *ptr <= CHAR_7) |
| { |
| cc = *ptr++; |
| if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
| #if PCRE2_CODE_UNIT_WIDTH == 32 |
| if (c >= 0x20000000l) { overflow = TRUE; break; } |
| #endif |
| c = (c << 3) + (cc - CHAR_0); |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; } |
| #elif PCRE2_CODE_UNIT_WIDTH == 16 |
| if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; } |
| #elif PCRE2_CODE_UNIT_WIDTH == 32 |
| if (utf && c > 0x10ffffU) { overflow = TRUE; break; } |
| #endif |
| } |
| if (overflow) |
| { |
| while (ptr < ptrend && *ptr >= CHAR_0 && *ptr <= CHAR_7) ptr++; |
| *errorcodeptr = ERR34; |
| } |
| else if (ptr < ptrend && *ptr++ == CHAR_RIGHT_CURLY_BRACKET) |
| { |
| if (utf && c >= 0xd800 && c <= 0xdfff && |
| (extra_options & PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES) == 0) |
| { |
| ptr--; |
| *errorcodeptr = ERR73; |
| } |
| } |
| else |
| { |
| ptr--; |
| *errorcodeptr = ERR64; |
| } |
| } |
| break; |
| |
| /* When PCRE2_ALT_BSUX or PCRE2_EXTRA_ALT_BSUX is set, \x must be followed |
| by two hexadecimal digits. Otherwise it is a lowercase x letter. */ |
| |
| case CHAR_x: |
| if (alt_bsux) |
| { |
| uint32_t xc; |
| if (ptrend - ptr < 2) break; /* Less than 2 characters */ |
| if ((cc = XDIGIT(ptr[0])) == 0xff) break; /* Not a hex digit */ |
| if ((xc = XDIGIT(ptr[1])) == 0xff) break; /* Not a hex digit */ |
| c = (cc << 4) | xc; |
| ptr += 2; |
| } |
| |
| /* Handle \x in Perl's style. \x{ddd} is a character code which can be |
| greater than 0xff in UTF-8 or non-8bit mode, but only if the ddd are hex |
| digits. If not, { used to be treated as a data character. However, Perl |
| seems to read hex digits up to the first non-such, and ignore the rest, so |
| that, for example \x{zz} matches a binary zero. This seems crazy, so PCRE |
| now gives an error. */ |
| |
| else |
| { |
| if (ptr < ptrend && *ptr == CHAR_LEFT_CURLY_BRACKET) |
| { |
| #ifndef EBCDIC |
| COME_FROM_NU: |
| #endif |
| if (++ptr >= ptrend || *ptr == CHAR_RIGHT_CURLY_BRACKET) |
| { |
| *errorcodeptr = ERR78; |
| break; |
| } |
| c = 0; |
| overflow = FALSE; |
| |
| while (ptr < ptrend && (cc = XDIGIT(*ptr)) != 0xff) |
| { |
| ptr++; |
| if (c == 0 && cc == 0) continue; /* Leading zeroes */ |
| #if PCRE2_CODE_UNIT_WIDTH == 32 |
| if (c >= 0x10000000l) { overflow = TRUE; break; } |
| #endif |
| c = (c << 4) | cc; |
| if ((utf && c > 0x10ffffU) || (!utf && c > MAX_NON_UTF_CHAR)) |
| { |
| overflow = TRUE; |
| break; |
| } |
| } |
| |
| if (overflow) |
| { |
| while (ptr < ptrend && XDIGIT(*ptr) != 0xff) ptr++; |
| *errorcodeptr = ERR34; |
| } |
| else if (ptr < ptrend && *ptr++ == CHAR_RIGHT_CURLY_BRACKET) |
| { |
| if (utf && c >= 0xd800 && c <= 0xdfff && |
| (extra_options & PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES) == 0) |
| { |
| ptr--; |
| *errorcodeptr = ERR73; |
| } |
| } |
| |
| /* If the sequence of hex digits does not end with '}', give an error. |
| We used just to recognize this construct and fall through to the normal |
| \x handling, but nowadays Perl gives an error, which seems much more |
| sensible, so we do too. */ |
| |
| else |
| { |
| ptr--; |
| *errorcodeptr = ERR67; |
| } |
| } /* End of \x{} processing */ |
| |
| /* Read a up to two hex digits after \x */ |
| |
| else |
| { |
| c = 0; |
| if (ptr >= ptrend || (cc = XDIGIT(*ptr)) == 0xff) break; /* Not a hex digit */ |
| ptr++; |
| c = cc; |
| if (ptr >= ptrend || (cc = XDIGIT(*ptr)) == 0xff) break; /* Not a hex digit */ |
| ptr++; |
| c = (c << 4) | cc; |
| } /* End of \xdd handling */ |
| } /* End of Perl-style \x handling */ |
| break; |
| |
| /* The handling of \c is different in ASCII and EBCDIC environments. In an |
| ASCII (or Unicode) environment, an error is given if the character |
| following \c is not a printable ASCII character. Otherwise, the following |
| character is upper-cased if it is a letter, and after that the 0x40 bit is |
| flipped. The result is the value of the escape. |
| |
| In an EBCDIC environment the handling of \c is compatible with the |
| specification in the perlebcdic document. The following character must be |
| a letter or one of small number of special characters. These provide a |
| means of defining the character values 0-31. |
| |
| For testing the EBCDIC handling of \c in an ASCII environment, recognize |
| the EBCDIC value of 'c' explicitly. */ |
| |
| #if defined EBCDIC && 'a' != 0x81 |
| case 0x83: |
| #else |
| case CHAR_c: |
| #endif |
| if (ptr >= ptrend) |
| { |
| *errorcodeptr = ERR2; |
| break; |
| } |
| c = *ptr; |
| if (c >= CHAR_a && c <= CHAR_z) c = UPPER_CASE(c); |
| |
| /* Handle \c in an ASCII/Unicode environment. */ |
| |
| #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
| if (c < 32 || c > 126) /* Excludes all non-printable ASCII */ |
| { |
| *errorcodeptr = ERR68; |
| break; |
| } |
| c ^= 0x40; |
| |
| /* Handle \c in an EBCDIC environment. The special case \c? is converted to |
| 255 (0xff) or 95 (0x5f) if other characters suggest we are using the |
| POSIX-BC encoding. (This is the way Perl indicates that it handles \c?.) |
| The other valid sequences correspond to a list of specific characters. */ |
| |
| #else |
| if (c == CHAR_QUESTION_MARK) |
| c = ('\\' == 188 && '`' == 74)? 0x5f : 0xff; |
| else |
| { |
| for (i = 0; i < 32; i++) |
| { |
| if (c == ebcdic_escape_c[i]) break; |
| } |
| if (i < 32) c = i; else *errorcodeptr = ERR68; |
| } |
| #endif /* EBCDIC */ |
| |
| ptr++; |
| break; |
| |
| /* Any other alphanumeric following \ is an error. Perl gives an error only |
| if in warning mode, but PCRE doesn't have a warning mode. */ |
| |
| default: |
| *errorcodeptr = ERR3; |
| *ptrptr = ptr - 1; /* Point to the character at fault */ |
| return 0; |
| } |
| } |
| |
| /* Set the pointer to the next character before returning. */ |
| |
| *ptrptr = ptr; |
| *chptr = c; |
| return escape; |
| } |
| |
| |
| |
| #ifdef SUPPORT_UNICODE |
| /************************************************* |
| * Handle \P and \p * |
| *************************************************/ |
| |
| /* This function is called after \P or \p has been encountered, provided that |
| PCRE2 is compiled with support for UTF and Unicode properties. On entry, the |
| contents of ptrptr are pointing after the P or p. On exit, it is left pointing |
| after the final code unit of the escape sequence. |
| |
| Arguments: |
| ptrptr the pattern position pointer |
| negptr a boolean that is set TRUE for negation else FALSE |
| ptypeptr an unsigned int that is set to the type value |
| pdataptr an unsigned int that is set to the detailed property value |
| errorcodeptr the error code variable |
| cb the compile data |
| |
| Returns: TRUE if the type value was found, or FALSE for an invalid type |
| */ |
| |
| static BOOL |
| get_ucp(PCRE2_SPTR *ptrptr, BOOL *negptr, uint16_t *ptypeptr, |
| uint16_t *pdataptr, int *errorcodeptr, compile_block *cb) |
| { |
| PCRE2_UCHAR c; |
| PCRE2_SIZE i, bot, top; |
| PCRE2_SPTR ptr = *ptrptr; |
| PCRE2_UCHAR name[50]; |
| PCRE2_UCHAR *vptr = NULL; |
| uint16_t ptscript = PT_NOTSCRIPT; |
| |
| if (ptr >= cb->end_pattern) goto ERROR_RETURN; |
| c = *ptr++; |
| *negptr = FALSE; |
| |
| /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
| negation. */ |
| |
| if (c == CHAR_LEFT_CURLY_BRACKET) |
| { |
| if (ptr >= cb->end_pattern) goto ERROR_RETURN; |
| |
| if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
| { |
| *negptr = TRUE; |
| ptr++; |
| } |
| |
| for (i = 0; i < (int)(sizeof(name) / sizeof(PCRE2_UCHAR)) - 1; i++) |
| { |
| if (ptr >= cb->end_pattern) goto ERROR_RETURN; |
| c = *ptr++; |
| while (c == '_' || c == '-' || isspace(c)) |
| { |
| if (ptr >= cb->end_pattern) goto ERROR_RETURN; |
| c = *ptr++; |
| } |
| if (c == CHAR_NUL) goto ERROR_RETURN; |
| if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
| name[i] = tolower(c); |
| if ((c == ':' || c == '=') && vptr == NULL) vptr = name + i; |
| } |
| |
| if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
| name[i] = 0; |
| } |
| |
| /* If { doesn't follow \p or \P there is just one following character, which |
| must be an ASCII letter. */ |
| |
| else if (MAX_255(c) && (cb->ctypes[c] & ctype_letter) != 0) |
| { |
| name[0] = tolower(c); |
| name[1] = 0; |
| } |
| else goto ERROR_RETURN; |
| |
| *ptrptr = ptr; |
| |
| /* If the property contains ':' or '=' we have class name and value separately |
| specified. The following are supported: |
| |
| . Bidi_Class (synonym bc), for which the property names are "bidi<name>". |
| . Script (synonym sc) for which the property name is the script name |
| . Script_Extensions (synonym scx), ditto |
| |
| As this is a small number, we currently just check the names directly. If this |
| grows, a sorted table and a switch will be neater. |
| |
| For both the script properties, set a PT_xxx value so that (1) they can be |
| distinguished and (2) invalid script names that happen to be the name of |
| another property can be diagnosed. */ |
| |
| if (vptr != NULL) |
| { |
| int offset = 0; |
| PCRE2_UCHAR sname[8]; |
| |
| *vptr = 0; /* Terminate property name */ |
| if (PRIV(strcmp_c8)(name, STRING_bidiclass) == 0 || |
| PRIV(strcmp_c8)(name, STRING_bc) == 0) |
| { |
| offset = 4; |
| sname[0] = CHAR_b; |
| sname[1] = CHAR_i; /* There is no strcpy_c8 function */ |
| sname[2] = CHAR_d; |
| sname[3] = CHAR_i; |
| } |
| |
| else if (PRIV(strcmp_c8)(name, STRING_script) == 0 || |
| PRIV(strcmp_c8)(name, STRING_sc) == 0) |
| ptscript = PT_SC; |
| |
| else if (PRIV(strcmp_c8)(name, STRING_scriptextensions) == 0 || |
| PRIV(strcmp_c8)(name, STRING_scx) == 0) |
| ptscript = PT_SCX; |
| |
| else |
| { |
| *errorcodeptr = ERR47; |
| return FALSE; |
| } |
| |
| /* Adjust the string in name[] as needed */ |
| |
| memmove(name + offset, vptr + 1, (name + i - vptr)*sizeof(PCRE2_UCHAR)); |
| if (offset != 0) memmove(name, sname, offset*sizeof(PCRE2_UCHAR)); |
| } |
| |
| /* Search for a recognized property using binary chop. */ |
| |
| bot = 0; |
| top = PRIV(utt_size); |
| |
| while (bot < top) |
| { |
| int r; |
| i = (bot + top) >> 1; |
| r = PRIV(strcmp_c8)(name, PRIV(utt_names) + PRIV(utt)[i].name_offset); |
| |
| /* When a matching property is found, some extra checking is needed when the |
| \p{xx:yy} syntax is used and xx is either sc or scx. */ |
| |
| if (r == 0) |
| { |
| *pdataptr = PRIV(utt)[i].value; |
| if (vptr == NULL || ptscript == PT_NOTSCRIPT) |
| { |
| *ptypeptr = PRIV(utt)[i].type; |
| return TRUE; |
| } |
| |
| switch (PRIV(utt)[i].type) |
| { |
| case PT_SC: |
| *ptypeptr = PT_SC; |
| return TRUE; |
| |
| case PT_SCX: |
| *ptypeptr = ptscript; |
| return TRUE; |
| } |
| |
| break; /* Non-script found */ |
| } |
| |
| if (r > 0) bot = i + 1; else top = i; |
| } |
| |
| *errorcodeptr = ERR47; /* Unrecognized property */ |
| return FALSE; |
| |
| ERROR_RETURN: /* Malformed \P or \p */ |
| *errorcodeptr = ERR46; |
| *ptrptr = ptr; |
| return FALSE; |
| } |
| #endif |
| |
| |
| |
| /************************************************* |
| * Check for POSIX class syntax * |
| *************************************************/ |
| |
| /* This function is called when the sequence "[:" or "[." or "[=" is |
| encountered in a character class. It checks whether this is followed by a |
| sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
| reach an unescaped ']' without the special preceding character, return FALSE. |
| |
| Originally, this function only recognized a sequence of letters between the |
| terminators, but it seems that Perl recognizes any sequence of characters, |
| though of course unknown POSIX names are subsequently rejected. Perl gives an |
| "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
| didn't consider this to be a POSIX class. Likewise for [:1234:]. |
| |
| The problem in trying to be exactly like Perl is in the handling of escapes. We |
| have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
| class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
| below handles the special cases \\ and \], but does not try to do any other |
| escape processing. This makes it different from Perl for cases such as |
| [:l\ower:] where Perl recognizes it as the POSIX class "lower" but PCRE does |
| not recognize "l\ower". This is a lesser evil than not diagnosing bad classes |
| when Perl does, I think. |
| |
| A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
| It seems that the appearance of a nested POSIX class supersedes an apparent |
| external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
| a digit. This is handled by returning FALSE if the start of a new group with |
| the same terminator is encountered, since the next closing sequence must close |
| the nested group, not the outer one. |
| |
| In Perl, unescaped square brackets may also appear as part of class names. For |
| example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
| [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
| seem right at all. PCRE does not allow closing square brackets in POSIX class |
| names. |
| |
| Arguments: |
| ptr pointer to the character after the initial [ (colon, dot, equals) |
| ptrend pointer to the end of the pattern |
| endptr where to return a pointer to the terminating ':', '.', or '=' |
| |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| check_posix_syntax(PCRE2_SPTR ptr, PCRE2_SPTR ptrend, PCRE2_SPTR *endptr) |
| { |
| PCRE2_UCHAR terminator; /* Don't combine these lines; the Solaris cc */ |
| terminator = *ptr++; /* compiler warns about "non-constant" initializer. */ |
| |
| for (; ptrend - ptr >= 2; ptr++) |
| { |
| if (*ptr == CHAR_BACKSLASH && |
| (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET || ptr[1] == CHAR_BACKSLASH)) |
| ptr++; |
| |
| else if ((*ptr == CHAR_LEFT_SQUARE_BRACKET && ptr[1] == terminator) || |
| *ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
| |
| else if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
| { |
| *endptr = ptr; |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| |
| |
| /************************************************* |
| * Check POSIX class name * |
| *************************************************/ |
| |
| /* This function is called to check the name given in a POSIX-style class entry |
| such as [:alnum:]. |
| |
| Arguments: |
| ptr points to the first letter |
| len the length of the name |
| |
| Returns: a value representing the name, or -1 if unknown |
| */ |
| |
| static int |
| check_posix_name(PCRE2_SPTR ptr, int len) |
| { |
| const char *pn = posix_names; |
| int yield = 0; |
| while (posix_name_lengths[yield] != 0) |
| { |
| if (len == posix_name_lengths[yield] && |
| PRIV(strncmp_c8)(ptr, pn, (unsigned int)len) == 0) return yield; |
| pn += posix_name_lengths[yield] + 1; |
| yield++; |
| } |
| return -1; |
| } |
| |
| |
| |
| /************************************************* |
| * Read a subpattern or VERB name * |
| *************************************************/ |
| |
| /* This function is called from parse_regex() below whenever it needs to read |
| the name of a subpattern or a (*VERB) or an (*alpha_assertion). The initial |
| pointer must be to the character before the name. If that character is '*' we |
| are reading a verb or alpha assertion name. The pointer is updated to point |
| after the name, for a VERB or alpha assertion name, or after tha name's |
| terminator for a subpattern name. Returning both the offset and the name |
| pointer is redundant information, but some callers use one and some the other, |
| so it is simplest just to return both. |
| |
| Arguments: |
| ptrptr points to the character pointer variable |
| ptrend points to the end of the input string |
| utf true if the input is UTF-encoded |
| terminator the terminator of a subpattern name must be this |
| offsetptr where to put the offset from the start of the pattern |
| nameptr where to put a pointer to the name in the input |
| namelenptr where to put the length of the name |
| errcodeptr where to put an error code |
| cb pointer to the compile data block |
| |
| Returns: TRUE if a name was read |
| FALSE otherwise, with error code set |
| */ |
| |
| static BOOL |
| read_name(PCRE2_SPTR *ptrptr, PCRE2_SPTR ptrend, BOOL utf, uint32_t terminator, |
| PCRE2_SIZE *offsetptr, PCRE2_SPTR *nameptr, uint32_t *namelenptr, |
| int *errorcodeptr, compile_block *cb) |
| { |
| PCRE2_SPTR ptr = *ptrptr; |
| BOOL is_group = (*ptr != CHAR_ASTERISK); |
| |
| if (++ptr >= ptrend) /* No characters in name */ |
| { |
| *errorcodeptr = is_group? ERR62: /* Subpattern name expected */ |
| ERR60; /* Verb not recognized or malformed */ |
| goto FAILED; |
| } |
| |
| *nameptr = ptr; |
| *offsetptr = (PCRE2_SIZE)(ptr - cb->start_pattern); |
| |
| /* In UTF mode, a group name may contain letters and decimal digits as defined |
| by Unicode properties, and underscores, but must not start with a digit. */ |
| |
| #ifdef SUPPORT_UNICODE |
| if (utf && is_group) |
| { |
| uint32_t c, type; |
| |
| GETCHAR(c, ptr); |
| type = UCD_CHARTYPE(c); |
| |
| if (type == ucp_Nd) |
| { |
| *errorcodeptr = ERR44; |
| goto FAILED; |
| } |
| |
| for(;;) |
| { |
| if (type != ucp_Nd && PRIV(ucp_gentype)[type] != ucp_L && |
| c != CHAR_UNDERSCORE) break; |
| ptr++; |
| FORWARDCHARTEST(ptr, ptrend); |
| if (ptr >= ptrend) break; |
| GETCHAR(c, ptr); |
| type = UCD_CHARTYPE(c); |
| } |
| } |
| else |
| #else |
| (void)utf; /* Avoid compiler warning */ |
| #endif /* SUPPORT_UNICODE */ |
| |
| /* Handle non-group names and group names in non-UTF modes. A group name must |
| not start with a digit. If either of the others start with a digit it just |
| won't be recognized. */ |
| |
| { |
| if (is_group && IS_DIGIT(*ptr)) |
| { |
| *errorcodeptr = ERR44; |
| goto FAILED; |
| } |
| |
| while (ptr < ptrend && MAX_255(*ptr) && (cb->ctypes[*ptr] & ctype_word) != 0) |
| { |
| ptr++; |
| } |
| } |
| |
| /* Check name length */ |
| |
| if (ptr > *nameptr + MAX_NAME_SIZE) |
| { |
| *errorcodeptr = ERR48; |
| goto FAILED; |
| } |
| *namelenptr = (uint32_t)(ptr - *nameptr); |
| |
| /* Subpattern names must not be empty, and their terminator is checked here. |
| (What follows a verb or alpha assertion name is checked separately.) */ |
| |
| if (is_group) |
| { |
| if (ptr == *nameptr) |
| { |
| *errorcodeptr = ERR62; /* Subpattern name expected */ |
| goto FAILED; |
| } |
| if (ptr >= ptrend || *ptr != (PCRE2_UCHAR)terminator) |
| { |
| *errorcodeptr = ERR42; |
| goto FAILED; |
| } |
| ptr++; |
| } |
| |
| *ptrptr = ptr; |
| return TRUE; |
| |
| FAILED: |
| *ptrptr = ptr; |
| return FALSE; |
| } |
| |
| |
| |
| /************************************************* |
| * Manage callouts at start of cycle * |
| *************************************************/ |
| |
| /* At the start of a new item in parse_regex() we are able to record the |
| details of the previous item in a prior callout, and also to set up an |
| automatic callout if enabled. Avoid having two adjacent automatic callouts, |
| which would otherwise happen for items such as \Q that contribute nothing to |
| the parsed pattern. |
| |
| Arguments: |
| ptr current pattern pointer |
| pcalloutptr points to a pointer to previous callout, or NULL |
| auto_callout TRUE if auto_callouts are enabled |
| parsed_pattern the parsed pattern pointer |
| cb compile block |
| |
| Returns: possibly updated parsed_pattern pointer. |
| */ |
| |
| static uint32_t * |
| manage_callouts(PCRE2_SPTR ptr, uint32_t **pcalloutptr, BOOL auto_callout, |
| uint32_t *parsed_pattern, compile_block *cb) |
| { |
| uint32_t *previous_callout = *pcalloutptr; |
| |
| if (previous_callout != NULL) previous_callout[2] = (uint32_t)(ptr - |
| cb->start_pattern - (PCRE2_SIZE)previous_callout[1]); |
| |
| if (!auto_callout) previous_callout = NULL; else |
| { |
| if (previous_callout == NULL || |
| previous_callout != parsed_pattern - 4 || |
| previous_callout[3] != 255) |
| { |
| previous_callout = parsed_pattern; /* Set up new automatic callout */ |
| parsed_pattern += 4; |
| previous_callout[0] = META_CALLOUT_NUMBER; |
| previous_callout[2] = 0; |
| previous_callout[3] = 255; |
| } |
| previous_callout[1] = (uint32_t)(ptr - cb->start_pattern); |
| } |
| |
| *pcalloutptr = previous_callout; |
| return parsed_pattern; |
| } |
| |
| |
| |
| /************************************************* |
| * Parse regex and identify named groups * |
| *************************************************/ |
| |
| /* This function is called first of all. It scans the pattern and does two |
| things: (1) It identifies capturing groups and makes a table of named capturing |
| groups so that information about them is fully available to both the compiling |
| scans. (2) It writes a parsed version of the pattern with comments omitted and |
| escapes processed into the parsed_pattern vector. |
| |
| Arguments: |
| ptr points to the start of the pattern |
| options compiling dynamic options (may change during the scan) |
| has_lookbehind points to a boolean, set TRUE if a lookbehind is found |
| cb pointer to the compile data block |
| |
| Returns: zero on success or a non-zero error code, with the |
| error offset placed in the cb field |
| */ |
| |
| /* A structure and some flags for dealing with nested groups. */ |
| |
| typedef struct nest_save { |
| uint16_t nest_depth; |
| uint16_t reset_group; |
| uint16_t max_group; |
| uint16_t flags; |
| uint32_t options; |
| } nest_save; |
| |
| #define NSF_RESET 0x0001u |
| #define NSF_CONDASSERT 0x0002u |
| #define NSF_ATOMICSR 0x0004u |
| |
| /* Options that are changeable within the pattern must be tracked during |
| parsing. Some (e.g. PCRE2_EXTENDED) are implemented entirely during parsing, |
| but all must be tracked so that META_OPTIONS items set the correct values for |
| the main compiling phase. */ |
| |
| #define PARSE_TRACKED_OPTIONS (PCRE2_CASELESS|PCRE2_DOTALL|PCRE2_DUPNAMES| \ |
| PCRE2_EXTENDED|PCRE2_EXTENDED_MORE|PCRE2_MULTILINE|PCRE2_NO_AUTO_CAPTURE| \ |
| PCRE2_UNGREEDY) |
| |
| /* States used for analyzing ranges in character classes. The two OK values |
| must be last. */ |
| |
| enum { RANGE_NO, RANGE_STARTED, RANGE_OK_ESCAPED, RANGE_OK_LITERAL }; |
| |
| /* Only in 32-bit mode can there be literals > META_END. A macro encapsulates |
| the storing of literal values in the main parsed pattern, where they can always |
| be quantified. */ |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 32 |
| #define PARSED_LITERAL(c, p) \ |
| { \ |
| if (c >= META_END) *p++ = META_BIGVALUE; \ |
| *p++ = c; \ |
| okquantifier = TRUE; \ |
| } |
| #else |
| #define PARSED_LITERAL(c, p) *p++ = c; okquantifier = TRUE; |
| #endif |
| |
| /* Here's the actual function. */ |
| |
| static int parse_regex(PCRE2_SPTR ptr, uint32_t options, BOOL *has_lookbehind, |
| compile_block *cb) |
| { |
| uint32_t c; |
| uint32_t delimiter; |
| uint32_t namelen; |
| uint32_t class_range_state; |
| uint32_t *verblengthptr = NULL; /* Value avoids compiler warning */ |
| uint32_t *verbstartptr = NULL; |
| uint32_t *previous_callout = NULL; |
| uint32_t *parsed_pattern = cb->parsed_pattern; |
| uint32_t *parsed_pattern_end = cb->parsed_pattern_end; |
| uint32_t meta_quantifier = 0; |
| uint32_t add_after_mark = 0; |
| uint32_t extra_options = cb->cx->extra_options; |
| uint16_t nest_depth = 0; |
| int after_manual_callout = 0; |
| int expect_cond_assert = 0; |
| int errorcode = 0; |
| int escape; |
| int i; |
| BOOL inescq = FALSE; |
| BOOL inverbname = FALSE; |
| BOOL utf = (options & PCRE2_UTF) != 0; |
| BOOL auto_callout = (options & PCRE2_AUTO_CALLOUT) != 0; |
| BOOL isdupname; |
| BOOL negate_class; |
| BOOL okquantifier = FALSE; |
| PCRE2_SPTR thisptr; |
| PCRE2_SPTR name; |
| PCRE2_SPTR ptrend = cb->end_pattern; |
| PCRE2_SPTR verbnamestart = NULL; /* Value avoids compiler warning */ |
| named_group *ng; |
| nest_save *top_nest, *end_nests; |
| |
| /* Insert leading items for word and line matching (features provided for the |
| benefit of pcre2grep). */ |
| |
| if ((extra_options & PCRE2_EXTRA_MATCH_LINE) != 0) |
| { |
| *parsed_pattern++ = META_CIRCUMFLEX; |
| *parsed_pattern++ = META_NOCAPTURE; |
| } |
| else if ((extra_options & PCRE2_EXTRA_MATCH_WORD) != 0) |
| { |
| *parsed_pattern++ = META_ESCAPE + ESC_b; |
| *parsed_pattern++ = META_NOCAPTURE; |
| } |
| |
| /* If the pattern is actually a literal string, process it separately to avoid |
| cluttering up the main loop. */ |
| |
| if ((options & PCRE2_LITERAL) != 0) |
| { |
| while (ptr < ptrend) |
| { |
| if (parsed_pattern >= parsed_pattern_end) |
| { |
| errorcode = ERR63; /* Internal error (parsed pattern overflow) */ |
| goto FAILED; |
| } |
| thisptr = ptr; |
| GETCHARINCTEST(c, ptr); |
| if (auto_callout) |
| parsed_pattern = manage_callouts(thisptr, &previous_callout, |
| auto_callout, parsed_pattern, cb); |
| PARSED_LITERAL(c, parsed_pattern); |
| } |
| goto PARSED_END; |
| } |
| |
| /* Process a real regex which may contain meta-characters. */ |
| |
| top_nest = NULL; |
| end_nests = (nest_save *)(cb->start_workspace + cb->workspace_size); |
| |
| /* The size of the nest_save structure might not be a factor of the size of the |
| workspace. Therefore we must round down end_nests so as to correctly avoid |
| creating a nest_save that spans the end of the workspace. */ |
| |
| end_nests = (nest_save *)((char *)end_nests - |
| ((cb->workspace_size * sizeof(PCRE2_UCHAR)) % sizeof(nest_save))); |
| |
| /* PCRE2_EXTENDED_MORE implies PCRE2_EXTENDED */ |
| |
| if ((options & PCRE2_EXTENDED_MORE) != 0) options |= PCRE2_EXTENDED; |
| |
| /* Now scan the pattern */ |
| |
| while (ptr < ptrend) |
| { |
| int prev_expect_cond_assert; |
| uint32_t min_repeat = 0, max_repeat = 0; |
| uint32_t set, unset, *optset; |
| uint32_t terminator; |
| uint32_t prev_meta_quantifier; |
| BOOL prev_okquantifier; |
| PCRE2_SPTR tempptr; |
| PCRE2_SIZE offset; |
| |
| if (parsed_pattern >= parsed_pattern_end) |
| { |
| errorcode = ERR63; /* Internal error (parsed pattern overflow) */ |
| goto FAILED; |
| } |
| |
| if (nest_depth > cb->cx->parens_nest_limit) |
| { |
| errorcode = ERR19; |
| goto FAILED; /* Parentheses too deeply nested */ |
| } |
| |
| /* Get next input character, save its position for callout handling. */ |
| |
| thisptr = ptr; |
| GETCHARINCTEST(c, ptr); |
| |
| /* Copy quoted literals until \E, allowing for the possibility of automatic |
| callouts, except when processing a (*VERB) "name". */ |
| |
| if (inescq) |
| { |
| if (c == CHAR_BACKSLASH && ptr < ptrend && *ptr == CHAR_E) |
| { |
| inescq = FALSE; |
| ptr++; /* Skip E */ |
| } |
| else |
| { |
| if (expect_cond_assert > 0) /* A literal is not allowed if we are */ |
| { /* expecting a conditional assertion, */ |
| ptr--; /* but an empty \Q\E sequence is OK. */ |
| errorcode = ERR28; |
| goto FAILED; |
| } |
| if (inverbname) |
| { /* Don't use PARSED_LITERAL() because it */ |
| #if PCRE2_CODE_UNIT_WIDTH == 32 /* sets okquantifier. */ |
| if (c >= META_END) *parsed_pattern++ = META_BIGVALUE; |
| #endif |
| *parsed_pattern++ = c; |
| } |
| else |
| { |
| if (after_manual_callout-- <= 0) |
| parsed_pattern = manage_callouts(thisptr, &previous_callout, |
| auto_callout, parsed_pattern, cb); |
| PARSED_LITERAL(c, parsed_pattern); |
| } |
| meta_quantifier = 0; |
| } |
| continue; /* Next character */ |
| } |
| |
| /* If we are processing the "name" part of a (*VERB:NAME) item, all |
| characters up to the closing parenthesis are literals except when |
| PCRE2_ALT_VERBNAMES is set. That causes backslash interpretation, but only \Q |
| and \E and escaped characters are allowed (no character types such as \d). If |
| PCRE2_EXTENDED is also set, we must ignore white space and # comments. Do |
| this by not entering the special (*VERB:NAME) processing - they are then |
| picked up below. Note that c is a character, not a code unit, so we must not |
| use MAX_255 to test its size because MAX_255 tests code units and is assumed |
| TRUE in 8-bit mode. */ |
| |
| if (inverbname && |
| ( |
| /* EITHER: not both options set */ |
| ((options & (PCRE2_EXTENDED | PCRE2_ALT_VERBNAMES)) != |
| (PCRE2_EXTENDED | PCRE2_ALT_VERBNAMES)) || |
| #ifdef SUPPORT_UNICODE |
| /* OR: character > 255 AND not Unicode Pattern White Space */ |
| (c > 255 && (c|1) != 0x200f && (c|1) != 0x2029) || |
| #endif |
| /* OR: not a # comment or isspace() white space */ |
| (c < 256 && c != CHAR_NUMBER_SIGN && (cb->ctypes[c] & ctype_space) == 0 |
| #ifdef SUPPORT_UNICODE |
| /* and not CHAR_NEL when Unicode is supported */ |
| && c != CHAR_NEL |
| #endif |
| ))) |
| { |
| PCRE2_SIZE verbnamelength; |
| |
| switch(c) |
| { |
| default: /* Don't use PARSED_LITERAL() because it */ |
| #if PCRE2_CODE_UNIT_WIDTH == 32 /* sets okquantifier. */ |
| if (c >= META_END) *parsed_pattern++ = META_BIGVALUE; |
| #endif |
| *parsed_pattern++ = c; |
| break; |
| |
| case CHAR_RIGHT_PARENTHESIS: |
| inverbname = FALSE; |
| /* This is the length in characters */ |
| verbnamelength = (PCRE2_SIZE)(parsed_pattern - verblengthptr - 1); |
| /* But the limit on the length is in code units */ |
| if (ptr - verbnamestart - 1 > (int)MAX_MARK) |
| { |
| ptr--; |
| errorcode = ERR76; |
| goto FAILED; |
| } |
| *verblengthptr = (uint32_t)verbnamelength; |
| |
| /* If this name was on a verb such as (*ACCEPT) which does not continue, |
| a (*MARK) was generated for the name. We now add the original verb as the |
| next item. */ |
| |
| if (add_after_mark != 0) |
| { |
| *parsed_pattern++ = add_after_mark; |
| add_after_mark = 0; |
| } |
| break; |
| |
| case CHAR_BACKSLASH: |
| if ((options & PCRE2_ALT_VERBNAMES) != 0) |
| { |
| escape = PRIV(check_escape)(&ptr, ptrend, &c, &errorcode, options, |
| cb->cx->extra_options, FALSE, cb); |
| if (errorcode != 0) goto FAILED; |
| } |
| else escape = 0; /* Treat all as literal */ |
| |
| switch(escape) |
| { |
| case 0: /* Don't use PARSED_LITERAL() because it */ |
| #if PCRE2_CODE_UNIT_WIDTH == 32 /* sets okquantifier. */ |
| if (c >= META_END) *parsed_pattern++ = META_BIGVALUE; |
| #endif |
| *parsed_pattern++ = c; |
| break; |
| |
| case ESC_Q: |
| inescq = TRUE; |
| break; |
| |
| case ESC_E: /* Ignore */ |
| break; |
| |
| default: |
| errorcode = ERR40; /* Invalid in verb name */ |
| goto FAILED; |
| } |
| } |
| continue; /* Next character in pattern */ |
| } |
| |
| /* Not a verb name character. At this point we must process everything that |
| must not change the quantification state. This is mainly comments, but we |
| handle \Q and \E here as well, so that an item such as A\Q\E+ is treated as |
| A+, as in Perl. An isolated \E is ignored. */ |
| |
| if (c == CHAR_BACKSLASH && ptr < ptrend) |
| { |
| if (*ptr == CHAR_Q || *ptr == CHAR_E) |
| { |
| inescq = *ptr == CHAR_Q; |
| ptr++; |
| continue; |
| } |
| } |
| |
| /* Skip over whitespace and # comments in extended mode. Note that c is a |
| character, not a code unit, so we must not use MAX_255 to test its size |
| because MAX_255 tests code units and is assumed TRUE in 8-bit mode. The |
| whitespace characters are those designated as "Pattern White Space" by |
| Unicode, which are the isspace() characters plus CHAR_NEL (newline), which is |
| U+0085 in Unicode, plus U+200E, U+200F, U+2028, and U+2029. These are a |
| subset of space characters that match \h and \v. */ |
| |
| if ((options & PCRE2_EXTENDED) != 0) |
| { |
| if (c < 256 && (cb->ctypes[c] & ctype_space) != 0) continue; |
| #ifdef SUPPORT_UNICODE |
| if (c == CHAR_NEL || (c|1) == 0x200f || (c|1) == 0x2029) continue; |
| #endif |
| if (c == CHAR_NUMBER_SIGN) |
| { |
| while (ptr < ptrend) |
| { |
| if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */ |
| { /* IS_NEWLINE sets cb->nllen. */ |
| ptr += cb->nllen; |
| break; |
| } |
| ptr++; |
| #ifdef SUPPORT_UNICODE |
| if (utf) FORWARDCHARTEST(ptr, ptrend); |
| #endif |
| } |
| continue; /* Next character in pattern */ |
| } |
| } |
| |
| /* Skip over bracketed comments */ |
| |
| if (c == CHAR_LEFT_PARENTHESIS && ptrend - ptr >= 2 && |
| ptr[0] == CHAR_QUESTION_MARK && ptr[1] == CHAR_NUMBER_SIGN) |
| { |
| while (++ptr < ptrend && *ptr != CHAR_RIGHT_PARENTHESIS); |
| if (ptr >= ptrend) |
| { |
| errorcode = ERR18; /* A special error for missing ) in a comment */ |
| goto FAILED; /* to make it easier to debug. */ |
| } |
| ptr++; |
| continue; /* Next character in pattern */ |
| } |
| |
| /* If the next item is not a quantifier, fill in length of any previous |
| callout and create an auto callout if required. */ |
| |
| if (c != CHAR_ASTERISK && c != CHAR_PLUS && c != CHAR_QUESTION_MARK && |
| (c != CHAR_LEFT_CURLY_BRACKET || |
| (tempptr = ptr, |
| !read_repeat_counts(&tempptr, ptrend, NULL, NULL, &errorcode)))) |
| { |
| if (after_manual_callout-- <= 0) |
| parsed_pattern = manage_callouts(thisptr, &previous_callout, auto_callout, |
| parsed_pattern, cb); |
| } |
| |
| /* If expect_cond_assert is 2, we have just passed (?( and are expecting an |
| assertion, possibly preceded by a callout. If the value is 1, we have just |
| had the callout and expect an assertion. There must be at least 3 more |
| characters in all cases. When expect_cond_assert is 2, we know that the |
| current character is an opening parenthesis, as otherwise we wouldn't be |
| here. However, when it is 1, we need to check, and it's easiest just to check |
| always. Note that expect_cond_assert may be negative, since all callouts just |
| decrement it. */ |
| |
| if (expect_cond_assert > 0) |
| { |
| BOOL ok = c == CHAR_LEFT_PARENTHESIS && ptrend - ptr >= 3 && |
| (ptr[0] == CHAR_QUESTION_MARK || ptr[0] == CHAR_ASTERISK); |
| if (ok) |
| { |
| if (ptr[0] == CHAR_ASTERISK) /* New alpha assertion format, possibly */ |
| { |
| ok = MAX_255(ptr[1]) && (cb->ctypes[ptr[1]] & ctype_lcletter) != 0; |
| } |
| else switch(ptr[1]) /* Traditional symbolic format */ |
| { |
| case CHAR_C: |
| ok = expect_cond_assert == 2; |
| break; |
| |
| case CHAR_EQUALS_SIGN: |
| case CHAR_EXCLAMATION_MARK: |
| break; |
| |
| case CHAR_LESS_THAN_SIGN: |
| ok = ptr[2] == CHAR_EQUALS_SIGN || ptr[2] == CHAR_EXCLAMATION_MARK; |
| break; |
| |
| default: |
| ok = FALSE; |
| } |
| } |
| |
| if (!ok) |
| { |
| ptr--; /* Adjust error offset */ |
| errorcode = ERR28; |
| goto FAILED; |
| } |
| } |
| |
| /* Remember whether we are expecting a conditional assertion, and set the |
| default for this item. */ |
| |
| prev_expect_cond_assert = expect_cond_assert; |
| expect_cond_assert = 0; |
