| /* |
| Copyright (c) 2013 Julien Pommier. |
| |
| Small test & bench for PFFFT, comparing its performance with the scalar FFTPACK, FFTW, and Apple vDSP |
| |
| How to build: |
| |
| on linux, with fftw3: |
| gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm |
| |
| on macos, without fftw3: |
| clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -framework Accelerate |
| |
| on macos, with fftw3: |
| clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate |
| |
| as alternative: replace clang by gcc. |
| |
| on windows, with visual c++: |
| cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c |
| |
| build without SIMD instructions: |
| gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c fftpack.c -lm |
| |
| */ |
| |
| #ifdef PFFFT_ENABLE_FLOAT |
| #include "pffft.h" |
| |
| typedef float pffft_scalar; |
| #else |
| /* |
| Note: adapted for double precision dynamic range version. |
| */ |
| #include "pffft_double.h" |
| |
| typedef double pffft_scalar; |
| #endif |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <time.h> |
| #include <assert.h> |
| #include <string.h> |
| |
| /* define own constants required to turn off g++ extensions .. */ |
| #ifndef M_PI |
| #define M_PI 3.14159265358979323846 /* pi */ |
| #endif |
| |
| /* EXPECTED_DYN_RANGE in dB: |
| * single precision float has 24 bits mantissa |
| * => 24 Bits * 6 dB = 144 dB |
| * allow a few dB tolerance (even 144 dB looks good on my PC) |
| */ |
| #ifdef PFFFT_ENABLE_FLOAT |
| #define EXPECTED_DYN_RANGE 140.0 |
| #else |
| #define EXPECTED_DYN_RANGE 215.0 |
| #endif |
| |
| /* maximum allowed phase error in degree */ |
| #define DEG_ERR_LIMIT 1E-4 |
| |
| /* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */ |
| #define MAG_ERR_LIMIT 1E-6 |
| |
| |
| #define PRINT_SPEC 0 |
| |
| #define PWR2LOG(PWR) ( (PWR) < 1E-30 ? 10.0*log10(1E-30) : 10.0*log10(PWR) ) |
| |
| |
| |
| int test(int N, int cplx, int useOrdered) { |
| int Nfloat = (cplx ? N*2 : N); |
| #ifdef PFFFT_ENABLE_FLOAT |
| pffft_scalar *X = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *Y = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *R = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *Z = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *W = pffft_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| #else |
| pffft_scalar *X = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *Y = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *R = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *Z = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| pffft_scalar *W = pffftd_aligned_malloc((unsigned)Nfloat * sizeof(pffft_scalar)); |
| #endif |
| pffft_scalar amp = (pffft_scalar)1.0; |
| double freq, dPhi, phi, phi0; |
| double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag; |
| int k, j, m, iter, kmaxOther, retError = 0; |
| |
| #ifdef PFFFT_ENABLE_FLOAT |
| assert( pffft_is_power_of_two(N) ); |
| PFFFT_Setup *s = pffft_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL); |
| #else |
| assert( pffftd_is_power_of_two(N) ); |
| PFFFTD_Setup *s = pffftd_new_setup(N, cplx ? PFFFT_COMPLEX : PFFFT_REAL); |
| #endif |
| assert(s); |
| if (!s) { |
| printf("Error setting up PFFFT!\n"); |
| return 1; |
| } |
| |
| for ( k = m = 0; k < (cplx? N : (1 + N/2) ); k += N/16, ++m ) |
| { |
| amp = (pffft_scalar)( ( (m % 3) == 0 ) ? 1.0 : 1.1 ); |
| freq = (k < N/2) ? ((double)k / N) : ((double)(k-N) / N); |
| dPhi = 2.0 * M_PI * freq; |
| if ( dPhi < 0.0 ) |
| dPhi += 2.0 * M_PI; |
| |
| iter = -1; |
| while (1) |
| { |
| ++iter; |
| |
| if (iter) |
| printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq); |
| |
| /* generate cosine carrier as time signal - start at defined phase phi0 */ |
