blob: 2eb185a5fa67659738ac6ea0806d1fb9b941819a [file] [log] [blame]
/*
Copyright (c) 2013 Julien Pommier.
Small test & bench for PFFFT, comparing its performance with the scalar FFTPACK, FFTW, and Apple vDSP
How to build:
on linux, with fftw3:
gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
on macos, without fftw3:
clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -framework Accelerate
on macos, with fftw3:
clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate
as alternative: replace clang by gcc.
on windows, with visual c++:
cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c
build without SIMD instructions:
gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c fftpack.c -lm
*/
#ifdef PFFFT_ENABLE_FLOAT
#include "pffft.h"
typedef float pffft_scalar;
#else
/*
Note: adapted for double precision dynamic range version.
*/
#include "pffft_double.h"
typedef double pffft_scalar;
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>
#include <string.h>
/* define own constants required to turn off g++ extensions .. */
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
/* EXPECTED_DYN_RANGE in dB:
* single precision float has 24 bits mantissa
* => 24 Bits * 6 dB = 144 dB
* allow a few dB tolerance (even 144 dB looks good on my PC)
*/
#ifdef PFFFT_ENABLE_FLOAT
#define EXPECTED_DYN_RANGE 140.0
#else
#define EXPECTED_DYN_RANGE 215.0
#endif
/* maximum allowed phase error in degree */
#define DEG_ERR_LIMIT 1E-4
/* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */
#define MAG_ERR_LIMIT 1E-6
#define PRINT_SPEC 0
#define PWR2LOG(PWR) ( (PWR) < 1E-30 ? 10.0*log10(1E-30) : 10.0*log10(PWR) )
int test(int N, int cplx, int useOrdered) {
int Nfloat = (cplx ? N*2 : N);
#ifdef PFFFT_ENABLE_FLOAT
pffft_scalar *X = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *Y = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *R = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *Z = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *W = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
#else
pffft_scalar *X = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *Y = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *R = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *Z = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
pffft_scalar *W = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar));
#endif
pffft_scalar amp = (pffft_scalar)1.0;
double freq, dPhi, phi, phi0;
double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag;
int k, j, m, iter, kmaxOther, retError = 0;
#ifdef PFFFT_ENABLE_FLOAT
assert( pffft_is_power_of_two(N) );
PFFFT_Setup *s = pffft_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL);
#else
assert( pffftd_is_power_of_two(N) );
PFFFTD_Setup *s = pffftd_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL);
#endif
assert(s);
if (!s) {
printf("Error setting up PFFFT!\n");
return 1;
}
for ( k = m = 0; k < (cplx? N : (1 + N/2) ); k += N/16, ++m )
{
amp = (pffft_scalar)( ( (m % 3) == 0 ) ? 1.0 : 1.1 );
freq = (k < N/2) ? ((double)k / N) : ((double)(k-N) / N);
dPhi = 2.0 * M_PI * freq;
if ( dPhi < 0.0 )
dPhi += 2.0 * M_PI;
iter = -1;
while (1)
{
++iter;
if (iter)
printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq);
/* generate cosine carrier as time signal - start at defined phase phi0 */