| |
| /* Remember quantification status for the previous significant item, then set |
| default for this item. */ |
| |
| prev_okquantifier = okquantifier; |
| prev_meta_quantifier = meta_quantifier; |
| okquantifier = FALSE; |
| meta_quantifier = 0; |
| |
| /* If the previous significant item was a quantifier, adjust the parsed code |
| if there is a following modifier. The base meta value is always followed by |
| the PLUS and QUERY values, in that order. We do this here rather than after |
| reading a quantifier so that intervening comments and /x whitespace can be |
| ignored without having to replicate code. */ |
| |
| if (prev_meta_quantifier != 0 && (c == CHAR_QUESTION_MARK || c == CHAR_PLUS)) |
| { |
| parsed_pattern[(prev_meta_quantifier == META_MINMAX)? -3 : -1] = |
| prev_meta_quantifier + ((c == CHAR_QUESTION_MARK)? |
| 0x00020000u : 0x00010000u); |
| continue; /* Next character in pattern */ |
| } |
| |
| |
| /* Process the next item in the main part of a pattern. */ |
| |
| switch(c) |
| { |
| default: /* Non-special character */ |
| PARSED_LITERAL(c, parsed_pattern); |
| break; |
| |
| |
| /* ---- Escape sequence ---- */ |
| |
| case CHAR_BACKSLASH: |
| tempptr = ptr; |
| escape = PRIV(check_escape)(&ptr, ptrend, &c, &errorcode, options, |
| cb->cx->extra_options, FALSE, cb); |
| if (errorcode != 0) |
| { |
| ESCAPE_FAILED: |
| if ((extra_options & PCRE2_EXTRA_BAD_ESCAPE_IS_LITERAL) == 0) |
| goto FAILED; |
| ptr = tempptr; |
| if (ptr >= ptrend) c = CHAR_BACKSLASH; else |
| { |
| GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
| } |
| escape = 0; /* Treat as literal character */ |
| } |
| |
| /* The escape was a data escape or literal character. */ |
| |
| if (escape == 0) |
| { |
| PARSED_LITERAL(c, parsed_pattern); |
| } |
| |
| /* The escape was a back (or forward) reference. We keep the offset in |
| order to give a more useful diagnostic for a bad forward reference. For |
| references to groups numbered less than 10 we can't use more than two items |
| in parsed_pattern because they may be just two characters in the input (and |
| in a 64-bit world an offset may need two elements). So for them, the offset |
| of the first occurrent is held in a special vector. */ |
| |
| else if (escape < 0) |
| { |
| offset = (PCRE2_SIZE)(ptr - cb->start_pattern - 1); |
| escape = -escape; |
| *parsed_pattern++ = META_BACKREF | (uint32_t)escape; |
| if (escape < 10) |
| { |
| if (cb->small_ref_offset[escape] == PCRE2_UNSET) |
| cb->small_ref_offset[escape] = offset; |
| } |
| else |
| { |
| PUTOFFSET(offset, parsed_pattern); |
| } |
| okquantifier = TRUE; |
| } |
| |
| /* The escape was a character class such as \d etc. or other special |
| escape indicator such as \A or \X. Most of them generate just a single |
| parsed item, but \P and \p are followed by a 16-bit type and a 16-bit |
| value. They are supported only when Unicode is available. The type and |
| value are packed into a single 32-bit value so that the whole sequences |
| uses only two elements in the parsed_vector. This is because the same |
| coding is used if \d (for example) is turned into \p{Nd} when PCRE2_UCP is |
| set. |
| |
| There are also some cases where the escape sequence is followed by a name: |
| \k{name}, \k<name>, and \k'name' are backreferences by name, and \g<name> |
| and \g'name' are subroutine calls by name; \g{name} is a synonym for |
| \k{name}. Note that \g<number> and \g'number' are handled by check_escape() |
| and returned as a negative value (handled above). A name is coded as an |
| offset into the pattern and a length. */ |
| |
| else switch (escape) |
| { |
| case ESC_C: |
| #ifdef NEVER_BACKSLASH_C |
| errorcode = ERR85; |
| goto ESCAPE_FAILED; |
| #else |
| if ((options & PCRE2_NEVER_BACKSLASH_C) != 0) |
| { |
| errorcode = ERR83; |
| goto ESCAPE_FAILED; |
| } |
| #endif |
| okquantifier = TRUE; |
| *parsed_pattern++ = META_ESCAPE + escape; |
| break; |
| |
| case ESC_X: |
| #ifndef SUPPORT_UNICODE |
| errorcode = ERR45; /* Supported only with Unicode support */ |
| goto ESCAPE_FAILED; |
| #endif |
| case ESC_H: |
| case ESC_h: |
| case ESC_N: |
| case ESC_R: |
| case ESC_V: |
| case ESC_v: |
| okquantifier = TRUE; |
| *parsed_pattern++ = META_ESCAPE + escape; |
| break; |
| |
| default: /* \A, \B, \b, \G, \K, \Z, \z cannot be quantified. */ |
| *parsed_pattern++ = META_ESCAPE + escape; |
| break; |
| |
| /* Escapes that change in UCP mode. Note that PCRE2_UCP will never be set |
| without Unicode support because it is checked when pcre2_compile() is |
| called. */ |
| |
| case ESC_d: |
| case ESC_D: |
| case ESC_s: |
| case ESC_S: |
| case ESC_w: |
| case ESC_W: |
| okquantifier = TRUE; |
| if ((options & PCRE2_UCP) == 0) |
| { |
| *parsed_pattern++ = META_ESCAPE + escape; |
| } |
| else |
| { |
| *parsed_pattern++ = META_ESCAPE + |
| ((escape == ESC_d || escape == ESC_s || escape == ESC_w)? |
| ESC_p : ESC_P); |
| switch(escape) |
| { |
| case ESC_d: |
| case ESC_D: |
| *parsed_pattern++ = (PT_PC << 16) | ucp_Nd; |
| break; |
| |
| case ESC_s: |
| case ESC_S: |
| *parsed_pattern++ = PT_SPACE << 16; |
| break; |
| |
| case ESC_w: |
| case ESC_W: |
| *parsed_pattern++ = PT_WORD << 16; |
| break; |
| } |
| } |
| break; |
| |
| /* Unicode property matching */ |
| |
| case ESC_P: |
| case ESC_p: |
| #ifdef SUPPORT_UNICODE |
| { |
| BOOL negated; |
| uint16_t ptype = 0, pdata = 0; |
| if (!get_ucp(&ptr, &negated, &ptype, &pdata, &errorcode, cb)) |
| goto ESCAPE_FAILED; |
| if (negated) escape = (escape == ESC_P)? ESC_p : ESC_P; |
| *parsed_pattern++ = META_ESCAPE + escape; |
| *parsed_pattern++ = (ptype << 16) | pdata; |
| okquantifier = TRUE; |
| } |
| #else |
| errorcode = ERR45; |
| goto ESCAPE_FAILED; |
| #endif |
| break; /* End \P and \p */ |
| |
| /* When \g is used with quotes or angle brackets as delimiters, it is a |
| numerical or named subroutine call, and control comes here. When used |
| with brace delimiters it is a numberical back reference and does not come |
| here because check_escape() returns it directly as a reference. \k is |
| always a named back reference. */ |
| |
| case ESC_g: |
| case ESC_k: |
| if (ptr >= ptrend || (*ptr != CHAR_LEFT_CURLY_BRACKET && |
| *ptr != CHAR_LESS_THAN_SIGN && *ptr != CHAR_APOSTROPHE)) |
| { |
| errorcode = (escape == ESC_g)? ERR57 : ERR69; |
| goto ESCAPE_FAILED; |
| } |
| terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
| CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
| CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
| |
| /* For a non-braced \g, check for a numerical recursion. */ |
| |
| if (escape == ESC_g && terminator != CHAR_RIGHT_CURLY_BRACKET) |
| { |
| PCRE2_SPTR p = ptr + 1; |
| |
| if (read_number(&p, ptrend, cb->bracount, MAX_GROUP_NUMBER, ERR61, &i, |
| &errorcode)) |
| { |
| if (p >= ptrend || *p != terminator) |
| { |
| errorcode = ERR57; |
| goto ESCAPE_FAILED; |
| } |
| ptr = p; |
| goto SET_RECURSION; |
| } |
| if (errorcode != 0) goto ESCAPE_FAILED; |
| } |
| |
| /* Not a numerical recursion */ |
| |
| if (!read_name(&ptr, ptrend, utf, terminator, &offset, &name, &namelen, |
| &errorcode, cb)) goto ESCAPE_FAILED; |
| |
| /* \k and \g when used with braces are back references, whereas \g used |
| with quotes or angle brackets is a recursion */ |
| |
| *parsed_pattern++ = |
| (escape == ESC_k || terminator == CHAR_RIGHT_CURLY_BRACKET)? |
| META_BACKREF_BYNAME : META_RECURSE_BYNAME; |
| *parsed_pattern++ = namelen; |
| |
| PUTOFFSET(offset, parsed_pattern); |
| okquantifier = TRUE; |
| break; /* End special escape processing */ |
| } |
| break; /* End escape sequence processing */ |
| |
| |
| /* ---- Single-character special items ---- */ |
| |
| case CHAR_CIRCUMFLEX_ACCENT: |
| *parsed_pattern++ = META_CIRCUMFLEX; |
| break; |
| |
| case CHAR_DOLLAR_SIGN: |
| *parsed_pattern++ = META_DOLLAR; |
| break; |
| |
| case CHAR_DOT: |
| *parsed_pattern++ = META_DOT; |
| okquantifier = TRUE; |
| break; |
| |
| |
| /* ---- Single-character quantifiers ---- */ |
| |
| case CHAR_ASTERISK: |
| meta_quantifier = META_ASTERISK; |
| goto CHECK_QUANTIFIER; |
| |
| case CHAR_PLUS: |
| meta_quantifier = META_PLUS; |
| goto CHECK_QUANTIFIER; |
| |
| case CHAR_QUESTION_MARK: |
| meta_quantifier = META_QUERY; |
| goto CHECK_QUANTIFIER; |
| |
| |
| /* ---- Potential {n,m} quantifier ---- */ |
| |
| case CHAR_LEFT_CURLY_BRACKET: |
| if (!read_repeat_counts(&ptr, ptrend, &min_repeat, &max_repeat, |
| &errorcode)) |
| { |
| if (errorcode != 0) goto FAILED; /* Error in quantifier. */ |
| PARSED_LITERAL(c, parsed_pattern); /* Not a quantifier */ |
| break; /* No more quantifier processing */ |
| } |
| meta_quantifier = META_MINMAX; |
| /* Fall through */ |
| |
| |
| /* ---- Quantifier post-processing ---- */ |
| |
| /* Check that a quantifier is allowed after the previous item. */ |
| |
| CHECK_QUANTIFIER: |
| if (!prev_okquantifier) |
| { |
| errorcode = ERR9; |
| goto FAILED_BACK; |
| } |
| |
| /* Most (*VERB)s are not allowed to be quantified, but an ungreedy |
| quantifier can be useful for (*ACCEPT) - meaning "succeed on backtrack", a |
| sort of negated (*COMMIT). We therefore allow (*ACCEPT) to be quantified by |
| wrapping it in non-capturing brackets, but we have to allow for a preceding |
| (*MARK) for when (*ACCEPT) has an argument. */ |
| |
| if (parsed_pattern[-1] == META_ACCEPT) |
| { |
| uint32_t *p; |
| for (p = parsed_pattern - 1; p >= verbstartptr; p--) p[1] = p[0]; |
| *verbstartptr = META_NOCAPTURE; |
| parsed_pattern[1] = META_KET; |
| parsed_pattern += 2; |
| } |
| |
| /* Now we can put the quantifier into the parsed pattern vector. At this |
| stage, we have only the basic quantifier. The check for a following + or ? |
| modifier happens at the top of the loop, after any intervening comments |
| have been removed. */ |
| |
| *parsed_pattern++ = meta_quantifier; |
| if (c == CHAR_LEFT_CURLY_BRACKET) |
| { |
| *parsed_pattern++ = min_repeat; |
| *parsed_pattern++ = max_repeat; |
| } |
| break; |
| |
| |
| /* ---- Character class ---- */ |
| |
| case CHAR_LEFT_SQUARE_BRACKET: |
| okquantifier = TRUE; |
| |
| /* In another (POSIX) regex library, the ugly syntax [[:<:]] and [[:>:]] is |
| used for "start of word" and "end of word". As these are otherwise illegal |
| sequences, we don't break anything by recognizing them. They are replaced |
| by \b(?=\w) and \b(?<=\w) respectively. Sequences like [a[:<:]] are |
| erroneous and are handled by the normal code below. */ |
| |
| if (ptrend - ptr >= 6 && |
| (PRIV(strncmp_c8)(ptr, STRING_WEIRD_STARTWORD, 6) == 0 || |
| PRIV(strncmp_c8)(ptr, STRING_WEIRD_ENDWORD, 6) == 0)) |
| { |
| *parsed_pattern++ = META_ESCAPE + ESC_b; |
| |
| if (ptr[2] == CHAR_LESS_THAN_SIGN) |
| { |
| *parsed_pattern++ = META_LOOKAHEAD; |
| } |
| else |
| { |
| *parsed_pattern++ = META_LOOKBEHIND; |
| *has_lookbehind = TRUE; |
| |
| /* The offset is used only for the "non-fixed length" error; this won't |
| occur here, so just store zero. */ |
| |
| PUTOFFSET((PCRE2_SIZE)0, parsed_pattern); |
| } |
| |
| if ((options & PCRE2_UCP) == 0) |
| *parsed_pattern++ = META_ESCAPE + ESC_w; |
| else |
| { |
| *parsed_pattern++ = META_ESCAPE + ESC_p; |
| *parsed_pattern++ = PT_WORD << 16; |
| } |
| *parsed_pattern++ = META_KET; |
| ptr += 6; |
| break; |
| } |
| |
| /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
| they are encountered at the top level, so we'll do that too. */ |
| |
| if (ptr < ptrend && (*ptr == CHAR_COLON || *ptr == CHAR_DOT || |
| *ptr == CHAR_EQUALS_SIGN) && |
| check_posix_syntax(ptr, ptrend, &tempptr)) |
| { |
| errorcode = (*ptr-- == CHAR_COLON)? ERR12 : ERR13; |
| goto FAILED; |
| } |
| |
| /* Process a regular character class. If the first character is '^', set |
| the negation flag. If the first few characters (either before or after ^) |
| are \Q\E or \E or space or tab in extended-more mode, we skip them too. |
| This makes for compatibility with Perl. */ |
| |
| negate_class = FALSE; |
| while (ptr < ptrend) |
| { |
| GETCHARINCTEST(c, ptr); |
| if (c == CHAR_BACKSLASH) |
| { |
| if (ptr < ptrend && *ptr == CHAR_E) ptr++; |
| else if (ptrend - ptr >= 3 && |
| PRIV(strncmp_c8)(ptr, STR_Q STR_BACKSLASH STR_E, 3) == 0) |
| ptr += 3; |
| else |
| break; |
| } |
| else if ((options & PCRE2_EXTENDED_MORE) != 0 && |
| (c == CHAR_SPACE || c == CHAR_HT)) /* Note: just these two */ |
| continue; |
| else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
| negate_class = TRUE; |
| else break; |
| } |
| |
| /* Now the real contents of the class; c has the first "real" character. |
| Empty classes are permitted only if the option is set. */ |
| |
| if (c == CHAR_RIGHT_SQUARE_BRACKET && |
| (cb->external_options & PCRE2_ALLOW_EMPTY_CLASS) != 0) |
| { |
| *parsed_pattern++ = negate_class? META_CLASS_EMPTY_NOT : META_CLASS_EMPTY; |
| break; /* End of class processing */ |
| } |
| |
| /* Process a non-empty class. */ |
| |
| *parsed_pattern++ = negate_class? META_CLASS_NOT : META_CLASS; |
| class_range_state = RANGE_NO; |
| |
| /* In an EBCDIC environment, Perl treats alphabetic ranges specially |
| because there are holes in the encoding, and simply using the range A-Z |
| (for example) would include the characters in the holes. This applies only |
| to ranges where both values are literal; [\xC1-\xE9] is different to [A-Z] |
| in this respect. In order to accommodate this, we keep track of whether |
| character values are literal or not, and a state variable for handling |
| ranges. */ |
| |
| /* Loop for the contents of the class */ |
| |
| for (;;) |
| { |
| BOOL char_is_literal = TRUE; |
| |
| /* Inside \Q...\E everything is literal except \E */ |
| |
| if (inescq) |
| { |
| if (c == CHAR_BACKSLASH && ptr < ptrend && *ptr == CHAR_E) |
| { |
| inescq = FALSE; /* Reset literal state */ |
| ptr++; /* Skip the 'E' */ |
| goto CLASS_CONTINUE; |
| } |
| goto CLASS_LITERAL; |
| } |
| |
| /* Skip over space and tab (only) in extended-more mode. */ |
| |
| if ((options & PCRE2_EXTENDED_MORE) != 0 && |
| (c == CHAR_SPACE || c == CHAR_HT)) |
| goto CLASS_CONTINUE; |
| |
| /* Handle POSIX class names. Perl allows a negation extension of the |
| form [:^name:]. A square bracket that doesn't match the syntax is |
| treated as a literal. We also recognize the POSIX constructions |
| [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
| 5.6 and 5.8 do. */ |
| |
| if (c == CHAR_LEFT_SQUARE_BRACKET && |
| ptrend - ptr >= 3 && |
| (*ptr == CHAR_COLON || *ptr == CHAR_DOT || |
| *ptr == CHAR_EQUALS_SIGN) && |
| check_posix_syntax(ptr, ptrend, &tempptr)) |
| { |
| BOOL posix_negate = FALSE; |
| int posix_class; |
| |
| /* Perl treats a hyphen before a POSIX class as a literal, not the |
| start of a range. However, it gives a warning in its warning mode. PCRE |
| does not have a warning mode, so we give an error, because this is |
| likely an error on the user's part. */ |
| |
| if (class_range_state == RANGE_STARTED) |
| { |
| errorcode = ERR50; |
| goto FAILED; |
| } |
| |
| if (*ptr != CHAR_COLON) |
| { |
| errorcode = ERR13; |
| goto FAILED_BACK; |
| } |
| |
| if (*(++ptr) == CHAR_CIRCUMFLEX_ACCENT) |
| { |
| posix_negate = TRUE; |
| ptr++; |
| } |
| |
| posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
| if (posix_class < 0) |
| { |
| errorcode = ERR30; |
| goto FAILED; |
| } |
| ptr = tempptr + 2; |
| |
| /* Perl treats a hyphen after a POSIX class as a literal, not the |
| start of a range. However, it gives a warning in its warning mode |
| unless the hyphen is the last character in the class. PCRE does not |
| have a warning mode, so we give an error, because this is likely an |
| error on the user's part. */ |
| |
| if (ptr < ptrend - 1 && *ptr == CHAR_MINUS && |
| ptr[1] != CHAR_RIGHT_SQUARE_BRACKET) |
| { |
| errorcode = ERR50; |
| goto FAILED; |
| } |
| |
| /* Set "a hyphen is not the start of a range" for the -] case, and also |
| in case the POSIX class is followed by \E or \Q\E (possibly repeated - |
| fuzzers do that kind of thing) and *then* a hyphen. This causes that |
| hyphen to be treated as a literal. I don't think it's worth setting up |
| special apparatus to do otherwise. */ |
| |
| class_range_state = RANGE_NO; |
| |
| /* When PCRE2_UCP is set, some of the POSIX classes are converted to |
| use Unicode properties \p or \P or, in one case, \h or \H. The |
| substitutes table has two values per class, containing the type and |
| value of a \p or \P item. The special cases are specified with a |
| negative type: a non-zero value causes \h or \H to be used, and a zero |
| value falls through to behave like a non-UCP POSIX class. */ |
| |
| #ifdef SUPPORT_UNICODE |
| if ((options & PCRE2_UCP) != 0) |
| { |
| int ptype = posix_substitutes[2*posix_class]; |
| int pvalue = posix_substitutes[2*posix_class + 1]; |
| if (ptype >= 0) |
| { |
| *parsed_pattern++ = META_ESCAPE + (posix_negate? ESC_P : ESC_p); |
| *parsed_pattern++ = (ptype << 16) | pvalue; |
| goto CLASS_CONTINUE; |
| } |
| |
| if (pvalue != 0) |
| { |
| *parsed_pattern++ = META_ESCAPE + (posix_negate? ESC_H : ESC_h); |
| goto CLASS_CONTINUE; |
| } |
| |
| /* Fall through */ |
| } |
| #endif /* SUPPORT_UNICODE */ |
| |
| /* Non-UCP POSIX class */ |
| |
| *parsed_pattern++ = posix_negate? META_POSIX_NEG : META_POSIX; |
| *parsed_pattern++ = posix_class; |
| } |
| |
| /* Handle potential start of range */ |
| |
| else if (c == CHAR_MINUS && class_range_state >= RANGE_OK_ESCAPED) |
| { |
| *parsed_pattern++ = (class_range_state == RANGE_OK_LITERAL)? |
| META_RANGE_LITERAL : META_RANGE_ESCAPED; |
| class_range_state = RANGE_STARTED; |
| } |
| |
| /* Handle a literal character */ |
| |
| else if (c != CHAR_BACKSLASH) |
| { |
| CLASS_LITERAL: |
| if (class_range_state == RANGE_STARTED) |
| { |
| if (c == parsed_pattern[-2]) /* Optimize one-char range */ |
| parsed_pattern--; |
| else if (parsed_pattern[-2] > c) /* Check range is in order */ |
| { |
| errorcode = ERR8; |
| goto FAILED_BACK; |
| } |
| else |
| { |
| if (!char_is_literal && parsed_pattern[-1] == META_RANGE_LITERAL) |
| parsed_pattern[-1] = META_RANGE_ESCAPED; |
| PARSED_LITERAL(c, parsed_pattern); |
| } |
| class_range_state = RANGE_NO; |
| } |
| else /* Potential start of range */ |
| { |
| class_range_state = char_is_literal? |
| RANGE_OK_LITERAL : RANGE_OK_ESCAPED; |
| PARSED_LITERAL(c, parsed_pattern); |
| } |
| } |
| |
| /* Handle escapes in a class */ |
| |
| else |
| { |
| tempptr = ptr; |
| escape = PRIV(check_escape)(&ptr, ptrend, &c, &errorcode, options, |
| cb->cx->extra_options, TRUE, cb); |
| |
| if (errorcode != 0) |
| { |
| if ((extra_options & PCRE2_EXTRA_BAD_ESCAPE_IS_LITERAL) == 0) |
| goto FAILED; |
| ptr = tempptr; |
| if (ptr >= ptrend) c = CHAR_BACKSLASH; else |
| { |
| GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
| } |
| escape = 0; /* Treat as literal character */ |
| } |
| |
| switch(escape) |
| { |
| case 0: /* Escaped character code point is in c */ |
| char_is_literal = FALSE; |
| goto CLASS_LITERAL; |
| |
| case ESC_b: |
| c = CHAR_BS; /* \b is backspace in a class */ |
| char_is_literal = FALSE; |
| goto CLASS_LITERAL; |
| |
| case ESC_Q: |
| inescq = TRUE; /* Enter literal mode */ |
| goto CLASS_CONTINUE; |
| |
| case ESC_E: /* Ignore orphan \E */ |
| goto CLASS_CONTINUE; |
| |
| case ESC_B: /* Always an error in a class */ |
| case ESC_R: |
| case ESC_X: |
| errorcode = ERR7; |
| ptr--; |
| goto FAILED; |
| } |
| |
| /* The second part of a range can be a single-character escape |
| sequence (detected above), but not any of the other escapes. Perl |
| treats a hyphen as a literal in such circumstances. However, in Perl's |
| warning mode, a warning is given, so PCRE now faults it, as it is |
| almost certainly a mistake on the user's part. */ |
| |
| if (class_range_state == RANGE_STARTED) |
| { |
| errorcode = ERR50; |
| goto FAILED; /* Not CLASS_ESCAPE_FAILED; always an error */ |
| } |
| |
| /* Of the remaining escapes, only those that define characters are |
| allowed in a class. None may start a range. */ |
| |
| class_range_state = RANGE_NO; |
| switch(escape) |
| { |
| case ESC_N: |
| errorcode = ERR71; |
| goto FAILED; |
| |
| case ESC_H: |
| case ESC_h: |
| case ESC_V: |
| case ESC_v: |
| *parsed_pattern++ = META_ESCAPE + escape; |
| break; |
| |
| /* These escapes are converted to Unicode property tests when |
| PCRE2_UCP is set. */ |
| |
| case ESC_d: |
| case ESC_D: |
| case ESC_s: |
| case ESC_S: |
| case ESC_w: |
| case ESC_W: |
| if ((options & PCRE2_UCP) == 0) |
| { |
| *parsed_pattern++ = META_ESCAPE + escape; |
| } |
| else |
| { |
| *parsed_pattern++ = META_ESCAPE + |
| ((escape == ESC_d || escape == ESC_s || escape == ESC_w)? |
| ESC_p : ESC_P); |
| switch(escape) |
| { |
| case ESC_d: |
| case ESC_D: |
| *parsed_pattern++ = (PT_PC << 16) | ucp_Nd; |
| break; |
| |
| case ESC_s: |
| case ESC_S: |
| *parsed_pattern++ = PT_SPACE << 16; |
| break; |
| |
| case ESC_w: |
| case ESC_W: |
| *parsed_pattern++ = PT_WORD << 16; |
| break; |
| } |
| } |
| break; |
| |
| /* Explicit Unicode property matching */ |
| |
| case ESC_P: |
| case ESC_p: |
| #ifdef SUPPORT_UNICODE |
| { |
| BOOL negated; |
| uint16_t ptype = 0, pdata = 0; |
| if (!get_ucp(&ptr, &negated, &ptype, &pdata, &errorcode, cb)) |
| goto FAILED; |
| if (negated) escape = (escape == ESC_P)? ESC_p : ESC_P; |
| *parsed_pattern++ = META_ESCAPE + escape; |
| *parsed_pattern++ = (ptype << 16) | pdata; |
| } |
| #else |
| errorcode = ERR45; |
| goto FAILED; |
| #endif |
| break; /* End \P and \p */ |
| |
| default: /* All others are not allowed in a class */ |
| errorcode = ERR7; |
| ptr--; |
| goto FAILED; |
| } |
| |
| /* Perl gives a warning unless a following hyphen is the last character |
| in the class. PCRE throws an error. */ |
| |
| if (ptr < ptrend - 1 && *ptr == CHAR_MINUS && |
| ptr[1] != CHAR_RIGHT_SQUARE_BRACKET) |
| { |
| errorcode = ERR50; |
| goto FAILED; |
| } |
| } |
| |
| /* Proceed to next thing in the class. */ |
| |
| CLASS_CONTINUE: |
| if (ptr >= ptrend) |
| { |
| errorcode = ERR6; /* Missing terminating ']' */ |
| goto FAILED; |
| } |
| GETCHARINCTEST(c, ptr); |
| if (c == CHAR_RIGHT_SQUARE_BRACKET && !inescq) break; |
| } /* End of class-processing loop */ |
| |
| /* -] at the end of a class is a literal '-' */ |
| |
| if (class_range_state == RANGE_STARTED) |
| { |
| parsed_pattern[-1] = CHAR_MINUS; |
| class_range_state = RANGE_NO; |
| } |
| |
| *parsed_pattern++ = META_CLASS_END; |
| break; /* End of character class */ |
| |
| |
| /* ---- Opening parenthesis ---- */ |
| |
| case CHAR_LEFT_PARENTHESIS: |
| if (ptr >= ptrend) goto UNCLOSED_PARENTHESIS; |
| |
| /* If ( is not followed by ? it is either a capture or a special verb or an |
| alpha assertion or a positive non-atomic lookahead. */ |
| |
| if (*ptr != CHAR_QUESTION_MARK) |
| { |
| const char *vn; |
| |
| /* Handle capturing brackets (or non-capturing if auto-capture is turned |
| off). */ |
| |
| if (*ptr != CHAR_ASTERISK) |
| { |
| nest_depth++; |
| if ((options & PCRE2_NO_AUTO_CAPTURE) == 0) |
| { |
| if (cb->bracount >= MAX_GROUP_NUMBER) |
| { |
| errorcode = ERR97; |
| goto FAILED; |
| } |
| cb->bracount++; |
| *parsed_pattern++ = META_CAPTURE | cb->bracount; |
| } |
| else *parsed_pattern++ = META_NOCAPTURE; |
| } |
| |
| /* Do nothing for (* followed by end of pattern or ) so it gives a "bad |
| quantifier" error rather than "(*MARK) must have an argument". */ |
| |
| else if (ptrend - ptr <= 1 || (c = ptr[1]) == CHAR_RIGHT_PARENTHESIS) |
| break; |
| |
| /* Handle "alpha assertions" such as (*pla:...). Most of these are |
| synonyms for the historical symbolic assertions, but the script run and |
| non-atomic lookaround ones are new. They are distinguished by starting |
| with a lower case letter. Checking both ends of the alphabet makes this |
| work in all character codes. */ |
| |
| else if (CHMAX_255(c) && (cb->ctypes[c] & ctype_lcletter) != 0) |
| { |
| uint32_t meta; |
| |
| vn = alasnames; |
| if (!read_name(&ptr, ptrend, utf, 0, &offset, &name, &namelen, |
| &errorcode, cb)) goto FAILED; |
| if (ptr >= ptrend || *ptr != CHAR_COLON) |
| { |
| errorcode = ERR95; /* Malformed */ |
| goto FAILED; |
| } |
| |
| /* Scan the table of alpha assertion names */ |
| |
| for (i = 0; i < alascount; i++) |
| { |
| if (namelen == alasmeta[i].len && |
| PRIV(strncmp_c8)(name, vn, namelen) == 0) |
| break; |
| vn += alasmeta[i].len + 1; |
| } |
| |
| if (i >= alascount) |
| { |
| errorcode = ERR95; /* Alpha assertion not recognized */ |
| goto FAILED; |
| } |
| |
| /* Check for expecting an assertion condition. If so, only atomic |
| lookaround assertions are valid. */ |
| |
| meta = alasmeta[i].meta; |
| if (prev_expect_cond_assert > 0 && |
| (meta < META_LOOKAHEAD || meta > META_LOOKBEHINDNOT)) |
| { |
| errorcode = (meta == META_LOOKAHEAD_NA || meta == META_LOOKBEHIND_NA)? |
| ERR98 : ERR28; /* (Atomic) assertion expected */ |
| goto FAILED; |
| } |
| |
| /* The lookaround alphabetic synonyms can mostly be handled by jumping |
| to the code that handles the traditional symbolic forms. */ |
| |
| switch(meta) |
| { |
| default: |
| errorcode = ERR89; /* Unknown code; should never occur because */ |
| goto FAILED; /* the meta values come from a table above. */ |
| |
| case META_ATOMIC: |
| goto ATOMIC_GROUP; |
| |
| case META_LOOKAHEAD: |
| goto POSITIVE_LOOK_AHEAD; |
| |
| case META_LOOKAHEAD_NA: |
| goto POSITIVE_NONATOMIC_LOOK_AHEAD; |
| |
| case META_LOOKAHEADNOT: |
| goto NEGATIVE_LOOK_AHEAD; |
| |
| case META_LOOKBEHIND: |
| case META_LOOKBEHINDNOT: |
| case META_LOOKBEHIND_NA: |
| *parsed_pattern++ = meta; |
| ptr--; |
| goto POST_LOOKBEHIND; |
| |
| /* The script run facilities are handled here. Unicode support is |
| required (give an error if not, as this is a security issue). Always |
| record a META_SCRIPT_RUN item. Then, for the atomic version, insert |
| META_ATOMIC and remember that we need two META_KETs at the end. */ |
| |
| case META_SCRIPT_RUN: |
| case META_ATOMIC_SCRIPT_RUN: |
| #ifdef SUPPORT_UNICODE |
| *parsed_pattern++ = META_SCRIPT_RUN; |
| nest_depth++; |
| ptr++; |
| if (meta == META_ATOMIC_SCRIPT_RUN) |
| { |
| *parsed_pattern++ = META_ATOMIC; |
| if (top_nest == NULL) top_nest = (nest_save *)(cb->start_workspace); |
| else if (++top_nest >= end_nests) |
| { |
| errorcode = ERR84; |
| goto FAILED; |
| } |
| top_nest->nest_depth = nest_depth; |
| top_nest->flags = NSF_ATOMICSR; |
| top_nest->options = options & PARSE_TRACKED_OPTIONS; |
| } |
| break; |
| #else /* SUPPORT_UNICODE */ |
| errorcode = ERR96; |
| goto FAILED; |
| #endif |
| } |
| } |
| |
| |
| /* ---- Handle (*VERB) and (*VERB:NAME) ---- */ |
| |
| else |
| { |
| vn = verbnames; |
| if (!read_name(&ptr, ptrend, utf, 0, &offset, &name, &namelen, |
| &errorcode, cb)) goto FAILED; |
| if (ptr >= ptrend || (*ptr != CHAR_COLON && |
| *ptr != CHAR_RIGHT_PARENTHESIS)) |
| { |
| errorcode = ERR60; /* Malformed */ |
| goto FAILED; |
| } |
| |
| /* Scan the table of verb names */ |
| |
| for (i = 0; i < verbcount; i++) |
| { |
| if (namelen == verbs[i].len && |
| PRIV(strncmp_c8)(name, vn, namelen) == 0) |
| break; |
| vn += verbs[i].len + 1; |
| } |
| |
| if (i >= verbcount) |
| { |
| errorcode = ERR60; /* Verb not recognized */ |
| goto FAILED; |
| } |
| |
| /* An empty argument is treated as no argument. */ |
| |
| if (*ptr == CHAR_COLON && ptr + 1 < ptrend && |
| ptr[1] == CHAR_RIGHT_PARENTHESIS) |
| ptr++; /* Advance to the closing parens */ |
| |
| /* Check for mandatory non-empty argument; this is (*MARK) */ |
| |
| if (verbs[i].has_arg > 0 && *ptr != CHAR_COLON) |
| { |
| errorcode = ERR66; |
| goto FAILED; |
| } |
| |
| /* Remember where this verb, possibly with a preceding (*MARK), starts, |
| for handling quantified (*ACCEPT). */ |
| |
| verbstartptr = parsed_pattern; |
| okquantifier = (verbs[i].meta == META_ACCEPT); |
| |
| /* It appears that Perl allows any characters whatsoever, other than a |
| closing parenthesis, to appear in arguments ("names"), so we no longer |
| insist on letters, digits, and underscores. Perl does not, however, do |
| any interpretation within arguments, and has no means of including a |
| closing parenthesis. PCRE supports escape processing but only when it |
| is requested by an option. We set inverbname TRUE here, and let the |
| main loop take care of this so that escape and \x processing is done by |
| the main code above. */ |
| |
| if (*ptr++ == CHAR_COLON) /* Skip past : or ) */ |
| { |
| /* Some optional arguments can be treated as a preceding (*MARK) */ |
| |
| if (verbs[i].has_arg < 0) |
| { |
| add_after_mark = verbs[i].meta; |
| *parsed_pattern++ = META_MARK; |
| } |
| |
| /* The remaining verbs with arguments (except *MARK) need a different |
| opcode. */ |
| |
| else |
| { |
| *parsed_pattern++ = verbs[i].meta + |
| ((verbs[i].meta != META_MARK)? 0x00010000u:0); |
| } |
| |
| /* Set up for reading the name in the main loop. */ |
| |
| verblengthptr = parsed_pattern++; |
| verbnamestart = ptr; |
| inverbname = TRUE; |
| } |
| else /* No verb "name" argument */ |
| { |
| *parsed_pattern++ = verbs[i].meta; |
| } |
| } /* End of (*VERB) handling */ |
| break; /* Done with this parenthesis */ |
| } /* End of groups that don't start with (? */ |
| |
| |
| /* ---- Items starting (? ---- */ |
| |
| /* The type of item is determined by what follows (?. Handle (?| and option |
| changes under "default" because both need a new block on the nest stack. |
| Comments starting with (?# are handled above. Note that there is some |
| ambiguity about the sequence (?- because if a digit follows it's a relative |
| recursion or subroutine call whereas otherwise it's an option unsetting. */ |
| |
| if (++ptr >= ptrend) goto UNCLOSED_PARENTHESIS; |
| |
| switch(*ptr) |
| { |
| default: |
| if (*ptr == CHAR_MINUS && ptrend - ptr > 1 && IS_DIGIT(ptr[1])) |
| goto RECURSION_BYNUMBER; /* The + case is handled by CHAR_PLUS */ |
| |
| /* We now have either (?| or a (possibly empty) option setting, |
| optionally followed by a non-capturing group. */ |
| |
| nest_depth++; |
| if (top_nest == NULL) top_nest = (nest_save *)(cb->start_workspace); |
| else if (++top_nest >= end_nests) |
| { |
| errorcode = ERR84; |
| goto FAILED; |
| } |
| top_nest->nest_depth = nest_depth; |
| top_nest->flags = 0; |
| top_nest->options = options & PARSE_TRACKED_OPTIONS; |
| |
| /* Start of non-capturing group that resets the capture count for each |
| branch. */ |
| |
| if (*ptr == CHAR_VERTICAL_LINE) |
| { |
| top_nest->reset_group = (uint16_t)cb->bracount; |
| top_nest->max_group = (uint16_t)cb->bracount; |
| top_nest->flags |= NSF_RESET; |
| cb->external_flags |= PCRE2_DUPCAPUSED; |
| *parsed_pattern++ = META_NOCAPTURE; |
| ptr++; |
| } |
| |
| /* Scan for options imnsxJU to be set or unset. */ |
| |
| else |
| { |
| BOOL hyphenok = TRUE; |
| uint32_t oldoptions = options; |
| |
| top_nest->reset_group = 0; |
| top_nest->max_group = 0; |
| set = unset = 0; |
| optset = &set; |
| |
| /* ^ at the start unsets imnsx and disables the subsequent use of - */ |
| |
| if (ptr < ptrend && *ptr == CHAR_CIRCUMFLEX_ACCENT) |
| { |
| options &= ~(PCRE2_CASELESS|PCRE2_MULTILINE|PCRE2_NO_AUTO_CAPTURE| |
| PCRE2_DOTALL|PCRE2_EXTENDED|PCRE2_EXTENDED_MORE); |
| hyphenok = FALSE; |
| ptr++; |
| } |
| |
| while (ptr < ptrend && *ptr != CHAR_RIGHT_PARENTHESIS && |
| *ptr != CHAR_COLON) |
| { |
| switch (*ptr++) |
| { |
| case CHAR_MINUS: |
| if (!hyphenok) |
| { |
| errorcode = ERR94; |
| ptr--; /* Correct the offset */ |
| goto FAILED; |
| } |
| optset = &unset; |
| hyphenok = FALSE; |
| break; |
| |
| case CHAR_J: /* Record that it changed in the external options */ |
| *optset |= PCRE2_DUPNAMES; |
| cb->external_flags |= PCRE2_JCHANGED; |
| break; |
| |
| case CHAR_i: *optset |= PCRE2_CASELESS; break; |
| case CHAR_m: *optset |= PCRE2_MULTILINE; break; |
| case CHAR_n: *optset |= PCRE2_NO_AUTO_CAPTURE; break; |
| case CHAR_s: *optset |= PCRE2_DOTALL; break; |
| case CHAR_U: *optset |= PCRE2_UNGREEDY; break; |
| |
| /* If x appears twice it sets the extended extended option. */ |
| |
| case CHAR_x: |
| *optset |= PCRE2_EXTENDED; |
| if (ptr < ptrend && *ptr == CHAR_x) |
| { |
| *optset |= PCRE2_EXTENDED_MORE; |
| ptr++; |
| } |
| break; |
| |
| default: |
| errorcode = ERR11; |
| ptr--; /* Correct the offset */ |
| goto FAILED; |
| } |
| } |
| |
| /* If we are setting extended without extended-more, ensure that any |
| existing extended-more gets unset. Also, unsetting extended must also |
| unset extended-more. */ |
| |
| if ((set & (PCRE2_EXTENDED|PCRE2_EXTENDED_MORE)) == PCRE2_EXTENDED || |
| (unset & PCRE2_EXTENDED) != 0) |
| unset |= PCRE2_EXTENDED_MORE; |
| |
| options = (options | set) & (~unset); |
| |
| /* If the options ended with ')' this is not the start of a nested |
| group with option changes, so the options change at this level. |
| In this case, if the previous level set up a nest block, discard the |
| one we have just created. Otherwise adjust it for the previous level. |
| If the options ended with ':' we are starting a non-capturing group, |
| possibly with an options setting. */ |
| |
| if (ptr >= ptrend) goto UNCLOSED_PARENTHESIS; |
| if (*ptr++ == CHAR_RIGHT_PARENTHESIS) |
| { |
| nest_depth--; /* This is not a nested group after all. */ |
| if (top_nest > (nest_save *)(cb->start_workspace) && |
| (top_nest-1)->nest_depth == nest_depth) top_nest--; |
| else top_nest->nest_depth = nest_depth; |
| } |
| else *parsed_pattern++ = META_NOCAPTURE; |
| |
| /* If nothing changed, no need to record. */ |
| |
| if (options != oldoptions) |
| { |
| *parsed_pattern++ = META_OPTIONS; |
| *parsed_pattern++ = options; |
| } |
| } /* End options processing */ |
| break; /* End default case after (? */ |
| |
| |
| /* ---- Python syntax support ---- */ |
| |
| case CHAR_P: |
| if (++ptr >= ptrend) goto UNCLOSED_PARENTHESIS; |
| |
| /* (?P<name> is the same as (?<name>, which defines a named group. */ |
| |
| if (*ptr == CHAR_LESS_THAN_SIGN) |
| { |
| terminator = CHAR_GREATER_THAN_SIGN; |
| goto DEFINE_NAME; |
| } |
| |
| /* (?P>name) is the same as (?&name), which is a recursion or subroutine |
| call. */ |
| |
| if (*ptr == CHAR_GREATER_THAN_SIGN) goto RECURSE_BY_NAME; |
| |
| /* (?P=name) is the same as \k<name>, a back reference by name. Anything |
| else after (?P is an error. */ |
| |
| if (*ptr != CHAR_EQUALS_SIGN) |
| { |
| errorcode = ERR41; |
| goto FAILED; |
| } |