| phi = phi0 = (m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */ |
| for ( j = 0; j < N; ++j ) |
| { |
| if (cplx) { |
| X[2*j] = amp * (pffft_scalar)cos(phi); /* real part */ |
| X[2*j+1] = amp * (pffft_scalar)sin(phi); /* imag part */ |
| } |
| else |
| X[j] = amp * (pffft_scalar)cos(phi); /* only real part */ |
| |
| /* phase increment .. stay normalized - cos()/sin() might degrade! */ |
| phi += dPhi; |
| if ( phi >= M_PI ) |
| phi -= 2.0 * M_PI; |
| } |
| |
| /* forward transform from X --> Y .. using work buffer W */ |
| #ifdef PFFFT_ENABLE_FLOAT |
| if ( useOrdered ) |
| pffft_transform_ordered(s, X, Y, W, PFFFT_FORWARD ); |
| else |
| { |
| pffft_transform(s, X, R, W, PFFFT_FORWARD ); /* use R for reordering */ |
| pffft_zreorder(s, R, Y, PFFFT_FORWARD ); /* reorder into Y[] for power calculations */ |
| } |
| #else |
| if ( useOrdered ) |
| pffftd_transform_ordered(s, X, Y, W, PFFFT_FORWARD ); |
| else |
| { |
| pffftd_transform(s, X, R, W, PFFFT_FORWARD ); /* use R for reordering */ |
| pffftd_zreorder(s, R, Y, PFFFT_FORWARD ); /* reorder into Y[] for power calculations */ |
| } |
| #endif |
| |
| pwrOther = -1.0; |
| pwrCar = 0; |
| |
| |
| /* for positive frequencies: 0 to 0.5 * samplerate */ |
| /* and also for negative frequencies: -0.5 * samplerate to 0 */ |
| for ( j = 0; j < ( cplx ? N : (1 + N/2) ); ++j ) |
| { |
| if (!cplx && !j) /* special treatment for DC for real input */ |
| pwr = Y[j]*Y[j]; |
| else if (!cplx && j == N/2) /* treat 0.5 * samplerate */ |
| pwr = Y[1] * Y[1]; /* despite j (for freq calculation) we have index 1 */ |
| else |
| pwr = Y[2*j] * Y[2*j] + Y[2*j+1] * Y[2*j+1]; |
| if (iter || PRINT_SPEC) |
| printf("%s fft %d: pwr[j = %d] = %g == %f dB\n", (cplx ? "cplx":"real"), N, j, pwr, PWR2LOG(pwr) ); |
| if (k == j) |
| pwrCar = pwr; |
| else if ( pwr > pwrOther ) { |
| pwrOther = pwr; |
| kmaxOther = j; |
| } |
| } |
| |
| if ( PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE ) { |
| printf("%s fft %d amp %f iter %d:\n", (cplx ? "cplx":"real"), N, amp, iter); |
| printf(" carrier power at bin %d: %g == %f dB\n", k, pwrCar, PWR2LOG(pwrCar) ); |
| printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar) ); |
| printf(" max other pwr at bin %d: %g == %f dB\n", kmaxOther, pwrOther, PWR2LOG(pwrOther) ); |
| printf(" dynamic range: %f dB\n\n", PWR2LOG(pwrCar) - PWR2LOG(pwrOther) ); |
| retError = 1; |
| if ( iter == 0 ) |
| continue; |
| } |
| |
| if ( k > 0 && k != N/2 ) |
| { |
| phi = atan2( Y[2*k+1], Y[2*k] ); |
| if ( fabs( phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0 ) |
| { |
| retError = 1; |
| printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg expected = %f deg\n", |
| (cplx ? "cplx":"real"), N, k, amp, phi * 180.0 / M_PI, phi0 * 180.0 / M_PI ); |
| } |
| } |
| |
| expextedMag = cplx ? amp : ( (k == 0 || k == N/2) ? amp : (amp/2) ); |
| mag = sqrt(pwrCar) / N; |
| if ( fabs(mag - expextedMag) > MAG_ERR_LIMIT ) |
| { |
| retError = 1; |
| printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n", (cplx ? "cplx":"real"), N, k, amp, mag, expextedMag ); |
| } |
| |
| |
| /* now convert spectrum back */ |
| #ifdef PFFFT_ENABLE_FLOAT |
| if (useOrdered) |
| pffft_transform_ordered(s, Y, Z, W, PFFFT_BACKWARD); |
| else |
| pffft_transform(s, R, Z, W, PFFFT_BACKWARD); |
| #else |
| if (useOrdered) |
| pffftd_transform_ordered(s, Y, Z, W, PFFFT_BACKWARD); |
| else |
| pffftd_transform(s, R, Z, W, PFFFT_BACKWARD); |
| #endif |
| |
| errSum = 0.0; |
| for ( j = 0; j < (cplx ? (2*N) : N); ++j ) |
| { |
| /* scale back */ |
| Z[j] /= N; |
| /* square sum errors over real (and imag parts) */ |
| err = (X[j]-Z[j]) * (X[j]-Z[j]); |
| errSum += err; |
| } |
| |
| if ( errSum > N * 1E-7 ) |
| { |
| retError = 1; |
