| /* |
| Copyright (c) 2013 Julien Pommier ( [email protected] ) |
| Copyright (c) 2020 Dario Mambro ( [email protected] ) |
| Copyright (c) 2020 Hayati Ayguen ( [email protected] ) |
| |
| Small test & bench for PFFFT, comparing its performance with the scalar |
| FFTPACK, FFTW, and Apple vDSP |
| |
| How to build: |
| |
| on linux, with fftw3: |
| gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c |
| test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm |
| |
| on macos, without fftw3: |
| clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c |
| -L/usr/local/lib -I/usr/local/include/ -framework Accelerate |
| |
| on macos, with fftw3: |
| clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c |
| test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f |
| -framework Accelerate |
| |
| as alternative: replace clang by gcc. |
| |
| on windows, with visual c++: |
| cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c |
| |
| build without SIMD instructions: |
| gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c |
| fftpack.c -lm |
| |
| */ |
| |
| #include "pffft.hpp" |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| |
| /* define own constants required to turn off g++ extensions .. */ |
| #ifndef M_PI |
| #define M_PI 3.14159265358979323846 /* pi */ |
| #endif |
| |
| /* maximum allowed phase error in degree */ |
| #define DEG_ERR_LIMIT 1E-4 |
| |
| /* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */ |
| #define MAG_ERR_LIMIT 1E-6 |
| |
| #define PRINT_SPEC 0 |
| |
| #define PWR2LOG(PWR) ((PWR) < 1E-30 ? 10.0 * log10(1E-30) : 10.0 * log10(PWR)) |
| |
| template<typename T> |
| bool |
| Ttest(int N, bool useOrdered) |
| { |
| typedef pffft::Fft<T> Fft; |
| typedef typename pffft::Fft<T>::Scalar FftScalar; |
| typedef typename Fft::Complex FftComplex; |
| |
| const bool cplx = pffft::Fft<T>::isComplexTransform(); |
| const double EXPECTED_DYN_RANGE = Fft::isDoubleScalar() ? 215.0 : 140.0; |
| |
| assert(Fft::isPowerOfTwo(N)); |
| |
| Fft fft = Fft(N); // instantiate and prepareLength() for length N |
| |
| #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900) |
| |
| // possible ways to declare/instatiate aligned vectors with C++11 |
| // some lines require a typedef of above |
| auto X = fft.valueVector(); // for X = input vector |
| pffft::AlignedVector<typename Fft::Complex> Y = fft.spectrumVector(); // for Y = forward(X) |
| pffft::AlignedVector<FftScalar> R = fft.internalLayoutVector(); // for R = forwardInternalLayout(X) |
| pffft::AlignedVector<T> Z = fft.valueVector(); // for Z = inverse(Y) = inverse( forward(X) ) |
| // or Z = inverseInternalLayout(R) |
| #else |
| |
| // possible ways to declare/instatiate aligned vectors with C++98 |
| pffft::AlignedVector<T> X = fft.valueVector(); // for X = input vector |
| pffft::AlignedVector<FftComplex> Y = fft.spectrumVector(); // for Y = forward(X) |
| pffft::AlignedVector<typename Fft::Scalar> R = fft.internalLayoutVector(); // for R = forwardInternalLayout(X) |
| pffft::AlignedVector<T> Z = fft.valueVector(); // for Z = inverse(Y) = inverse( forward(X) ) |
| // or Z = inverseInternalLayout(R) |
| #endif |
| |
| // work with complex - without the capabilities of a higher c++ standard |
| FftScalar* Xs = reinterpret_cast<FftScalar*>(X.data()); // for X = input vector |
| FftScalar* Ys = reinterpret_cast<FftScalar*>(Y.data()); // for Y = forward(X) |
| FftScalar* Zs = reinterpret_cast<FftScalar*>(Z.data()); // for Z = inverse(Y) = inverse( forward(X) ) |
| |
| int k, j, m, iter, kmaxOther; |
| bool retError = false; |
| double freq, dPhi, phi, phi0; |
| double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag; |