| if (!read_name(&ptr, ptrend, utf, CHAR_RIGHT_PARENTHESIS, &offset, &name, |
| &namelen, &errorcode, cb)) goto FAILED; |
| *parsed_pattern++ = META_BACKREF_BYNAME; |
| *parsed_pattern++ = namelen; |
| PUTOFFSET(offset, parsed_pattern); |
| okquantifier = TRUE; |
| break; /* End of (?P processing */ |
| |
| |
| /* ---- Recursion/subroutine calls by number ---- */ |
| |
| case CHAR_R: |
| i = 0; /* (?R) == (?R0) */ |
| ptr++; |
| if (ptr >= ptrend || *ptr != CHAR_RIGHT_PARENTHESIS) |
| { |
| errorcode = ERR58; |
| goto FAILED; |
| } |
| goto SET_RECURSION; |
| |
| /* An item starting (?- followed by a digit comes here via the "default" |
| case because (?- followed by a non-digit is an options setting. */ |
| |
| case CHAR_PLUS: |
| if (ptrend - ptr < 2 || !IS_DIGIT(ptr[1])) |
| { |
| errorcode = ERR29; /* Missing number */ |
| goto FAILED; |
| } |
| /* Fall through */ |
| |
| case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
| case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
| RECURSION_BYNUMBER: |
| if (!read_number(&ptr, ptrend, |
| (IS_DIGIT(*ptr))? -1:(int)(cb->bracount), /* + and - are relative */ |
| MAX_GROUP_NUMBER, ERR61, |
| &i, &errorcode)) goto FAILED; |
| if (i < 0) /* NB (?0) is permitted */ |
| { |
| errorcode = ERR15; /* Unknown group */ |
| goto FAILED_BACK; |
| } |
| if (ptr >= ptrend || *ptr != CHAR_RIGHT_PARENTHESIS) |
| goto UNCLOSED_PARENTHESIS; |
| |
| SET_RECURSION: |
| *parsed_pattern++ = META_RECURSE | (uint32_t)i; |
| offset = (PCRE2_SIZE)(ptr - cb->start_pattern); |
| ptr++; |
| PUTOFFSET(offset, parsed_pattern); |
| okquantifier = TRUE; |
| break; /* End of recursive call by number handling */ |
| |
| |
| /* ---- Recursion/subroutine calls by name ---- */ |
| |
| case CHAR_AMPERSAND: |
| RECURSE_BY_NAME: |
| if (!read_name(&ptr, ptrend, utf, CHAR_RIGHT_PARENTHESIS, &offset, &name, |
| &namelen, &errorcode, cb)) goto FAILED; |
| *parsed_pattern++ = META_RECURSE_BYNAME; |
| *parsed_pattern++ = namelen; |
| PUTOFFSET(offset, parsed_pattern); |
| okquantifier = TRUE; |
| break; |
| |
| /* ---- Callout with numerical or string argument ---- */ |
| |
| case CHAR_C: |
| if (++ptr >= ptrend) goto UNCLOSED_PARENTHESIS; |
| |
| /* If the previous item was a condition starting (?(? an assertion, |
| optionally preceded by a callout, is expected. This is checked later on, |
| during actual compilation. However we need to identify this kind of |
| assertion in this pass because it must not be qualified. The value of |
| expect_cond_assert is set to 2 after (?(? is processed. We decrement it |
| for a callout - still leaving a positive value that identifies the |
| assertion. Multiple callouts or any other items will make it zero or |
| less, which doesn't matter because they will cause an error later. */ |
| |
| expect_cond_assert = prev_expect_cond_assert - 1; |
| |
| /* If previous_callout is not NULL, it means this follows a previous |
| callout. If it was a manual callout, do nothing; this means its "length |
| of next pattern item" field will remain zero. If it was an automatic |
| callout, abolish it. */ |
| |
| if (previous_callout != NULL && (options & PCRE2_AUTO_CALLOUT) != 0 && |
| previous_callout == parsed_pattern - 4 && |
| parsed_pattern[-1] == 255) |
| parsed_pattern = previous_callout; |
| |
| /* Save for updating next pattern item length, and skip one item before |
| completing. */ |
| |
| previous_callout = parsed_pattern; |
| after_manual_callout = 1; |
| |
| /* Handle a string argument; specific delimiter is required. */ |
| |
| if (*ptr != CHAR_RIGHT_PARENTHESIS && !IS_DIGIT(*ptr)) |
| { |
| PCRE2_SIZE calloutlength; |
| PCRE2_SPTR startptr = ptr; |
| |
| delimiter = 0; |
| for (i = 0; PRIV(callout_start_delims)[i] != 0; i++) |
| { |
| if (*ptr == PRIV(callout_start_delims)[i]) |
| { |
| delimiter = PRIV(callout_end_delims)[i]; |
| break; |
| } |
| } |
| if (delimiter == 0) |
| { |
| errorcode = ERR82; |
| goto FAILED; |
| } |
| |
| *parsed_pattern = META_CALLOUT_STRING; |
| parsed_pattern += 3; /* Skip pattern info */ |
| |
| for (;;) |
| { |
| if (++ptr >= ptrend) |
| { |
| errorcode = ERR81; |
| ptr = startptr; /* To give a more useful message */ |
| goto FAILED; |
| } |
| if (*ptr == delimiter && (++ptr >= ptrend || *ptr != delimiter)) |
| break; |
| } |
| |
| calloutlength = (PCRE2_SIZE)(ptr - startptr); |
| if (calloutlength > UINT32_MAX) |
| { |
| errorcode = ERR72; |
| goto FAILED; |
| } |
| *parsed_pattern++ = (uint32_t)calloutlength; |
| offset = (PCRE2_SIZE)(startptr - cb->start_pattern); |
| PUTOFFSET(offset, parsed_pattern); |
| } |
| |
| /* Handle a callout with an optional numerical argument, which must be |
| less than or equal to 255. A missing argument gives 0. */ |
| |
| else |
| { |
| int n = 0; |
| *parsed_pattern = META_CALLOUT_NUMBER; /* Numerical callout */ |
| parsed_pattern += 3; /* Skip pattern info */ |
| while (ptr < ptrend && IS_DIGIT(*ptr)) |
| { |
| n = n * 10 + *ptr++ - CHAR_0; |
| if (n > 255) |
| { |
| errorcode = ERR38; |
| goto FAILED; |
| } |
| } |
| *parsed_pattern++ = n; |
| } |
| |
| /* Both formats must have a closing parenthesis */ |
| |
| if (ptr >= ptrend || *ptr != CHAR_RIGHT_PARENTHESIS) |
| { |
| errorcode = ERR39; |
| goto FAILED; |
| } |
| ptr++; |
| |
| /* Remember the offset to the next item in the pattern, and set a default |
| length. This should get updated after the next item is read. */ |
| |
| previous_callout[1] = (uint32_t)(ptr - cb->start_pattern); |
| previous_callout[2] = 0; |
| break; /* End callout */ |
| |
| |
| /* ---- Conditional group ---- */ |
| |
| /* A condition can be an assertion, a number (referring to a numbered |
| group's having been set), a name (referring to a named group), or 'R', |
| referring to overall recursion. R<digits> and R&name are also permitted |
| for recursion state tests. Numbers may be preceded by + or - to specify a |
| relative group number. |
| |
| There are several syntaxes for testing a named group: (?(name)) is used |
| by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
| |
| There are two unfortunate ambiguities. 'R' can be the recursive thing or |
| the name 'R' (and similarly for 'R' followed by digits). 'DEFINE' can be |
| the Perl DEFINE feature or the Python named test. We look for a name |
| first; if not found, we try the other case. |
| |
| For compatibility with auto-callouts, we allow a callout to be specified |
| before a condition that is an assertion. */ |
| |
| case CHAR_LEFT_PARENTHESIS: |
| if (++ptr >= ptrend) goto UNCLOSED_PARENTHESIS; |
| nest_depth++; |
| |
| /* If the next character is ? or * there must be an assertion next |
| (optionally preceded by a callout). We do not check this here, but |
| instead we set expect_cond_assert to 2. If this is still greater than |
| zero (callouts decrement it) when the next assertion is read, it will be |
| marked as a condition that must not be repeated. A value greater than |
| zero also causes checking that an assertion (possibly with callout) |
| follows. */ |
| |
| if (*ptr == CHAR_QUESTION_MARK || *ptr == CHAR_ASTERISK) |
| { |
| *parsed_pattern++ = META_COND_ASSERT; |
| ptr--; /* Pull pointer back to the opening parenthesis. */ |
| expect_cond_assert = 2; |
| break; /* End of conditional */ |
| } |
| |
| /* Handle (?([+-]number)... */ |
| |
| if (read_number(&ptr, ptrend, cb->bracount, MAX_GROUP_NUMBER, ERR61, &i, |
| &errorcode)) |
| { |
| if (i <= 0) |
| { |
| errorcode = ERR15; |
| goto FAILED; |
| } |
| *parsed_pattern++ = META_COND_NUMBER; |
| offset = (PCRE2_SIZE)(ptr - cb->start_pattern - 2); |
| PUTOFFSET(offset, parsed_pattern); |
| *parsed_pattern++ = i; |
| } |
| else if (errorcode != 0) goto FAILED; /* Number too big */ |
| |
| /* No number found. Handle the special case (?(VERSION[>]=n.m)... */ |
| |
| else if (ptrend - ptr >= 10 && |
| PRIV(strncmp_c8)(ptr, STRING_VERSION, 7) == 0 && |
| ptr[7] != CHAR_RIGHT_PARENTHESIS) |
| { |
| uint32_t ge = 0; |
| int major = 0; |
| int minor = 0; |
| |
| ptr += 7; |
| if (*ptr == CHAR_GREATER_THAN_SIGN) |
| { |
| ge = 1; |
| ptr++; |
| } |
| |
| /* NOTE: cannot write IS_DIGIT(*(++ptr)) here because IS_DIGIT |
| references its argument twice. */ |
| |
| if (*ptr != CHAR_EQUALS_SIGN || (ptr++, !IS_DIGIT(*ptr))) |
| goto BAD_VERSION_CONDITION; |
| |
| if (!read_number(&ptr, ptrend, -1, 1000, ERR79, &major, &errorcode)) |
| goto FAILED; |
| |
| if (ptr >= ptrend) goto BAD_VERSION_CONDITION; |
| if (*ptr == CHAR_DOT) |
| { |
| if (++ptr >= ptrend || !IS_DIGIT(*ptr)) goto BAD_VERSION_CONDITION; |
| minor = (*ptr++ - CHAR_0) * 10; |
| if (ptr >= ptrend) goto BAD_VERSION_CONDITION; |
| if (IS_DIGIT(*ptr)) minor += *ptr++ - CHAR_0; |
| if (ptr >= ptrend || *ptr != CHAR_RIGHT_PARENTHESIS) |
| goto BAD_VERSION_CONDITION; |
| } |
| |
| *parsed_pattern++ = META_COND_VERSION; |
| *parsed_pattern++ = ge; |
| *parsed_pattern++ = major; |
| *parsed_pattern++ = minor; |
| } |
| |
| /* All the remaining cases now require us to read a name. We cannot at |
| this stage distinguish ambiguous cases such as (?(R12) which might be a |
| recursion test by number or a name, because the named groups have not yet |
| all been identified. Those cases are treated as names, but given a |
| different META code. */ |
| |
| else |
| { |
| BOOL was_r_ampersand = FALSE; |
| |
| if (*ptr == CHAR_R && ptrend - ptr > 1 && ptr[1] == CHAR_AMPERSAND) |
| { |
| terminator = CHAR_RIGHT_PARENTHESIS; |
| was_r_ampersand = TRUE; |
| ptr++; |
| } |
| else if (*ptr == CHAR_LESS_THAN_SIGN) |
| terminator = CHAR_GREATER_THAN_SIGN; |
| else if (*ptr == CHAR_APOSTROPHE) |
| terminator = CHAR_APOSTROPHE; |
| else |
| { |
| terminator = CHAR_RIGHT_PARENTHESIS; |
| ptr--; /* Point to char before name */ |
| } |
| if (!read_name(&ptr, ptrend, utf, terminator, &offset, &name, &namelen, |
| &errorcode, cb)) goto FAILED; |
| |
| /* Handle (?(R&name) */ |
| |
| if (was_r_ampersand) |
| { |
| *parsed_pattern = META_COND_RNAME; |
| ptr--; /* Back to closing parens */ |
| } |
| |
| /* Handle (?(name). If the name is "DEFINE" we identify it with a |
| special code. Likewise if the name consists of R followed only by |
| digits. Otherwise, handle it like a quoted name. */ |
| |
| else if (terminator == CHAR_RIGHT_PARENTHESIS) |
| { |
| if (namelen == 6 && PRIV(strncmp_c8)(name, STRING_DEFINE, 6) == 0) |
| *parsed_pattern = META_COND_DEFINE; |
| else |
| { |
| for (i = 1; i < (int)namelen; i++) |
| if (!IS_DIGIT(name[i])) break; |
| *parsed_pattern = (*name == CHAR_R && i >= (int)namelen)? |
| META_COND_RNUMBER : META_COND_NAME; |
| } |
| ptr--; /* Back to closing parens */ |
| } |
| |
| /* Handle (?('name') or (?(<name>) */ |
| |
| else *parsed_pattern = META_COND_NAME; |
| |
| /* All these cases except DEFINE end with the name length and offset; |
| DEFINE just has an offset (for the "too many branches" error). */ |
| |
| if (*parsed_pattern++ != META_COND_DEFINE) *parsed_pattern++ = namelen; |
| PUTOFFSET(offset, parsed_pattern); |
| } /* End cases that read a name */ |
| |
| /* Check the closing parenthesis of the condition */ |
| |
| if (ptr >= ptrend || *ptr != CHAR_RIGHT_PARENTHESIS) |
| { |
| errorcode = ERR24; |
| goto FAILED; |
| } |
| ptr++; |
| break; /* End of condition processing */ |
| |
| |
| /* ---- Atomic group ---- */ |
| |
| case CHAR_GREATER_THAN_SIGN: |
| ATOMIC_GROUP: /* Come from (*atomic: */ |
| *parsed_pattern++ = META_ATOMIC; |
| nest_depth++; |
| ptr++; |
| break; |
| |
| |
| /* ---- Lookahead assertions ---- */ |
| |
| case CHAR_EQUALS_SIGN: |
| POSITIVE_LOOK_AHEAD: /* Come from (*pla: */ |
| *parsed_pattern++ = META_LOOKAHEAD; |
| ptr++; |
| goto POST_ASSERTION; |
| |
| case CHAR_ASTERISK: |
| POSITIVE_NONATOMIC_LOOK_AHEAD: /* Come from (?* */ |
| *parsed_pattern++ = META_LOOKAHEAD_NA; |
| ptr++; |
| goto POST_ASSERTION; |
| |
| case CHAR_EXCLAMATION_MARK: |
| NEGATIVE_LOOK_AHEAD: /* Come from (*nla: */ |
| *parsed_pattern++ = META_LOOKAHEADNOT; |
| ptr++; |
| goto POST_ASSERTION; |
| |
| |
| /* ---- Lookbehind assertions ---- */ |
| |
| /* (?< followed by = or ! or * is a lookbehind assertion. Otherwise (?< |
| is the start of the name of a capturing group. */ |
| |
| case CHAR_LESS_THAN_SIGN: |
| if (ptrend - ptr <= 1 || |
| (ptr[1] != CHAR_EQUALS_SIGN && |
| ptr[1] != CHAR_EXCLAMATION_MARK && |
| ptr[1] != CHAR_ASTERISK)) |
| { |
| terminator = CHAR_GREATER_THAN_SIGN; |
| goto DEFINE_NAME; |
| } |
| *parsed_pattern++ = (ptr[1] == CHAR_EQUALS_SIGN)? |
| META_LOOKBEHIND : (ptr[1] == CHAR_EXCLAMATION_MARK)? |
| META_LOOKBEHINDNOT : META_LOOKBEHIND_NA; |
| |
| POST_LOOKBEHIND: /* Come from (*plb: (*naplb: and (*nlb: */ |
| *has_lookbehind = TRUE; |
| offset = (PCRE2_SIZE)(ptr - cb->start_pattern - 2); |
| PUTOFFSET(offset, parsed_pattern); |
| ptr += 2; |
| /* Fall through */ |
| |
| /* If the previous item was a condition starting (?(? an assertion, |
| optionally preceded by a callout, is expected. This is checked later on, |
| during actual compilation. However we need to identify this kind of |
| assertion in this pass because it must not be qualified. The value of |
| expect_cond_assert is set to 2 after (?(? is processed. We decrement it |
| for a callout - still leaving a positive value that identifies the |
| assertion. Multiple callouts or any other items will make it zero or |
| less, which doesn't matter because they will cause an error later. */ |
| |
| POST_ASSERTION: |
| nest_depth++; |
| if (prev_expect_cond_assert > 0) |
| { |
| if (top_nest == NULL) top_nest = (nest_save *)(cb->start_workspace); |
| else if (++top_nest >= end_nests) |
| { |
| errorcode = ERR84; |
| goto FAILED; |
| } |
| top_nest->nest_depth = nest_depth; |
| top_nest->flags = NSF_CONDASSERT; |
| top_nest->options = options & PARSE_TRACKED_OPTIONS; |
| } |
| break; |
| |
| |
| /* ---- Define a named group ---- */ |
| |
| /* A named group may be defined as (?'name') or (?<name>). In the latter |
| case we jump to DEFINE_NAME from the disambiguation of (?< above with the |
| terminator set to '>'. */ |
| |
| case CHAR_APOSTROPHE: |
| terminator = CHAR_APOSTROPHE; /* Terminator */ |
| |
| DEFINE_NAME: |
| if (!read_name(&ptr, ptrend, utf, terminator, &offset, &name, &namelen, |
| &errorcode, cb)) goto FAILED; |
| |
| /* We have a name for this capturing group. It is also assigned a number, |
| which is its primary means of identification. */ |
| |
| if (cb->bracount >= MAX_GROUP_NUMBER) |
| { |
| errorcode = ERR97; |
| goto FAILED; |
| } |
| cb->bracount++; |
| *parsed_pattern++ = META_CAPTURE | cb->bracount; |
| nest_depth++; |
| |
| /* Check not too many names */ |
| |
| if (cb->names_found >= MAX_NAME_COUNT) |
| { |
| errorcode = ERR49; |
| goto FAILED; |
| } |
| |
| /* Adjust the entry size to accommodate the longest name found. */ |
| |
| if (namelen + IMM2_SIZE + 1 > cb->name_entry_size) |
| cb->name_entry_size = (uint16_t)(namelen + IMM2_SIZE + 1); |
| |
| /* Scan the list to check for duplicates. For duplicate names, if the |
| number is the same, break the loop, which causes the name to be |
| discarded; otherwise, if DUPNAMES is not set, give an error. |
| If it is set, allow the name with a different number, but continue |
| scanning in case this is a duplicate with the same number. For |
| non-duplicate names, give an error if the number is duplicated. */ |
| |
| isdupname = FALSE; |
| ng = cb->named_groups; |
| for (i = 0; i < cb->names_found; i++, ng++) |
| { |
| if (namelen == ng->length && |
| PRIV(strncmp)(name, ng->name, (PCRE2_SIZE)namelen) == 0) |
| { |
| if (ng->number == cb->bracount) break; |
| if ((options & PCRE2_DUPNAMES) == 0) |
| { |
| errorcode = ERR43; |
| goto FAILED; |
| } |
| isdupname = ng->isdup = TRUE; /* Mark as a duplicate */ |
| cb->dupnames = TRUE; /* Duplicate names exist */ |
| } |
| else if (ng->number == cb->bracount) |
| { |
| errorcode = ERR65; |
| goto FAILED; |
| } |
| } |
| |
| if (i < cb->names_found) break; /* Ignore duplicate with same number */ |
| |
| /* Increase the list size if necessary */ |
| |
| if (cb->names_found >= cb->named_group_list_size) |
| { |
| uint32_t newsize = cb->named_group_list_size * 2; |
| named_group *newspace = |
| cb->cx->memctl.malloc(newsize * sizeof(named_group), |
| cb->cx->memctl.memory_data); |
| if (newspace == NULL) |
| { |
| errorcode = ERR21; |
| goto FAILED; |
| } |
| |
| memcpy(newspace, cb->named_groups, |
| cb->named_group_list_size * sizeof(named_group)); |
| if (cb->named_group_list_size > NAMED_GROUP_LIST_SIZE) |
| cb->cx->memctl.free((void *)cb->named_groups, |
| cb->cx->memctl.memory_data); |
| cb->named_groups = newspace; |
| cb->named_group_list_size = newsize; |
| } |
| |
| /* Add this name to the list */ |
| |
| cb->named_groups[cb->names_found].name = name; |
| cb->named_groups[cb->names_found].length = (uint16_t)namelen; |
| cb->named_groups[cb->names_found].number = cb->bracount; |
| cb->named_groups[cb->names_found].isdup = (uint16_t)isdupname; |
| cb->names_found++; |
| break; |
| } /* End of (? switch */ |
| break; /* End of ( handling */ |
| |
| |
| /* ---- Branch terminators ---- */ |
| |
| /* Alternation: reset the capture count if we are in a (?| group. */ |
| |
| case CHAR_VERTICAL_LINE: |
| if (top_nest != NULL && top_nest->nest_depth == nest_depth && |
| (top_nest->flags & NSF_RESET) != 0) |
| { |
| if (cb->bracount > top_nest->max_group) |
| top_nest->max_group = (uint16_t)cb->bracount; |
| cb->bracount = top_nest->reset_group; |
| } |
| *parsed_pattern++ = META_ALT; |
| break; |
| |
| /* End of group; reset the capture count to the maximum if we are in a (?| |
| group and/or reset the options that are tracked during parsing. Disallow |
| quantifier for a condition that is an assertion. */ |
| |
| case CHAR_RIGHT_PARENTHESIS: |
| okquantifier = TRUE; |
| if (top_nest != NULL && top_nest->nest_depth == nest_depth) |
| { |
| options = (options & ~PARSE_TRACKED_OPTIONS) | top_nest->options; |
| if ((top_nest->flags & NSF_RESET) != 0 && |
| top_nest->max_group > cb->bracount) |
| cb->bracount = top_nest->max_group; |
| if ((top_nest->flags & NSF_CONDASSERT) != 0) |
| okquantifier = FALSE; |
| |
| if ((top_nest->flags & NSF_ATOMICSR) != 0) |
| { |
| *parsed_pattern++ = META_KET; |
| } |
| |
| if (top_nest == (nest_save *)(cb->start_workspace)) top_nest = NULL; |
| else top_nest--; |
| } |
| if (nest_depth == 0) /* Unmatched closing parenthesis */ |
| { |
| errorcode = ERR22; |
| goto FAILED_BACK; |
| } |
| nest_depth--; |
| *parsed_pattern++ = META_KET; |
| break; |
| } /* End of switch on pattern character */ |
| } /* End of main character scan loop */ |
| |
| /* End of pattern reached. Check for missing ) at the end of a verb name. */ |
| |
| if (inverbname && ptr >= ptrend) |
| { |
| errorcode = ERR60; |
| goto FAILED; |
| } |
| |
| /* Manage callout for the final item */ |
| |
| PARSED_END: |
| parsed_pattern = manage_callouts(ptr, &previous_callout, auto_callout, |
| parsed_pattern, cb); |
| |
| /* Insert trailing items for word and line matching (features provided for the |
| benefit of pcre2grep). */ |
| |
| if ((extra_options & PCRE2_EXTRA_MATCH_LINE) != 0) |
| { |
| *parsed_pattern++ = META_KET; |
| *parsed_pattern++ = META_DOLLAR; |
| } |
| else if ((extra_options & PCRE2_EXTRA_MATCH_WORD) != 0) |
| { |
| *parsed_pattern++ = META_KET; |
| *parsed_pattern++ = META_ESCAPE + ESC_b; |
| } |
| |
| /* Terminate the parsed pattern, then return success if all groups are closed. |
| Otherwise we have unclosed parentheses. */ |
| |
| if (parsed_pattern >= parsed_pattern_end) |
| { |
| errorcode = ERR63; /* Internal error (parsed pattern overflow) */ |
| goto FAILED; |
| } |
| |
| *parsed_pattern = META_END; |
| if (nest_depth == 0) return 0; |
| |
| UNCLOSED_PARENTHESIS: |
| errorcode = ERR14; |
| |
| /* Come here for all failures. */ |
| |
| FAILED: |
| cb->erroroffset = (PCRE2_SIZE)(ptr - cb->start_pattern); |
| return errorcode; |
| |
| /* Some errors need to indicate the previous character. */ |
| |
| FAILED_BACK: |
| ptr--; |
| goto FAILED; |
| |
| /* This failure happens several times. */ |
| |
| BAD_VERSION_CONDITION: |
| errorcode = ERR79; |
| goto FAILED; |
| } |
| |
| |
| |
| /************************************************* |
| * Find first significant opcode * |
| *************************************************/ |
| |
| /* This is called by several functions that scan a compiled expression looking |
| for a fixed first character, or an anchoring opcode etc. It skips over things |
| that do not influence this. For some calls, it makes sense to skip negative |
| forward and all backward assertions, and also the \b assertion; for others it |
| does not. |
| |
| Arguments: |
| code pointer to the start of the group |
| skipassert TRUE if certain assertions are to be skipped |
| |
| Returns: pointer to the first significant opcode |
| */ |
| |
| static const PCRE2_UCHAR* |
| first_significant_code(PCRE2_SPTR code, BOOL skipassert) |
| { |
| for (;;) |
| { |
| switch ((int)*code) |
| { |
| case OP_ASSERT_NOT: |
| case OP_ASSERTBACK: |
| case OP_ASSERTBACK_NOT: |
| case OP_ASSERTBACK_NA: |
| if (!skipassert) return code; |
| do code += GET(code, 1); while (*code == OP_ALT); |
| code += PRIV(OP_lengths)[*code]; |
| break; |
| |
| case OP_WORD_BOUNDARY: |
| case OP_NOT_WORD_BOUNDARY: |
| if (!skipassert) return code; |
| /* Fall through */ |
| |
| case OP_CALLOUT: |
| case OP_CREF: |
| case OP_DNCREF: |
| case OP_RREF: |
| case OP_DNRREF: |
| case OP_FALSE: |
| case OP_TRUE: |
| code += PRIV(OP_lengths)[*code]; |
| break; |
| |
| case OP_CALLOUT_STR: |
| code += GET(code, 1 + 2*LINK_SIZE); |
| break; |
| |
| case OP_SKIPZERO: |
| code += 2 + GET(code, 2) + LINK_SIZE; |
| break; |
| |
| case OP_COND: |
| case OP_SCOND: |
| if (code[1+LINK_SIZE] != OP_FALSE || /* Not DEFINE */ |
| code[GET(code, 1)] != OP_KET) /* More than one branch */ |
| return code; |
| code += GET(code, 1) + 1 + LINK_SIZE; |
| break; |
| |
| case OP_MARK: |
| case OP_COMMIT_ARG: |
| case OP_PRUNE_ARG: |
| case OP_SKIP_ARG: |
| case OP_THEN_ARG: |
| code += code[1] + PRIV(OP_lengths)[*code]; |
| break; |
| |
| default: |
| return code; |
| } |
| } |
| /* Control never reaches here */ |
| } |
| |
| |
| |
| #ifdef SUPPORT_UNICODE |
| /************************************************* |
| * Get othercase range * |
| *************************************************/ |
| |
| /* This function is passed the start and end of a class range in UCP mode. It |
| searches up the characters, looking for ranges of characters in the "other" |
| case. Each call returns the next one, updating the start address. A character |
| with multiple other cases is returned on its own with a special return value. |
| |
| Arguments: |
| cptr points to starting character value; updated |
| d end value |
| ocptr where to put start of othercase range |
| odptr where to put end of othercase range |
| |
| Yield: -1 when no more |
| 0 when a range is returned |
| >0 the CASESET offset for char with multiple other cases |
| in this case, ocptr contains the original |
| */ |
| |
| static int |
| get_othercase_range(uint32_t *cptr, uint32_t d, uint32_t *ocptr, |
| uint32_t *odptr) |
| { |
| uint32_t c, othercase, next; |
| unsigned int co; |
| |
| /* Find the first character that has an other case. If it has multiple other |
| cases, return its case offset value. */ |
| |
| for (c = *cptr; c <= d; c++) |
| { |
| if ((co = UCD_CASESET(c)) != 0) |
| { |
| *ocptr = c++; /* Character that has the set */ |
| *cptr = c; /* Rest of input range */ |
| return (int)co; |
| } |
| if ((othercase = UCD_OTHERCASE(c)) != c) break; |
| } |
| |
| if (c > d) return -1; /* Reached end of range */ |
| |
| /* Found a character that has a single other case. Search for the end of the |
| range, which is either the end of the input range, or a character that has zero |
| or more than one other cases. */ |
| |
| *ocptr = othercase; |
| next = othercase + 1; |
| |
| for (++c; c <= d; c++) |
| { |
| if ((co = UCD_CASESET(c)) != 0 || UCD_OTHERCASE(c) != next) break; |
| next++; |
| } |
| |
| *odptr = next - 1; /* End of othercase range */ |
| *cptr = c; /* Rest of input range */ |
| return 0; |
| } |
| #endif /* SUPPORT_UNICODE */ |
| |
| |
| |
| /************************************************* |
| * Add a character or range to a class (internal) * |
| *************************************************/ |
| |
| /* This function packages up the logic of adding a character or range of |
| characters to a class. The character values in the arguments will be within the |
| valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is |
| called only from within the "add to class" group of functions, some of which |
| are recursive and mutually recursive. The external entry point is |
| add_to_class(). |
| |
| Arguments: |
| classbits the bit map for characters < 256 |
| uchardptr points to the pointer for extra data |
| options the options word |
| cb compile data |
| start start of range character |
| end end of range character |
| |
| Returns: the number of < 256 characters added |
| the pointer to extra data is updated |
| */ |
| |
| static unsigned int |
| add_to_class_internal(uint8_t *classbits, PCRE2_UCHAR **uchardptr, |
| uint32_t options, compile_block *cb, uint32_t start, uint32_t end) |
| { |
| uint32_t c; |
| uint32_t classbits_end = (end <= 0xff ? end : 0xff); |
| unsigned int n8 = 0; |
| |
| /* If caseless matching is required, scan the range and process alternate |
| cases. In Unicode, there are 8-bit characters that have alternate cases that |
| are greater than 255 and vice-versa. Sometimes we can just extend the original |
| range. */ |
| |
| if ((options & PCRE2_CASELESS) != 0) |
| { |
| #ifdef SUPPORT_UNICODE |
| if ((options & (PCRE2_UTF|PCRE2_UCP)) != 0) |
| { |
| int rc; |
| uint32_t oc, od; |
| |
| options &= ~PCRE2_CASELESS; /* Remove for recursive calls */ |
| c = start; |
| |
| while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0) |
| { |
| /* Handle a single character that has more than one other case. */ |
| |
| if (rc > 0) n8 += add_list_to_class_internal(classbits, uchardptr, options, cb, |
| PRIV(ucd_caseless_sets) + rc, oc); |
| |
| /* Do nothing if the other case range is within the original range. */ |
| |
| else if (oc >= cb->class_range_start && od <= cb->class_range_end) continue; |
| |
| /* Extend the original range if there is overlap, noting that if oc < c, we |
| can't have od > end because a subrange is always shorter than the basic |
| range. Otherwise, use a recursive call to add the additional range. */ |
| |
| else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */ |
| else if (od > end && oc <= end + 1) |
| { |
| end = od; /* Extend upwards */ |
| if (end > classbits_end) classbits_end = (end <= 0xff ? end : 0xff); |
| } |
| else n8 += add_to_class_internal(classbits, uchardptr, options, cb, oc, od); |
| } |
| } |
| else |
| #endif /* SUPPORT_UNICODE */ |
| |
| /* Not UTF mode */ |
| |
| for (c = start; c <= classbits_end; c++) |
| { |
| SETBIT(classbits, cb->fcc[c]); |
| n8++; |
| } |
| } |
| |
| /* Now handle the originally supplied range. Adjust the final value according |
| to the bit length - this means that the same lists of (e.g.) horizontal spaces |
| can be used in all cases. */ |
| |
| if ((options & PCRE2_UTF) == 0 && end > MAX_NON_UTF_CHAR) |
| end = MAX_NON_UTF_CHAR; |
| |
| if (start > cb->class_range_start && end < cb->class_range_end) return n8; |
| |
| /* Use the bitmap for characters < 256. Otherwise use extra data.*/ |
| |
| for (c = start; c <= classbits_end; c++) |
| { |
| /* Regardless of start, c will always be <= 255. */ |
| SETBIT(classbits, c); |
| n8++; |
| } |
| |
| #ifdef SUPPORT_WIDE_CHARS |
| if (start <= 0xff) start = 0xff + 1; |
| |
| if (end >= start) |
| { |
| PCRE2_UCHAR *uchardata = *uchardptr; |
| |
| #ifdef SUPPORT_UNICODE |
| if ((options & PCRE2_UTF) != 0) |
| { |
| if (start < end) |
| { |
| *uchardata++ = XCL_RANGE; |
| uchardata += PRIV(ord2utf)(start, uchardata); |
| uchardata += PRIV(ord2utf)(end, uchardata); |
| } |
| else if (start == end) |
| { |
| *uchardata++ = XCL_SINGLE; |
| uchardata += PRIV(ord2utf)(start, uchardata); |
| } |
| } |
| else |
| #endif /* SUPPORT_UNICODE */ |
| |
| /* Without UTF support, character values are constrained by the bit length, |
| and can only be > 256 for 16-bit and 32-bit libraries. */ |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| {} |
| #else |
| if (start < end) |
| { |
| *uchardata++ = XCL_RANGE; |
| *uchardata++ = start; |
| *uchardata++ = end; |
| } |
| else if (start == end) |
| { |
| *uchardata++ = XCL_SINGLE; |
| *uchardata++ = start; |
| } |
| #endif /* PCRE2_CODE_UNIT_WIDTH == 8 */ |
| *uchardptr = uchardata; /* Updata extra data pointer */ |
| } |
| #else /* SUPPORT_WIDE_CHARS */ |
| (void)uchardptr; /* Avoid compiler warning */ |
| #endif /* SUPPORT_WIDE_CHARS */ |
| |
| return n8; /* Number of 8-bit characters */ |
| } |
| |
| |
| |
| #ifdef SUPPORT_UNICODE |
| /************************************************* |
| * Add a list of characters to a class (internal) * |
| *************************************************/ |
| |
| /* This function is used for adding a list of case-equivalent characters to a |
| class when in UTF mode. This function is called only from within |
| add_to_class_internal(), with which it is mutually recursive. |
| |
| Arguments: |
| classbits the bit map for characters < 256 |
| uchardptr points to the pointer for extra data |
| options the options word |
| cb contains pointers to tables etc. |
| p points to row of 32-bit values, terminated by NOTACHAR |
| except character to omit; this is used when adding lists of |
| case-equivalent characters to avoid including the one we |
| already know about |
| |
| Returns: the number of < 256 characters added |
| the pointer to extra data is updated |
| */ |
| |
| static unsigned int |
| add_list_to_class_internal(uint8_t *classbits, PCRE2_UCHAR **uchardptr, |
| uint32_t options, compile_block *cb, const uint32_t *p, unsigned int except) |
| { |
| unsigned int n8 = 0; |
| while (p[0] < NOTACHAR) |
| { |
| unsigned int n = 0; |
| if (p[0] != except) |
| { |
| while(p[n+1] == p[0] + n + 1) n++; |
| n8 += add_to_class_internal(classbits, uchardptr, options, cb, p[0], p[n]); |
| } |
| p += n + 1; |
| } |
| return n8; |
| } |
| #endif |
| |
| |
| |
| /************************************************* |
| * External entry point for add range to class * |
| *************************************************/ |
| |
| /* This function sets the overall range so that the internal functions can try |
| to avoid duplication when handling case-independence. |
| |
| Arguments: |
| classbits the bit map for characters < 256 |
| uchardptr points to the pointer for extra data |
| options the options word |
| cb compile data |
| start start of range character |
| end end of range character |
| |
| Returns: the number of < 256 characters added |
| the pointer to extra data is updated |
| */ |
| |
| static unsigned int |
| add_to_class(uint8_t *classbits, PCRE2_UCHAR **uchardptr, uint32_t options, |
| compile_block *cb, uint32_t start, uint32_t end) |
| { |
| cb->class_range_start = start; |
| cb->class_range_end = end; |
| return add_to_class_internal(classbits, uchardptr, options, cb, start, end); |
| } |
| |
| |
| /************************************************* |
| * External entry point for add list to class * |
| *************************************************/ |
| |
| /* This function is used for adding a list of horizontal or vertical whitespace |
| characters to a class. The list must be in order so that ranges of characters |
| can be detected and handled appropriately. This function sets the overall range |
| so that the internal functions can try to avoid duplication when handling |
| case-independence. |
| |
| Arguments: |
| classbits the bit map for characters < 256 |
| uchardptr points to the pointer for extra data |
| options the options word |
| cb contains pointers to tables etc. |
| p points to row of 32-bit values, terminated by NOTACHAR |
| except character to omit; this is used when adding lists of |
| case-equivalent characters to avoid including the one we |
| already know about |
| |
| Returns: the number of < 256 characters added |
| the pointer to extra data is updated |
| */ |
| |
| static unsigned int |
| add_list_to_class(uint8_t *classbits, PCRE2_UCHAR **uchardptr, uint32_t options, |
| compile_block *cb, const uint32_t *p, unsigned int except) |
| { |
| unsigned int n8 = 0; |
| while (p[0] < NOTACHAR) |
| { |
| unsigned int n = 0; |
| if (p[0] != except) |
| { |
| while(p[n+1] == p[0] + n + 1) n++; |
| cb->class_range_start = p[0]; |
| cb->class_range_end = p[n]; |
| n8 += add_to_class_internal(classbits, uchardptr, options, cb, p[0], p[n]); |
| } |
| p += n + 1; |
| } |
| return n8; |
| } |
| |
| |
| |
| /************************************************* |
| * Add characters not in a list to a class * |
| *************************************************/ |
| |
| /* This function is used for adding the complement of a list of horizontal or |
| vertical whitespace to a class. The list must be in order. |
| |
| Arguments: |
| classbits the bit map for characters < 256 |
| uchardptr points to the pointer for extra data |
| options the options word |
| cb contains pointers to tables etc. |
| p points to row of 32-bit values, terminated by NOTACHAR |
| |
| Returns: the number of < 256 characters added |
| the pointer to extra data is updated |
| */ |
| |
| static unsigned int |
| add_not_list_to_class(uint8_t *classbits, PCRE2_UCHAR **uchardptr, |
| uint32_t options, compile_block *cb, const uint32_t *p) |
| { |
| BOOL utf = (options & PCRE2_UTF) != 0; |
| unsigned int n8 = 0; |
| if (p[0] > 0) |
| n8 += add_to_class(classbits, uchardptr, options, cb, 0, p[0] - 1); |
| while (p[0] < NOTACHAR) |
| { |
| while (p[1] == p[0] + 1) p++; |
| n8 += add_to_class(classbits, uchardptr, options, cb, p[0] + 1, |
| (p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1); |
| p++; |
| } |
| return n8; |
| } |
| |
| |
| |
| /************************************************* |
| * Find details of duplicate group names * |
| *************************************************/ |
| |
| /* This is called from compile_branch() when it needs to know the index and |
| count of duplicates in the names table when processing named backreferences, |
| either directly, or as conditions. |
| |
| Arguments: |
| name points to the name |
