| // Copyright 2015 Google Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #ifndef PIEX_BINARY_PARSE_RANGE_CHECKED_BYTE_PTR_H_ |
| #define PIEX_BINARY_PARSE_RANGE_CHECKED_BYTE_PTR_H_ |
| |
| #include <assert.h> |
| |
| #include <cstddef> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| namespace piex { |
| namespace binary_parse { |
| |
| // Since NaCl does not comply to C++11 we can not just use stdint.h. |
| typedef unsigned short uint16; // NOLINT |
| typedef short int16; // NOLINT |
| typedef unsigned int uint32; |
| typedef int int32; |
| |
| enum MemoryStatus { |
| RANGE_CHECKED_BYTE_SUCCESS = 0, |
| RANGE_CHECKED_BYTE_ERROR = 1, |
| RANGE_CHECKED_BYTE_ERROR_OVERFLOW = 2, |
| RANGE_CHECKED_BYTE_ERROR_UNDERFLOW = 3, |
| }; |
| |
| // Interface that RangeCheckedBytePtr uses to access the underlying array of |
| // bytes. This allows RangeCheckedBytePtr to be used to access data as if it |
| // were stored contiguously in memory, even if the data is in fact split up |
| // into non-contiguous chunks and / or does not reside in memory. |
| // |
| // The only requirement is that the data can be read in pages of a fixed (but |
| // configurable) size. Notionally, the byte array (which contains length() |
| // bytes) is split up into non-overlapping pages of pageSize() bytes each. |
| // (The last page may be shorter if length() is not a multiple of pageSize().) |
| // There are therefore (length() - 1) / pageSize() + 1 such pages, with indexes |
| // 0 through (length() - 1) / pageSize(). Page i contains the bytes from offset |
| // i * pageSize() in the array up to and including the byte at offset |
| // (i + 1) * pageSize() - 1 (or, in the case of the last page, length() - 1). |
| // |
| // In essence, RangeCheckedBytePtr and PagedByteArray together provide a poor |
| // man's virtual-memory-and-memory-mapped-file work-alike in situations where |
| // virtual memory cannot be used or would consume too much virtual address |
| // space. |
| // |
| // Thread safety: In general, subclasses implementing this interface should |
| // ensure that the member functions are thread-safe. It will then be safe to |
| // access the same array from multiple threads. (Note that RangeCheckedBytePtr |
| // itself is not thread-safe in the sense that a single instance of |
| // RangeCheckedBytePtr cannot be used concurrently from multiple threads; it |
| // is, however, safe to use different RangeCheckedBytePtr instances in |
| // different threads to access the same PagedByteArray concurrently, assuming |
| // that the PagedByteArray implementation is thread-safe.) |
| class PagedByteArray { |
| public: |
| // Base class for pages in the byte array. Implementations of PagedByteArray |
| // can create a subclass of the Page class to manage the lifetime of buffers |
| // associated with a page returned by getPage(). For example, a |
| // PagedByteArray backed by a file might define a Page subclass like this: |
| // |
| // class FilePage : public Page { |
| // std::vector<unsigned char> bytes; |
| // }; |
| // |
| // The corresponding getPage() implementation could then look like this: |
| // |
| // void getPage(size_t page_index, const unsigned char** begin, |
| // const unsigned char** end, std::shared_ptr<Page>* page) |
| // { |
| // // Create a new page. |
| // std::shared_ptr<FilePage> file_page(new FilePage()); |
| // |
| // // Read contents of page from file into file_page->bytes. |
| // [...] |
| // |
| // // Set *begin and *end to point to beginning and end of |
| // // file_page->bytes vector. |
| // *begin = &file_page->bytes[0]; |
| // *end = *begin + file_page->bytes.size(); |
| // |
| // // Return page to caller |
| // *page = file_page; |
| // } |
| // |
| // In this way, the storage associated with the page (the FilePage::bytes |
| // vector) will be kept alive until the RangeCheckedBytePtr releases the |
| // shared pointer. |
| class Page {}; |
| |
| typedef std::shared_ptr<Page> PagePtr; |
| |
| virtual ~PagedByteArray(); |
| |
| // Returns the length of the array in bytes. The value returned must remain |
| // the same on every call for the entire lifetime of the object. |
| virtual size_t length() const = 0; |
| |
| // Returns the length of each page in bytes. (The last page may be shorter |
| // than pageSize() if length() is not a multiple of pageSize() -- see also |
| // the class-wide comment above.) The value returned must remain the same on |
| // every call for the entire lifetime of the object. |
| virtual size_t pageSize() const = 0; |
| |
| // Returns a pointer to a memory buffer containing the data for the page |
| // with index "page_index". |
| // |
| // *begin is set to point to the first byte of the page; *end is set to point |
| // one byte beyond the last byte in the page. This implies that: |