| double amp = 1.0; |
| |
| for (k = m = 0; k < (cplx ? N : (1 + N / 2)); k += N / 16, ++m) { |
| amp = ((m % 3) == 0) ? 1.0F : 1.1F; |
| freq = (k < N / 2) ? ((double)k / N) : ((double)(k - N) / N); |
| dPhi = 2.0 * M_PI * freq; |
| if (dPhi < 0.0) |
| dPhi += 2.0 * M_PI; |
| |
| iter = -1; |
| while (1) { |
| ++iter; |
| |
| if (iter) |
| printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq); |
| |
| /* generate cosine carrier as time signal - start at defined phase phi0 */ |
| phi = phi0 = |
| (m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */ |
| for (j = 0; j < N; ++j) { |
| if (cplx) { |
| Xs[2 * j] = (FftScalar)( amp * cos(phi) ); /* real part */ |
| Xs[2 * j + 1] = (FftScalar)( amp * sin(phi) ); /* imag part */ |
| } else |
| Xs[j] = (FftScalar)( amp * cos(phi) ); /* only real part */ |
| |
| /* phase increment .. stay normalized - cos()/sin() might degrade! */ |
| phi += dPhi; |
| if (phi >= M_PI) |
| phi -= 2.0 * M_PI; |
| } |
| |
| /* forward transform from X --> Y .. using work buffer W */ |
| if (useOrdered) |
| fft.forward(X, Y); |
| else { |
| fft.forwardToInternalLayout(X, R); /* use R for reordering */ |
| fft.reorderSpectrum(R, Y); /* have canonical order in Y[] for power calculations */ |
| } |
| |
| pwrOther = -1.0; |
| pwrCar = 0; |
| |
| /* for positive frequencies: 0 to 0.5 * samplerate */ |
| /* and also for negative frequencies: -0.5 * samplerate to 0 */ |
| for (j = 0; j < (cplx ? N : (1 + N / 2)); ++j) { |
| if (!cplx && !j) /* special treatment for DC for real input */ |
| pwr = Ys[j] * Ys[j]; |
| else if (!cplx && j == N / 2) /* treat 0.5 * samplerate */ |
| pwr = Ys[1] * |
| Ys[1]; /* despite j (for freq calculation) we have index 1 */ |
| else |
| pwr = Ys[2 * j] * Ys[2 * j] + Ys[2 * j + 1] * Ys[2 * j + 1]; |
| if (iter || PRINT_SPEC) |
| printf("%s fft %d: pwr[j = %d] = %g == %f dB\n", |
| (cplx ? "cplx" : "real"), |
| N, |
| j, |
| pwr, |
| PWR2LOG(pwr)); |
| if (k == j) |
| pwrCar = pwr; |
| else if (pwr > pwrOther) { |
| pwrOther = pwr; |
| kmaxOther = j; |
| } |
| } |
| |
| if (PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE) { |
| printf("%s fft %d amp %f iter %d:\n", |
| (cplx ? "cplx" : "real"), |
| N, |
| amp, |
| iter); |
| printf(" carrier power at bin %d: %g == %f dB\n", |
| k, |
| pwrCar, |
| PWR2LOG(pwrCar)); |
| printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar)); |
| printf(" max other pwr at bin %d: %g == %f dB\n", |
| kmaxOther, |
| pwrOther, |
| PWR2LOG(pwrOther)); |
| printf(" dynamic range: %f dB\n\n", |
| PWR2LOG(pwrCar) - PWR2LOG(pwrOther)); |
| retError = true; |
| if (iter == 0) |
| continue; |
| } |
| |
| if (k > 0 && k != N / 2) { |
| phi = atan2(Ys[2 * k + 1], Ys[2 * k]); |
| if (fabs(phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0) { |
| retError = true; |
| printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg " |
| "expected = %f deg\n", |
| (cplx ? "cplx" : "real"), |
| N, |
| k, |
| amp, |
| phi * 180.0 / M_PI, |
| phi0 * 180.0 / M_PI); |
| } |
| } |
| |
| expextedMag = cplx ? amp : ((k == 0 || k == N / 2) ? amp : (amp / 2)); |
| mag = sqrt(pwrCar) / N; |
| if (fabs(mag - expextedMag) > MAG_ERR_LIMIT) { |
| retError = true; |
| printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n", |
| (cplx ? "cplx" : "real"), |
| N, |
| k, |
| amp, |
| mag, |
| expextedMag); |
| } |
| |
| /* now convert spectrum back */ |
| if (useOrdered) |
| fft.inverse(Y, Z); |
| else |
| fft.inverseFromInternalLayout(R, Z); /* inverse() from internal Layout */ |
| |
| errSum = 0.0; |
| for (j = 0; j < (cplx ? (2 * N) : N); ++j) { |
| /* scale back */ |
| Zs[j] /= N; |
| /* square sum errors over real (and imag parts) */ |