| length the length of the name |
| indexptr where to put the index |
| countptr where to put the count of duplicates |
| errorcodeptr where to put an error code |
| cb the compile block |
| |
| Returns: TRUE if OK, FALSE if not, error code set |
| */ |
| |
| static BOOL |
| find_dupname_details(PCRE2_SPTR name, uint32_t length, int *indexptr, |
| int *countptr, int *errorcodeptr, compile_block *cb) |
| { |
| uint32_t i, groupnumber; |
| int count; |
| PCRE2_UCHAR *slot = cb->name_table; |
| |
| /* Find the first entry in the table */ |
| |
| for (i = 0; i < cb->names_found; i++) |
| { |
| if (PRIV(strncmp)(name, slot+IMM2_SIZE, length) == 0 && |
| slot[IMM2_SIZE+length] == 0) break; |
| slot += cb->name_entry_size; |
| } |
| |
| /* This should not occur, because this function is called only when we know we |
| have duplicate names. Give an internal error. */ |
| |
| if (i >= cb->names_found) |
| { |
| *errorcodeptr = ERR53; |
| cb->erroroffset = name - cb->start_pattern; |
| return FALSE; |
| } |
| |
| /* Record the index and then see how many duplicates there are, updating the |
| backref map and maximum back reference as we do. */ |
| |
| *indexptr = i; |
| count = 0; |
| |
| for (;;) |
| { |
| count++; |
| groupnumber = GET2(slot,0); |
| cb->backref_map |= (groupnumber < 32)? (1u << groupnumber) : 1; |
| if (groupnumber > cb->top_backref) cb->top_backref = groupnumber; |
| if (++i >= cb->names_found) break; |
| slot += cb->name_entry_size; |
| if (PRIV(strncmp)(name, slot+IMM2_SIZE, length) != 0 || |
| (slot+IMM2_SIZE)[length] != 0) break; |
| } |
| |
| *countptr = count; |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Compile one branch * |
| *************************************************/ |
| |
| /* Scan the parsed pattern, compiling it into the a vector of PCRE2_UCHAR. If |
| the options are changed during the branch, the pointer is used to change the |
| external options bits. This function is used during the pre-compile phase when |
| we are trying to find out the amount of memory needed, as well as during the |
| real compile phase. The value of lengthptr distinguishes the two phases. |
| |
| Arguments: |
| optionsptr pointer to the option bits |
| codeptr points to the pointer to the current code point |
| pptrptr points to the current parsed pattern pointer |
| errorcodeptr points to error code variable |
| firstcuptr place to put the first required code unit |
| firstcuflagsptr place to put the first code unit flags |
| reqcuptr place to put the last required code unit |
| reqcuflagsptr place to put the last required code unit flags |
| bcptr points to current branch chain |
| cb contains pointers to tables etc. |
| lengthptr NULL during the real compile phase |
| points to length accumulator during pre-compile phase |
| |
| Returns: 0 There's been an error, *errorcodeptr is non-zero |
| +1 Success, this branch must match at least one character |
| -1 Success, this branch may match an empty string |
| */ |
| |
| static int |
| compile_branch(uint32_t *optionsptr, PCRE2_UCHAR **codeptr, uint32_t **pptrptr, |
| int *errorcodeptr, uint32_t *firstcuptr, uint32_t *firstcuflagsptr, |
| uint32_t *reqcuptr, uint32_t *reqcuflagsptr, branch_chain *bcptr, |
| compile_block *cb, PCRE2_SIZE *lengthptr) |
| { |
| int bravalue = 0; |
| int okreturn = -1; |
| int group_return = 0; |
| uint32_t repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
| uint32_t greedy_default, greedy_non_default; |
| uint32_t repeat_type, op_type; |
| uint32_t options = *optionsptr; /* May change dynamically */ |
| uint32_t firstcu, reqcu; |
| uint32_t zeroreqcu, zerofirstcu; |
| uint32_t escape; |
| uint32_t *pptr = *pptrptr; |
| uint32_t meta, meta_arg; |
| uint32_t firstcuflags, reqcuflags; |
| uint32_t zeroreqcuflags, zerofirstcuflags; |
| uint32_t req_caseopt, reqvary, tempreqvary; |
| PCRE2_SIZE offset = 0; |
| PCRE2_SIZE length_prevgroup = 0; |
| PCRE2_UCHAR *code = *codeptr; |
| PCRE2_UCHAR *last_code = code; |
| PCRE2_UCHAR *orig_code = code; |
| PCRE2_UCHAR *tempcode; |
| PCRE2_UCHAR *previous = NULL; |
| PCRE2_UCHAR op_previous; |
| BOOL groupsetfirstcu = FALSE; |
| BOOL had_accept = FALSE; |
| BOOL matched_char = FALSE; |
| BOOL previous_matched_char = FALSE; |
| BOOL reset_caseful = FALSE; |
| const uint8_t *cbits = cb->cbits; |
| uint8_t classbits[32]; |
| |
| /* We can fish out the UTF setting once and for all into a BOOL, but we must |
| not do this for other options (e.g. PCRE2_EXTENDED) because they may change |
| dynamically as we process the pattern. */ |
| |
| #ifdef SUPPORT_UNICODE |
| BOOL utf = (options & PCRE2_UTF) != 0; |
| BOOL ucp = (options & PCRE2_UCP) != 0; |
| #else /* No Unicode support */ |
| BOOL utf = FALSE; |
| #endif |
| |
| /* Helper variables for OP_XCLASS opcode (for characters > 255). We define |
| class_uchardata always so that it can be passed to add_to_class() always, |
| though it will not be used in non-UTF 8-bit cases. This avoids having to supply |
| alternative calls for the different cases. */ |
| |
| PCRE2_UCHAR *class_uchardata; |
| #ifdef SUPPORT_WIDE_CHARS |
| BOOL xclass; |
| PCRE2_UCHAR *class_uchardata_base; |
| #endif |
| |
| /* Set up the default and non-default settings for greediness */ |
| |
| greedy_default = ((options & PCRE2_UNGREEDY) != 0); |
| greedy_non_default = greedy_default ^ 1; |
| |
| /* Initialize no first unit, no required unit. REQ_UNSET means "no char |
| matching encountered yet". It gets changed to REQ_NONE if we hit something that |
| matches a non-fixed first unit; reqcu just remains unset if we never find one. |
| |
| When we hit a repeat whose minimum is zero, we may have to adjust these values |
| to take the zero repeat into account. This is implemented by setting them to |
| zerofirstcu and zeroreqcu when such a repeat is encountered. The individual |
| item types that can be repeated set these backoff variables appropriately. */ |
| |
| firstcu = reqcu = zerofirstcu = zeroreqcu = 0; |
| firstcuflags = reqcuflags = zerofirstcuflags = zeroreqcuflags = REQ_UNSET; |
| |
| /* The variable req_caseopt contains either the REQ_CASELESS bit or zero, |
| according to the current setting of the caseless flag. The REQ_CASELESS value |
| leaves the lower 28 bit empty. It is added into the firstcu or reqcu variables |
| to record the case status of the value. This is used only for ASCII characters. |
| */ |
| |
| req_caseopt = ((options & PCRE2_CASELESS) != 0)? REQ_CASELESS : 0; |
| |
| /* Switch on next META item until the end of the branch */ |
| |
| for (;; pptr++) |
| { |
| #ifdef SUPPORT_WIDE_CHARS |
| BOOL xclass_has_prop; |
| #endif |
| BOOL negate_class; |
| BOOL should_flip_negation; |
| BOOL match_all_or_no_wide_chars; |
| BOOL possessive_quantifier; |
| BOOL note_group_empty; |
| int class_has_8bitchar; |
| uint32_t mclength; |
| uint32_t skipunits; |
| uint32_t subreqcu, subfirstcu; |
| uint32_t groupnumber; |
| uint32_t verbarglen, verbculen; |
| uint32_t subreqcuflags, subfirstcuflags; |
| open_capitem *oc; |
| PCRE2_UCHAR mcbuffer[8]; |
| |
| /* Get next META item in the pattern and its potential argument. */ |
| |
| meta = META_CODE(*pptr); |
| meta_arg = META_DATA(*pptr); |
| |
| /* If we are in the pre-compile phase, accumulate the length used for the |
| previous cycle of this loop, unless the next item is a quantifier. */ |
| |
| if (lengthptr != NULL) |
| { |
| if (code > cb->start_workspace + cb->workspace_size - |
| WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */ |
| { |
| *errorcodeptr = (code >= cb->start_workspace + cb->workspace_size)? |
| ERR52 : ERR86; |
| return 0; |
| } |
| |
| /* There is at least one situation where code goes backwards: this is the |
| case of a zero quantifier after a class (e.g. [ab]{0}). When the quantifier |
| is processed, the whole class is eliminated. However, it is created first, |
| so we have to allow memory for it. Therefore, don't ever reduce the length |
| at this point. */ |
| |
| if (code < last_code) code = last_code; |
| |
| /* If the next thing is not a quantifier, we add the length of the previous |
| item into the total, and reset the code pointer to the start of the |
| workspace. Otherwise leave the previous item available to be quantified. */ |
| |
| if (meta < META_ASTERISK || meta > META_MINMAX_QUERY) |
| { |
| if (OFLOW_MAX - *lengthptr < (PCRE2_SIZE)(code - orig_code)) |
| { |
| *errorcodeptr = ERR20; /* Integer overflow */ |
| return 0; |
| } |
| *lengthptr += (PCRE2_SIZE)(code - orig_code); |
| if (*lengthptr > MAX_PATTERN_SIZE) |
| { |
| *errorcodeptr = ERR20; /* Pattern is too large */ |
| return 0; |
| } |
| code = orig_code; |
| } |
| |
| /* Remember where this code item starts so we can catch the "backwards" |
| case above next time round. */ |
| |
| last_code = code; |
| } |
| |
| /* Process the next parsed pattern item. If it is not a quantifier, remember |
| where it starts so that it can be quantified when a quantifier follows. |
| Checking for the legality of quantifiers happens in parse_regex(), except for |
| a quantifier after an assertion that is a condition. */ |
| |
| if (meta < META_ASTERISK || meta > META_MINMAX_QUERY) |
| { |
| previous = code; |
| if (matched_char && !had_accept) okreturn = 1; |
| } |
| |
| previous_matched_char = matched_char; |
| matched_char = FALSE; |
| note_group_empty = FALSE; |
| skipunits = 0; /* Default value for most subgroups */ |
| |
| switch(meta) |
| { |
| /* ===================================================================*/ |
| /* The branch terminates at pattern end or | or ) */ |
| |
| case META_END: |
| case META_ALT: |
| case META_KET: |
| *firstcuptr = firstcu; |
| *firstcuflagsptr = firstcuflags; |
| *reqcuptr = reqcu; |
| *reqcuflagsptr = reqcuflags; |
| *codeptr = code; |
| *pptrptr = pptr; |
| return okreturn; |
| |
| |
| /* ===================================================================*/ |
| /* Handle single-character metacharacters. In multiline mode, ^ disables |
| the setting of any following char as a first character. */ |
| |
| case META_CIRCUMFLEX: |
| if ((options & PCRE2_MULTILINE) != 0) |
| { |
| if (firstcuflags == REQ_UNSET) |
| zerofirstcuflags = firstcuflags = REQ_NONE; |
| *code++ = OP_CIRCM; |
| } |
| else *code++ = OP_CIRC; |
| break; |
| |
| case META_DOLLAR: |
| *code++ = ((options & PCRE2_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
| break; |
| |
| /* There can never be a first char if '.' is first, whatever happens about |
| repeats. The value of reqcu doesn't change either. */ |
| |
| case META_DOT: |
| matched_char = TRUE; |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| *code++ = ((options & PCRE2_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Empty character classes are allowed if PCRE2_ALLOW_EMPTY_CLASS is set. |
| Otherwise, an initial ']' is taken as a data character. When empty classes |
| are allowed, [] must always fail, so generate OP_FAIL, whereas [^] must |
| match any character, so generate OP_ALLANY. */ |
| |
| case META_CLASS_EMPTY: |
| case META_CLASS_EMPTY_NOT: |
| matched_char = TRUE; |
| *code++ = (meta == META_CLASS_EMPTY_NOT)? OP_ALLANY : OP_FAIL; |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Non-empty character class. If the included characters are all < 256, we |
| build a 32-byte bitmap of the permitted characters, except in the special |
| case where there is only one such character. For negated classes, we build |
| the map as usual, then invert it at the end. However, we use a different |
| opcode so that data characters > 255 can be handled correctly. |
| |
| If the class contains characters outside the 0-255 range, a different |
| opcode is compiled. It may optionally have a bit map for characters < 256, |
| but those above are are explicitly listed afterwards. A flag code unit |
| tells whether the bitmap is present, and whether this is a negated class or |
| not. */ |
| |
| case META_CLASS_NOT: |
| case META_CLASS: |
| matched_char = TRUE; |
| negate_class = meta == META_CLASS_NOT; |
| |
| /* We can optimize the case of a single character in a class by generating |
| OP_CHAR or OP_CHARI if it's positive, or OP_NOT or OP_NOTI if it's |
| negative. In the negative case there can be no first char if this item is |
| first, whatever repeat count may follow. In the case of reqcu, save the |
| previous value for reinstating. */ |
| |
| /* NOTE: at present this optimization is not effective if the only |
| character in a class in 32-bit, non-UCP mode has its top bit set. */ |
| |
| if (pptr[1] < META_END && pptr[2] == META_CLASS_END) |
| { |
| #ifdef SUPPORT_UNICODE |
| uint32_t d; |
| #endif |
| uint32_t c = pptr[1]; |
| |
| pptr += 2; /* Move on to class end */ |
| if (meta == META_CLASS) /* A positive one-char class can be */ |
| { /* handled as a normal literal character. */ |
| meta = c; /* Set up the character */ |
| goto NORMAL_CHAR_SET; |
| } |
| |
| /* Handle a negative one-character class */ |
| |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| |
| /* For caseless UTF or UCP mode, check whether this character has more |
| than one other case. If so, generate a special OP_NOTPROP item instead of |
| OP_NOTI. */ |
| |
| #ifdef SUPPORT_UNICODE |
| if ((utf||ucp) && (options & PCRE2_CASELESS) != 0 && |
| (d = UCD_CASESET(c)) != 0) |
| { |
| *code++ = OP_NOTPROP; |
| *code++ = PT_CLIST; |
| *code++ = d; |
| break; /* We are finished with this class */ |
| } |
| #endif |
| /* Char has only one other case, or UCP not available */ |
| |
| *code++ = ((options & PCRE2_CASELESS) != 0)? OP_NOTI: OP_NOT; |
| code += PUTCHAR(c, code); |
| break; /* We are finished with this class */ |
| } /* End of 1-char optimization */ |
| |
| /* Handle character classes that contain more than just one literal |
| character. If there are exactly two characters in a positive class, see if |
| they are case partners. This can be optimized to generate a caseless single |
| character match (which also sets first/required code units if relevant). */ |
| |
| if (meta == META_CLASS && pptr[1] < META_END && pptr[2] < META_END && |
| pptr[3] == META_CLASS_END) |
| { |
| uint32_t c = pptr[1]; |
| |
| #ifdef SUPPORT_UNICODE |
| if (UCD_CASESET(c) == 0) |
| #endif |
| { |
| uint32_t d; |
| |
| #ifdef SUPPORT_UNICODE |
| if ((utf || ucp) && c > 127) d = UCD_OTHERCASE(c); else |
| #endif |
| { |
| #if PCRE2_CODE_UNIT_WIDTH != 8 |
| if (c > 255) d = c; else |
| #endif |
| d = TABLE_GET(c, cb->fcc, c); |
| } |
| |
| if (c != d && pptr[2] == d) |
| { |
| pptr += 3; /* Move on to class end */ |
| meta = c; |
| if ((options & PCRE2_CASELESS) == 0) |
| { |
| reset_caseful = TRUE; |
| options |= PCRE2_CASELESS; |
| req_caseopt = REQ_CASELESS; |
| } |
| goto CLASS_CASELESS_CHAR; |
| } |
| } |
| } |
| |
| /* If a non-extended class contains a negative special such as \S, we need |
| to flip the negation flag at the end, so that support for characters > 255 |
| works correctly (they are all included in the class). An extended class may |
| need to insert specific matching or non-matching code for wide characters. |
| */ |
| |
| should_flip_negation = match_all_or_no_wide_chars = FALSE; |
| |
| /* Extended class (xclass) will be used when characters > 255 |
| might match. */ |
| |
| #ifdef SUPPORT_WIDE_CHARS |
| xclass = FALSE; |
| class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */ |
| class_uchardata_base = class_uchardata; /* Save the start */ |
| #endif |
| |
| /* For optimization purposes, we track some properties of the class: |
| class_has_8bitchar will be non-zero if the class contains at least one |
| character with a code point less than 256; xclass_has_prop will be TRUE if |
| Unicode property checks are present in the class. */ |
| |
| class_has_8bitchar = 0; |
| #ifdef SUPPORT_WIDE_CHARS |
| xclass_has_prop = FALSE; |
| #endif |
| |
| /* Initialize the 256-bit (32-byte) bit map to all zeros. We build the map |
| in a temporary bit of memory, in case the class contains fewer than two |
| 8-bit characters because in that case the compiled code doesn't use the bit |
| map. */ |
| |
| memset(classbits, 0, 32 * sizeof(uint8_t)); |
| |
| /* Process items until META_CLASS_END is reached. */ |
| |
| while ((meta = *(++pptr)) != META_CLASS_END) |
| { |
| /* Handle POSIX classes such as [:alpha:] etc. */ |
| |
| if (meta == META_POSIX || meta == META_POSIX_NEG) |
| { |
| BOOL local_negate = (meta == META_POSIX_NEG); |
| int posix_class = *(++pptr); |
| int taboffset, tabopt; |
| uint8_t pbits[32]; |
| |
| should_flip_negation = local_negate; /* Note negative special */ |
| |
| /* If matching is caseless, upper and lower are converted to alpha. |
| This relies on the fact that the class table starts with alpha, |
| lower, upper as the first 3 entries. */ |
| |
| if ((options & PCRE2_CASELESS) != 0 && posix_class <= 2) |
| posix_class = 0; |
| |
| /* When PCRE2_UCP is set, some of the POSIX classes are converted to |
| different escape sequences that use Unicode properties \p or \P. |
| Others that are not available via \p or \P have to generate |
| XCL_PROP/XCL_NOTPROP directly, which is done here. */ |
| |
| #ifdef SUPPORT_UNICODE |
| if ((options & PCRE2_UCP) != 0) switch(posix_class) |
| { |
| case PC_GRAPH: |
| case PC_PRINT: |
| case PC_PUNCT: |
| *class_uchardata++ = local_negate? XCL_NOTPROP : XCL_PROP; |
| *class_uchardata++ = (PCRE2_UCHAR) |
| ((posix_class == PC_GRAPH)? PT_PXGRAPH : |
| (posix_class == PC_PRINT)? PT_PXPRINT : PT_PXPUNCT); |
| *class_uchardata++ = 0; |
| xclass_has_prop = TRUE; |
| goto CONTINUE_CLASS; |
| |
| /* For the other POSIX classes (ascii, xdigit) we are going to |
| fall through to the non-UCP case and build a bit map for |
| characters with code points less than 256. However, if we are in |
| a negated POSIX class, characters with code points greater than |
| 255 must either all match or all not match, depending on whether |
| the whole class is not or is negated. For example, for |
| [[:^ascii:]... they must all match, whereas for [^[:^xdigit:]... |
| they must not. |
| |
| In the special case where there are no xclass items, this is |
| automatically handled by the use of OP_CLASS or OP_NCLASS, but an |
| explicit range is needed for OP_XCLASS. Setting a flag here |
| causes the range to be generated later when it is known that |
| OP_XCLASS is required. In the 8-bit library this is relevant only in |
| utf mode, since no wide characters can exist otherwise. */ |
| |
| default: |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| if (utf) |
| #endif |
| match_all_or_no_wide_chars |= local_negate; |
| break; |
| } |
| #endif /* SUPPORT_UNICODE */ |
| |
| /* In the non-UCP case, or when UCP makes no difference, we build the |
| bit map for the POSIX class in a chunk of local store because we may |
| be adding and subtracting from it, and we don't want to subtract bits |
| that may be in the main map already. At the end we or the result into |
| the bit map that is being built. */ |
| |
| posix_class *= 3; |
| |
| /* Copy in the first table (always present) */ |
| |
| memcpy(pbits, cbits + posix_class_maps[posix_class], |
| 32 * sizeof(uint8_t)); |
| |
| /* If there is a second table, add or remove it as required. */ |
| |
| taboffset = posix_class_maps[posix_class + 1]; |
| tabopt = posix_class_maps[posix_class + 2]; |
| |
| if (taboffset >= 0) |
| { |
| if (tabopt >= 0) |
| for (int i = 0; i < 32; i++) pbits[i] |= cbits[(int)i + taboffset]; |
| else |
| for (int i = 0; i < 32; i++) pbits[i] &= ~cbits[(int)i + taboffset]; |
| } |
| |
| /* Now see if we need to remove any special characters. An option |
| value of 1 removes vertical space and 2 removes underscore. */ |
| |
| if (tabopt < 0) tabopt = -tabopt; |
| if (tabopt == 1) pbits[1] &= ~0x3c; |
| else if (tabopt == 2) pbits[11] &= 0x7f; |
| |
| /* Add the POSIX table or its complement into the main table that is |
| being built and we are done. */ |
| |
| if (local_negate) |
| for (int i = 0; i < 32; i++) classbits[i] |= (uint8_t)(~pbits[i]); |
| else |
| for (int i = 0; i < 32; i++) classbits[i] |= pbits[i]; |
| |
| /* Every class contains at least one < 256 character. */ |
| |
| class_has_8bitchar = 1; |
| goto CONTINUE_CLASS; /* End of POSIX handling */ |
| } |
| |
| /* Other than POSIX classes, the only items we should encounter are |
| \d-type escapes and literal characters (possibly as ranges). */ |
| |
| if (meta == META_BIGVALUE) |
| { |
| meta = *(++pptr); |
| goto CLASS_LITERAL; |
| } |
| |
| /* Any other non-literal must be an escape */ |
| |
| if (meta >= META_END) |
| { |
| if (META_CODE(meta) != META_ESCAPE) |
| { |
| #ifdef DEBUG_SHOW_PARSED |
| fprintf(stderr, "** Unrecognized parsed pattern item 0x%.8x " |
| "in character class\n", meta); |
| #endif |
| *errorcodeptr = ERR89; /* Internal error - unrecognized. */ |
| return 0; |
| } |
| escape = META_DATA(meta); |
| |
| /* Every class contains at least one < 256 character. */ |
| |
| class_has_8bitchar++; |
| |
| switch(escape) |
| { |
| case ESC_d: |
| for (int i = 0; i < 32; i++) classbits[i] |= cbits[i+cbit_digit]; |
| break; |
| |
| case ESC_D: |
| should_flip_negation = TRUE; |
| for (int i = 0; i < 32; i++) |
| classbits[i] |= (uint8_t)(~cbits[i+cbit_digit]); |
| break; |
| |
| case ESC_w: |
| for (int i = 0; i < 32; i++) classbits[i] |= cbits[i+cbit_word]; |
| break; |
| |
| case ESC_W: |
| should_flip_negation = TRUE; |
| for (int i = 0; i < 32; i++) |
| classbits[i] |= (uint8_t)(~cbits[i+cbit_word]); |
| break; |
| |
| /* Perl 5.004 onwards omitted VT from \s, but restored it at Perl |
| 5.18. Before PCRE 8.34, we had to preserve the VT bit if it was |
| previously set by something earlier in the character class. |
| Luckily, the value of CHAR_VT is 0x0b in both ASCII and EBCDIC, so |
| we could just adjust the appropriate bit. From PCRE 8.34 we no |
| longer treat \s and \S specially. */ |
| |
| case ESC_s: |
| for (int i = 0; i < 32; i++) classbits[i] |= cbits[i+cbit_space]; |
| break; |
| |
| case ESC_S: |
| should_flip_negation = TRUE; |
| for (int i = 0; i < 32; i++) |
| classbits[i] |= (uint8_t)(~cbits[i+cbit_space]); |
| break; |
| |
| /* When adding the horizontal or vertical space lists to a class, or |
| their complements, disable PCRE2_CASELESS, because it justs wastes |
| time, and in the "not-x" UTF cases can create unwanted duplicates in |
| the XCLASS list (provoked by characters that have more than one other |
| case and by both cases being in the same "not-x" sublist). */ |
| |
| case ESC_h: |
| (void)add_list_to_class(classbits, &class_uchardata, |
| options & ~PCRE2_CASELESS, cb, PRIV(hspace_list), NOTACHAR); |
| break; |
| |
| case ESC_H: |
| (void)add_not_list_to_class(classbits, &class_uchardata, |
| options & ~PCRE2_CASELESS, cb, PRIV(hspace_list)); |
| break; |
| |
| case ESC_v: |
| (void)add_list_to_class(classbits, &class_uchardata, |
| options & ~PCRE2_CASELESS, cb, PRIV(vspace_list), NOTACHAR); |
| break; |
| |
| case ESC_V: |
| (void)add_not_list_to_class(classbits, &class_uchardata, |
| options & ~PCRE2_CASELESS, cb, PRIV(vspace_list)); |
| break; |
| |
| /* If Unicode is not supported, \P and \p are not allowed and are |
| faulted at parse time, so will never appear here. */ |
| |
| #ifdef SUPPORT_UNICODE |
| case ESC_p: |
| case ESC_P: |
| { |
| uint32_t ptype = *(++pptr) >> 16; |
| uint32_t pdata = *pptr & 0xffff; |
| *class_uchardata++ = (escape == ESC_p)? XCL_PROP : XCL_NOTPROP; |
| *class_uchardata++ = ptype; |
| *class_uchardata++ = pdata; |
| xclass_has_prop = TRUE; |
| class_has_8bitchar--; /* Undo! */ |
| } |
| break; |
| #endif |
| } |
| |
| goto CONTINUE_CLASS; |
| } /* End handling \d-type escapes */ |
| |
| /* A literal character may be followed by a range meta. At parse time |
| there are checks for out-of-order characters, for ranges where the two |
| characters are equal, and for hyphens that cannot indicate a range. At |
| this point, therefore, no checking is needed. */ |
| |
| else |
| { |
| uint32_t c, d; |
| |
| CLASS_LITERAL: |
| c = d = meta; |
| |
| /* Remember if \r or \n were explicitly used */ |
| |
| if (c == CHAR_CR || c == CHAR_NL) cb->external_flags |= PCRE2_HASCRORLF; |
| |
| /* Process a character range */ |
| |
| if (pptr[1] == META_RANGE_LITERAL || pptr[1] == META_RANGE_ESCAPED) |
| { |
| #ifdef EBCDIC |
| BOOL range_is_literal = (pptr[1] == META_RANGE_LITERAL); |
| #endif |
| pptr += 2; |
| d = *pptr; |
| if (d == META_BIGVALUE) d = *(++pptr); |
| |
| /* Remember an explicit \r or \n, and add the range to the class. */ |
| |
| if (d == CHAR_CR || d == CHAR_NL) cb->external_flags |= PCRE2_HASCRORLF; |
| |
| /* In an EBCDIC environment, Perl treats alphabetic ranges specially |
| because there are holes in the encoding, and simply using the range |
| A-Z (for example) would include the characters in the holes. This |
| applies only to literal ranges; [\xC1-\xE9] is different to [A-Z]. */ |
| |
| #ifdef EBCDIC |
| if (range_is_literal && |
| (cb->ctypes[c] & ctype_letter) != 0 && |
| (cb->ctypes[d] & ctype_letter) != 0 && |
| (c <= CHAR_z) == (d <= CHAR_z)) |
| { |
| uint32_t uc = (d <= CHAR_z)? 0 : 64; |
| uint32_t C = c - uc; |
| uint32_t D = d - uc; |
| |
| if (C <= CHAR_i) |
| { |
| class_has_8bitchar += |
| add_to_class(classbits, &class_uchardata, options, cb, C + uc, |
| ((D < CHAR_i)? D : CHAR_i) + uc); |
| C = CHAR_j; |
| } |
| |
| if (C <= D && C <= CHAR_r) |
| { |
| class_has_8bitchar += |
| add_to_class(classbits, &class_uchardata, options, cb, C + uc, |
| ((D < CHAR_r)? D : CHAR_r) + uc); |
| C = CHAR_s; |
| } |
| |
| if (C <= D) |
| { |
| class_has_8bitchar += |
| add_to_class(classbits, &class_uchardata, options, cb, C + uc, |
| D + uc); |
| } |
| } |
| else |
| #endif |
| /* Not an EBCDIC special range */ |
| |
| class_has_8bitchar += |
| add_to_class(classbits, &class_uchardata, options, cb, c, d); |
| goto CONTINUE_CLASS; /* Go get the next char in the class */ |
| } /* End of range handling */ |
| |
| |
| /* Handle a single character. */ |
| |
| class_has_8bitchar += |
| add_to_class(classbits, &class_uchardata, options, cb, meta, meta); |
| } |
| |
| /* Continue to the next item in the class. */ |
| |
| CONTINUE_CLASS: |
| |
| #ifdef SUPPORT_WIDE_CHARS |
| /* If any wide characters or Unicode properties have been encountered, |
| set xclass = TRUE. Then, in the pre-compile phase, accumulate the length |
| of the extra data and reset the pointer. This is so that very large |
| classes that contain a zillion wide characters or Unicode property tests |
| do not overwrite the workspace (which is on the stack). */ |
| |
| if (class_uchardata > class_uchardata_base) |
| { |
| xclass = TRUE; |
| if (lengthptr != NULL) |
| { |
| *lengthptr += class_uchardata - class_uchardata_base; |
| class_uchardata = class_uchardata_base; |
| } |
| } |
| #endif |
| |
| continue; /* Needed to avoid error when not supporting wide chars */ |
| } /* End of main class-processing loop */ |
| |
| /* If this class is the first thing in the branch, there can be no first |
| char setting, whatever the repeat count. Any reqcu setting must remain |
| unchanged after any kind of repeat. */ |
| |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| |
| /* If there are characters with values > 255, or Unicode property settings |
| (\p or \P), we have to compile an extended class, with its own opcode, |
| unless there were no property settings and there was a negated special such |
| as \S in the class, and PCRE2_UCP is not set, because in that case all |
| characters > 255 are in or not in the class, so any that were explicitly |
| given as well can be ignored. |
| |
| In the UCP case, if certain negated POSIX classes ([:^ascii:] or |
| [^:xdigit:]) were present in a class, we either have to match or not match |
| all wide characters (depending on whether the whole class is or is not |
| negated). This requirement is indicated by match_all_or_no_wide_chars being |
| true. We do this by including an explicit range, which works in both cases. |
| This applies only in UTF and 16-bit and 32-bit non-UTF modes, since there |
| cannot be any wide characters in 8-bit non-UTF mode. |
| |
| When there *are* properties in a positive UTF-8 or any 16-bit or 32_bit |
| class where \S etc is present without PCRE2_UCP, causing an extended class |
| to be compiled, we make sure that all characters > 255 are included by |
| forcing match_all_or_no_wide_chars to be true. |
| |
| If, when generating an xclass, there are no characters < 256, we can omit |
| the bitmap in the actual compiled code. */ |
| |
| #ifdef SUPPORT_WIDE_CHARS /* Defined for 16/32 bits, or 8-bit with Unicode */ |
| if (xclass && ( |
| #ifdef SUPPORT_UNICODE |
| (options & PCRE2_UCP) != 0 || |
| #endif |
| xclass_has_prop || !should_flip_negation)) |
| { |
| if (match_all_or_no_wide_chars || ( |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| utf && |
| #endif |
| should_flip_negation && !negate_class && (options & PCRE2_UCP) == 0)) |
| { |
| *class_uchardata++ = XCL_RANGE; |
| if (utf) /* Will always be utf in the 8-bit library */ |
| { |
| class_uchardata += PRIV(ord2utf)(0x100, class_uchardata); |
| class_uchardata += PRIV(ord2utf)(MAX_UTF_CODE_POINT, class_uchardata); |
| } |
| else /* Can only happen for the 16-bit & 32-bit libraries */ |
| { |
| #if PCRE2_CODE_UNIT_WIDTH == 16 |
| *class_uchardata++ = 0x100; |
| *class_uchardata++ = 0xffffu; |
| #elif PCRE2_CODE_UNIT_WIDTH == 32 |
| *class_uchardata++ = 0x100; |
| *class_uchardata++ = 0xffffffffu; |
| #endif |
| } |
| } |
| *class_uchardata++ = XCL_END; /* Marks the end of extra data */ |
| *code++ = OP_XCLASS; |
| code += LINK_SIZE; |
| *code = negate_class? XCL_NOT:0; |
| if (xclass_has_prop) *code |= XCL_HASPROP; |
| |
| /* If the map is required, move up the extra data to make room for it; |
| otherwise just move the code pointer to the end of the extra data. */ |
| |
| if (class_has_8bitchar > 0) |
| { |
| *code++ |= XCL_MAP; |
| (void)memmove(code + (32 / sizeof(PCRE2_UCHAR)), code, |
| CU2BYTES(class_uchardata - code)); |
| if (negate_class && !xclass_has_prop) |
| { |
| /* Using 255 ^ instead of ~ avoids clang sanitize warning. */ |
| for (int i = 0; i < 32; i++) classbits[i] = 255 ^ classbits[i]; |
| } |
| memcpy(code, classbits, 32); |
| code = class_uchardata + (32 / sizeof(PCRE2_UCHAR)); |
| } |
| else code = class_uchardata; |
| |
| /* Now fill in the complete length of the item */ |
| |
| PUT(previous, 1, (int)(code - previous)); |
| break; /* End of class handling */ |
| } |
| #endif /* SUPPORT_WIDE_CHARS */ |
| |
| /* If there are no characters > 255, or they are all to be included or |
| excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
| whole class was negated and whether there were negative specials such as \S |
| (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
| negating it if necessary. */ |
| |
| *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
| if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
| { |
| if (negate_class) |
| { |
| /* Using 255 ^ instead of ~ avoids clang sanitize warning. */ |
| for (int i = 0; i < 32; i++) classbits[i] = 255 ^ classbits[i]; |
| } |
| memcpy(code, classbits, 32); |
| } |
| code += 32 / sizeof(PCRE2_UCHAR); |
| break; /* End of class processing */ |
| |
| |
| /* ===================================================================*/ |
| /* Deal with (*VERB)s. */ |
| |
| /* Check for open captures before ACCEPT and close those that are within |
| the same assertion level, also converting ACCEPT to ASSERT_ACCEPT in an |
| assertion. In the first pass, just accumulate the length required; |
| otherwise hitting (*ACCEPT) inside many nested parentheses can cause |
| workspace overflow. Do not set firstcu after *ACCEPT. */ |
| |
| case META_ACCEPT: |
| cb->had_accept = had_accept = TRUE; |
| for (oc = cb->open_caps; |
| oc != NULL && oc->assert_depth >= cb->assert_depth; |
| oc = oc->next) |
| { |
| if (lengthptr != NULL) |
| { |
| *lengthptr += CU2BYTES(1) + IMM2_SIZE; |
| } |
| else |
| { |
| *code++ = OP_CLOSE; |
| PUT2INC(code, 0, oc->number); |
| } |
| } |
| *code++ = (cb->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| break; |
| |
| case META_PRUNE: |
| case META_SKIP: |
| cb->had_pruneorskip = TRUE; |
| /* Fall through */ |
| case META_COMMIT: |
| case META_FAIL: |
| *code++ = verbops[(meta - META_MARK) >> 16]; |
| break; |
| |
| case META_THEN: |
| cb->external_flags |= PCRE2_HASTHEN; |
| *code++ = OP_THEN; |
| break; |
| |
| /* Handle verbs with arguments. Arguments can be very long, especially in |
| 16- and 32-bit modes, and can overflow the workspace in the first pass. |
| However, the argument length is constrained to be small enough to fit in |
| one code unit. This check happens in parse_regex(). In the first pass, |
| instead of putting the argument into memory, we just update the length |
| counter and set up an empty argument. */ |
| |
| case META_THEN_ARG: |
| cb->external_flags |= PCRE2_HASTHEN; |
| goto VERB_ARG; |
| |
| case META_PRUNE_ARG: |
| case META_SKIP_ARG: |
| cb->had_pruneorskip = TRUE; |
| /* Fall through */ |
| case META_MARK: |
| case META_COMMIT_ARG: |
| VERB_ARG: |
| *code++ = verbops[(meta - META_MARK) >> 16]; |
| /* The length is in characters. */ |
| verbarglen = *(++pptr); |
| verbculen = 0; |
| tempcode = code++; |
| for (int i = 0; i < (int)verbarglen; i++) |
| { |
| meta = *(++pptr); |
| #ifdef SUPPORT_UNICODE |
| if (utf) mclength = PRIV(ord2utf)(meta, mcbuffer); else |
| #endif |
| { |
| mclength = 1; |
| mcbuffer[0] = meta; |
| } |
| if (lengthptr != NULL) *lengthptr += mclength; else |
| { |
| memcpy(code, mcbuffer, CU2BYTES(mclength)); |
| code += mclength; |
| verbculen += mclength; |
| } |
| } |
| |
| *tempcode = verbculen; /* Fill in the code unit length */ |
| *code++ = 0; /* Terminating zero */ |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Handle options change. The new setting must be passed back for use in |
| subsequent branches. Reset the greedy defaults and the case value for |
| firstcu and reqcu. */ |
| |
| case META_OPTIONS: |
| *optionsptr = options = *(++pptr); |
| greedy_default = ((options & PCRE2_UNGREEDY) != 0); |
| greedy_non_default = greedy_default ^ 1; |
| req_caseopt = ((options & PCRE2_CASELESS) != 0)? REQ_CASELESS : 0; |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Handle conditional subpatterns. The case of (?(Rdigits) is ambiguous |