| // - (*end - *begin) == pageSize() for every page except the last page |
| // - (*end - *begin) == length() - pageSize() * ((length() - 1) / pageSize()) |
| // for the last page |
| // |
| // *page will be set to a SharedPtr that the caller will hold on to until |
| // it no longer needs to access the memory buffer. The memory buffer will |
| // remain valid until the SharedPtr is released or the PagedByteArray object |
| // is destroyed. An implementation may choose to return a null SharedPtr; |
| // this indicates that the memory buffer will remain valid until the |
| // PagedByteArray object is destroyed, even if the caller does not hold on to |
| // the SharedPtr. (This is intended as an optimization that some |
| // implementations may choose to take advantage of, as a null SharedPtr is |
| // cheaper to copy.) |
| virtual void getPage(size_t page_index, const unsigned char **begin, |
| const unsigned char **end, PagePtr *page) const = 0; |
| }; |
| |
| typedef std::shared_ptr<PagedByteArray> PagedByteArrayPtr; |
| |
| // Smart pointer that has the same semantics as a "const unsigned char *" (plus |
| // some convenience functions) but provides range checking and the ability to |
| // access arrays that are not contiguous in memory or do not reside entirely in |
| // memory (through the PagedByteArray interface). |
| // |
| // In the following, we abbreviate RangeCheckedBytePtr as RCBP. |
| // |
| // The intent of this class is to allow easy security hardening of code that |
| // parses binary data structures using raw byte pointers. To do this, only the |
| // declarations of the pointers need to be changed; the code that uses the |
| // pointers can remain unchanged. |
| // |
| // If an illegal operation occurs on a pointer, an error flag is set, and all |
| // read operations from this point on return 0. This means that error checking |
| // need not be done after every access; it is sufficient to check the error flag |
| // (using errorOccurred()) once before the RCBP is destroyed. Again, this allows |
| // the majority of the parsing code to remain unchanged. (Note caveats below |
| // that apply if a copy of the pointer is created.) |
| // |
| // Legal operations are exactly the ones that would be legal on a raw C++ |
| // pointer. Read accesses are legal if they fall within the underlying array. A |
| // RCBP may point to any element in the underlying array or one element beyond |
| // the end of the array. |
| // |
| // For brevity, the documentation for individual member functions does not state |
| // explicitly that the error flag will be set on out-of-range operations. |
| // |
| // Note: |
| // |
| // - Just as for raw pointers, it is legal for a pointer to point one element |
| // beyond the end of the array, but it is illegal to use operator*() on such a |
| // pointer. |
| // |
| // - If a copy of an RCBP is created, then performing illegal operations on the |
| // copy affects the error flag of the copy, but not of the original pointer. |
| // Note that using operator+ and operator- also creates a copy of the pointer. |
| // For example: |
| // |
| // // Assume we have an RCBP called "p" and a size_t variable called |
| // // "offset". |
| // RangeCheckedBytePtr sub_data_structure = p + offset; |
| // |
| // If "offset" is large enough to cause an out-of-range access, then |
| // sub_data_structure.errorOccurred() will be true, but p.errorOccurred() will |
| // still be false. The error flag for sub_data_structure therefore needs to be |
| // checked before it is destroyed. |
| class RangeCheckedBytePtr { |
| private: |
| // This class maintains the following class invariants: |
| // - page_data_ always points to a buffer of at least current_page_len_ |
| // bytes. |
| // |
| // - The current position lies within the sub-array, i.e. |
| // sub_array_begin_ <= current_pos_ <= sub_array_end_ |
| // |
| // - The sub-array is entirely contained within the array, i.e. |
| // 0 <= sub_array_begin <= sub_array_end <= array_->length() |
| // |
| // - If the current page is non-empty, it lies completely within the |
| // sub-array, i.e. |
| // if _current_page_len_ >= 0, then |
| // sub_array_begin_ <= page_begin_offset_ |
| // and |
| // page_begin_offset_ + current_page_len_ <= sub_array_end_ |
| // (See also restrictPageToSubArray().) |
| // (If _current_page_len_ == 0, then page_begin_offset_ may lie outside |
| // the sub-array; this condition is harmless. Additional logic would be |
| // required to make page_begin_offset_ lie within the sub-array in this |
| // case, and it would serve no purpose other than to make the invariant |
| // slightly simpler.) |
| // |
| // Note that it is _not_ a class invariant that current_pos_ needs to lie |
| // within the current page. Making this an invariant would have two |