| printf("%s fft %d bin %d : inverse FFT doesn't match original signal! errSum = %g ; mean err = %g\n", (cplx ? "cplx":"real"), N, k, errSum, errSum / N); |
| } |
| |
| break; |
| } |
| |
| } |
| #ifdef PFFFT_ENABLE_FLOAT |
| pffft_destroy_setup(s); |
| pffft_aligned_free(X); |
| pffft_aligned_free(Y); |
| pffft_aligned_free(Z); |
| pffft_aligned_free(R); |
| pffft_aligned_free(W); |
| #else |
| pffftd_destroy_setup(s); |
| pffftd_aligned_free(X); |
| pffftd_aligned_free(Y); |
| pffftd_aligned_free(Z); |
| pffftd_aligned_free(R); |
| pffftd_aligned_free(W); |
| #endif |
| |
| return retError; |
| } |
| |
| /* small functions inside pffft.c that will detect (compiler) bugs with respect to simd instructions */ |
| void validate_pffft_simd(); |
| int validate_pffft_simd_ex(FILE * DbgOut); |
| void validate_pffftd_simd(); |
| int validate_pffftd_simd_ex(FILE * DbgOut); |
| |
| |
| |
| int main(int argc, char **argv) |
| { |
| int N, result, resN, resAll, i, k, resNextPw2, resIsPw2, resFFT; |
| |
| int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 }; |
| int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 }; |
| |
| for ( i = 1; i < argc; ++i ) { |
| |
| if (!strcmp(argv[i], "--test-simd")) { |
| #ifdef PFFFT_ENABLE_FLOAT |
| int numErrs = validate_pffft_simd_ex(stdout); |
| #else |
| int numErrs = validate_pffftd_simd_ex(stdout); |
| #endif |
| fprintf( ( numErrs != 0 ? stderr : stdout ), "validate_pffft_simd_ex() returned %d errors!\n", numErrs); |
| return ( numErrs > 0 ? 1 : 0 ); |
| } |
| } |
| |
| resNextPw2 = 0; |
| resIsPw2 = 0; |
| for ( k = 0; k < (sizeof(inp_power_of_two)/sizeof(inp_power_of_two[0])); ++k) { |
| #ifdef PFFFT_ENABLE_FLOAT |
| N = pffft_next_power_of_two(inp_power_of_two[k]); |
| #else |
| N = pffftd_next_power_of_two(inp_power_of_two[k]); |
| #endif |
| if (N != ref_power_of_two[k]) { |
| resNextPw2 = 1; |
| printf("pffft_next_power_of_two(%d) does deliver %d, which is not reference result %d!\n", |
| inp_power_of_two[k], N, ref_power_of_two[k] ); |
| } |
| |
| #ifdef PFFFT_ENABLE_FLOAT |
| result = pffft_is_power_of_two(inp_power_of_two[k]); |
| #else |
| result = pffftd_is_power_of_two(inp_power_of_two[k]); |
| #endif |
| if (inp_power_of_two[k] == ref_power_of_two[k]) { |
| if (!result) { |
| resIsPw2 = 1; |
| printf("pffft_is_power_of_two(%d) delivers false; expected true!\n", inp_power_of_two[k]); |
| } |
| } else { |
| if (result) { |
| resIsPw2 = 1; |
| printf("pffft_is_power_of_two(%d) delivers true; expected false!\n", inp_power_of_two[k]); |
| } |
| } |
| } |
| if (!resNextPw2) |
| printf("tests for pffft_next_power_of_two() succeeded successfully.\n"); |
| if (!resIsPw2) |
| printf("tests for pffft_is_power_of_two() succeeded successfully.\n"); |
| |
| resFFT = 0; |
| for ( N = 32; N <= 65536; N *= 2 ) |
| { |
| result = test(N, 1 /* cplx fft */, 1 /* useOrdered */); |
| resN = result; |
| resFFT |= result; |
| |
| result = test(N, 0 /* cplx fft */, 1 /* useOrdered */); |
| resN |= result; |
| resFFT |= result; |
| |
| result = test(N, 1 /* cplx fft */, 0 /* useOrdered */); |
| resN |= result; |
| resFFT |= result; |
| |
| result = test(N, 0 /* cplx fft */, 0 /* useOrdered */); |
| resN |= result; |
| resFFT |= result; |
| |
| if (!resN) |
| printf("tests for size %d succeeded successfully.\n", N); |
| } |
| |
| if (!resFFT) { |
| #ifdef PFFFT_ENABLE_FLOAT |
| printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, float) succeeded successfully.\n"); |
| #else |
| printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, double) succeeded successfully.\n"); |
| #endif |
| } |
| |
| resAll = resNextPw2 | resIsPw2 | resFFT; |
| if (!resAll) |
| printf("all tests succeeded successfully.\n"); |
| else |
| printf("there are failed tests!\n"); |
| |
| return resAll; |
| } |
| |