| because it could be a numerical check on recursion, or a name check on a |
| group's being set. The pre-pass sets up META_COND_RNUMBER as a name so that |
| we can handle it either way. We first try for a name; if not found, process |
| the number. */ |
| |
| case META_COND_RNUMBER: /* (?(Rdigits) */ |
| case META_COND_NAME: /* (?(name) or (?'name') or ?(<name>) */ |
| case META_COND_RNAME: /* (?(R&name) - test for recursion */ |
| bravalue = OP_COND; |
| { |
| int count, index; |
| unsigned int i; |
| PCRE2_SPTR name; |
| named_group *ng = cb->named_groups; |
| uint32_t length = *(++pptr); |
| |
| GETPLUSOFFSET(offset, pptr); |
| name = cb->start_pattern + offset; |
| |
| /* In the first pass, the names generated in the pre-pass are available, |
| but the main name table has not yet been created. Scan the list of names |
| generated in the pre-pass in order to get a number and whether or not |
| this name is duplicated. If it is not duplicated, we can handle it as a |
| numerical group. */ |
| |
| for (i = 0; i < cb->names_found; i++, ng++) |
| { |
| if (length == ng->length && |
| PRIV(strncmp)(name, ng->name, length) == 0) |
| { |
| if (!ng->isdup) |
| { |
| code[1+LINK_SIZE] = (meta == META_COND_RNAME)? OP_RREF : OP_CREF; |
| PUT2(code, 2+LINK_SIZE, ng->number); |
| if (ng->number > cb->top_backref) cb->top_backref = ng->number; |
| skipunits = 1+IMM2_SIZE; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| } |
| break; /* Found a duplicated name */ |
| } |
| } |
| |
| /* If the name was not found we have a bad reference, unless we are |
| dealing with R<digits>, which is treated as a recursion test by number. |
| */ |
| |
| if (i >= cb->names_found) |
| { |
| groupnumber = 0; |
| if (meta == META_COND_RNUMBER) |
| { |
| for (i = 1; i < length; i++) |
| { |
| groupnumber = groupnumber * 10 + name[i] - CHAR_0; |
| if (groupnumber > MAX_GROUP_NUMBER) |
| { |
| *errorcodeptr = ERR61; |
| cb->erroroffset = offset + i; |
| return 0; |
| } |
| } |
| } |
| |
| if (meta != META_COND_RNUMBER || groupnumber > cb->bracount) |
| { |
| *errorcodeptr = ERR15; |
| cb->erroroffset = offset; |
| return 0; |
| } |
| |
| /* (?Rdigits) treated as a recursion reference by number. A value of |
| zero (which is the result of both (?R) and (?R0)) means "any", and is |
| translated into RREF_ANY (which is 0xffff). */ |
| |
| if (groupnumber == 0) groupnumber = RREF_ANY; |
| code[1+LINK_SIZE] = OP_RREF; |
| PUT2(code, 2+LINK_SIZE, groupnumber); |
| skipunits = 1+IMM2_SIZE; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| } |
| |
| /* A duplicated name was found. Note that if an R<digits> name is found |
| (META_COND_RNUMBER), it is a reference test, not a recursion test. */ |
| |
| code[1+LINK_SIZE] = (meta == META_COND_RNAME)? OP_RREF : OP_CREF; |
| |
| /* We have a duplicated name. In the compile pass we have to search the |
| main table in order to get the index and count values. */ |
| |
| count = 0; /* Values for first pass (avoids compiler warning) */ |
| index = 0; |
| if (lengthptr == NULL && !find_dupname_details(name, length, &index, |
| &count, errorcodeptr, cb)) return 0; |
| |
| /* Add one to the opcode to change CREF/RREF into DNCREF/DNRREF and |
| insert appropriate data values. */ |
| |
| code[1+LINK_SIZE]++; |
| skipunits = 1+2*IMM2_SIZE; |
| PUT2(code, 2+LINK_SIZE, index); |
| PUT2(code, 2+LINK_SIZE+IMM2_SIZE, count); |
| } |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| /* The DEFINE condition is always false. Its internal groups may never |
| be called, so matched_char must remain false, hence the jump to |
| GROUP_PROCESS rather than GROUP_PROCESS_NOTE_EMPTY. */ |
| |
| case META_COND_DEFINE: |
| bravalue = OP_COND; |
| GETPLUSOFFSET(offset, pptr); |
| code[1+LINK_SIZE] = OP_DEFINE; |
| skipunits = 1; |
| goto GROUP_PROCESS; |
| |
| /* Conditional test of a group's being set. */ |
| |
| case META_COND_NUMBER: |
| bravalue = OP_COND; |
| GETPLUSOFFSET(offset, pptr); |
| groupnumber = *(++pptr); |
| if (groupnumber > cb->bracount) |
| { |
| *errorcodeptr = ERR15; |
| cb->erroroffset = offset; |
| return 0; |
| } |
| if (groupnumber > cb->top_backref) cb->top_backref = groupnumber; |
| offset -= 2; /* Point at initial ( for too many branches error */ |
| code[1+LINK_SIZE] = OP_CREF; |
| skipunits = 1+IMM2_SIZE; |
| PUT2(code, 2+LINK_SIZE, groupnumber); |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| /* Test for the PCRE2 version. */ |
| |
| case META_COND_VERSION: |
| bravalue = OP_COND; |
| if (pptr[1] > 0) |
| code[1+LINK_SIZE] = ((PCRE2_MAJOR > pptr[2]) || |
| (PCRE2_MAJOR == pptr[2] && PCRE2_MINOR >= pptr[3]))? |
| OP_TRUE : OP_FALSE; |
| else |
| code[1+LINK_SIZE] = (PCRE2_MAJOR == pptr[2] && PCRE2_MINOR == pptr[3])? |
| OP_TRUE : OP_FALSE; |
| skipunits = 1; |
| pptr += 3; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| /* The condition is an assertion, possibly preceded by a callout. */ |
| |
| case META_COND_ASSERT: |
| bravalue = OP_COND; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| |
| /* ===================================================================*/ |
| /* Handle all kinds of nested bracketed groups. The non-capturing, |
| non-conditional cases are here; others come to GROUP_PROCESS via goto. */ |
| |
| case META_LOOKAHEAD: |
| bravalue = OP_ASSERT; |
| cb->assert_depth += 1; |
| goto GROUP_PROCESS; |
| |
| case META_LOOKAHEAD_NA: |
| bravalue = OP_ASSERT_NA; |
| cb->assert_depth += 1; |
| goto GROUP_PROCESS; |
| |
| /* Optimize (?!) to (*FAIL) unless it is quantified - which is a weird |
| thing to do, but Perl allows all assertions to be quantified, and when |
| they contain capturing parentheses there may be a potential use for |
| this feature. Not that that applies to a quantified (?!) but we allow |
| it for uniformity. */ |
| |
| case META_LOOKAHEADNOT: |
| if (pptr[1] == META_KET && |
| (pptr[2] < META_ASTERISK || pptr[2] > META_MINMAX_QUERY)) |
| { |
| *code++ = OP_FAIL; |
| pptr++; |
| } |
| else |
| { |
| bravalue = OP_ASSERT_NOT; |
| cb->assert_depth += 1; |
| goto GROUP_PROCESS; |
| } |
| break; |
| |
| case META_LOOKBEHIND: |
| bravalue = OP_ASSERTBACK; |
| cb->assert_depth += 1; |
| goto GROUP_PROCESS; |
| |
| case META_LOOKBEHINDNOT: |
| bravalue = OP_ASSERTBACK_NOT; |
| cb->assert_depth += 1; |
| goto GROUP_PROCESS; |
| |
| case META_LOOKBEHIND_NA: |
| bravalue = OP_ASSERTBACK_NA; |
| cb->assert_depth += 1; |
| goto GROUP_PROCESS; |
| |
| case META_ATOMIC: |
| bravalue = OP_ONCE; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| case META_SCRIPT_RUN: |
| bravalue = OP_SCRIPT_RUN; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| case META_NOCAPTURE: |
| bravalue = OP_BRA; |
| /* Fall through */ |
| |
| /* Process nested bracketed regex. The nesting depth is maintained for the |
| benefit of the stackguard function. The test for too deep nesting is now |
| done in parse_regex(). Assertion and DEFINE groups come to GROUP_PROCESS; |
| others come to GROUP_PROCESS_NOTE_EMPTY, to indicate that we need to take |
| note of whether or not they may match an empty string. */ |
| |
| GROUP_PROCESS_NOTE_EMPTY: |
| note_group_empty = TRUE; |
| |
| GROUP_PROCESS: |
| cb->parens_depth += 1; |
| *code = bravalue; |
| pptr++; |
| tempcode = code; |
| tempreqvary = cb->req_varyopt; /* Save value before group */ |
| length_prevgroup = 0; /* Initialize for pre-compile phase */ |
| |
| if ((group_return = |
| compile_regex( |
| options, /* The option state */ |
| &tempcode, /* Where to put code (updated) */ |
| &pptr, /* Input pointer (updated) */ |
| errorcodeptr, /* Where to put an error message */ |
| skipunits, /* Skip over bracket number */ |
| &subfirstcu, /* For possible first char */ |
| &subfirstcuflags, |
| &subreqcu, /* For possible last char */ |
| &subreqcuflags, |
| bcptr, /* Current branch chain */ |
| cb, /* Compile data block */ |
| (lengthptr == NULL)? NULL : /* Actual compile phase */ |
| &length_prevgroup /* Pre-compile phase */ |
| )) == 0) |
| return 0; /* Error */ |
| |
| cb->parens_depth -= 1; |
| |
| /* If that was a non-conditional significant group (not an assertion, not a |
| DEFINE) that matches at least one character, then the current item matches |
| a character. Conditionals are handled below. */ |
| |
| if (note_group_empty && bravalue != OP_COND && group_return > 0) |
| matched_char = TRUE; |
| |
| /* If we've just compiled an assertion, pop the assert depth. */ |
| |
| if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NA) |
| cb->assert_depth -= 1; |
| |
| /* At the end of compiling, code is still pointing to the start of the |
| group, while tempcode has been updated to point past the end of the group. |
| The parsed pattern pointer (pptr) is on the closing META_KET. |
| |
| If this is a conditional bracket, check that there are no more than |
| two branches in the group, or just one if it's a DEFINE group. We do this |
| in the real compile phase, not in the pre-pass, where the whole group may |
| not be available. */ |
| |
| if (bravalue == OP_COND && lengthptr == NULL) |
| { |
| PCRE2_UCHAR *tc = code; |
| int condcount = 0; |
| |
| do { |
| condcount++; |
| tc += GET(tc,1); |
| } |
| while (*tc != OP_KET); |
| |
| /* A DEFINE group is never obeyed inline (the "condition" is always |
| false). It must have only one branch. Having checked this, change the |
| opcode to OP_FALSE. */ |
| |
| if (code[LINK_SIZE+1] == OP_DEFINE) |
| { |
| if (condcount > 1) |
| { |
| cb->erroroffset = offset; |
| *errorcodeptr = ERR54; |
| return 0; |
| } |
| code[LINK_SIZE+1] = OP_FALSE; |
| bravalue = OP_DEFINE; /* A flag to suppress char handling below */ |
| } |
| |
| /* A "normal" conditional group. If there is just one branch, we must not |
| make use of its firstcu or reqcu, because this is equivalent to an |
| empty second branch. Also, it may match an empty string. If there are two |
| branches, this item must match a character if the group must. */ |
| |
| else |
| { |
| if (condcount > 2) |
| { |
| cb->erroroffset = offset; |
| *errorcodeptr = ERR27; |
| return 0; |
| } |
| if (condcount == 1) subfirstcuflags = subreqcuflags = REQ_NONE; |
| else if (group_return > 0) matched_char = TRUE; |
| } |
| } |
| |
| /* In the pre-compile phase, update the length by the length of the group, |
| less the brackets at either end. Then reduce the compiled code to just a |
| set of non-capturing brackets so that it doesn't use much memory if it is |
| duplicated by a quantifier.*/ |
| |
| if (lengthptr != NULL) |
| { |
| if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
| { |
| *errorcodeptr = ERR20; |
| return 0; |
| } |
| *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
| code++; /* This already contains bravalue */ |
| PUTINC(code, 0, 1 + LINK_SIZE); |
| *code++ = OP_KET; |
| PUTINC(code, 0, 1 + LINK_SIZE); |
| break; /* No need to waste time with special character handling */ |
| } |
| |
| /* Otherwise update the main code pointer to the end of the group. */ |
| |
| code = tempcode; |
| |
| /* For a DEFINE group, required and first character settings are not |
| relevant. */ |
| |
| if (bravalue == OP_DEFINE) break; |
| |
| /* Handle updating of the required and first code units for other types of |
| group. Update for normal brackets of all kinds, and conditions with two |
| branches (see code above). If the bracket is followed by a quantifier with |
| zero repeat, we have to back off. Hence the definition of zeroreqcu and |
| zerofirstcu outside the main loop so that they can be accessed for the back |
| off. */ |
| |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| groupsetfirstcu = FALSE; |
| |
| if (bravalue >= OP_ONCE) /* Not an assertion */ |
| { |
| /* If we have not yet set a firstcu in this branch, take it from the |
| subpattern, remembering that it was set here so that a repeat of more |
| than one can replicate it as reqcu if necessary. If the subpattern has |
| no firstcu, set "none" for the whole branch. In both cases, a zero |
| repeat forces firstcu to "none". */ |
| |
| if (firstcuflags == REQ_UNSET && subfirstcuflags != REQ_UNSET) |
| { |
| if (subfirstcuflags < REQ_NONE) |
| { |
| firstcu = subfirstcu; |
| firstcuflags = subfirstcuflags; |
| groupsetfirstcu = TRUE; |
| } |
| else firstcuflags = REQ_NONE; |
| zerofirstcuflags = REQ_NONE; |
| } |
| |
| /* If firstcu was previously set, convert the subpattern's firstcu |
| into reqcu if there wasn't one, using the vary flag that was in |
| existence beforehand. */ |
| |
| else if (subfirstcuflags < REQ_NONE && subreqcuflags >= REQ_NONE) |
| { |
| subreqcu = subfirstcu; |
| subreqcuflags = subfirstcuflags | tempreqvary; |
| } |
| |
| /* If the subpattern set a required code unit (or set a first code unit |
| that isn't really the first code unit - see above), set it. */ |
| |
| if (subreqcuflags < REQ_NONE) |
| { |
| reqcu = subreqcu; |
| reqcuflags = subreqcuflags; |
| } |
| } |
| |
| /* For a forward assertion, we take the reqcu, if set, provided that the |
| group has also set a firstcu. This can be helpful if the pattern that |
| follows the assertion doesn't set a different char. For example, it's |
| useful for /(?=abcde).+/. We can't set firstcu for an assertion, however |
| because it leads to incorrect effect for patterns such as /(?=a)a.+/ when |
| the "real" "a" would then become a reqcu instead of a firstcu. This is |
| overcome by a scan at the end if there's no firstcu, looking for an |
| asserted first char. A similar effect for patterns like /(?=.*X)X$/ means |
| we must only take the reqcu when the group also set a firstcu. Otherwise, |
| in that example, 'X' ends up set for both. */ |
| |
| else if ((bravalue == OP_ASSERT || bravalue == OP_ASSERT_NA) && |
| subreqcuflags < REQ_NONE && subfirstcuflags < REQ_NONE) |
| { |
| reqcu = subreqcu; |
| reqcuflags = subreqcuflags; |
| } |
| |
| break; /* End of nested group handling */ |
| |
| |
| /* ===================================================================*/ |
| /* Handle named backreferences and recursions. */ |
| |
| case META_BACKREF_BYNAME: |
| case META_RECURSE_BYNAME: |
| { |
| int count, index; |
| PCRE2_SPTR name; |
| BOOL is_dupname = FALSE; |
| named_group *ng = cb->named_groups; |
| uint32_t length = *(++pptr); |
| |
| GETPLUSOFFSET(offset, pptr); |
| name = cb->start_pattern + offset; |
| |
| /* In the first pass, the names generated in the pre-pass are available, |
| but the main name table has not yet been created. Scan the list of names |
| generated in the pre-pass in order to get a number and whether or not |
| this name is duplicated. */ |
| |
| groupnumber = 0; |
| for (unsigned int i = 0; i < cb->names_found; i++, ng++) |
| { |
| if (length == ng->length && |
| PRIV(strncmp)(name, ng->name, length) == 0) |
| { |
| is_dupname = ng->isdup; |
| groupnumber = ng->number; |
| |
| /* For a recursion, that's all that is needed. We can now go to |
| the code that handles numerical recursion, applying it to the first |
| group with the given name. */ |
| |
| if (meta == META_RECURSE_BYNAME) |
| { |
| meta_arg = groupnumber; |
| goto HANDLE_NUMERICAL_RECURSION; |
| } |
| |
| /* For a back reference, update the back reference map and the |
| maximum back reference. */ |
| |
| cb->backref_map |= (groupnumber < 32)? (1u << groupnumber) : 1; |
| if (groupnumber > cb->top_backref) |
| cb->top_backref = groupnumber; |
| } |
| } |
| |
| /* If the name was not found we have a bad reference. */ |
| |
| if (groupnumber == 0) |
| { |
| *errorcodeptr = ERR15; |
| cb->erroroffset = offset; |
| return 0; |
| } |
| |
| /* If a back reference name is not duplicated, we can handle it as |
| a numerical reference. */ |
| |
| if (!is_dupname) |
| { |
| meta_arg = groupnumber; |
| goto HANDLE_SINGLE_REFERENCE; |
| } |
| |
| /* If a back reference name is duplicated, we generate a different |
| opcode to a numerical back reference. In the second pass we must |
| search for the index and count in the final name table. */ |
| |
| count = 0; /* Values for first pass (avoids compiler warning) */ |
| index = 0; |
| if (lengthptr == NULL && !find_dupname_details(name, length, &index, |
| &count, errorcodeptr, cb)) return 0; |
| |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| *code++ = ((options & PCRE2_CASELESS) != 0)? OP_DNREFI : OP_DNREF; |
| PUT2INC(code, 0, index); |
| PUT2INC(code, 0, count); |
| } |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Handle a numerical callout. */ |
| |
| case META_CALLOUT_NUMBER: |
| code[0] = OP_CALLOUT; |
| PUT(code, 1, pptr[1]); /* Offset to next pattern item */ |
| PUT(code, 1 + LINK_SIZE, pptr[2]); /* Length of next pattern item */ |
| code[1 + 2*LINK_SIZE] = pptr[3]; |
| pptr += 3; |
| code += PRIV(OP_lengths)[OP_CALLOUT]; |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Handle a callout with a string argument. In the pre-pass we just compute |
| the length without generating anything. The length in pptr[3] includes both |
| delimiters; in the actual compile only the first one is copied, but a |
| terminating zero is added. Any doubled delimiters within the string make |
| this an overestimate, but it is not worth bothering about. */ |
| |
| case META_CALLOUT_STRING: |
| if (lengthptr != NULL) |
| { |
| *lengthptr += pptr[3] + (1 + 4*LINK_SIZE); |
| pptr += 3; |
| SKIPOFFSET(pptr); |
| } |
| |
| /* In the real compile we can copy the string. The starting delimiter is |
| included so that the client can discover it if they want. We also pass the |
| start offset to help a script language give better error messages. */ |
| |
| else |
| { |
| PCRE2_SPTR pp; |
| uint32_t delimiter; |
| uint32_t length = pptr[3]; |
| PCRE2_UCHAR *callout_string = code + (1 + 4*LINK_SIZE); |
| |
| code[0] = OP_CALLOUT_STR; |
| PUT(code, 1, pptr[1]); /* Offset to next pattern item */ |
| PUT(code, 1 + LINK_SIZE, pptr[2]); /* Length of next pattern item */ |
| |
| pptr += 3; |
| GETPLUSOFFSET(offset, pptr); /* Offset to string in pattern */ |
| pp = cb->start_pattern + offset; |
| delimiter = *callout_string++ = *pp++; |
| if (delimiter == CHAR_LEFT_CURLY_BRACKET) |
| delimiter = CHAR_RIGHT_CURLY_BRACKET; |
| PUT(code, 1 + 3*LINK_SIZE, (int)(offset + 1)); /* One after delimiter */ |
| |
| /* The syntax of the pattern was checked in the parsing scan. The length |
| includes both delimiters, but we have passed the opening one just above, |
| so we reduce length before testing it. The test is for > 1 because we do |
| not want to copy the final delimiter. This also ensures that pp[1] is |
| accessible. */ |
| |
| while (--length > 1) |
| { |
| if (*pp == delimiter && pp[1] == delimiter) |
| { |
| *callout_string++ = delimiter; |
| pp += 2; |
| length--; |
| } |
| else *callout_string++ = *pp++; |
| } |
| *callout_string++ = CHAR_NUL; |
| |
| /* Set the length of the entire item, the advance to its end. */ |
| |
| PUT(code, 1 + 2*LINK_SIZE, (int)(callout_string - code)); |
| code = callout_string; |
| } |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Handle repetition. The different types are all sorted out in the parsing |
| pass. */ |
| |
| case META_MINMAX_PLUS: |
| case META_MINMAX_QUERY: |
| case META_MINMAX: |
| repeat_min = *(++pptr); |
| repeat_max = *(++pptr); |
| goto REPEAT; |
| |
| case META_ASTERISK: |
| case META_ASTERISK_PLUS: |
| case META_ASTERISK_QUERY: |
| repeat_min = 0; |
| repeat_max = REPEAT_UNLIMITED; |
| goto REPEAT; |
| |
| case META_PLUS: |
| case META_PLUS_PLUS: |
| case META_PLUS_QUERY: |
| repeat_min = 1; |
| repeat_max = REPEAT_UNLIMITED; |
| goto REPEAT; |
| |
| case META_QUERY: |
| case META_QUERY_PLUS: |
| case META_QUERY_QUERY: |
| repeat_min = 0; |
| repeat_max = 1; |
| |
| REPEAT: |
| if (previous_matched_char && repeat_min > 0) matched_char = TRUE; |
| |
| /* Remember whether this is a variable length repeat, and default to |
| single-char opcodes. */ |
| |
| reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
| op_type = 0; |
| |
| /* Adjust first and required code units for a zero repeat. */ |
| |
| if (repeat_min == 0) |
| { |
| firstcu = zerofirstcu; |
| firstcuflags = zerofirstcuflags; |
| reqcu = zeroreqcu; |
| reqcuflags = zeroreqcuflags; |
| } |
| |
| /* Note the greediness and possessiveness. */ |
| |
| switch (meta) |
| { |
| case META_MINMAX_PLUS: |
| case META_ASTERISK_PLUS: |
| case META_PLUS_PLUS: |
| case META_QUERY_PLUS: |
| repeat_type = 0; /* Force greedy */ |
| possessive_quantifier = TRUE; |
| break; |
| |
| case META_MINMAX_QUERY: |
| case META_ASTERISK_QUERY: |
| case META_PLUS_QUERY: |
| case META_QUERY_QUERY: |
| repeat_type = greedy_non_default; |
| possessive_quantifier = FALSE; |
| break; |
| |
| default: |
| repeat_type = greedy_default; |
| possessive_quantifier = FALSE; |
| break; |
| } |
| |
| /* Save start of previous item, in case we have to move it up in order to |
| insert something before it, and remember what it was. */ |
| |
| tempcode = previous; |
| op_previous = *previous; |
| |
| /* Now handle repetition for the different types of item. If the repeat |
| minimum and the repeat maximum are both 1, we can ignore the quantifier for |
| non-parenthesized items, as they have only one alternative. For anything in |
| parentheses, we must not ignore if {1} is possessive. */ |
| |
| switch (op_previous) |
| { |
| /* If previous was a character or negated character match, abolish the |
| item and generate a repeat item instead. If a char item has a minimum of |
| more than one, ensure that it is set in reqcu - it might not be if a |
| sequence such as x{3} is the first thing in a branch because the x will |
| have gone into firstcu instead. */ |
| |
| case OP_CHAR: |
| case OP_CHARI: |
| case OP_NOT: |
| case OP_NOTI: |
| if (repeat_max == 1 && repeat_min == 1) goto END_REPEAT; |
| op_type = chartypeoffset[op_previous - OP_CHAR]; |
| |
| /* Deal with UTF characters that take up more than one code unit. */ |
| |
| #ifdef MAYBE_UTF_MULTI |
| if (utf && NOT_FIRSTCU(code[-1])) |
| { |
| PCRE2_UCHAR *lastchar = code - 1; |
| BACKCHAR(lastchar); |
| mclength = (uint32_t)(code - lastchar); /* Length of UTF character */ |
| memcpy(mcbuffer, lastchar, CU2BYTES(mclength)); /* Save the char */ |
| } |
| else |
| #endif /* MAYBE_UTF_MULTI */ |
| |
| /* Handle the case of a single code unit - either with no UTF support, or |
| with UTF disabled, or for a single-code-unit UTF character. In the latter |
| case, for a repeated positive match, get the caseless flag for the |
| required code unit from the previous character, because a class like [Aa] |
| sets a caseless A but by now the req_caseopt flag has been reset. */ |
| |
| { |
| mcbuffer[0] = code[-1]; |
| mclength = 1; |
| if (op_previous <= OP_CHARI && repeat_min > 1) |
| { |
| reqcu = mcbuffer[0]; |
| reqcuflags = cb->req_varyopt; |
| if (op_previous == OP_CHARI) reqcuflags |= REQ_CASELESS; |
| } |
| } |
| goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
| |
| /* If previous was a character class or a back reference, we put the |
| repeat stuff after it, but just skip the item if the repeat was {0,0}. */ |
| |
| #ifdef SUPPORT_WIDE_CHARS |
| case OP_XCLASS: |
| #endif |
| case OP_CLASS: |
| case OP_NCLASS: |
| case OP_REF: |
| case OP_REFI: |
| case OP_DNREF: |
| case OP_DNREFI: |
| |
| if (repeat_max == 0) |
| { |
| code = previous; |
| goto END_REPEAT; |
| } |
| if (repeat_max == 1 && repeat_min == 1) goto END_REPEAT; |
| |
| if (repeat_min == 0 && repeat_max == REPEAT_UNLIMITED) |
| *code++ = OP_CRSTAR + repeat_type; |
| else if (repeat_min == 1 && repeat_max == REPEAT_UNLIMITED) |
| *code++ = OP_CRPLUS + repeat_type; |
| else if (repeat_min == 0 && repeat_max == 1) |
| *code++ = OP_CRQUERY + repeat_type; |
| else |
| { |
| *code++ = OP_CRRANGE + repeat_type; |
| PUT2INC(code, 0, repeat_min); |
| if (repeat_max == REPEAT_UNLIMITED) repeat_max = 0; /* 2-byte encoding for max */ |
| PUT2INC(code, 0, repeat_max); |
| } |
| break; |
| |
| /* If previous is OP_FAIL, it was generated by an empty class [] |
| (PCRE2_ALLOW_EMPTY_CLASS is set). The other ways in which OP_FAIL can be |
| generated, that is by (*FAIL) or (?!), disallow a quantifier at parse |
| time. We can just ignore this repeat. */ |
| |
| case OP_FAIL: |
| goto END_REPEAT; |
| |
| /* Prior to 10.30, repeated recursions were wrapped in OP_ONCE brackets |
| because pcre2_match() could not handle backtracking into recursively |
| called groups. Now that this backtracking is available, we no longer need |
| to do this. However, we still need to replicate recursions as we do for |
| groups so as to have independent backtracking points. We can replicate |
| for the minimum number of repeats directly. For optional repeats we now |
| wrap the recursion in OP_BRA brackets and make use of the bracket |
| repetition. */ |
| |
| case OP_RECURSE: |
| if (repeat_max == 1 && repeat_min == 1 && !possessive_quantifier) |
| goto END_REPEAT; |
| |
| /* Generate unwrapped repeats for a non-zero minimum, except when the |
| minimum is 1 and the maximum unlimited, because that can be handled with |
| OP_BRA terminated by OP_KETRMAX/MIN. When the maximum is equal to the |
| minimum, we just need to generate the appropriate additional copies. |
| Otherwise we need to generate one more, to simulate the situation when |
| the minimum is zero. */ |
| |
| if (repeat_min > 0 && (repeat_min != 1 || repeat_max != REPEAT_UNLIMITED)) |
| { |
| int replicate = repeat_min; |
| if (repeat_min == repeat_max) replicate--; |
| |
| /* In the pre-compile phase, we don't actually do the replication. We |
| just adjust the length as if we had. Do some paranoid checks for |
| potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
| integer type when available, otherwise double. */ |
| |
| if (lengthptr != NULL) |
| { |
| PCRE2_SIZE delta = replicate*(1 + LINK_SIZE); |
| if ((INT64_OR_DOUBLE)replicate* |
| (INT64_OR_DOUBLE)(1 + LINK_SIZE) > |
| (INT64_OR_DOUBLE)INT_MAX || |
| OFLOW_MAX - *lengthptr < delta) |
| { |
| *errorcodeptr = ERR20; |
| return 0; |
| } |
| *lengthptr += delta; |
| } |
| |
| else for (int i = 0; i < replicate; i++) |
| { |
| memcpy(code, previous, CU2BYTES(1 + LINK_SIZE)); |
| previous = code; |
| code += 1 + LINK_SIZE; |
| } |
| |
| /* If the number of repeats is fixed, we are done. Otherwise, adjust |
| the counts and fall through. */ |
| |
| if (repeat_min == repeat_max) break; |
| if (repeat_max != REPEAT_UNLIMITED) repeat_max -= repeat_min; |
| repeat_min = 0; |
| } |
| |
| /* Wrap the recursion call in OP_BRA brackets. */ |
| |
| (void)memmove(previous + 1 + LINK_SIZE, previous, CU2BYTES(1 + LINK_SIZE)); |
| op_previous = *previous = OP_BRA; |
| PUT(previous, 1, 2 + 2*LINK_SIZE); |
| previous[2 + 2*LINK_SIZE] = OP_KET; |
| PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
| code += 2 + 2 * LINK_SIZE; |
| length_prevgroup = 3 + 3*LINK_SIZE; |
| group_return = -1; /* Set "may match empty string" */ |
| |
| /* Now treat as a repeated OP_BRA. */ |
| /* Fall through */ |
| |
| /* If previous was a bracket group, we may have to replicate it in |
| certain cases. Note that at this point we can encounter only the "basic" |
| bracket opcodes such as BRA and CBRA, as this is the place where they get |
| converted into the more special varieties such as BRAPOS and SBRA. |
| Originally, PCRE did not allow repetition of assertions, but now it does, |
| for Perl compatibility. */ |
| |
| case OP_ASSERT: |
| case OP_ASSERT_NOT: |
| case OP_ASSERT_NA: |
| case OP_ASSERTBACK: |
| case OP_ASSERTBACK_NOT: |
| case OP_ASSERTBACK_NA: |
| case OP_ONCE: |
| case OP_SCRIPT_RUN: |
| case OP_BRA: |
| case OP_CBRA: |
| case OP_COND: |
| { |
| int len = (int)(code - previous); |
| PCRE2_UCHAR *bralink = NULL; |
| PCRE2_UCHAR *brazeroptr = NULL; |
| |
| if (repeat_max == 1 && repeat_min == 1 && !possessive_quantifier) |
| goto END_REPEAT; |
| |
| /* Repeating a DEFINE group (or any group where the condition is always |
| FALSE and there is only one branch) is pointless, but Perl allows the |
| syntax, so we just ignore the repeat. */ |
| |
| if (op_previous == OP_COND && previous[LINK_SIZE+1] == OP_FALSE && |
| previous[GET(previous, 1)] != OP_ALT) |
| goto END_REPEAT; |
| |
| /* Perl allows all assertions to be quantified, and when they contain |
| capturing parentheses and/or are optional there are potential uses for |
| this feature. PCRE2 used to force the maximum quantifier to 1 on the |
| invalid grounds that further repetition was never useful. This was |
| always a bit pointless, since an assertion could be wrapped with a |
| repeated group to achieve the effect. General repetition is now |
| permitted, but if the maximum is unlimited it is set to one more than |
| the minimum. */ |
| |
| if (op_previous < OP_ONCE) /* Assertion */ |
| { |
| if (repeat_max == REPEAT_UNLIMITED) repeat_max = repeat_min + 1; |
| } |
| |
| /* The case of a zero minimum is special because of the need to stick |
| OP_BRAZERO in front of it, and because the group appears once in the |
| data, whereas in other cases it appears the minimum number of times. For |
| this reason, it is simplest to treat this case separately, as otherwise |
| the code gets far too messy. There are several special subcases when the |
| minimum is zero. */ |
| |
| if (repeat_min == 0) |
| { |
| /* If the maximum is also zero, we used to just omit the group from |
| the output altogether, like this: |
| |
| ** if (repeat_max == 0) |
| ** { |
| ** code = previous; |
| ** goto END_REPEAT; |
| ** } |
| |
| However, that fails when a group or a subgroup within it is |
| referenced as a subroutine from elsewhere in the pattern, so now we |
| stick in OP_SKIPZERO in front of it so that it is skipped on |
| execution. As we don't have a list of which groups are referenced, we |
| cannot do this selectively. |
| |
| If the maximum is 1 or unlimited, we just have to stick in the |
| BRAZERO and do no more at this point. */ |
| |
| if (repeat_max <= 1 || repeat_max == REPEAT_UNLIMITED) |
| { |
| (void)memmove(previous + 1, previous, CU2BYTES(len)); |
| code++; |
| if (repeat_max == 0) |
| { |
| *previous++ = OP_SKIPZERO; |
| goto END_REPEAT; |
| } |
| brazeroptr = previous; /* Save for possessive optimizing */ |
| *previous++ = OP_BRAZERO + repeat_type; |
| } |
| |
| /* If the maximum is greater than 1 and limited, we have to replicate |
| in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
| The first one has to be handled carefully because it's the original |
| copy, which has to be moved up. The remainder can be handled by code |
| that is common with the non-zero minimum case below. We have to |
| adjust the value or repeat_max, since one less copy is required. */ |
| |
| else |
| { |
| int linkoffset; |
| (void)memmove(previous + 2 + LINK_SIZE, previous, CU2BYTES(len)); |
| code += 2 + LINK_SIZE; |
| *previous++ = OP_BRAZERO + repeat_type; |
| *previous++ = OP_BRA; |
| |
| /* We chain together the bracket link offset fields that have to be |
| filled in later when the ends of the brackets are reached. */ |
| |
| linkoffset = (bralink == NULL)? 0 : (int)(previous - bralink); |
| bralink = previous; |
| PUTINC(previous, 0, linkoffset); |
| } |
| |
| if (repeat_max != REPEAT_UNLIMITED) repeat_max--; |
| } |
| |
| /* If the minimum is greater than zero, replicate the group as many |
| times as necessary, and adjust the maximum to the number of subsequent |
| copies that we need. */ |
| |
| else |
| { |
| if (repeat_min > 1) |
| { |
| /* In the pre-compile phase, we don't actually do the replication. |
| We just adjust the length as if we had. Do some paranoid checks for |
| potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
| integer type when available, otherwise double. */ |
| |
| if (lengthptr != NULL) |
| { |
| PCRE2_SIZE delta = (repeat_min - 1)*length_prevgroup; |
| if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
| (INT64_OR_DOUBLE)length_prevgroup > |
| (INT64_OR_DOUBLE)INT_MAX || |
| OFLOW_MAX - *lengthptr < delta) |
| { |
| *errorcodeptr = ERR20; |
| return 0; |
| } |
| *lengthptr += delta; |
| } |
| |
| /* This is compiling for real. If there is a set first code unit |
| for the group, and we have not yet set a "required code unit", set |
| it. */ |
| |
| else |
| { |
| if (groupsetfirstcu && reqcuflags >= REQ_NONE) |
| { |
| reqcu = firstcu; |
| reqcuflags = firstcuflags; |
| } |
| for (uint32_t i = 1; i < repeat_min; i++) |
| { |
| memcpy(code, previous, CU2BYTES(len)); |
| code += len; |
| } |
| } |
| } |
| |
| if (repeat_max != REPEAT_UNLIMITED) repeat_max -= repeat_min; |
| } |
| |
| /* This code is common to both the zero and non-zero minimum cases. If |
| the maximum is limited, it replicates the group in a nested fashion, |
| remembering the bracket starts on a stack. In the case of a zero |
| minimum, the first one was set up above. In all cases the repeat_max |
| now specifies the number of additional copies needed. Again, we must |
| remember to replicate entries on the forward reference list. */ |
| |
| if (repeat_max != REPEAT_UNLIMITED) |
| { |
| /* In the pre-compile phase, we don't actually do the replication. We |
| just adjust the length as if we had. For each repetition we must add |
| 1 to the length for BRAZERO and for all but the last repetition we |
| must add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
| paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type |
| is a 64-bit integer type when available, otherwise double. */ |
| |
| if (lengthptr != NULL && repeat_max > 0) |
| { |
| PCRE2_SIZE delta = repeat_max*(length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
| 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
| if ((INT64_OR_DOUBLE)repeat_max * |
| (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
| > (INT64_OR_DOUBLE)INT_MAX || |
| OFLOW_MAX - *lengthptr < delta) |
| { |
| *errorcodeptr = ERR20; |
| return 0; |
| } |
| *lengthptr += delta; |
| } |
| |
| /* This is compiling for real */ |
| |
| else for (uint32_t i = repeat_max; i >= 1; i--) |
| { |
| *code++ = OP_BRAZERO + repeat_type; |
| |
| /* All but the final copy start a new nesting, maintaining the |
| chain of brackets outstanding. */ |
| |
| if (i != 1) |
| { |
| int linkoffset; |
| *code++ = OP_BRA; |
| linkoffset = (bralink == NULL)? 0 : (int)(code - bralink); |
| bralink = code; |
| PUTINC(code, 0, linkoffset); |
| } |
| |
| memcpy(code, previous, CU2BYTES(len)); |
| code += len; |
| } |
| |
| /* Now chain through the pending brackets, and fill in their length |