| err = (Xs[j] - Zs[j]) * (Xs[j] - Zs[j]); |
| errSum += err; |
| } |
| |
| if (errSum > N * 1E-7) { |
| retError = true; |
| printf("%s fft %d bin %d : inverse FFT doesn't match original signal! " |
| "errSum = %g ; mean err = %g\n", |
| (cplx ? "cplx" : "real"), |
| N, |
| k, |
| errSum, |
| errSum / N); |
| } |
| |
| break; |
| } |
| } |
| |
| // using the std::vector<> base classes .. no need for alignedFree() for X, Y, Z and R |
| |
| return retError; |
| } |
| |
| bool |
| test(int N, bool useComplex, bool useOrdered) |
| { |
| if (useComplex) { |
| return |
| #ifdef PFFFT_ENABLE_FLOAT |
| Ttest< std::complex<float> >(N, useOrdered) |
| #endif |
| #if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE) |
| && |
| #endif |
| #ifdef PFFFT_ENABLE_DOUBLE |
| Ttest< std::complex<double> >(N, useOrdered) |
| #endif |
| ; |
| } else { |
| return |
| #ifdef PFFFT_ENABLE_FLOAT |
| Ttest<float>(N, useOrdered) |
| #endif |
| #if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE) |
| && |
| #endif |
| #ifdef PFFFT_ENABLE_DOUBLE |
| Ttest<double>(N, useOrdered) |
| #endif |
| ; |
| } |
| } |
| |
| int |
| main(int argc, char** argv) |
| { |
| int N, result, resN, resAll, k, resNextPw2, resIsPw2, resFFT; |
| |
| int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 }; |
| int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 }; |
| |
| resNextPw2 = 0; |
| resIsPw2 = 0; |
| for (k = 0; k < (sizeof(inp_power_of_two) / sizeof(inp_power_of_two[0])); |
| ++k) { |
| #ifdef PFFFT_ENABLE_FLOAT |
| N = pffft::Fft<float>::nextPowerOfTwo(inp_power_of_two[k]); |
| #else |
| N = pffft::Fft<double>::nextPowerOfTwo(inp_power_of_two[k]); |
| #endif |
| if (N != ref_power_of_two[k]) { |
| resNextPw2 = 1; |
| printf("pffft_next_power_of_two(%d) does deliver %d, which is not " |
| "reference result %d!\n", |
| inp_power_of_two[k], |
| N, |
| ref_power_of_two[k]); |
| } |
| |
| #ifdef PFFFT_ENABLE_FLOAT |
| result = pffft::Fft<float>::isPowerOfTwo(inp_power_of_two[k]); |
| #else |
| result = pffft::Fft<double>::isPowerOfTwo(inp_power_of_two[k]); |
| #endif |
| if (inp_power_of_two[k] == ref_power_of_two[k]) { |
| if (!result) { |
| resIsPw2 = 1; |
| printf("pffft_is_power_of_two(%d) delivers false; expected true!\n", |
| inp_power_of_two[k]); |
| } |
| } else { |
| if (result) { |
| resIsPw2 = 1; |
| printf("pffft_is_power_of_two(%d) delivers true; expected false!\n", |
| inp_power_of_two[k]); |
| } |
| } |
| } |
| if (!resNextPw2) |
| printf("tests for pffft_next_power_of_two() succeeded successfully.\n"); |
| if (!resIsPw2) |
| printf("tests for pffft_is_power_of_two() succeeded successfully.\n"); |
| |
| resFFT = 0; |
| for (N = 32; N <= 65536; N *= 2) { |
| result = test(N, 1 /* cplx fft */, 1 /* useOrdered */); |
| resN = result; |
| resFFT |= result; |
| |
| result = test(N, 0 /* cplx fft */, 1 /* useOrdered */); |
| resN |= result; |
| resFFT |= result; |
| |
| result = test(N, 1 /* cplx fft */, 0 /* useOrdered */); |
| resN |= result; |
| resFFT |= result; |
| |
| result = test(N, 0 /* cplx fft */, 0 /* useOrdered */); |
| resN |= result; |
| resFFT |= result; |
| |
| if (!resN) |
| printf("tests for size %d succeeded successfully.\n", N); |
| } |
| |
| if (!resFFT) |
| printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, " |
| #ifdef PFFFT_ENABLE_FLOAT |
| "float" |
| #endif |
| #if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE) |
| "/" |
| #endif |
| #ifdef PFFFT_ENABLE_DOUBLE |
| "double" |
| #endif |
| ") succeeded successfully.\n"); |
| |
| resAll = resNextPw2 | resIsPw2 | resFFT; |
| if (!resAll) |
| printf("all tests succeeded successfully.\n"); |
| else |
| printf("there are failed tests!\n"); |
| |
| return resAll; |
| } |