phi = phi0 = (m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */
for ( j = 0; j < N; ++j )
{
if (cplx) {
X[2*j] = amp * (pffft_scalar)cos(phi); /* real part */
X[2*j+1] = amp * (pffft_scalar)sin(phi); /* imag part */
}
else
X[j] = amp * (pffft_scalar)cos(phi); /* only real part */
/* phase increment .. stay normalized - cos()/sin() might degrade! */
phi += dPhi;
if ( phi >= M_PI )
phi -= 2.0 * M_PI;
}
/* forward transform from X --> Y .. using work buffer W */
#ifdef PFFFT_ENABLE_FLOAT
if ( useOrdered )
pffft_transform_ordered(s, X, Y, W, PFFFT_FORWARD );
else
{
pffft_transform(s, X, R, W, PFFFT_FORWARD ); /* use R for reordering */
pffft_zreorder(s, R, Y, PFFFT_FORWARD ); /* reorder into Y[] for power calculations */
}
#else
if ( useOrdered )
pffftd_transform_ordered(s, X, Y, W, PFFFT_FORWARD );
else
{
pffftd_transform(s, X, R, W, PFFFT_FORWARD ); /* use R for reordering */
pffftd_zreorder(s, R, Y, PFFFT_FORWARD ); /* reorder into Y[] for power calculations */
}
#endif
pwrOther = -1.0;
pwrCar = 0;
/* for positive frequencies: 0 to 0.5 * samplerate */
/* and also for negative frequencies: -0.5 * samplerate to 0 */
for ( j = 0; j < ( cplx ? N : (1 + N/2) ); ++j )
{
if (!cplx && !j) /* special treatment for DC for real input */
pwr = Y[j]*Y[j];
else if (!cplx && j == N/2) /* treat 0.5 * samplerate */
pwr = Y[1] * Y[1]; /* despite j (for freq calculation) we have index 1 */
else
pwr = Y[2*j] * Y[2*j] + Y[2*j+1] * Y[2*j+1];
if (iter || PRINT_SPEC)
printf("%s fft %d: pwr[j = %d] = %g == %f dB\n", (cplx ? "cplx":"real"), N, j, pwr, PWR2LOG(pwr) );
if (k == j)
pwrCar = pwr;
else if ( pwr > pwrOther ) {
pwrOther = pwr;
kmaxOther = j;
}
}
if ( PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE ) {
printf("%s fft %d amp %f iter %d:\n", (cplx ? "cplx":"real"), N, amp, iter);
printf(" carrier power at bin %d: %g == %f dB\n", k, pwrCar, PWR2LOG(pwrCar) );
printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar) );
printf(" max other pwr at bin %d: %g == %f dB\n", kmaxOther, pwrOther, PWR2LOG(pwrOther) );
printf(" dynamic range: %f dB\n\n", PWR2LOG(pwrCar) - PWR2LOG(pwrOther) );
retError = 1;
if ( iter == 0 )
continue;
}
if ( k > 0 && k != N/2 )
{
phi = atan2( Y[2*k+1], Y[2*k] );
if ( fabs( phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0 )
{
retError = 1;
printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg expected = %f deg\n",
(cplx ? "cplx":"real"), N, k, amp, phi * 180.0 / M_PI, phi0 * 180.0 / M_PI );
}
}
expextedMag = cplx ? amp : ( (k == 0 || k == N/2) ? amp : (amp/2) );
mag = sqrt(pwrCar) / N;
if ( fabs(mag - expextedMag) > MAG_ERR_LIMIT )
{
retError = 1;
printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n", (cplx ? "cplx":"real"), N, k, amp, mag, expextedMag );
}
/* now convert spectrum back */
#ifdef PFFFT_ENABLE_FLOAT
if (useOrdered)
pffft_transform_ordered(s, Y, Z, W, PFFFT_BACKWARD);
else
pffft_transform(s, R, Z, W, PFFFT_BACKWARD);
#else
if (useOrdered)
pffftd_transform_ordered(s, Y, Z, W, PFFFT_BACKWARD);
else
pffftd_transform(s, R, Z, W, PFFFT_BACKWARD);
#endif
errSum = 0.0;
for ( j = 0; j < (cplx ? (2*N) : N); ++j )
{
/* scale back */
Z[j] /= N;
/* square sum errors over real (and imag parts) */
err = (X[j]-Z[j]) * (X[j]-Z[j]);
errSum += err;
}
if ( errSum > N * 1E-7 )
{