| fields (which are holding the chain links pro tem). */ |
| |
| while (bralink != NULL) |
| { |
| int oldlinkoffset; |
| int linkoffset = (int)(code - bralink + 1); |
| PCRE2_UCHAR *bra = code - linkoffset; |
| oldlinkoffset = GET(bra, 1); |
| bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
| *code++ = OP_KET; |
| PUTINC(code, 0, linkoffset); |
| PUT(bra, 1, linkoffset); |
| } |
| } |
| |
| /* If the maximum is unlimited, set a repeater in the final copy. For |
| SCRIPT_RUN and ONCE brackets, that's all we need to do. However, |
| possessively repeated ONCE brackets can be converted into non-capturing |
| brackets, as the behaviour of (?:xx)++ is the same as (?>xx)++ and this |
| saves having to deal with possessive ONCEs specially. |
| |
| Otherwise, when we are doing the actual compile phase, check to see |
| whether this group is one that could match an empty string. If so, |
| convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
| that runtime checking can be done. [This check is also applied to ONCE |
| and SCRIPT_RUN groups at runtime, but in a different way.] |
| |
| Then, if the quantifier was possessive and the bracket is not a |
| conditional, we convert the BRA code to the POS form, and the KET code |
| to KETRPOS. (It turns out to be convenient at runtime to detect this |
| kind of subpattern at both the start and at the end.) The use of |
| special opcodes makes it possible to reduce greatly the stack usage in |
| pcre2_match(). If the group is preceded by OP_BRAZERO, convert this to |
| OP_BRAPOSZERO. |
| |
| Then, if the minimum number of matches is 1 or 0, cancel the possessive |
| flag so that the default action below, of wrapping everything inside |
| atomic brackets, does not happen. When the minimum is greater than 1, |
| there will be earlier copies of the group, and so we still have to wrap |
| the whole thing. */ |
| |
| else |
| { |
| PCRE2_UCHAR *ketcode = code - 1 - LINK_SIZE; |
| PCRE2_UCHAR *bracode = ketcode - GET(ketcode, 1); |
| |
| /* Convert possessive ONCE brackets to non-capturing */ |
| |
| if (*bracode == OP_ONCE && possessive_quantifier) *bracode = OP_BRA; |
| |
| /* For non-possessive ONCE and for SCRIPT_RUN brackets, all we need |
| to do is to set the KET. */ |
| |
| if (*bracode == OP_ONCE || *bracode == OP_SCRIPT_RUN) |
| *ketcode = OP_KETRMAX + repeat_type; |
| |
| /* Handle non-SCRIPT_RUN and non-ONCE brackets and possessive ONCEs |
| (which have been converted to non-capturing above). */ |
| |
| else |
| { |
| /* In the compile phase, adjust the opcode if the group can match |
| an empty string. For a conditional group with only one branch, the |
| value of group_return will not show "could be empty", so we must |
| check that separately. */ |
| |
| if (lengthptr == NULL) |
| { |
| if (group_return < 0) *bracode += OP_SBRA - OP_BRA; |
| if (*bracode == OP_COND && bracode[GET(bracode,1)] != OP_ALT) |
| *bracode = OP_SCOND; |
| } |
| |
| /* Handle possessive quantifiers. */ |
| |
| if (possessive_quantifier) |
| { |
| /* For COND brackets, we wrap the whole thing in a possessively |
| repeated non-capturing bracket, because we have not invented POS |
| versions of the COND opcodes. */ |
| |
| if (*bracode == OP_COND || *bracode == OP_SCOND) |
| { |
| int nlen = (int)(code - bracode); |
| (void)memmove(bracode + 1 + LINK_SIZE, bracode, CU2BYTES(nlen)); |
| code += 1 + LINK_SIZE; |
| nlen += 1 + LINK_SIZE; |
| *bracode = (*bracode == OP_COND)? OP_BRAPOS : OP_SBRAPOS; |
| *code++ = OP_KETRPOS; |
| PUTINC(code, 0, nlen); |
| PUT(bracode, 1, nlen); |
| } |
| |
| /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
| |
| else |
| { |
| *bracode += 1; /* Switch to xxxPOS opcodes */ |
| *ketcode = OP_KETRPOS; |
| } |
| |
| /* If the minimum is zero, mark it as possessive, then unset the |
| possessive flag when the minimum is 0 or 1. */ |
| |
| if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
| if (repeat_min < 2) possessive_quantifier = FALSE; |
| } |
| |
| /* Non-possessive quantifier */ |
| |
| else *ketcode = OP_KETRMAX + repeat_type; |
| } |
| } |
| } |
| break; |
| |
| /* If previous was a character type match (\d or similar), abolish it and |
| create a suitable repeat item. The code is shared with single-character |
| repeats by setting op_type to add a suitable offset into repeat_type. |
| Note the the Unicode property types will be present only when |
| SUPPORT_UNICODE is defined, but we don't wrap the little bits of code |
| here because it just makes it horribly messy. */ |
| |
| default: |
| if (op_previous >= OP_EODN) /* Not a character type - internal error */ |
| { |
| *errorcodeptr = ERR10; |
| return 0; |
| } |
| else |
| { |
| int prop_type, prop_value; |
| PCRE2_UCHAR *oldcode; |
| |
| if (repeat_max == 1 && repeat_min == 1) goto END_REPEAT; |
| |
| op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
| mclength = 0; /* Not a character */ |
| |
| if (op_previous == OP_PROP || op_previous == OP_NOTPROP) |
| { |
| prop_type = previous[1]; |
| prop_value = previous[2]; |
| } |
| else |
| { |
| /* Come here from just above with a character in mcbuffer/mclength. */ |
| OUTPUT_SINGLE_REPEAT: |
| prop_type = prop_value = -1; |
| } |
| |
| /* At this point, if prop_type == prop_value == -1 we either have a |
| character in mcbuffer when mclength is greater than zero, or we have |
| mclength zero, in which case there is a non-property character type in |
| op_previous. If prop_type/value are not negative, we have a property |
| character type in op_previous. */ |
| |
| oldcode = code; /* Save where we were */ |
| code = previous; /* Usually overwrite previous item */ |
| |
| /* If the maximum is zero then the minimum must also be zero; Perl allows |
| this case, so we do too - by simply omitting the item altogether. */ |
| |
| if (repeat_max == 0) goto END_REPEAT; |
| |
| /* Combine the op_type with the repeat_type */ |
| |
| repeat_type += op_type; |
| |
| /* A minimum of zero is handled either as the special case * or ?, or as |
| an UPTO, with the maximum given. */ |
| |
| if (repeat_min == 0) |
| { |
| if (repeat_max == REPEAT_UNLIMITED) *code++ = OP_STAR + repeat_type; |
| else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
| else |
| { |
| *code++ = OP_UPTO + repeat_type; |
| PUT2INC(code, 0, repeat_max); |
| } |
| } |
| |
| /* A repeat minimum of 1 is optimized into some special cases. If the |
| maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
| left in place and, if the maximum is greater than 1, we use OP_UPTO with |
| one less than the maximum. */ |
| |
| else if (repeat_min == 1) |
| { |
| if (repeat_max == REPEAT_UNLIMITED) |
| *code++ = OP_PLUS + repeat_type; |
| else |
| { |
| code = oldcode; /* Leave previous item in place */ |
| if (repeat_max == 1) goto END_REPEAT; |
| *code++ = OP_UPTO + repeat_type; |
| PUT2INC(code, 0, repeat_max - 1); |
| } |
| } |
| |
| /* The case {n,n} is just an EXACT, while the general case {n,m} is |
| handled as an EXACT followed by an UPTO or STAR or QUERY. */ |
| |
| else |
| { |
| *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
| PUT2INC(code, 0, repeat_min); |
| |
| /* Unless repeat_max equals repeat_min, fill in the data for EXACT, |
| and then generate the second opcode. For a repeated Unicode property |
| match, there are two extra values that define the required property, |
| and mclength is set zero to indicate this. */ |
| |
| if (repeat_max != repeat_min) |
| { |
| if (mclength > 0) |
| { |
| memcpy(code, mcbuffer, CU2BYTES(mclength)); |
| code += mclength; |
| } |
| else |
| { |
| *code++ = op_previous; |
| if (prop_type >= 0) |
| { |
| *code++ = prop_type; |
| *code++ = prop_value; |
| } |
| } |
| |
| /* Now set up the following opcode */ |
| |
| if (repeat_max == REPEAT_UNLIMITED) |
| *code++ = OP_STAR + repeat_type; |
| else |
| { |
| repeat_max -= repeat_min; |
| if (repeat_max == 1) |
| { |
| *code++ = OP_QUERY + repeat_type; |
| } |
| else |
| { |
| *code++ = OP_UPTO + repeat_type; |
| PUT2INC(code, 0, repeat_max); |
| } |
| } |
| } |
| } |
| |
| /* Fill in the character or character type for the final opcode. */ |
| |
| if (mclength > 0) |
| { |
| memcpy(code, mcbuffer, CU2BYTES(mclength)); |
| code += mclength; |
| } |
| else |
| { |
| *code++ = op_previous; |
| if (prop_type >= 0) |
| { |
| *code++ = prop_type; |
| *code++ = prop_value; |
| } |
| } |
| } |
| break; |
| } /* End of switch on different op_previous values */ |
| |
| |
| /* If the character following a repeat is '+', possessive_quantifier is |
| TRUE. For some opcodes, there are special alternative opcodes for this |
| case. For anything else, we wrap the entire repeated item inside OP_ONCE |
| brackets. Logically, the '+' notation is just syntactic sugar, taken from |
| Sun's Java package, but the special opcodes can optimize it. |
| |
| Some (but not all) possessively repeated subpatterns have already been |
| completely handled in the code just above. For them, possessive_quantifier |
| is always FALSE at this stage. Note that the repeated item starts at |
| tempcode, not at previous, which might be the first part of a string whose |
| (former) last char we repeated. */ |
| |
| if (possessive_quantifier) |
| { |
| int len; |
| |
| /* Possessifying an EXACT quantifier has no effect, so we can ignore it. |
| However, QUERY, STAR, or UPTO may follow (for quantifiers such as {5,6}, |
| {5,}, or {5,10}). We skip over an EXACT item; if the length of what |
| remains is greater than zero, there's a further opcode that can be |
| handled. If not, do nothing, leaving the EXACT alone. */ |
| |
| switch(*tempcode) |
| { |
| case OP_TYPEEXACT: |
| tempcode += PRIV(OP_lengths)[*tempcode] + |
| ((tempcode[1 + IMM2_SIZE] == OP_PROP |
| || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0); |
| break; |
| |
| /* CHAR opcodes are used for exacts whose count is 1. */ |
| |
| case OP_CHAR: |
| case OP_CHARI: |
| case OP_NOT: |
| case OP_NOTI: |
| case OP_EXACT: |
| case OP_EXACTI: |
| case OP_NOTEXACT: |
| case OP_NOTEXACTI: |
| tempcode += PRIV(OP_lengths)[*tempcode]; |
| #ifdef SUPPORT_UNICODE |
| if (utf && HAS_EXTRALEN(tempcode[-1])) |
| tempcode += GET_EXTRALEN(tempcode[-1]); |
| #endif |
| break; |
| |
| /* For the class opcodes, the repeat operator appears at the end; |
| adjust tempcode to point to it. */ |
| |
| case OP_CLASS: |
| case OP_NCLASS: |
| tempcode += 1 + 32/sizeof(PCRE2_UCHAR); |
| break; |
| |
| #ifdef SUPPORT_WIDE_CHARS |
| case OP_XCLASS: |
| tempcode += GET(tempcode, 1); |
| break; |
| #endif |
| } |
| |
| /* If tempcode is equal to code (which points to the end of the repeated |
| item), it means we have skipped an EXACT item but there is no following |
| QUERY, STAR, or UPTO; the value of len will be 0, and we do nothing. In |
| all other cases, tempcode will be pointing to the repeat opcode, and will |
| be less than code, so the value of len will be greater than 0. */ |
| |
| len = (int)(code - tempcode); |
| if (len > 0) |
| { |
| unsigned int repcode = *tempcode; |
| |
| /* There is a table for possessifying opcodes, all of which are less |
| than OP_CALLOUT. A zero entry means there is no possessified version. |
| */ |
| |
| if (repcode < OP_CALLOUT && opcode_possessify[repcode] > 0) |
| *tempcode = opcode_possessify[repcode]; |
| |
| /* For opcode without a special possessified version, wrap the item in |
| ONCE brackets. */ |
| |
| else |
| { |
| (void)memmove(tempcode + 1 + LINK_SIZE, tempcode, CU2BYTES(len)); |
| code += 1 + LINK_SIZE; |
| len += 1 + LINK_SIZE; |
| tempcode[0] = OP_ONCE; |
| *code++ = OP_KET; |
| PUTINC(code, 0, len); |
| PUT(tempcode, 1, len); |
| } |
| } |
| } |
| |
| /* We set the "follows varying string" flag for subsequently encountered |
| reqcus if it isn't already set and we have just passed a varying length |
| item. */ |
| |
| END_REPEAT: |
| cb->req_varyopt |= reqvary; |
| break; |
| |
| |
| /* ===================================================================*/ |
| /* Handle a 32-bit data character with a value greater than META_END. */ |
| |
| case META_BIGVALUE: |
| pptr++; |
| goto NORMAL_CHAR; |
| |
| |
| /* ===============================================================*/ |
| /* Handle a back reference by number, which is the meta argument. The |
| pattern offsets for back references to group numbers less than 10 are held |
| in a special vector, to avoid using more than two parsed pattern elements |
| in 64-bit environments. We only need the offset to the first occurrence, |
| because if that doesn't fail, subsequent ones will also be OK. */ |
| |
| case META_BACKREF: |
| if (meta_arg < 10) offset = cb->small_ref_offset[meta_arg]; |
| else GETPLUSOFFSET(offset, pptr); |
| |
| if (meta_arg > cb->bracount) |
| { |
| cb->erroroffset = offset; |
| *errorcodeptr = ERR15; /* Non-existent subpattern */ |
| return 0; |
| } |
| |
| /* Come here from named backref handling when the reference is to a |
| single group (that is, not to a duplicated name). The back reference |
| data will have already been updated. We must disable firstcu if not |
| set, to cope with cases like (?=(\w+))\1: which would otherwise set ':' |
| later. */ |
| |
| HANDLE_SINGLE_REFERENCE: |
| if (firstcuflags == REQ_UNSET) zerofirstcuflags = firstcuflags = REQ_NONE; |
| *code++ = ((options & PCRE2_CASELESS) != 0)? OP_REFI : OP_REF; |
| PUT2INC(code, 0, meta_arg); |
| |
| /* Update the map of back references, and keep the highest one. We |
| could do this in parse_regex() for numerical back references, but not |
| for named back references, because we don't know the numbers to which |
| named back references refer. So we do it all in this function. */ |
| |
| cb->backref_map |= (meta_arg < 32)? (1u << meta_arg) : 1; |
| if (meta_arg > cb->top_backref) cb->top_backref = meta_arg; |
| break; |
| |
| |
| /* ===============================================================*/ |
| /* Handle recursion by inserting the number of the called group (which is |
| the meta argument) after OP_RECURSE. At the end of compiling the pattern is |
| scanned and these numbers are replaced by offsets within the pattern. It is |
| done like this to avoid problems with forward references and adjusting |
| offsets when groups are duplicated and moved (as discovered in previous |
| implementations). Note that a recursion does not have a set first |
| character. */ |
| |
| case META_RECURSE: |
| GETPLUSOFFSET(offset, pptr); |
| if (meta_arg > cb->bracount) |
| { |
| cb->erroroffset = offset; |
| *errorcodeptr = ERR15; /* Non-existent subpattern */ |
| return 0; |
| } |
| HANDLE_NUMERICAL_RECURSION: |
| *code = OP_RECURSE; |
| PUT(code, 1, meta_arg); |
| code += 1 + LINK_SIZE; |
| groupsetfirstcu = FALSE; |
| cb->had_recurse = TRUE; |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| break; |
| |
| |
| /* ===============================================================*/ |
| /* Handle capturing parentheses; the number is the meta argument. */ |
| |
| case META_CAPTURE: |
| bravalue = OP_CBRA; |
| skipunits = IMM2_SIZE; |
| PUT2(code, 1+LINK_SIZE, meta_arg); |
| cb->lastcapture = meta_arg; |
| goto GROUP_PROCESS_NOTE_EMPTY; |
| |
| |
| /* ===============================================================*/ |
| /* Handle escape sequence items. For ones like \d, the ESC_values are |
| arranged to be the same as the corresponding OP_values in the default case |
| when PCRE2_UCP is not set (which is the only case in which they will appear |
| here). |
| |
| Note: \Q and \E are never seen here, as they were dealt with in |
| parse_pattern(). Neither are numerical back references or recursions, which |
| were turned into META_BACKREF or META_RECURSE items, respectively. \k and |
| \g, when followed by names, are turned into META_BACKREF_BYNAME or |
| META_RECURSE_BYNAME. */ |
| |
| case META_ESCAPE: |
| |
| /* We can test for escape sequences that consume a character because their |
| values lie between ESC_b and ESC_Z; this may have to change if any new ones |
| are ever created. For these sequences, we disable the setting of a first |
| character if it hasn't already been set. */ |
| |
| if (meta_arg > ESC_b && meta_arg < ESC_Z) |
| { |
| matched_char = TRUE; |
| if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE; |
| } |
| |
| /* Set values to reset to if this is followed by a zero repeat. */ |
| |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| |
| /* If Unicode is not supported, \P and \p are not allowed and are |
| faulted at parse time, so will never appear here. */ |
| |
| #ifdef SUPPORT_UNICODE |
| if (meta_arg == ESC_P || meta_arg == ESC_p) |
| { |
| uint32_t ptype = *(++pptr) >> 16; |
| uint32_t pdata = *pptr & 0xffff; |
| |
| /* The special case of \p{Any} is compiled to OP_ALLANY so as to benefit |
| from the auto-anchoring code. */ |
| |
| if (meta_arg == ESC_p && ptype == PT_ANY) |
| { |
| *code++ = OP_ALLANY; |
| } |
| else |
| { |
| *code++ = (meta_arg == ESC_p)? OP_PROP : OP_NOTPROP; |
| *code++ = ptype; |
| *code++ = pdata; |
| } |
| break; /* End META_ESCAPE */ |
| } |
| #endif |
| |
| /* \K is forbidden in lookarounds since 10.38 because that's what Perl has |
| done. However, there's an option, in case anyone was relying on it. */ |
| |
| if (cb->assert_depth > 0 && meta_arg == ESC_K && |
| (cb->cx->extra_options & PCRE2_EXTRA_ALLOW_LOOKAROUND_BSK) == 0) |
| { |
| *errorcodeptr = ERR99; |
| return 0; |
| } |
| |
| /* For the rest (including \X when Unicode is supported - if not it's |
| faulted at parse time), the OP value is the escape value when PCRE2_UCP is |
| not set; if it is set, these escapes do not show up here because they are |
| converted into Unicode property tests in parse_regex(). Note that \b and \B |
| do a one-character lookbehind, and \A also behaves as if it does. */ |
| |
| if (meta_arg == ESC_C) cb->external_flags |= PCRE2_HASBKC; /* Record */ |
| if ((meta_arg == ESC_b || meta_arg == ESC_B || meta_arg == ESC_A) && |
| cb->max_lookbehind == 0) |
| cb->max_lookbehind = 1; |
| |
| /* In non-UTF mode, and for both 32-bit modes, we turn \C into OP_ALLANY |
| instead of OP_ANYBYTE so that it works in DFA mode and in lookbehinds. */ |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 32 |
| *code++ = (meta_arg == ESC_C)? OP_ALLANY : meta_arg; |
| #else |
| *code++ = (!utf && meta_arg == ESC_C)? OP_ALLANY : meta_arg; |
| #endif |
| break; /* End META_ESCAPE */ |
| |
| |
| /* ===================================================================*/ |
| /* Handle an unrecognized meta value. A parsed pattern value less than |
| META_END is a literal. Otherwise we have a problem. */ |
| |
| default: |
| if (meta >= META_END) |
| { |
| #ifdef DEBUG_SHOW_PARSED |
| fprintf(stderr, "** Unrecognized parsed pattern item 0x%.8x\n", *pptr); |
| #endif |
| *errorcodeptr = ERR89; /* Internal error - unrecognized. */ |
| return 0; |
| } |
| |
| /* Handle a literal character. We come here by goto in the case of a |
| 32-bit, non-UTF character whose value is greater than META_END. */ |
| |
| NORMAL_CHAR: |
| meta = *pptr; /* Get the full 32 bits */ |
| NORMAL_CHAR_SET: /* Character is already in meta */ |
| matched_char = TRUE; |
| |
| /* For caseless UTF or UCP mode, check whether this character has more than |
| one other case. If so, generate a special OP_PROP item instead of OP_CHARI. |
| */ |
| |
| #ifdef SUPPORT_UNICODE |
| if ((utf||ucp) && (options & PCRE2_CASELESS) != 0) |
| { |
| uint32_t caseset = UCD_CASESET(meta); |
| if (caseset != 0) |
| { |
| *code++ = OP_PROP; |
| *code++ = PT_CLIST; |
| *code++ = caseset; |
| if (firstcuflags == REQ_UNSET) |
| firstcuflags = zerofirstcuflags = REQ_NONE; |
| break; /* End handling this meta item */ |
| } |
| } |
| #endif |
| |
| /* Caseful matches, or caseless and not one of the multicase characters. We |
| come here by goto in the case of a positive class that contains only |
| case-partners of a character with just two cases; matched_char has already |
| been set TRUE and options fudged if necessary. */ |
| |
| CLASS_CASELESS_CHAR: |
| |
| /* Get the character's code units into mcbuffer, with the length in |
| mclength. When not in UTF mode, the length is always 1. */ |
| |
| #ifdef SUPPORT_UNICODE |
| if (utf) mclength = PRIV(ord2utf)(meta, mcbuffer); else |
| #endif |
| { |
| mclength = 1; |
| mcbuffer[0] = meta; |
| } |
| |
| /* Generate the appropriate code */ |
| |
| *code++ = ((options & PCRE2_CASELESS) != 0)? OP_CHARI : OP_CHAR; |
| memcpy(code, mcbuffer, CU2BYTES(mclength)); |
| code += mclength; |
| |
| /* Remember if \r or \n were seen */ |
| |
| if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) |
| cb->external_flags |= PCRE2_HASCRORLF; |
| |
| /* Set the first and required code units appropriately. If no previous |
| first code unit, set it from this character, but revert to none on a zero |
| repeat. Otherwise, leave the firstcu value alone, and don't change it on |
| a zero repeat. */ |
| |
| if (firstcuflags == REQ_UNSET) |
| { |
| zerofirstcuflags = REQ_NONE; |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| |
| /* If the character is more than one code unit long, we can set a single |
| firstcu only if it is not to be matched caselessly. Multiple possible |
| starting code units may be picked up later in the studying code. */ |
| |
| if (mclength == 1 || req_caseopt == 0) |
| { |
| firstcu = mcbuffer[0]; |
| firstcuflags = req_caseopt; |
| if (mclength != 1) |
| { |
| reqcu = code[-1]; |
| reqcuflags = cb->req_varyopt; |
| } |
| } |
| else firstcuflags = reqcuflags = REQ_NONE; |
| } |
| |
| /* firstcu was previously set; we can set reqcu only if the length is |
| 1 or the matching is caseful. */ |
| |
| else |
| { |
| zerofirstcu = firstcu; |
| zerofirstcuflags = firstcuflags; |
| zeroreqcu = reqcu; |
| zeroreqcuflags = reqcuflags; |
| if (mclength == 1 || req_caseopt == 0) |
| { |
| reqcu = code[-1]; |
| reqcuflags = req_caseopt | cb->req_varyopt; |
| } |
| } |
| |
| /* If caselessness was temporarily instated, reset it. */ |
| |
| if (reset_caseful) |
| { |
| options &= ~PCRE2_CASELESS; |
| req_caseopt = 0; |
| reset_caseful = FALSE; |
| } |
| |
| break; /* End literal character handling */ |
| } /* End of big switch */ |
| } /* End of big loop */ |
| |
| /* Control never reaches here. */ |
| } |
| |
| |
| |
| /************************************************* |
| * Compile regex: a sequence of alternatives * |
| *************************************************/ |
| |
| /* On entry, pptr is pointing past the bracket meta, but on return it points to |
| the closing bracket or META_END. The code variable is pointing at the code unit |
| into which the BRA operator has been stored. This function is used during the |
| pre-compile phase when we are trying to find out the amount of memory needed, |
| as well as during the real compile phase. The value of lengthptr distinguishes |
| the two phases. |
| |
| Arguments: |
| options option bits, including any changes for this subpattern |
| codeptr -> the address of the current code pointer |
| pptrptr -> the address of the current parsed pattern pointer |
| errorcodeptr -> pointer to error code variable |
| skipunits skip this many code units at start (for brackets and OP_COND) |
| firstcuptr place to put the first required code unit |
| firstcuflagsptr place to put the first code unit flags |
| reqcuptr place to put the last required code unit |
| reqcuflagsptr place to put the last required code unit flags |
| bcptr pointer to the chain of currently open branches |
| cb points to the data block with tables pointers etc. |
| lengthptr NULL during the real compile phase |
| points to length accumulator during pre-compile phase |
| |
| Returns: 0 There has been an error |
| +1 Success, this group must match at least one character |
| -1 Success, this group may match an empty string |
| */ |
| |
| static int |
| compile_regex(uint32_t options, PCRE2_UCHAR **codeptr, uint32_t **pptrptr, |
| int *errorcodeptr, uint32_t skipunits, uint32_t *firstcuptr, |
| uint32_t *firstcuflagsptr, uint32_t *reqcuptr, uint32_t *reqcuflagsptr, |
| branch_chain *bcptr, compile_block *cb, PCRE2_SIZE *lengthptr) |
| { |
| PCRE2_UCHAR *code = *codeptr; |
| PCRE2_UCHAR *last_branch = code; |
| PCRE2_UCHAR *start_bracket = code; |
| BOOL lookbehind; |
| open_capitem capitem; |
| int capnumber = 0; |
| int okreturn = 1; |
| uint32_t *pptr = *pptrptr; |
| uint32_t firstcu, reqcu; |
| uint32_t lookbehindlength; |
| uint32_t firstcuflags, reqcuflags; |
| uint32_t branchfirstcu, branchreqcu; |
| uint32_t branchfirstcuflags, branchreqcuflags; |
| PCRE2_SIZE length; |
| branch_chain bc; |
| |
| /* If set, call the external function that checks for stack availability. */ |
| |
| if (cb->cx->stack_guard != NULL && |
| cb->cx->stack_guard(cb->parens_depth, cb->cx->stack_guard_data)) |
| { |
| *errorcodeptr= ERR33; |
| return 0; |
| } |
| |
| /* Miscellaneous initialization */ |
| |
| bc.outer = bcptr; |
| bc.current_branch = code; |
| |
| firstcu = reqcu = 0; |
| firstcuflags = reqcuflags = REQ_UNSET; |
| |
| /* Accumulate the length for use in the pre-compile phase. Start with the |
| length of the BRA and KET and any extra code units that are required at the |
| beginning. We accumulate in a local variable to save frequent testing of |
| lengthptr for NULL. We cannot do this by looking at the value of 'code' at the |
| start and end of each alternative, because compiled items are discarded during |
| the pre-compile phase so that the workspace is not exceeded. */ |
| |
| length = 2 + 2*LINK_SIZE + skipunits; |
| |
| /* Remember if this is a lookbehind assertion, and if it is, save its length |
| and skip over the pattern offset. */ |
| |
| lookbehind = *code == OP_ASSERTBACK || |
| *code == OP_ASSERTBACK_NOT || |
| *code == OP_ASSERTBACK_NA; |
| |
| if (lookbehind) |
| { |
| lookbehindlength = META_DATA(pptr[-1]); |
| pptr += SIZEOFFSET; |
| } |
| else lookbehindlength = 0; |
| |
| /* If this is a capturing subpattern, add to the chain of open capturing items |
| so that we can detect them if (*ACCEPT) is encountered. Note that only OP_CBRA |
| need be tested here; changing this opcode to one of its variants, e.g. |
| OP_SCBRAPOS, happens later, after the group has been compiled. */ |
| |
| if (*code == OP_CBRA) |
| { |
| capnumber = GET2(code, 1 + LINK_SIZE); |
| capitem.number = capnumber; |
| capitem.next = cb->open_caps; |
| capitem.assert_depth = cb->assert_depth; |
| cb->open_caps = &capitem; |
| } |
| |
| /* Offset is set zero to mark that this bracket is still open */ |
| |
| PUT(code, 1, 0); |
| code += 1 + LINK_SIZE + skipunits; |
| |
| /* Loop for each alternative branch */ |
| |
| for (;;) |
| { |
| int branch_return; |
| |
| /* Insert OP_REVERSE if this is as lookbehind assertion. */ |
| |
| if (lookbehind && lookbehindlength > 0) |
| { |
| *code++ = OP_REVERSE; |
| PUTINC(code, 0, lookbehindlength); |
| length += 1 + LINK_SIZE; |
| } |
| |
| /* Now compile the branch; in the pre-compile phase its length gets added |
| into the length. */ |
| |
| if ((branch_return = |
| compile_branch(&options, &code, &pptr, errorcodeptr, &branchfirstcu, |
| &branchfirstcuflags, &branchreqcu, &branchreqcuflags, &bc, |
| cb, (lengthptr == NULL)? NULL : &length)) == 0) |
| return 0; |
| |
| /* If a branch can match an empty string, so can the whole group. */ |
| |
| if (branch_return < 0) okreturn = -1; |
| |
| /* In the real compile phase, there is some post-processing to be done. */ |
| |
| if (lengthptr == NULL) |
| { |
| /* If this is the first branch, the firstcu and reqcu values for the |
| branch become the values for the regex. */ |
| |
| if (*last_branch != OP_ALT) |
| { |
| firstcu = branchfirstcu; |
| firstcuflags = branchfirstcuflags; |
| reqcu = branchreqcu; |
| reqcuflags = branchreqcuflags; |
| } |
| |
| /* If this is not the first branch, the first char and reqcu have to |
| match the values from all the previous branches, except that if the |
| previous value for reqcu didn't have REQ_VARY set, it can still match, |
| and we set REQ_VARY for the group from this branch's value. */ |
| |
| else |
| { |
| /* If we previously had a firstcu, but it doesn't match the new branch, |
| we have to abandon the firstcu for the regex, but if there was |
| previously no reqcu, it takes on the value of the old firstcu. */ |
| |
| if (firstcuflags != branchfirstcuflags || firstcu != branchfirstcu) |
| { |
| if (firstcuflags < REQ_NONE) |
| { |
| if (reqcuflags >= REQ_NONE) |
| { |
| reqcu = firstcu; |
| reqcuflags = firstcuflags; |
| } |
| } |
| firstcuflags = REQ_NONE; |
| } |
| |
| /* If we (now or from before) have no firstcu, a firstcu from the |
| branch becomes a reqcu if there isn't a branch reqcu. */ |
| |
| if (firstcuflags >= REQ_NONE && branchfirstcuflags < REQ_NONE && |
| branchreqcuflags >= REQ_NONE) |
| { |
| branchreqcu = branchfirstcu; |
| branchreqcuflags = branchfirstcuflags; |
| } |
| |
| /* Now ensure that the reqcus match */ |
| |
| if (((reqcuflags & ~REQ_VARY) != (branchreqcuflags & ~REQ_VARY)) || |
| reqcu != branchreqcu) |
| reqcuflags = REQ_NONE; |
| else |
| { |
| reqcu = branchreqcu; |
| reqcuflags |= branchreqcuflags; /* To "or" REQ_VARY if present */ |
| } |
| } |
| } |
| |
| /* Handle reaching the end of the expression, either ')' or end of pattern. |
| In the real compile phase, go back through the alternative branches and |
| reverse the chain of offsets, with the field in the BRA item now becoming an |
| offset to the first alternative. If there are no alternatives, it points to |
| the end of the group. The length in the terminating ket is always the length |
| of the whole bracketed item. Return leaving the pointer at the terminating |
| char. */ |
| |
| if (META_CODE(*pptr) != META_ALT) |
| { |
| if (lengthptr == NULL) |
| { |
| PCRE2_SIZE branch_length = code - last_branch; |
| do |
| { |
| PCRE2_SIZE prev_length = GET(last_branch, 1); |
| PUT(last_branch, 1, branch_length); |
| branch_length = prev_length; |
| last_branch -= branch_length; |
| } |
| while (branch_length > 0); |
| } |
| |
| /* Fill in the ket */ |
| |
| *code = OP_KET; |
| PUT(code, 1, (int)(code - start_bracket)); |
| code += 1 + LINK_SIZE; |
| |
| /* If it was a capturing subpattern, remove the block from the chain. */ |
| |
| if (capnumber > 0) cb->open_caps = cb->open_caps->next; |
| |
| /* Set values to pass back */ |
| |
| *codeptr = code; |
| *pptrptr = pptr; |
| *firstcuptr = firstcu; |
| *firstcuflagsptr = firstcuflags; |
| *reqcuptr = reqcu; |
| *reqcuflagsptr = reqcuflags; |
| if (lengthptr != NULL) |
| { |
| if (OFLOW_MAX - *lengthptr < length) |
| { |
| *errorcodeptr = ERR20; |
| return 0; |
| } |
| *lengthptr += length; |
| } |
| return okreturn; |
| } |
| |
| /* Another branch follows. In the pre-compile phase, we can move the code |
| pointer back to where it was for the start of the first branch. (That is, |
| pretend that each branch is the only one.) |
| |
| In the real compile phase, insert an ALT node. Its length field points back |
| to the previous branch while the bracket remains open. At the end the chain |
| is reversed. It's done like this so that the start of the bracket has a |
| zero offset until it is closed, making it possible to detect recursion. */ |
| |
| if (lengthptr != NULL) |
| { |
| code = *codeptr + 1 + LINK_SIZE + skipunits; |
| length += 1 + LINK_SIZE; |
| } |
| else |
| { |
| *code = OP_ALT; |
| PUT(code, 1, (int)(code - last_branch)); |
| bc.current_branch = last_branch = code; |
| code += 1 + LINK_SIZE; |
| } |
| |
| /* Set the lookbehind length (if not in a lookbehind the value will be zero) |
| and then advance past the vertical bar. */ |
| |
| lookbehindlength = META_DATA(*pptr); |
| pptr++; |
| } |
| /* Control never reaches here */ |
| } |
| |
| |
| |
| /************************************************* |
| * Check for anchored pattern * |
| *************************************************/ |
| |
| /* Try to find out if this is an anchored regular expression. Consider each |
| alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket |
| all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then |
| it's anchored. However, if this is a multiline pattern, then only OP_SOD will |
| be found, because ^ generates OP_CIRCM in that mode. |
| |
| We can also consider a regex to be anchored if OP_SOM starts all its branches. |
| This is the code for \G, which means "match at start of match position, taking |
| into account the match offset". |
| |
| A branch is also implicitly anchored if it starts with .* and DOTALL is set, |
| because that will try the rest of the pattern at all possible matching points, |
| so there is no point trying again.... er .... |
| |
| .... except when the .* appears inside capturing parentheses, and there is a |
| subsequent back reference to those parentheses. We haven't enough information |
| to catch that case precisely. |
| |
| At first, the best we could do was to detect when .* was in capturing brackets |
| and the highest back reference was greater than or equal to that level. |
| However, by keeping a bitmap of the first 31 back references, we can catch some |
| of the more common cases more precisely. |
| |
| ... A second exception is when the .* appears inside an atomic group, because |
| this prevents the number of characters it matches from being adjusted. |
| |
| Arguments: |
| code points to start of the compiled pattern |
| bracket_map a bitmap of which brackets we are inside while testing; this |
| handles up to substring 31; after that we just have to take |
| the less precise approach |
| cb points to the compile data block |
| atomcount atomic group level |
| inassert TRUE if in an assertion |
| |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| is_anchored(PCRE2_SPTR code, uint32_t bracket_map, compile_block *cb, |
| int atomcount, BOOL inassert) |
| { |
| do { |
| PCRE2_SPTR scode = first_significant_code( |
| code + PRIV(OP_lengths)[*code], FALSE); |
| int op = *scode; |
| |
| /* Non-capturing brackets */ |
| |
| if (op == OP_BRA || op == OP_BRAPOS || |
| op == OP_SBRA || op == OP_SBRAPOS) |
| { |
| if (!is_anchored(scode, bracket_map, cb, atomcount, inassert)) |
| return FALSE; |
| } |
| |
| /* Capturing brackets */ |
| |
| else if (op == OP_CBRA || op == OP_CBRAPOS || |
| op == OP_SCBRA || op == OP_SCBRAPOS) |
| { |
| int n = GET2(scode, 1+LINK_SIZE); |
| uint32_t new_map = bracket_map | ((n < 32)? (1u << n) : 1); |