retError = 1;
printf("%s fft %d bin %d : inverse FFT doesn't match original signal! errSum = %g ; mean err = %g\n", (cplx ? "cplx":"real"), N, k, errSum, errSum / N);
}
break;
}
}
#ifdef PFFFT_ENABLE_FLOAT
pffft_destroy_setup(s);
pffft_aligned_free(X);
pffft_aligned_free(Y);
pffft_aligned_free(Z);
pffft_aligned_free(R);
pffft_aligned_free(W);
#else
pffftd_destroy_setup(s);
pffftd_aligned_free(X);
pffftd_aligned_free(Y);
pffftd_aligned_free(Z);
pffftd_aligned_free(R);
pffftd_aligned_free(W);
#endif
return retError;
}
/* small functions inside pffft.c that will detect (compiler) bugs with respect to simd instructions */
void validate_pffft_simd();
int validate_pffft_simd_ex(FILE * DbgOut);
void validate_pffftd_simd();
int validate_pffftd_simd_ex(FILE * DbgOut);
int main(int argc, char **argv)
{
int N, result, resN, resAll, i, k, resNextPw2, resIsPw2, resFFT;
int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 };
int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 };
for ( i = 1; i < argc; ++i ) {
if (!strcmp(argv[i], "--test-simd")) {
#ifdef PFFFT_ENABLE_FLOAT
int numErrs = validate_pffft_simd_ex(stdout);
#else
int numErrs = validate_pffftd_simd_ex(stdout);
#endif
fprintf( ( numErrs != 0 ? stderr : stdout ), "validate_pffft_simd_ex() returned %d errors!\n", numErrs);
return ( numErrs > 0 ? 1 : 0 );
}
}
resNextPw2 = 0;
resIsPw2 = 0;
for ( k = 0; k < (sizeof(inp_power_of_two)/sizeof(inp_power_of_two[0])); ++k) {
#ifdef PFFFT_ENABLE_FLOAT
N = pffft_next_power_of_two(inp_power_of_two[k]);
#else
N = pffftd_next_power_of_two(inp_power_of_two[k]);
#endif
if (N != ref_power_of_two[k]) {
resNextPw2 = 1;
printf("pffft_next_power_of_two(%d) does deliver %d, which is not reference result %d!\n",
inp_power_of_two[k], N, ref_power_of_two[k] );
}
#ifdef PFFFT_ENABLE_FLOAT
result = pffft_is_power_of_two(inp_power_of_two[k]);
#else
result = pffftd_is_power_of_two(inp_power_of_two[k]);
#endif
if (inp_power_of_two[k] == ref_power_of_two[k]) {
if (!result) {
resIsPw2 = 1;
printf("pffft_is_power_of_two(%d) delivers false; expected true!\n", inp_power_of_two[k]);
}
} else {
if (result) {
resIsPw2 = 1;
printf("pffft_is_power_of_two(%d) delivers true; expected false!\n", inp_power_of_two[k]);
}
}
}
if (!resNextPw2)
printf("tests for pffft_next_power_of_two() succeeded successfully.\n");
if (!resIsPw2)
printf("tests for pffft_is_power_of_two() succeeded successfully.\n");
resFFT = 0;
for ( N = 32; N <= 65536; N *= 2 )
{
result = test(N, 1 /* cplx fft */, 1 /* useOrdered */);
resN = result;
resFFT |= result;
result = test(N, 0 /* cplx fft */, 1 /* useOrdered */);
resN |= result;
resFFT |= result;
result = test(N, 1 /* cplx fft */, 0 /* useOrdered */);
resN |= result;
resFFT |= result;
result = test(N, 0 /* cplx fft */, 0 /* useOrdered */);
resN |= result;
resFFT |= result;
if (!resN)
printf("tests for size %d succeeded successfully.\n", N);
}
if (!resFFT) {
#ifdef PFFFT_ENABLE_FLOAT
printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, float) succeeded successfully.\n");
#else
printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, double) succeeded successfully.\n");
#endif
}
resAll = resNextPw2 | resIsPw2 | resFFT;
if (!resAll)
printf("all tests succeeded successfully.\n");
else
printf("there are failed tests!\n");
return resAll;
}