| if (!is_anchored(scode, new_map, cb, atomcount, inassert)) return FALSE; |
| } |
| |
| /* Positive forward assertion */ |
| |
| else if (op == OP_ASSERT || op == OP_ASSERT_NA) |
| { |
| if (!is_anchored(scode, bracket_map, cb, atomcount, TRUE)) return FALSE; |
| } |
| |
| /* Condition. If there is no second branch, it can't be anchored. */ |
| |
| else if (op == OP_COND || op == OP_SCOND) |
| { |
| if (scode[GET(scode,1)] != OP_ALT) return FALSE; |
| if (!is_anchored(scode, bracket_map, cb, atomcount, inassert)) |
| return FALSE; |
| } |
| |
| /* Atomic groups */ |
| |
| else if (op == OP_ONCE) |
| { |
| if (!is_anchored(scode, bracket_map, cb, atomcount + 1, inassert)) |
| return FALSE; |
| } |
| |
| /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and |
| it isn't in brackets that are or may be referenced or inside an atomic |
| group or an assertion. Also the pattern must not contain *PRUNE or *SKIP, |
| because these break the feature. Consider, for example, /(?s).*?(*PRUNE)b/ |
| with the subject "aab", which matches "b", i.e. not at the start of a line. |
| There is also an option that disables auto-anchoring. */ |
| |
| else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR || |
| op == OP_TYPEPOSSTAR)) |
| { |
| if (scode[1] != OP_ALLANY || (bracket_map & cb->backref_map) != 0 || |
| atomcount > 0 || cb->had_pruneorskip || inassert || |
| (cb->external_options & PCRE2_NO_DOTSTAR_ANCHOR) != 0) |
| return FALSE; |
| } |
| |
| /* Check for explicit anchoring */ |
| |
| else if (op != OP_SOD && op != OP_SOM && op != OP_CIRC) return FALSE; |
| |
| code += GET(code, 1); |
| } |
| while (*code == OP_ALT); /* Loop for each alternative */ |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Check for starting with ^ or .* * |
| *************************************************/ |
| |
| /* This is called to find out if every branch starts with ^ or .* so that |
| "first char" processing can be done to speed things up in multiline |
| matching and for non-DOTALL patterns that start with .* (which must start at |
| the beginning or after \n). As in the case of is_anchored() (see above), we |
| have to take account of back references to capturing brackets that contain .* |
| because in that case we can't make the assumption. Also, the appearance of .* |
| inside atomic brackets or in an assertion, or in a pattern that contains *PRUNE |
| or *SKIP does not count, because once again the assumption no longer holds. |
| |
| Arguments: |
| code points to start of the compiled pattern or a group |
| bracket_map a bitmap of which brackets we are inside while testing; this |
| handles up to substring 31; after that we just have to take |
| the less precise approach |
| cb points to the compile data |
| atomcount atomic group level |
| inassert TRUE if in an assertion |
| |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| is_startline(PCRE2_SPTR code, unsigned int bracket_map, compile_block *cb, |
| int atomcount, BOOL inassert) |
| { |
| do { |
| PCRE2_SPTR scode = first_significant_code( |
| code + PRIV(OP_lengths)[*code], FALSE); |
| int op = *scode; |
| |
| /* If we are at the start of a conditional assertion group, *both* the |
| conditional assertion *and* what follows the condition must satisfy the test |
| for start of line. Other kinds of condition fail. Note that there may be an |
| auto-callout at the start of a condition. */ |
| |
| if (op == OP_COND) |
| { |
| scode += 1 + LINK_SIZE; |
| |
| if (*scode == OP_CALLOUT) scode += PRIV(OP_lengths)[OP_CALLOUT]; |
| else if (*scode == OP_CALLOUT_STR) scode += GET(scode, 1 + 2*LINK_SIZE); |
| |
| switch (*scode) |
| { |
| case OP_CREF: |
| case OP_DNCREF: |
| case OP_RREF: |
| case OP_DNRREF: |
| case OP_FAIL: |
| case OP_FALSE: |
| case OP_TRUE: |
| return FALSE; |
| |
| default: /* Assertion */ |
| if (!is_startline(scode, bracket_map, cb, atomcount, TRUE)) return FALSE; |
| do scode += GET(scode, 1); while (*scode == OP_ALT); |
| scode += 1 + LINK_SIZE; |
| break; |
| } |
| scode = first_significant_code(scode, FALSE); |
| op = *scode; |
| } |
| |
| /* Non-capturing brackets */ |
| |
| if (op == OP_BRA || op == OP_BRAPOS || |
| op == OP_SBRA || op == OP_SBRAPOS) |
| { |
| if (!is_startline(scode, bracket_map, cb, atomcount, inassert)) |
| return FALSE; |
| } |
| |
| /* Capturing brackets */ |
| |
| else if (op == OP_CBRA || op == OP_CBRAPOS || |
| op == OP_SCBRA || op == OP_SCBRAPOS) |
| { |
| int n = GET2(scode, 1+LINK_SIZE); |
| unsigned int new_map = bracket_map | ((n < 32)? (1u << n) : 1); |
| if (!is_startline(scode, new_map, cb, atomcount, inassert)) return FALSE; |
| } |
| |
| /* Positive forward assertions */ |
| |
| else if (op == OP_ASSERT || op == OP_ASSERT_NA) |
| { |
| if (!is_startline(scode, bracket_map, cb, atomcount, TRUE)) |
| return FALSE; |
| } |
| |
| /* Atomic brackets */ |
| |
| else if (op == OP_ONCE) |
| { |
| if (!is_startline(scode, bracket_map, cb, atomcount + 1, inassert)) |
| return FALSE; |
| } |
| |
| /* .* means "start at start or after \n" if it isn't in atomic brackets or |
| brackets that may be referenced or an assertion, and as long as the pattern |
| does not contain *PRUNE or *SKIP, because these break the feature. Consider, |
| for example, /.*?a(*PRUNE)b/ with the subject "aab", which matches "ab", |
| i.e. not at the start of a line. There is also an option that disables this |
| optimization. */ |
| |
| else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR) |
| { |
| if (scode[1] != OP_ANY || (bracket_map & cb->backref_map) != 0 || |
| atomcount > 0 || cb->had_pruneorskip || inassert || |
| (cb->external_options & PCRE2_NO_DOTSTAR_ANCHOR) != 0) |
| return FALSE; |
| } |
| |
| /* Check for explicit circumflex; anything else gives a FALSE result. Note |
| in particular that this includes atomic brackets OP_ONCE because the number |
| of characters matched by .* cannot be adjusted inside them. */ |
| |
| else if (op != OP_CIRC && op != OP_CIRCM) return FALSE; |
| |
| /* Move on to the next alternative */ |
| |
| code += GET(code, 1); |
| } |
| while (*code == OP_ALT); /* Loop for each alternative */ |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Scan compiled regex for recursion reference * |
| *************************************************/ |
| |
| /* This function scans through a compiled pattern until it finds an instance of |
| OP_RECURSE. |
| |
| Arguments: |
| code points to start of expression |
| utf TRUE in UTF mode |
| |
| Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
| */ |
| |
| static PCRE2_SPTR |
| find_recurse(PCRE2_SPTR code, BOOL utf) |
| { |
| for (;;) |
| { |
| PCRE2_UCHAR c = *code; |
| if (c == OP_END) return NULL; |
| if (c == OP_RECURSE) return code; |
| |
| /* XCLASS is used for classes that cannot be represented just by a bit map. |
| This includes negated single high-valued characters. CALLOUT_STR is used for |
| callouts with string arguments. In both cases the length in the table is |
| zero; the actual length is stored in the compiled code. */ |
| |
| if (c == OP_XCLASS) code += GET(code, 1); |
| else if (c == OP_CALLOUT_STR) code += GET(code, 1 + 2*LINK_SIZE); |
| |
| /* Otherwise, we can get the item's length from the table, except that for |
| repeated character types, we have to test for \p and \P, which have an extra |
| two code units of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, |
| we must add in its length. */ |
| |
| else |
| { |
| switch(c) |
| { |
| case OP_TYPESTAR: |
| case OP_TYPEMINSTAR: |
| case OP_TYPEPLUS: |
| case OP_TYPEMINPLUS: |
| case OP_TYPEQUERY: |
| case OP_TYPEMINQUERY: |
| case OP_TYPEPOSSTAR: |
| case OP_TYPEPOSPLUS: |
| case OP_TYPEPOSQUERY: |
| if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
| break; |
| |
| case OP_TYPEPOSUPTO: |
| case OP_TYPEUPTO: |
| case OP_TYPEMINUPTO: |
| case OP_TYPEEXACT: |
| if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
| code += 2; |
| break; |
| |
| case OP_MARK: |
| case OP_COMMIT_ARG: |
| case OP_PRUNE_ARG: |
| case OP_SKIP_ARG: |
| case OP_THEN_ARG: |
| code += code[1]; |
| break; |
| } |
| |
| /* Add in the fixed length from the table */ |
| |
| code += PRIV(OP_lengths)[c]; |
| |
| /* In UTF-8 and UTF-16 modes, opcodes that are followed by a character may |
| be followed by a multi-unit character. The length in the table is a |
| minimum, so we have to arrange to skip the extra units. */ |
| |
| #ifdef MAYBE_UTF_MULTI |
| if (utf) switch(c) |
| { |
| case OP_CHAR: |
| case OP_CHARI: |
| case OP_NOT: |
| case OP_NOTI: |
| case OP_EXACT: |
| case OP_EXACTI: |
| case OP_NOTEXACT: |
| case OP_NOTEXACTI: |
| case OP_UPTO: |
| case OP_UPTOI: |
| case OP_NOTUPTO: |
| case OP_NOTUPTOI: |
| case OP_MINUPTO: |
| case OP_MINUPTOI: |
| case OP_NOTMINUPTO: |
| case OP_NOTMINUPTOI: |
| case OP_POSUPTO: |
| case OP_POSUPTOI: |
| case OP_NOTPOSUPTO: |
| case OP_NOTPOSUPTOI: |
| case OP_STAR: |
| case OP_STARI: |
| case OP_NOTSTAR: |
| case OP_NOTSTARI: |
| case OP_MINSTAR: |
| case OP_MINSTARI: |
| case OP_NOTMINSTAR: |
| case OP_NOTMINSTARI: |
| case OP_POSSTAR: |
| case OP_POSSTARI: |
| case OP_NOTPOSSTAR: |
| case OP_NOTPOSSTARI: |
| case OP_PLUS: |
| case OP_PLUSI: |
| case OP_NOTPLUS: |
| case OP_NOTPLUSI: |
| case OP_MINPLUS: |
| case OP_MINPLUSI: |
| case OP_NOTMINPLUS: |
| case OP_NOTMINPLUSI: |
| case OP_POSPLUS: |
| case OP_POSPLUSI: |
| case OP_NOTPOSPLUS: |
| case OP_NOTPOSPLUSI: |
| case OP_QUERY: |
| case OP_QUERYI: |
| case OP_NOTQUERY: |
| case OP_NOTQUERYI: |
| case OP_MINQUERY: |
| case OP_MINQUERYI: |
| case OP_NOTMINQUERY: |
| case OP_NOTMINQUERYI: |
| case OP_POSQUERY: |
| case OP_POSQUERYI: |
| case OP_NOTPOSQUERY: |
| case OP_NOTPOSQUERYI: |
| if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
| break; |
| } |
| #else |
| (void)(utf); /* Keep compiler happy by referencing function argument */ |
| #endif /* MAYBE_UTF_MULTI */ |
| } |
| } |
| } |
| |
| |
| |
| /************************************************* |
| * Check for asserted fixed first code unit * |
| *************************************************/ |
| |
| /* During compilation, the "first code unit" settings from forward assertions |
| are discarded, because they can cause conflicts with actual literals that |
| follow. However, if we end up without a first code unit setting for an |
| unanchored pattern, it is worth scanning the regex to see if there is an |
| initial asserted first code unit. If all branches start with the same asserted |
| code unit, or with a non-conditional bracket all of whose alternatives start |
| with the same asserted code unit (recurse ad lib), then we return that code |
| unit, with the flags set to zero or REQ_CASELESS; otherwise return zero with |
| REQ_NONE in the flags. |
| |
| Arguments: |
| code points to start of compiled pattern |
| flags points to the first code unit flags |
| inassert non-zero if in an assertion |
| |
| Returns: the fixed first code unit, or 0 with REQ_NONE in flags |
| */ |
| |
| static uint32_t |
| find_firstassertedcu(PCRE2_SPTR code, uint32_t *flags, uint32_t inassert) |
| { |
| uint32_t c = 0; |
| uint32_t cflags = REQ_NONE; |
| |
| *flags = REQ_NONE; |
| do { |
| uint32_t d; |
| uint32_t dflags; |
| int xl = (*code == OP_CBRA || *code == OP_SCBRA || |
| *code == OP_CBRAPOS || *code == OP_SCBRAPOS)? IMM2_SIZE:0; |
| PCRE2_SPTR scode = first_significant_code(code + 1+LINK_SIZE + xl, TRUE); |
| PCRE2_UCHAR op = *scode; |
| |
| switch(op) |
| { |
| default: |
| return 0; |
| |
| case OP_BRA: |
| case OP_BRAPOS: |
| case OP_CBRA: |
| case OP_SCBRA: |
| case OP_CBRAPOS: |
| case OP_SCBRAPOS: |
| case OP_ASSERT: |
| case OP_ASSERT_NA: |
| case OP_ONCE: |
| case OP_SCRIPT_RUN: |
| d = find_firstassertedcu(scode, &dflags, inassert + |
| ((op == OP_ASSERT || op == OP_ASSERT_NA)?1:0)); |
| if (dflags >= REQ_NONE) return 0; |
| if (cflags >= REQ_NONE) { c = d; cflags = dflags; } |
| else if (c != d || cflags != dflags) return 0; |
| break; |
| |
| case OP_EXACT: |
| scode += IMM2_SIZE; |
| /* Fall through */ |
| |
| case OP_CHAR: |
| case OP_PLUS: |
| case OP_MINPLUS: |
| case OP_POSPLUS: |
| if (inassert == 0) return 0; |
| if (cflags >= REQ_NONE) { c = scode[1]; cflags = 0; } |
| else if (c != scode[1]) return 0; |
| break; |
| |
| case OP_EXACTI: |
| scode += IMM2_SIZE; |
| /* Fall through */ |
| |
| case OP_CHARI: |
| case OP_PLUSI: |
| case OP_MINPLUSI: |
| case OP_POSPLUSI: |
| if (inassert == 0) return 0; |
| |
| /* If the character is more than one code unit long, we cannot set its |
| first code unit when matching caselessly. Later scanning may pick up |
| multiple code units. */ |
| |
| #ifdef SUPPORT_UNICODE |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| if (scode[1] >= 0x80) return 0; |
| #elif PCRE2_CODE_UNIT_WIDTH == 16 |
| if (scode[1] >= 0xd800 && scode[1] <= 0xdfff) return 0; |
| #endif |
| #endif |
| |
| if (cflags >= REQ_NONE) { c = scode[1]; cflags = REQ_CASELESS; } |
| else if (c != scode[1]) return 0; |
| break; |
| } |
| |
| code += GET(code, 1); |
| } |
| while (*code == OP_ALT); |
| |
| *flags = cflags; |
| return c; |
| } |
| |
| |
| |
| /************************************************* |
| * Add an entry to the name/number table * |
| *************************************************/ |
| |
| /* This function is called between compiling passes to add an entry to the |
| name/number table, maintaining alphabetical order. Checking for permitted |
| and forbidden duplicates has already been done. |
| |
| Arguments: |
| cb the compile data block |
| name the name to add |
| length the length of the name |
| groupno the group number |
| tablecount the count of names in the table so far |
| |
| Returns: nothing |
| */ |
| |
| static void |
| add_name_to_table(compile_block *cb, PCRE2_SPTR name, int length, |
| unsigned int groupno, uint32_t tablecount) |
| { |
| uint32_t i; |
| PCRE2_UCHAR *slot = cb->name_table; |
| |
| for (i = 0; i < tablecount; i++) |
| { |
| int crc = memcmp(name, slot+IMM2_SIZE, CU2BYTES(length)); |
| if (crc == 0 && slot[IMM2_SIZE+length] != 0) |
| crc = -1; /* Current name is a substring */ |
| |
| /* Make space in the table and break the loop for an earlier name. For a |
| duplicate or later name, carry on. We do this for duplicates so that in the |
| simple case (when ?(| is not used) they are in order of their numbers. In all |
| cases they are in the order in which they appear in the pattern. */ |
| |
| if (crc < 0) |
| { |
| (void)memmove(slot + cb->name_entry_size, slot, |
| CU2BYTES((tablecount - i) * cb->name_entry_size)); |
| break; |
| } |
| |
| /* Continue the loop for a later or duplicate name */ |
| |
| slot += cb->name_entry_size; |
| } |
| |
| PUT2(slot, 0, groupno); |
| memcpy(slot + IMM2_SIZE, name, CU2BYTES(length)); |
| |
| /* Add a terminating zero and fill the rest of the slot with zeroes so that |
| the memory is all initialized. Otherwise valgrind moans about uninitialized |
| memory when saving serialized compiled patterns. */ |
| |
| memset(slot + IMM2_SIZE + length, 0, |
| CU2BYTES(cb->name_entry_size - length - IMM2_SIZE)); |
| } |
| |
| |
| |
| /************************************************* |
| * Skip in parsed pattern * |
| *************************************************/ |
| |
| /* This function is called to skip parts of the parsed pattern when finding the |
| length of a lookbehind branch. It is called after (*ACCEPT) and (*FAIL) to find |
| the end of the branch, it is called to skip over an internal lookaround or |
| (DEFINE) group, and it is also called to skip to the end of a class, during |
| which it will never encounter nested groups (but there's no need to have |
| special code for that). |
| |
| When called to find the end of a branch or group, pptr must point to the first |
| meta code inside the branch, not the branch-starting code. In other cases it |
| can point to the item that causes the function to be called. |
| |
| Arguments: |
| pptr current pointer to skip from |
| skiptype PSKIP_CLASS when skipping to end of class |
| PSKIP_ALT when META_ALT ends the skip |
| PSKIP_KET when only META_KET ends the skip |
| |
| Returns: new value of pptr |
| NULL if META_END is reached - should never occur |
| or for an unknown meta value - likewise |
| */ |
| |
| static uint32_t * |
| parsed_skip(uint32_t *pptr, uint32_t skiptype) |
| { |
| uint32_t nestlevel = 0; |
| |
| for (;; pptr++) |
| { |
| uint32_t meta = META_CODE(*pptr); |
| |
| switch(meta) |
| { |
| default: /* Just skip over most items */ |
| if (meta < META_END) continue; /* Literal */ |
| break; |
| |
| /* This should never occur. */ |
| |
| case META_END: |
| return NULL; |
| |
| /* The data for these items is variable in length. */ |
| |
| case META_BACKREF: /* Offset is present only if group >= 10 */ |
| if (META_DATA(*pptr) >= 10) pptr += SIZEOFFSET; |
| break; |
| |
| case META_ESCAPE: /* A few escapes are followed by data items. */ |
| switch (META_DATA(*pptr)) |
| { |
| case ESC_P: |
| case ESC_p: |
| pptr += 1; |
| break; |
| |
| case ESC_g: |
| case ESC_k: |
| pptr += 1 + SIZEOFFSET; |
| break; |
| } |
| break; |
| |
| case META_MARK: /* Add the length of the name. */ |
| case META_COMMIT_ARG: |
| case META_PRUNE_ARG: |
| case META_SKIP_ARG: |
| case META_THEN_ARG: |
| pptr += pptr[1]; |
| break; |
| |
| /* These are the "active" items in this loop. */ |
| |
| case META_CLASS_END: |
| if (skiptype == PSKIP_CLASS) return pptr; |
| break; |
| |
| case META_ATOMIC: |
| case META_CAPTURE: |
| case META_COND_ASSERT: |
| case META_COND_DEFINE: |
| case META_COND_NAME: |
| case META_COND_NUMBER: |
| case META_COND_RNAME: |
| case META_COND_RNUMBER: |
| case META_COND_VERSION: |
| case META_LOOKAHEAD: |
| case META_LOOKAHEADNOT: |
| case META_LOOKAHEAD_NA: |
| case META_LOOKBEHIND: |
| case META_LOOKBEHINDNOT: |
| case META_LOOKBEHIND_NA: |
| case META_NOCAPTURE: |
| case META_SCRIPT_RUN: |
| nestlevel++; |
| break; |
| |
| case META_ALT: |
| if (nestlevel == 0 && skiptype == PSKIP_ALT) return pptr; |
| break; |
| |
| case META_KET: |
| if (nestlevel == 0) return pptr; |
| nestlevel--; |
| break; |
| } |
| |
| /* The extra data item length for each meta is in a table. */ |
| |
| meta = (meta >> 16) & 0x7fff; |
| if (meta >= sizeof(meta_extra_lengths)) return NULL; |
| pptr += meta_extra_lengths[meta]; |
| } |
| /* Control never reaches here */ |
| return pptr; |
| } |
| |
| |
| |
| /************************************************* |
| * Find length of a parsed group * |
| *************************************************/ |
| |
| /* This is called for nested groups within a branch of a lookbehind whose |
| length is being computed. If all the branches in the nested group have the same |
| length, that is OK. On entry, the pointer must be at the first element after |
| the group initializing code. On exit it points to OP_KET. Caching is used to |
| improve processing speed when the same capturing group occurs many times. |
| |
| Arguments: |
| pptrptr pointer to pointer in the parsed pattern |
| isinline FALSE if a reference or recursion; TRUE for inline group |
| errcodeptr pointer to the errorcode |
| lcptr pointer to the loop counter |
| group number of captured group or -1 for a non-capturing group |
| recurses chain of recurse_check to catch mutual recursion |
| cb pointer to the compile data |
| |
| Returns: the group length or a negative number |
| */ |
| |
| static int |
| get_grouplength(uint32_t **pptrptr, BOOL isinline, int *errcodeptr, int *lcptr, |
| int group, parsed_recurse_check *recurses, compile_block *cb) |
| { |
| int branchlength; |
| int grouplength = -1; |
| |
| /* The cache can be used only if there is no possibility of there being two |
| groups with the same number. We do not need to set the end pointer for a group |
| that is being processed as a back reference or recursion, but we must do so for |
| an inline group. */ |
| |
| if (group > 0 && (cb->external_flags & PCRE2_DUPCAPUSED) == 0) |
| { |
| uint32_t groupinfo = cb->groupinfo[group]; |
| if ((groupinfo & GI_NOT_FIXED_LENGTH) != 0) return -1; |
| if ((groupinfo & GI_SET_FIXED_LENGTH) != 0) |
| { |
| if (isinline) *pptrptr = parsed_skip(*pptrptr, PSKIP_KET); |
| return groupinfo & GI_FIXED_LENGTH_MASK; |
| } |
| } |
| |
| /* Scan the group. In this case we find the end pointer of necessity. */ |
| |
| for(;;) |
| { |
| branchlength = get_branchlength(pptrptr, errcodeptr, lcptr, recurses, cb); |
| if (branchlength < 0) goto ISNOTFIXED; |
| if (grouplength == -1) grouplength = branchlength; |
| else if (grouplength != branchlength) goto ISNOTFIXED; |
| if (**pptrptr == META_KET) break; |
| *pptrptr += 1; /* Skip META_ALT */ |
| } |
| |
| if (group > 0) |
| cb->groupinfo[group] |= (uint32_t)(GI_SET_FIXED_LENGTH | grouplength); |
| return grouplength; |
| |
| ISNOTFIXED: |
| if (group > 0) cb->groupinfo[group] |= GI_NOT_FIXED_LENGTH; |
| return -1; |
| } |
| |
| |
| |
| /************************************************* |
| * Find length of a parsed branch * |
| *************************************************/ |
| |
| /* Return a fixed length for a branch in a lookbehind, giving an error if the |
| length is not fixed. On entry, *pptrptr points to the first element inside the |
| branch. On exit it is set to point to the ALT or KET. |
| |
| Arguments: |
| pptrptr pointer to pointer in the parsed pattern |
| errcodeptr pointer to error code |
| lcptr pointer to loop counter |
| recurses chain of recurse_check to catch mutual recursion |
| cb pointer to compile block |
| |
| Returns: the length, or a negative value on error |
| */ |
| |
| static int |
| get_branchlength(uint32_t **pptrptr, int *errcodeptr, int *lcptr, |
| parsed_recurse_check *recurses, compile_block *cb) |
| { |
| int branchlength = 0; |
| int grouplength; |
| uint32_t lastitemlength = 0; |
| uint32_t *pptr = *pptrptr; |
| PCRE2_SIZE offset; |
| parsed_recurse_check this_recurse; |
| |
| /* A large and/or complex regex can take too long to process. This can happen |
| more often when (?| groups are present in the pattern because their length |
| cannot be cached. */ |
| |
| if ((*lcptr)++ > 2000) |
| { |
| *errcodeptr = ERR35; /* Lookbehind is too complicated */ |
| return -1; |
| } |
| |
| /* Scan the branch, accumulating the length. */ |
| |
| for (;; pptr++) |
| { |
| parsed_recurse_check *r; |
| uint32_t *gptr, *gptrend; |
| uint32_t escape; |
| uint32_t group = 0; |
| uint32_t itemlength = 0; |
| |
| if (*pptr < META_END) |
| { |
| itemlength = 1; |
| } |
| |
| else switch (META_CODE(*pptr)) |
| { |
| case META_KET: |
| case META_ALT: |
| goto EXIT; |
| |
| /* (*ACCEPT) and (*FAIL) terminate the branch, but we must skip to the |
| actual termination. */ |
| |
| case META_ACCEPT: |
| case META_FAIL: |
| pptr = parsed_skip(pptr, PSKIP_ALT); |
| if (pptr == NULL) goto PARSED_SKIP_FAILED; |
| goto EXIT; |
| |
| case META_MARK: |
| case META_COMMIT_ARG: |
| case META_PRUNE_ARG: |
| case META_SKIP_ARG: |
| case META_THEN_ARG: |
| pptr += pptr[1] + 1; |
| break; |
| |
| case META_CIRCUMFLEX: |
| case META_COMMIT: |
| case META_DOLLAR: |
| case META_PRUNE: |
| case META_SKIP: |
| case META_THEN: |
| break; |
| |
| case META_OPTIONS: |
| pptr += 1; |
| break; |
| |
| case META_BIGVALUE: |
| itemlength = 1; |
| pptr += 1; |
| break; |
| |
| case META_CLASS: |
| case META_CLASS_NOT: |
| itemlength = 1; |
| pptr = parsed_skip(pptr, PSKIP_CLASS); |
| if (pptr == NULL) goto PARSED_SKIP_FAILED; |
| break; |
| |
| case META_CLASS_EMPTY_NOT: |
| case META_DOT: |
| itemlength = 1; |
| break; |
| |
| case META_CALLOUT_NUMBER: |
| pptr += 3; |
| break; |
| |
| case META_CALLOUT_STRING: |
| pptr += 3 + SIZEOFFSET; |
| break; |
| |
| /* Only some escapes consume a character. Of those, \R and \X are never |
| allowed because they might match more than character. \C is allowed only in |
| 32-bit and non-UTF 8/16-bit modes. */ |
| |
| case META_ESCAPE: |
| escape = META_DATA(*pptr); |
| if (escape == ESC_R || escape == ESC_X) return -1; |
| if (escape > ESC_b && escape < ESC_Z) |
| { |
| #if PCRE2_CODE_UNIT_WIDTH != 32 |
| if ((cb->external_options & PCRE2_UTF) != 0 && escape == ESC_C) |
| { |
| *errcodeptr = ERR36; |
| return -1; |
| } |
| #endif |
| itemlength = 1; |
| if (escape == ESC_p || escape == ESC_P) pptr++; /* Skip prop data */ |
| } |
| break; |
| |
| /* Lookaheads do not contribute to the length of this branch, but they may |
| contain lookbehinds within them whose lengths need to be set. */ |
| |
| case META_LOOKAHEAD: |
| case META_LOOKAHEADNOT: |
| case META_LOOKAHEAD_NA: |
| *errcodeptr = check_lookbehinds(pptr + 1, &pptr, recurses, cb, lcptr); |
| if (*errcodeptr != 0) return -1; |
| |
| /* Ignore any qualifiers that follow a lookahead assertion. */ |
| |
| switch (pptr[1]) |
| { |
| case META_ASTERISK: |
| case META_ASTERISK_PLUS: |
| case META_ASTERISK_QUERY: |
| case META_PLUS: |
| case META_PLUS_PLUS: |
| case META_PLUS_QUERY: |
| case META_QUERY: |
| case META_QUERY_PLUS: |
| case META_QUERY_QUERY: |
| pptr++; |
| break; |
| |
| case META_MINMAX: |
| case META_MINMAX_PLUS: |
| case META_MINMAX_QUERY: |
| pptr += 3; |
| break; |
| |
| default: |
| break; |
| } |
| break; |
| |
| /* A nested lookbehind does not contribute any length to this lookbehind, |
| but must itself be checked and have its lengths set. */ |
| |
| case META_LOOKBEHIND: |
| case META_LOOKBEHINDNOT: |
| case META_LOOKBEHIND_NA: |
| if (!set_lookbehind_lengths(&pptr, errcodeptr, lcptr, recurses, cb)) |
| return -1; |
| break; |
| |
| /* Back references and recursions are handled by very similar code. At this |
| stage, the names generated in the parsing pass are available, but the main |
| name table has not yet been created. So for the named varieties, scan the |
| list of names in order to get the number of the first one in the pattern, |
| and whether or not this name is duplicated. */ |
| |
| case META_BACKREF_BYNAME: |
| if ((cb->external_options & PCRE2_MATCH_UNSET_BACKREF) != 0) |
| goto ISNOTFIXED; |
| /* Fall through */ |
| |
| case META_RECURSE_BYNAME: |
| { |
| int i; |
| PCRE2_SPTR name; |
| BOOL is_dupname = FALSE; |
| named_group *ng = cb->named_groups; |
| uint32_t meta_code = META_CODE(*pptr); |
| uint32_t length = *(++pptr); |
| |
| GETPLUSOFFSET(offset, pptr); |
| name = cb->start_pattern + offset; |
| for (i = 0; i < cb->names_found; i++, ng++) |
| { |
| if (length == ng->length && PRIV(strncmp)(name, ng->name, length) == 0) |
| { |
| group = ng->number; |
| is_dupname = ng->isdup; |
| break; |
| } |
| } |
| |
| if (group == 0) |
| { |
| *errcodeptr = ERR15; /* Non-existent subpattern */ |
| cb->erroroffset = offset; |
| return -1; |
| } |
| |
| /* A numerical back reference can be fixed length if duplicate capturing |
| groups are not being used. A non-duplicate named back reference can also |
| be handled. */ |
| |
| if (meta_code == META_RECURSE_BYNAME || |
| (!is_dupname && (cb->external_flags & PCRE2_DUPCAPUSED) == 0)) |
| goto RECURSE_OR_BACKREF_LENGTH; /* Handle as a numbered version. */ |
| } |
| goto ISNOTFIXED; /* Duplicate name or number */ |
| |
| /* The offset values for back references < 10 are in a separate vector |
| because otherwise they would use more than two parsed pattern elements on |
| 64-bit systems. */ |
| |
| case META_BACKREF: |
| if ((cb->external_options & PCRE2_MATCH_UNSET_BACKREF) != 0 || |
| (cb->external_flags & PCRE2_DUPCAPUSED) != 0) |
| goto ISNOTFIXED; |
| group = META_DATA(*pptr); |
| if (group < 10) |
| { |
| offset = cb->small_ref_offset[group]; |
| goto RECURSE_OR_BACKREF_LENGTH; |
| } |
| |
| /* Fall through */ |
| /* For groups >= 10 - picking up group twice does no harm. */ |
| |
| /* A true recursion implies not fixed length, but a subroutine call may |
| be OK. Back reference "recursions" are also failed. */ |
| |
| case META_RECURSE: |
| group = META_DATA(*pptr); |
| GETPLUSOFFSET(offset, pptr); |
| |
| RECURSE_OR_BACKREF_LENGTH: |
| if (group > cb->bracount) |
| { |
| cb->erroroffset = offset; |
| *errcodeptr = ERR15; /* Non-existent subpattern */ |
| return -1; |
| } |
| if (group == 0) goto ISNOTFIXED; /* Local recursion */ |
| for (gptr = cb->parsed_pattern; *gptr != META_END; gptr++) |
| { |
| if (META_CODE(*gptr) == META_BIGVALUE) gptr++; |
| else if (*gptr == (META_CAPTURE | group)) break; |
| } |
| |
| /* We must start the search for the end of the group at the first meta code |
| inside the group. Otherwise it will be treated as an enclosed group. */ |
| |
| gptrend = parsed_skip(gptr + 1, PSKIP_KET); |
| if (gptrend == NULL) goto PARSED_SKIP_FAILED; |
| if (pptr > gptr && pptr < gptrend) goto ISNOTFIXED; /* Local recursion */ |
| for (r = recurses; r != NULL; r = r->prev) if (r->groupptr == gptr) break; |
| if (r != NULL) goto ISNOTFIXED; /* Mutual recursion */ |
| this_recurse.prev = recurses; |
| this_recurse.groupptr = gptr; |
| |
| /* We do not need to know the position of the end of the group, that is, |
| gptr is not used after the call to get_grouplength(). Setting the second |
| argument FALSE stops it scanning for the end when the length can be found |
| in the cache. */ |
| |
| gptr++; |
| grouplength = get_grouplength(&gptr, FALSE, errcodeptr, lcptr, group, |
| &this_recurse, cb); |
| if (grouplength < 0) |
| { |
| if (*errcodeptr == 0) goto ISNOTFIXED; |
| return -1; /* Error already set */ |
| } |
| itemlength = grouplength; |
| break; |
| |
| /* A (DEFINE) group is never obeyed inline and so it does not contribute to |
| the length of this branch. Skip from the following item to the next |
| unpaired ket. */ |
| |
| case META_COND_DEFINE: |
| pptr = parsed_skip(pptr + 1, PSKIP_KET); |
| break; |
| |
| /* Check other nested groups - advance past the initial data for each type |
| and then seek a fixed length with get_grouplength(). */ |
| |
| case META_COND_NAME: |
| case META_COND_NUMBER: |
| case META_COND_RNAME: |
| case META_COND_RNUMBER: |
| pptr += 2 + SIZEOFFSET; |
| goto CHECK_GROUP; |
| |
| case META_COND_ASSERT: |
| pptr += 1; |
| goto CHECK_GROUP; |
| |
| case META_COND_VERSION: |
| pptr += 4; |
| goto CHECK_GROUP; |
| |
| case META_CAPTURE: |
| group = META_DATA(*pptr); |
| /* Fall through */ |
| |
| case META_ATOMIC: |
| case META_NOCAPTURE: |
| case META_SCRIPT_RUN: |
| pptr++; |
| CHECK_GROUP: |
| grouplength = get_grouplength(&pptr, TRUE, errcodeptr, lcptr, group, |
| recurses, cb); |
| if (grouplength < 0) return -1; |
| itemlength = grouplength; |
| break; |
| |
| /* Exact repetition is OK; variable repetition is not. A repetition of zero |
| must subtract the length that has already been added. */ |
| |
| case META_MINMAX: |
| case META_MINMAX_PLUS: |
| case META_MINMAX_QUERY: |
| if (pptr[1] == pptr[2]) |
| { |
| switch(pptr[1]) |
| { |
| case 0: |
| branchlength -= lastitemlength; |
| break; |
| |
| case 1: |
| itemlength = 0; |
| break; |
| |
| default: /* Check for integer overflow */ |
| if (lastitemlength != 0 && /* Should not occur, but just in case */ |
| INT_MAX/lastitemlength < pptr[1] - 1) |
| { |
| *errcodeptr = ERR87; /* Integer overflow; lookbehind too big */ |
| return -1; |
| } |
| itemlength = (pptr[1] - 1) * lastitemlength; |
| break; |
| } |
| pptr += 2; |
| break; |
| } |
| /* Fall through */ |
| |
| /* Any other item means this branch does not have a fixed length. */ |
| |
| default: |
| ISNOTFIXED: |
| *errcodeptr = ERR25; /* Not fixed length */ |
| return -1; |
| } |
| |
| /* Add the item length to the branchlength, checking for integer overflow and |
| for the branch length exceeding the limit. */ |
| |
| if (INT_MAX - branchlength < (int)itemlength || |
| (branchlength += itemlength) > LOOKBEHIND_MAX) |
| { |
| *errcodeptr = ERR87; |
| return -1; |
| } |
| |
| /* Save this item length for use if the next item is a quantifier. */ |
| |
| lastitemlength = itemlength; |
| } |
| |
| EXIT: |
| *pptrptr = pptr; |
| return branchlength; |
| |
| PARSED_SKIP_FAILED: |
| *errcodeptr = ERR90; |
| return -1; |
| } |
| |
| |
| |
| /************************************************* |
| * Set lengths in a lookbehind * |
| *************************************************/ |
| |
| /* This function is called for each lookbehind, to set the lengths in its |
| branches. An error occurs if any branch does not have a fixed length that is |
| less than the maximum (65535). On exit, the pointer must be left on the final |
| ket. |
| |
| The function also maintains the max_lookbehind value. Any lookbehind branch |
| that contains a nested lookbehind may actually look further back than the |
| length of the branch. The additional amount is passed back from |
| get_branchlength() as an "extra" value. |
| |
| Arguments: |
| pptrptr pointer to pointer in the parsed pattern |
| errcodeptr pointer to error code |
| lcptr pointer to loop counter |
| recurses chain of recurse_check to catch mutual recursion |
| cb pointer to compile block |
| |
| Returns: TRUE if all is well |
| FALSE otherwise, with error code and offset set |
| */ |
| |
| static BOOL |
| set_lookbehind_lengths(uint32_t **pptrptr, int *errcodeptr, int *lcptr, |
| parsed_recurse_check *recurses, compile_block *cb) |
| { |
| PCRE2_SIZE offset; |
| int branchlength; |
| uint32_t *bptr = *pptrptr; |
| |
| READPLUSOFFSET(offset, bptr); /* Offset for error messages */ |
| *pptrptr += SIZEOFFSET; |
| |
| do |
| { |
| *pptrptr += 1; |
| branchlength = get_branchlength(pptrptr, errcodeptr, lcptr, recurses, cb); |
| if (branchlength < 0) |
| { |
| /* The errorcode and offset may already be set from a nested lookbehind. */ |
| if (*errcodeptr == 0) *errcodeptr = ERR25; |
| if (cb->erroroffset == PCRE2_UNSET) cb->erroroffset = offset; |
| return FALSE; |
| } |
| if (branchlength > cb->max_lookbehind) cb->max_lookbehind = branchlength; |
| *bptr |= branchlength; /* branchlength never more than 65535 */ |
| bptr = *pptrptr; |
| } |
| while (*bptr == META_ALT); |
| |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Check parsed pattern lookbehinds * |
| *************************************************/ |
| |
| /* This function is called at the end of parsing a pattern if any lookbehinds |
| were encountered. It scans the parsed pattern for them, calling |
| set_lookbehind_lengths() for each one. At the start, the errorcode is zero and |
| the error offset is marked unset. The enables the functions above not to |
| override settings from deeper nestings. |
| |
| This function is called recursively from get_branchlength() for lookaheads in |
| order to process any lookbehinds that they may contain. It stops when it hits a |
| non-nested closing parenthesis in this case, returning a pointer to it. |
| |
| Arguments |
| pptr points to where to start (start of pattern or start of lookahead) |
| retptr if not NULL, return the ket pointer here |
| recurses chain of recurse_check to catch mutual recursion |
| cb points to the compile block |
| lcptr points to loop counter |
| |
| Returns: 0 on success, or an errorcode (cb->erroroffset will be set) |
| */ |
| |
| static int |
| check_lookbehinds(uint32_t *pptr, uint32_t **retptr, |
| parsed_recurse_check *recurses, compile_block *cb, int *lcptr) |
| { |
| int errorcode = 0; |
| int nestlevel = 0; |
| |
| cb->erroroffset = PCRE2_UNSET; |
| |
| for (; *pptr != META_END; pptr++) |
| { |
| if (*pptr < META_END) continue; /* Literal */ |
| |
| switch (META_CODE(*pptr)) |
| { |
| default: |
| return ERR70; /* Unrecognized meta code */ |
| |
| case META_ESCAPE: |
| if (*pptr - META_ESCAPE == ESC_P || *pptr - META_ESCAPE == ESC_p) |
| pptr += 1; |
| break; |
| |
| case META_KET: |
| if (--nestlevel < 0) |
| { |
| if (retptr != NULL) *retptr = pptr; |
| return 0; |
| } |
| break; |
| |
| case META_ATOMIC: |
| case META_CAPTURE: |
| case META_COND_ASSERT: |
| case META_LOOKAHEAD: |
| case META_LOOKAHEADNOT: |
| case META_LOOKAHEAD_NA: |
| case META_NOCAPTURE: |
| case META_SCRIPT_RUN: |
| nestlevel++; |
| break; |
| |
| case META_ACCEPT: |
| case META_ALT: |
| case META_ASTERISK: |
| case META_ASTERISK_PLUS: |
| case META_ASTERISK_QUERY: |
| case META_BACKREF: |
| case META_CIRCUMFLEX: |
| case META_CLASS: |
| case META_CLASS_EMPTY: |
| case META_CLASS_EMPTY_NOT: |
| case META_CLASS_END: |
| case META_CLASS_NOT: |
| case META_COMMIT: |
| case META_DOLLAR: |
| case META_DOT: |
| case META_FAIL: |
| case META_PLUS: |
| case META_PLUS_PLUS: |
| case META_PLUS_QUERY: |
| case META_PRUNE: |
| case META_QUERY: |
| case META_QUERY_PLUS: |
| case META_QUERY_QUERY: |
| case META_RANGE_ESCAPED: |
| case META_RANGE_LITERAL: |
| case META_SKIP: |
| case META_THEN: |
| break; |
| |
| case META_RECURSE: |
| pptr += SIZEOFFSET; |
| break; |
| |
| case META_BACKREF_BYNAME: |
| case META_RECURSE_BYNAME: |
| pptr += 1 + SIZEOFFSET; |
| break; |
| |
| case META_COND_DEFINE: |
| pptr += SIZEOFFSET; |
| nestlevel++; |
| break; |
| |
| case META_COND_NAME: |
| case META_COND_NUMBER: |
| case META_COND_RNAME: |
| case META_COND_RNUMBER: |
| pptr += 1 + SIZEOFFSET; |
| nestlevel++; |
| break; |
| |
| case META_COND_VERSION: |
| pptr += 3; |
| nestlevel++; |
| break; |
| |
| case META_CALLOUT_STRING: |
| pptr += 3 + SIZEOFFSET; |
| break; |
| |
| case META_BIGVALUE: |
| case META_OPTIONS: |
| case META_POSIX: |
| case META_POSIX_NEG: |
| pptr += 1; |
| break; |
| |
| case META_MINMAX: |
| case META_MINMAX_QUERY: |
| case META_MINMAX_PLUS: |
| pptr += 2; |
| break; |
| |
| case META_CALLOUT_NUMBER: |
| pptr += 3; |
| break; |
| |
| case META_MARK: |
| case META_COMMIT_ARG: |
| case META_PRUNE_ARG: |
| case META_SKIP_ARG: |
| case META_THEN_ARG: |
| pptr += 1 + pptr[1]; |
| break; |
| |
| case META_LOOKBEHIND: |
| case META_LOOKBEHINDNOT: |
| case META_LOOKBEHIND_NA: |
| if (!set_lookbehind_lengths(&pptr, &errorcode, lcptr, recurses, cb)) |
| return errorcode; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| /************************************************* |
| * External function to compile a pattern * |
| *************************************************/ |
| |
| /* This function reads a regular expression in the form of a string and returns |
| a pointer to a block of store holding a compiled version of the expression. |
| |
| Arguments: |
| pattern the regular expression |
| patlen the length of the pattern, or PCRE2_ZERO_TERMINATED |
| options option bits |
| errorptr pointer to errorcode |
| erroroffset pointer to error offset |
| ccontext points to a compile context or is NULL |
| |
| Returns: pointer to compiled data block, or NULL on error, |
| with errorcode and erroroffset set |
| */ |
| |
| PCRE2_EXP_DEFN pcre2_code * PCRE2_CALL_CONVENTION |
| pcre2_compile(PCRE2_SPTR pattern, PCRE2_SIZE patlen, uint32_t options, |
| int *errorptr, PCRE2_SIZE *erroroffset, pcre2_compile_context *ccontext) |
| { |
| BOOL utf; /* Set TRUE for UTF mode */ |
| BOOL ucp; /* Set TRUE for UCP mode */ |
| BOOL has_lookbehind = FALSE; /* Set TRUE if a lookbehind is found */ |
| BOOL zero_terminated; /* Set TRUE for zero-terminated pattern */ |
| pcre2_real_code *re = NULL; /* What we will return */ |
| compile_block cb; /* "Static" compile-time data */ |
| const uint8_t *tables; /* Char tables base pointer */ |
| |
| PCRE2_UCHAR *code; /* Current pointer in compiled code */ |
| PCRE2_SPTR codestart; /* Start of compiled code */ |
| PCRE2_SPTR ptr; /* Current pointer in pattern */ |
| uint32_t *pptr; /* Current pointer in parsed pattern */ |
| |
| PCRE2_SIZE length = 1; /* Allow for final END opcode */ |
| PCRE2_SIZE usedlength; /* Actual length used */ |
| PCRE2_SIZE re_blocksize; /* Size of memory block */ |
| PCRE2_SIZE big32count = 0; /* 32-bit literals >= 0x80000000 */ |
| PCRE2_SIZE parsed_size_needed; /* Needed for parsed pattern */ |
| |
| uint32_t firstcuflags, reqcuflags; /* Type of first/req code unit */ |
| uint32_t firstcu, reqcu; /* Value of first/req code unit */ |
| uint32_t setflags = 0; /* NL and BSR set flags */ |
| |
| uint32_t skipatstart; /* When checking (*UTF) etc */ |
| uint32_t limit_heap = UINT32_MAX; |
| uint32_t limit_match = UINT32_MAX; /* Unset match limits */ |
| uint32_t limit_depth = UINT32_MAX; |
| |
| int newline = 0; /* Unset; can be set by the pattern */ |
| int bsr = 0; /* Unset; can be set by the pattern */ |
| int errorcode = 0; /* Initialize to avoid compiler warn */ |
| int regexrc; /* Return from compile */ |
| |
| uint32_t i; /* Local loop counter */ |
| |
| /* Comments at the head of this file explain about these variables. */ |
| |
| uint32_t stack_groupinfo[GROUPINFO_DEFAULT_SIZE]; |
| uint32_t stack_parsed_pattern[PARSED_PATTERN_DEFAULT_SIZE]; |
| named_group named_groups[NAMED_GROUP_LIST_SIZE]; |
| |
| /* The workspace is used in different ways in the different compiling phases. |
| It needs to be 16-bit aligned for the preliminary parsing scan. */ |
| |
| uint32_t c16workspace[C16_WORK_SIZE]; |
| PCRE2_UCHAR *cworkspace = (PCRE2_UCHAR *)c16workspace; |
| |
| |
| /* -------------- Check arguments and set up the pattern ----------------- */ |
| |
| /* There must be error code and offset pointers. */ |
| |
| if (errorptr == NULL || erroroffset == NULL) return NULL; |
| *errorptr = ERR0; |
| *erroroffset = 0; |
| |
| /* There must be a pattern! */ |
| |
| if (pattern == NULL) |
| { |
| *errorptr = ERR16; |
| return NULL; |
| } |
| |
| /* A NULL compile context means "use a default context" */ |
| |
| if (ccontext == NULL) |
| ccontext = (pcre2_compile_context *)(&PRIV(default_compile_context)); |
| |
| /* PCRE2_MATCH_INVALID_UTF implies UTF */ |
| |
| if ((options & PCRE2_MATCH_INVALID_UTF) != 0) options |= PCRE2_UTF; |
| |
| /* Check that all undefined public option bits are zero. */ |
| |
| if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0 || |
| (ccontext->extra_options & ~PUBLIC_COMPILE_EXTRA_OPTIONS) != 0) |
| { |
| *errorptr = ERR17; |
| return NULL; |
| } |
| |
| if ((options & PCRE2_LITERAL) != 0 && |
| ((options & ~PUBLIC_LITERAL_COMPILE_OPTIONS) != 0 || |
| (ccontext->extra_options & ~PUBLIC_LITERAL_COMPILE_EXTRA_OPTIONS) != 0)) |
| { |
| *errorptr = ERR92; |
| return NULL; |
| } |
| |
| /* A zero-terminated pattern is indicated by the special length value |
| PCRE2_ZERO_TERMINATED. Check for an overlong pattern. */ |
| |
| if ((zero_terminated = (patlen == PCRE2_ZERO_TERMINATED))) |
| patlen = PRIV(strlen)(pattern); |
| |
| if (patlen > ccontext->max_pattern_length) |
| { |
| *errorptr = ERR88; |
| return NULL; |
| } |
| |
| /* From here on, all returns from this function should end up going via the |
| EXIT label. */ |
| |
| |
| /* ------------ Initialize the "static" compile data -------------- */ |
| |
| tables = (ccontext->tables != NULL)? ccontext->tables : PRIV(default_tables); |
| |
| cb.lcc = tables + lcc_offset; /* Individual */ |
| cb.fcc = tables + fcc_offset; /* character */ |
| cb.cbits = tables + cbits_offset; /* tables */ |
| cb.ctypes = tables + ctypes_offset; |
| |
| cb.assert_depth = 0; |
| cb.bracount = 0; |
| cb.cx = ccontext; |
| cb.dupnames = FALSE; |
| cb.end_pattern = pattern + patlen; |
| cb.erroroffset = 0; |
| cb.external_flags = 0; |
| cb.external_options = options; |
| cb.groupinfo = stack_groupinfo; |
| cb.had_recurse = FALSE; |
| cb.lastcapture = 0; |
| cb.max_lookbehind = 0; |
| cb.name_entry_size = 0; |
| cb.name_table = NULL; |
| cb.named_groups = named_groups; |
| cb.named_group_list_size = NAMED_GROUP_LIST_SIZE; |
| cb.names_found = 0; |
| cb.open_caps = NULL; |
| cb.parens_depth = 0; |
| cb.parsed_pattern = stack_parsed_pattern; |
| cb.req_varyopt = 0; |
| cb.start_code = cworkspace; |
| cb.start_pattern = pattern; |
| cb.start_workspace = cworkspace; |
| cb.workspace_size = COMPILE_WORK_SIZE; |
| |
| /* Maximum back reference and backref bitmap. The bitmap records up to 31 back |
| references to help in deciding whether (.*) can be treated as anchored or not. |
| */ |
| |
| cb.top_backref = 0; |
| cb.backref_map = 0; |
| |
| /* Escape sequences \1 to \9 are always back references, but as they are only |
| two characters long, only two elements can be used in the parsed_pattern |
| vector. The first contains the reference, and we'd like to use the second to |
| record the offset in the pattern, so that forward references to non-existent |
| groups can be diagnosed later with an offset. However, on 64-bit systems, |
| PCRE2_SIZE won't fit. Instead, we have a vector of offsets for the first |
| occurrence of \1 to \9, indexed by the second parsed_pattern value. All other |
| references have enough space for the offset to be put into the parsed pattern. |
| */ |
| |
| for (i = 0; i < 10; i++) cb.small_ref_offset[i] = PCRE2_UNSET; |
| |
| |
| /* --------------- Start looking at the pattern --------------- */ |
| |
| /* Unless PCRE2_LITERAL is set, check for global one-time option settings at |
| the start of the pattern, and remember the offset to the actual regex. With |
| valgrind support, make the terminator of a zero-terminated pattern |
| inaccessible. This catches bugs that would otherwise only show up for |
| non-zero-terminated patterns. */ |
| |
| #ifdef SUPPORT_VALGRIND |
| if (zero_terminated) VALGRIND_MAKE_MEM_NOACCESS(pattern + patlen, CU2BYTES(1)); |
| #endif |
| |
| ptr = pattern; |
| skipatstart = 0; |
| |
| if ((options & PCRE2_LITERAL) == 0) |
| { |
| while (patlen - skipatstart >= 2 && |
| ptr[skipatstart] == CHAR_LEFT_PARENTHESIS && |
| ptr[skipatstart+1] == CHAR_ASTERISK) |
| { |
| for (i = 0; i < sizeof(pso_list)/sizeof(pso); i++) |
| { |
| uint32_t c, pp; |
| pso *p = pso_list + i; |
| |
| if (patlen - skipatstart - 2 >= p->length && |
| PRIV(strncmp_c8)(ptr + skipatstart + 2, (char *)(p->name), |
| p->length) == 0) |
| { |
| skipatstart += p->length + 2; |
| switch(p->type) |
| { |
| case PSO_OPT: |
| cb.external_options |= p->value; |
| break; |
| |
| case PSO_FLG: |
| setflags |= p->value; |
| break; |
| |
| case PSO_NL: |
| newline = p->value; |
| setflags |= PCRE2_NL_SET; |
| break; |
| |
| case PSO_BSR: |
| bsr = p->value; |
| setflags |= PCRE2_BSR_SET; |
| break; |
| |
| case PSO_LIMM: |
| case PSO_LIMD: |
| case PSO_LIMH: |
| c = 0; |
| pp = skipatstart; |
| if (!IS_DIGIT(ptr[pp])) |
| { |
| errorcode = ERR60; |
| ptr += pp; |
| goto HAD_EARLY_ERROR; |
| } |
| while (IS_DIGIT(ptr[pp])) |
| { |
| if (c > UINT32_MAX / 10 - 1) break; /* Integer overflow */ |
| c = c*10 + (ptr[pp++] - CHAR_0); |
| } |
| if (ptr[pp++] != CHAR_RIGHT_PARENTHESIS) |
| { |
| errorcode = ERR60; |
| ptr += pp; |
| goto HAD_EARLY_ERROR; |
| } |
| if (p->type == PSO_LIMH) limit_heap = c; |
| else if (p->type == PSO_LIMM) limit_match = c; |
| else limit_depth = c; |
| skipatstart += pp - skipatstart; |
| break; |
| } |
| break; /* Out of the table scan loop */ |
| } |
| } |
| if (i >= sizeof(pso_list)/sizeof(pso)) break; /* Out of pso loop */ |
| } |
| } |
| |
| /* End of pattern-start options; advance to start of real regex. */ |
| |
| ptr += skipatstart; |
| |
| /* Can't support UTF or UCP if PCRE2 was built without Unicode support. */ |
| |
| #ifndef SUPPORT_UNICODE |
| if ((cb.external_options & (PCRE2_UTF|PCRE2_UCP)) != 0) |
| { |
| errorcode = ERR32; |
| goto HAD_EARLY_ERROR; |
| } |
| #endif |
| |
| /* Check UTF. We have the original options in 'options', with that value as |
| modified by (*UTF) etc in cb->external_options. The extra option |
| PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES is not permitted in UTF-16 mode because the |
| surrogate code points cannot be represented in UTF-16. */ |
| |
| utf = (cb.external_options & PCRE2_UTF) != 0; |
| if (utf) |
| { |
| if ((options & PCRE2_NEVER_UTF) != 0) |
| { |
| errorcode = ERR74; |
| goto HAD_EARLY_ERROR; |
| } |
| if ((options & PCRE2_NO_UTF_CHECK) == 0 && |
| (errorcode = PRIV(valid_utf)(pattern, patlen, erroroffset)) != 0) |
| goto HAD_ERROR; /* Offset was set by valid_utf() */ |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 16 |
| if ((ccontext->extra_options & PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES) != 0) |
| { |
| errorcode = ERR91; |
| goto HAD_EARLY_ERROR; |
| } |
| #endif |
| } |
| |
| /* Check UCP lockout. */ |
| |
| ucp = (cb.external_options & PCRE2_UCP) != 0; |
| if (ucp && (cb.external_options & PCRE2_NEVER_UCP) != 0) |
| { |
| errorcode = ERR75; |
| goto HAD_EARLY_ERROR; |
| } |
| |
| /* Process the BSR setting. */ |
| |
| if (bsr == 0) bsr = ccontext->bsr_convention; |
| |
| /* Process the newline setting. */ |
| |
| if (newline == 0) newline = ccontext->newline_convention; |
| cb.nltype = NLTYPE_FIXED; |
| switch(newline) |
| { |
| case PCRE2_NEWLINE_CR: |
| cb.nllen = 1; |
| cb.nl[0] = CHAR_CR; |
| break; |
| |
| case PCRE2_NEWLINE_LF: |
| cb.nllen = 1; |
| cb.nl[0] = CHAR_NL; |
| break; |
| |
| case PCRE2_NEWLINE_NUL: |
| cb.nllen = 1; |
| cb.nl[0] = CHAR_NUL; |
| break; |
| |
| case PCRE2_NEWLINE_CRLF: |
| cb.nllen = 2; |
| cb.nl[0] = CHAR_CR; |
| cb.nl[1] = CHAR_NL; |
| break; |
| |
| case PCRE2_NEWLINE_ANY: |
| cb.nltype = NLTYPE_ANY; |
| break; |
| |
| case PCRE2_NEWLINE_ANYCRLF: |
| cb.nltype = NLTYPE_ANYCRLF; |
| break; |
| |
| default: |
| errorcode = ERR56; |
| goto HAD_EARLY_ERROR; |
| } |
| |
| /* Pre-scan the pattern to do two things: (1) Discover the named groups and |
| their numerical equivalents, so that this information is always available for |
| the remaining processing. (2) At the same time, parse the pattern and put a |
| processed version into the parsed_pattern vector. This has escapes interpreted |
| and comments removed (amongst other things). |
| |
| In all but one case, when PCRE2_AUTO_CALLOUT is not set, the number of unsigned |
| 32-bit ints in the parsed pattern is bounded by the length of the pattern plus |
| one (for the terminator) plus four if PCRE2_EXTRA_WORD or PCRE2_EXTRA_LINE is |
| set. The exceptional case is when running in 32-bit, non-UTF mode, when literal |
| characters greater than META_END (0x80000000) have to be coded as two units. In |
| this case, therefore, we scan the pattern to check for such values. */ |
| |
| #if PCRE2_CODE_UNIT_WIDTH == 32 |
| if (!utf) |
| { |
| PCRE2_SPTR p; |
| for (p = ptr; p < cb.end_pattern; p++) if (*p >= META_END) big32count++; |
| } |
| #endif |
| |
| /* Ensure that the parsed pattern buffer is big enough. When PCRE2_AUTO_CALLOUT |
| is set we have to assume a numerical callout (4 elements) for each character |
| plus one at the end. This is overkill, but memory is plentiful these days. For |
| many smaller patterns the vector on the stack (which was set up above) can be |
| used. */ |
| |
| parsed_size_needed = patlen - skipatstart + big32count; |
| |
| if ((ccontext->extra_options & |
| (PCRE2_EXTRA_MATCH_WORD|PCRE2_EXTRA_MATCH_LINE)) != 0) |
| parsed_size_needed += 4; |
| |
| if ((options & PCRE2_AUTO_CALLOUT) != 0) |
| parsed_size_needed = (parsed_size_needed + 1) * 5; |
| |
| if (parsed_size_needed >= PARSED_PATTERN_DEFAULT_SIZE) |
| { |
| uint32_t *heap_parsed_pattern = ccontext->memctl.malloc( |
| (parsed_size_needed + 1) * sizeof(uint32_t), ccontext->memctl.memory_data); |
| if (heap_parsed_pattern == NULL) |
| { |
| *errorptr = ERR21; |
| goto EXIT; |
| } |
| cb.parsed_pattern = heap_parsed_pattern; |
| } |
| cb.parsed_pattern_end = cb.parsed_pattern + parsed_size_needed + 1; |
| |
| /* Do the parsing scan. */ |
| |
| errorcode = parse_regex(ptr, cb.external_options, &has_lookbehind, &cb); |
| if (errorcode != 0) goto HAD_CB_ERROR; |
| |
| /* Workspace is needed to remember information about numbered groups: whether a |
| group can match an empty string and what its fixed length is. This is done to |
| avoid the possibility of recursive references causing very long compile times |
| when checking these features. Unnumbered groups do not have this exposure since |
| they cannot be referenced. We use an indexed vector for this purpose. If there |
| are sufficiently few groups, the default vector on the stack, as set up above, |
| can be used. Otherwise we have to get/free a special vector. The vector must be |
| initialized to zero. */ |
| |
| if (cb.bracount >= GROUPINFO_DEFAULT_SIZE) |
| { |
| cb.groupinfo = ccontext->memctl.malloc( |
| (cb.bracount + 1)*sizeof(uint32_t), ccontext->memctl.memory_data); |
| if (cb.groupinfo == NULL) |
| { |
| errorcode = ERR21; |
| cb.erroroffset = 0; |
| goto HAD_CB_ERROR; |
| } |
| } |
| memset(cb.groupinfo, 0, (cb.bracount + 1) * sizeof(uint32_t)); |
| |
| /* If there were any lookbehinds, scan the parsed pattern to figure out their |
| lengths. */ |
| |
| if (has_lookbehind) |
| { |
| int loopcount = 0; |
| errorcode = check_lookbehinds(cb.parsed_pattern, NULL, NULL, &cb, &loopcount); |
| if (errorcode != 0) goto HAD_CB_ERROR; |
| } |
| |
| /* For debugging, there is a function that shows the parsed data vector. */ |
| |
| #ifdef DEBUG_SHOW_PARSED |
| fprintf(stderr, "+++ Pre-scan complete:\n"); |
| show_parsed(&cb); |
| #endif |
| |
| /* For debugging capturing information this code can be enabled. */ |
| |
| #ifdef DEBUG_SHOW_CAPTURES |
| { |
| named_group *ng = cb.named_groups; |
| fprintf(stderr, "+++Captures: %d\n", cb.bracount); |
| for (i = 0; i < cb.names_found; i++, ng++) |
| { |
| fprintf(stderr, "+++%3d %.*s\n", ng->number, ng->length, ng->name); |
| } |
| } |
| #endif |
| |
| /* Pretend to compile the pattern while actually just accumulating the amount |
| of memory required in the 'length' variable. This behaviour is triggered by |
| passing a non-NULL final argument to compile_regex(). We pass a block of |
| workspace (cworkspace) for it to compile parts of the pattern into; the |
| compiled code is discarded when it is no longer needed, so hopefully this |
| workspace will never overflow, though there is a test for its doing so. |
| |
| On error, errorcode will be set non-zero, so we don't need to look at the |
| result of the function. The initial options have been put into the cb block, |
| but we still have to pass a separate options variable (the first argument) |
| because the options may change as the pattern is processed. */ |
| |
| cb.erroroffset = patlen; /* For any subsequent errors that do not set it */ |
| pptr = cb.parsed_pattern; |
| code = cworkspace; |
| *code = OP_BRA; |
| |
| (void)compile_regex(cb.external_options, &code, &pptr, &errorcode, 0, &firstcu, |
| &firstcuflags, &reqcu, &reqcuflags, NULL, &cb, &length); |
| |
| if (errorcode != 0) goto HAD_CB_ERROR; /* Offset is in cb.erroroffset */ |
| |
| /* This should be caught in compile_regex(), but just in case... */ |
| |
| if (length > MAX_PATTERN_SIZE) |
| { |
| errorcode = ERR20; |
| goto HAD_CB_ERROR; |
| } |
| |
| /* Compute the size of, and then get and initialize, the data block for storing |
| the compiled pattern and names table. Integer overflow should no longer be |
| possible because nowadays we limit the maximum value of cb.names_found and |
| cb.name_entry_size. */ |
| |
| re_blocksize = sizeof(pcre2_real_code) + |
| CU2BYTES(length + |
| (PCRE2_SIZE)cb.names_found * (PCRE2_SIZE)cb.name_entry_size); |
| re = (pcre2_real_code *) |
| ccontext->memctl.malloc(re_blocksize, ccontext->memctl.memory_data); |
| if (re == NULL) |
| { |
| errorcode = ERR21; |
| goto HAD_CB_ERROR; |
| } |
| |
| /* The compiler may put padding at the end of the pcre2_real_code structure in |
| order to round it up to a multiple of 4 or 8 bytes. This means that when a |
| compiled pattern is copied (for example, when serialized) undefined bytes are |
| read, and this annoys debuggers such as valgrind. To avoid this, we explicitly |
| write to the last 8 bytes of the structure before setting the fields. */ |
| |
| memset((char *)re + sizeof(pcre2_real_code) - 8, 0, 8); |
| re->memctl = ccontext->memctl; |
| re->tables = tables; |
| re->executable_jit = NULL; |
| memset(re->start_bitmap, 0, 32 * sizeof(uint8_t)); |
| re->blocksize = re_blocksize; |
| re->magic_number = MAGIC_NUMBER; |
| re->compile_options = options; |
| re->overall_options = cb.external_options; |
| re->extra_options = ccontext->extra_options; |
| re->flags = PCRE2_CODE_UNIT_WIDTH/8 | cb.external_flags | setflags; |
| re->limit_heap = limit_heap; |
| re->limit_match = limit_match; |
| re->limit_depth = limit_depth; |
| re->first_codeunit = 0; |
| re->last_codeunit = 0; |
| re->bsr_convention = bsr; |
| re->newline_convention = newline; |
| re->max_lookbehind = 0; |
| re->minlength = 0; |
| re->top_bracket = 0; |
| re->top_backref = 0; |
| re->name_entry_size = cb.name_entry_size; |
| re->name_count = cb.names_found; |
| |
| /* The basic block is immediately followed by the name table, and the compiled |
| code follows after that. */ |
| |
| codestart = (PCRE2_SPTR)((uint8_t *)re + sizeof(pcre2_real_code)) + |
| re->name_entry_size * re->name_count; |
| |
| /* Update the compile data block for the actual compile. The starting points of |
| the name/number translation table and of the code are passed around in the |
| compile data block. The start/end pattern and initial options are already set |
| from the pre-compile phase, as is the name_entry_size field. */ |
| |
| cb.parens_depth = 0; |
| cb.assert_depth = 0; |
| cb.lastcapture = 0; |
| cb.name_table = (PCRE2_UCHAR *)((uint8_t *)re + sizeof(pcre2_real_code)); |
| cb.start_code = codestart; |
| cb.req_varyopt = 0; |
| cb.had_accept = FALSE; |
| cb.had_pruneorskip = FALSE; |
| cb.open_caps = NULL; |
| |
| /* If any named groups were found, create the name/number table from the list |
| created in the pre-pass. */ |
| |
| if (cb.names_found > 0) |
| { |
| named_group *ng = cb.named_groups; |
| for (i = 0; i < cb.names_found; i++, ng++) |
| add_name_to_table(&cb, ng->name, ng->length, ng->number, i); |
| } |
| |
| /* Set up a starting, non-extracting bracket, then compile the expression. On |
| error, errorcode will be set non-zero, so we don't need to look at the result |
| of the function here. */ |
| |
| pptr = cb.parsed_pattern; |
| code = (PCRE2_UCHAR *)codestart; |
| *code = OP_BRA; |
| regexrc = compile_regex(re->overall_options, &code, &pptr, &errorcode, 0, |
| &firstcu, &firstcuflags, &reqcu, &reqcuflags, NULL, &cb, NULL); |
| if (regexrc < 0) re->flags |= PCRE2_MATCH_EMPTY; |
| re->top_bracket = cb.bracount; |
| re->top_backref = cb.top_backref; |
| re->max_lookbehind = cb.max_lookbehind; |
| |
| if (cb.had_accept) |
| { |
| reqcu = 0; /* Must disable after (*ACCEPT) */ |
| reqcuflags = REQ_NONE; |
| re->flags |= PCRE2_HASACCEPT; /* Disables minimum length */ |
| } |
| |
| /* Fill in the final opcode and check for disastrous overflow. If no overflow, |
| but the estimated length exceeds the really used length, adjust the value of |
| re->blocksize, and if valgrind support is configured, mark the extra allocated |
| memory as unaddressable, so that any out-of-bound reads can be detected. */ |
| |
| *code++ = OP_END; |
| usedlength = code - codestart; |
| if (usedlength > length) errorcode = ERR23; else |
| { |
| re->blocksize -= CU2BYTES(length - usedlength); |
| #ifdef SUPPORT_VALGRIND |
| VALGRIND_MAKE_MEM_NOACCESS(code, CU2BYTES(length - usedlength)); |
| #endif |
| } |
| |
| /* Scan the pattern for recursion/subroutine calls and convert the group |
| numbers into offsets. Maintain a small cache so that repeated groups containing |
| recursions are efficiently handled. */ |
| |
| #define RSCAN_CACHE_SIZE 8 |
| |
| if (errorcode == 0 && cb.had_recurse) |
| { |
| PCRE2_UCHAR *rcode; |
| PCRE2_SPTR rgroup; |
| unsigned int ccount = 0; |
| int start = RSCAN_CACHE_SIZE; |
| recurse_cache rc[RSCAN_CACHE_SIZE]; |
| |
| for (rcode = (PCRE2_UCHAR *)find_recurse(codestart, utf); |
| rcode != NULL; |
| rcode = (PCRE2_UCHAR *)find_recurse(rcode + 1 + LINK_SIZE, utf)) |
| { |
| int p, groupnumber; |
| |
| groupnumber = (int)GET(rcode, 1); |
| if (groupnumber == 0) rgroup = codestart; else |
| { |
| PCRE2_SPTR search_from = codestart; |
| rgroup = NULL; |
| for (i = 0, p = start; i < ccount; i++, p = (p + 1) & 7) |
| { |
| if (groupnumber == rc[p].groupnumber) |
| { |
| rgroup = rc[p].group; |
| break; |
| } |
| |
| /* Group n+1 must always start to the right of group n, so we can save |
| search time below when the new group number is greater than any of the |
| previously found groups. */ |
| |
| if (groupnumber > rc[p].groupnumber) search_from = rc[p].group; |
| } |
| |
| if (rgroup == NULL) |
| { |
| rgroup = PRIV(find_bracket)(search_from, utf, groupnumber); |
| if (rgroup == NULL) |
| { |
| errorcode = ERR53; |
| break; |
| } |
| if (--start < 0) start = RSCAN_CACHE_SIZE - 1; |
| rc[start].groupnumber = groupnumber; |
| rc[start].group = rgroup; |
| if (ccount < RSCAN_CACHE_SIZE) ccount++; |
| } |
| } |
| |
| PUT(rcode, 1, rgroup - codestart); |
| } |
| } |
| |
| /* In rare debugging situations we sometimes need to look at the compiled code |
| at this stage. */ |
| |
| #ifdef DEBUG_CALL_PRINTINT |
| pcre2_printint(re, stderr, TRUE); |
| fprintf(stderr, "Length=%lu Used=%lu\n", length, usedlength); |
| #endif |
| |
| /* Unless disabled, check whether any single character iterators can be |
| auto-possessified. The function overwrites the appropriate opcode values, so |
| the type of the pointer must be cast. NOTE: the intermediate variable "temp" is |
| used in this code because at least one compiler gives a warning about loss of |
| "const" attribute if the cast (PCRE2_UCHAR *)codestart is used directly in the |
| function call. */ |
| |
| if (errorcode == 0 && (re->overall_options & PCRE2_NO_AUTO_POSSESS) == 0) |
| { |
| PCRE2_UCHAR *temp = (PCRE2_UCHAR *)codestart; |
| if (PRIV(auto_possessify)(temp, &cb) != 0) errorcode = ERR80; |
| } |
| |
| /* Failed to compile, or error while post-processing. */ |
| |
| if (errorcode != 0) goto HAD_CB_ERROR; |
| |
| /* Successful compile. If the anchored option was not passed, set it if |
| we can determine that the pattern is anchored by virtue of ^ characters or \A |
| or anything else, such as starting with non-atomic .* when DOTALL is set and |
| there are no occurrences of *PRUNE or *SKIP (though there is an option to |
| disable this case). */ |
| |
| if ((re->overall_options & PCRE2_ANCHORED) == 0 && |
| is_anchored(codestart, 0, &cb, 0, FALSE)) |
| re->overall_options |= PCRE2_ANCHORED; |
| |
| /* Set up the first code unit or startline flag, the required code unit, and |
| then study the pattern. This code need not be obeyed if PCRE2_NO_START_OPTIMIZE |
| is set, as the data it would create will not be used. Note that a first code |
| unit (but not the startline flag) is useful for anchored patterns because it |
| can still give a quick "no match" and also avoid searching for a last code |
| unit. */ |
| |
| if ((re->overall_options & PCRE2_NO_START_OPTIMIZE) == 0) |
| { |
| int minminlength = 0; /* For minimal minlength from first/required CU */ |
| |
| /* If we do not have a first code unit, see if there is one that is asserted |
| (these are not saved during the compile because they can cause conflicts with |
| actual literals that follow). */ |
| |
| if (firstcuflags >= REQ_NONE) |
| firstcu = find_firstassertedcu(codestart, &firstcuflags, 0); |
| |
| /* Save the data for a first code unit. The existence of one means the |
| minimum length must be at least 1. */ |
| |
| if (firstcuflags < REQ_NONE) |
| { |
| re->first_codeunit = firstcu; |
| re->flags |= PCRE2_FIRSTSET; |
| minminlength++; |
| |
| /* Handle caseless first code units. */ |
| |
| if ((firstcuflags & REQ_CASELESS) != 0) |
| { |
| if (firstcu < 128 || (!utf && !ucp && firstcu < 255)) |
| { |
| if (cb.fcc[firstcu] != firstcu) re->flags |= PCRE2_FIRSTCASELESS; |
| } |
| |
| /* The first code unit is > 128 in UTF or UCP mode, or > 255 otherwise. |
| In 8-bit UTF mode, codepoints in the range 128-255 are introductory code |
| points and cannot have another case, but if UCP is set they may do. */ |
| |
| #ifdef SUPPORT_UNICODE |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| else if (ucp && !utf && UCD_OTHERCASE(firstcu) != firstcu) |
| re->flags |= PCRE2_FIRSTCASELESS; |
| #else |
| else if ((utf || ucp) && firstcu <= MAX_UTF_CODE_POINT && |
| UCD_OTHERCASE(firstcu) != firstcu) |
| re->flags |= PCRE2_FIRSTCASELESS; |
| #endif |
| #endif /* SUPPORT_UNICODE */ |
| } |
| } |
| |
| /* When there is no first code unit, for non-anchored patterns, see if we can |
| set the PCRE2_STARTLINE flag. This is helpful for multiline matches when all |
| branches start with ^ and also when all branches start with non-atomic .* for |
| non-DOTALL matches when *PRUNE and SKIP are not present. (There is an option |
| that disables this case.) */ |
| |
| else if ((re->overall_options & PCRE2_ANCHORED) == 0 && |
| is_startline(codestart, 0, &cb, 0, FALSE)) |
| re->flags |= PCRE2_STARTLINE; |
| |
| /* Handle the "required code unit", if one is set. In the UTF case we can |
| increment the minimum minimum length only if we are sure this really is a |
| different character and not a non-starting code unit of the first character, |
| because the minimum length count is in characters, not code units. */ |
| |
| if (reqcuflags < REQ_NONE) |
| { |
| #if PCRE2_CODE_UNIT_WIDTH == 16 |
| if ((re->overall_options & PCRE2_UTF) == 0 || /* Not UTF */ |
| firstcuflags >= REQ_NONE || /* First not set */ |
| (firstcu & 0xf800) != 0xd800 || /* First not surrogate */ |
| (reqcu & 0xfc00) != 0xdc00) /* Req not low surrogate */ |
| #elif PCRE2_CODE_UNIT_WIDTH == 8 |
| if ((re->overall_options & PCRE2_UTF) == 0 || /* Not UTF */ |
| firstcuflags >= REQ_NONE || /* First not set */ |
| (firstcu & 0x80) == 0 || /* First is ASCII */ |
| (reqcu & 0x80) == 0) /* Req is ASCII */ |
| #endif |
| { |
| minminlength++; |
| } |
| |
| /* In the case of an anchored pattern, set up the value only if it follows |
| a variable length item in the pattern. */ |
| |
| if ((re->overall_options & PCRE2_ANCHORED) == 0 || |
| (reqcuflags & REQ_VARY) != 0) |
| { |
| re->last_codeunit = reqcu; |
| re->flags |= PCRE2_LASTSET; |
| |
| /* Handle caseless required code units as for first code units (above). */ |
| |
| if ((reqcuflags & REQ_CASELESS) != 0) |
| { |
| if (reqcu < 128 || (!utf && !ucp && reqcu < 255)) |
| { |
| if (cb.fcc[reqcu] != reqcu) re->flags |= PCRE2_LASTCASELESS; |
| } |
| #ifdef SUPPORT_UNICODE |
| #if PCRE2_CODE_UNIT_WIDTH == 8 |
| else if (ucp && !utf && UCD_OTHERCASE(reqcu) != reqcu) |
| re->flags |= PCRE2_LASTCASELESS; |
| #else |
| else if ((utf || ucp) && reqcu <= MAX_UTF_CODE_POINT && |
| UCD_OTHERCASE(reqcu) != reqcu) |
| re->flags |= PCRE2_LASTCASELESS; |
| #endif |
| #endif /* SUPPORT_UNICODE */ |
| } |
| } |
| } |
| |
| /* Study the compiled pattern to set up information such as a bitmap of |
| starting code units and a minimum matching length. */ |
| |
| if (PRIV(study)(re) != 0) |
| { |
| errorcode = ERR31; |
| goto HAD_CB_ERROR; |
| } |
| |
| /* If study() set a bitmap of starting code units, it implies a minimum |
| length of at least one. */ |
| |
| if ((re->flags & PCRE2_FIRSTMAPSET) != 0 && minminlength == 0) |
| minminlength = 1; |
| |
| /* If the minimum length set (or not set) by study() is less than the minimum |
| implied by required code units, override it. */ |
| |
| if (re->minlength < minminlength) re->minlength = minminlength; |
| } /* End of start-of-match optimizations. */ |
| |
| /* Control ends up here in all cases. When running under valgrind, make a |
| pattern's terminating zero defined again. If memory was obtained for the parsed |
| version of the pattern, free it before returning. Also free the list of named |
| groups if a larger one had to be obtained, and likewise the group information |
| vector. */ |
| |
| EXIT: |
| #ifdef SUPPORT_VALGRIND |
| if (zero_terminated) VALGRIND_MAKE_MEM_DEFINED(pattern + patlen, CU2BYTES(1)); |
| #endif |
| if (cb.parsed_pattern != stack_parsed_pattern) |
| ccontext->memctl.free(cb.parsed_pattern, ccontext->memctl.memory_data); |
| if (cb.named_group_list_size > NAMED_GROUP_LIST_SIZE) |
| ccontext->memctl.free((void *)cb.named_groups, ccontext->memctl.memory_data); |
| if (cb.groupinfo != stack_groupinfo) |
| ccontext->memctl.free((void *)cb.groupinfo, ccontext->memctl.memory_data); |
| return re; /* Will be NULL after an error */ |
| |
| /* Errors discovered in parse_regex() set the offset value in the compile |
| block. Errors discovered before it is called must compute it from the ptr |
| value. After parse_regex() is called, the offset in the compile block is set to |
| the end of the pattern, but certain errors in compile_regex() may reset it if |
| an offset is available in the parsed pattern. */ |
| |
| HAD_CB_ERROR: |
| ptr = pattern + cb.erroroffset; |
| |
| HAD_EARLY_ERROR: |
| *erroroffset = ptr - pattern; |
| |
| HAD_ERROR: |
| *errorptr = errorcode; |
| pcre2_code_free(re); |
| re = NULL; |
| goto EXIT; |
| } |
| |
| /* These #undefs are here to enable unity builds with CMake. */ |
| |
| #undef NLBLOCK /* Block containing newline information */ |
| #undef PSSTART /* Field containing processed string start */ |
| #undef PSEND /* Field containing processed string end */ |
| |
| /* End of pcre2_compile.c */ |