| // undesirable consequences: |
| // a) When operator[] is called with an index that lies beyond the end of |
| // the current page, it would need to temporarily load the page that |
| // contains this index, but it wouldn't be able to "retain" the page |
| // (i.e. make it the current page) because that would violate the |
| // proposed invariant. This would lead to inefficient behavior in the |
| // case where code accesses a large range of indices beyond the end of |
| // the page because a page would need to be loaded temporarily on each |
| // access. |
| // b) It would require more code: loadPageForOffset() would need to be |
| // called anywhere that current_pos_ changes (whereas, with the present |
| // approach, loadPageForOffset() is only called in operator[]). |
| |
| // PagedByteArray that is accessed by this pointer. |
| PagedByteArrayPtr array_; |
| |
| // Pointer to the current page. |
| mutable PagedByteArray::PagePtr page_; |
| |
| // Pointer to the current page's data buffer. |
| mutable const unsigned char *page_data_; |
| |
| // All of the following offsets are defined relative to the beginning of |
| // the array defined by the PagedByteArray array_. |
| |
| // Array offset that the pointer points to. |
| size_t current_pos_; |
| |
| // Start offset of the current sub-array. |
| size_t sub_array_begin_; |
| |
| // End offset of the current sub-array. |
| size_t sub_array_end_; |
| |
| // Array offset corresponding to the "page_data_" pointer. |
| mutable size_t page_begin_offset_; |
| |
| // Length of the current page. |
| mutable size_t current_page_len_; |
| |
| // Error flag. This is mutable because methods that don't affect the value |
| // of the pointer itself (such as operator[]) nevertheless need to be able to |
| // signal error conditions. |
| mutable MemoryStatus error_flag_; |
| |
| RangeCheckedBytePtr(); |
| |
| public: |
| // Creates a pointer that points to the first element of 'array', which has a |
| // length of 'len'. The caller must ensure that the array remains valid until |
| // this pointer and any pointers created from it have been destroyed. |
| // Note: 'len' may be zero, but 'array' must in this case still be a valid, |
| // non-null pointer. |
| explicit RangeCheckedBytePtr(const unsigned char *array, const size_t len); |
| |
| // Creates a pointer that points to the first element of the given |
| // PagedByteArray. The caller must ensure that this PagedByteArray remains |
| // valid until this pointer and any pointers created from it have been |
| // destroyed. |
| explicit RangeCheckedBytePtr(PagedByteArray *array); |
| |
| // Creates an invalid RangeCheckedBytePtr. Calling errorOccurred() on the |
| // result of invalidPointer() always returns true. |
| // Do not check a RangeCheckedBytePtr for validity by comparing against |
| // invalidPointer(); use errorOccurred() instead. |
| static RangeCheckedBytePtr invalidPointer(); |
| |
| // Returns a RangeCheckedBytePtr that points to a sub-array of this pointer's |
| // underlying array. The sub-array starts at position 'pos' relative to this |
| // pointer and is 'length' bytes long. The sub-array must lie within this |
| // pointer's array, i.e. pos + length <= remainingLength() must hold. If this |
| // condition is violated, an invalid pointer is returned. |
| RangeCheckedBytePtr pointerToSubArray(size_t pos, size_t length) const; |
| |
| // Returns the number of bytes remaining in the array from this pointer's |
| // present position. |
| inline size_t remainingLength() const; |
| |
| // Returns the offset (or index) in the underlying array that this pointer |
| // points to. If this pointer was created using pointerToSubArray(), the |
| // offset is relative to the beginning of the sub-array (and not relative to |
| // the beginning of the original array). |
| size_t offsetInArray() const; |
| |
| // Returns whether an out-of-bounds error has ever occurred on this pointer in |
| // the past. An error occurs if a caller attempts to read from a position |
| // outside the bounds of the array or to move the pointer outside the bounds |
| // of the array. |
| // |
| // The error flag is never reset. Once an error has occurred, |
| // all subsequent attempts to read from the pointer (even within the bounds of |
| // the array) return 0. |
| // |
| // Note that it is permissible for a pointer to point one element past the end |
| // of the array, but it is not permissible to read from this position. This is |
| // equivalent to the semantics of raw C++ pointers. |
| inline bool errorOccurred() const; |
| |
| // Returns the substring of length 'length' located at position 'pos' relative |
| // to this pointer. |
| std::string substr(size_t pos, size_t length) const; |
| |
| // Returns 'length' number of bytes from the array starting at position 'pos' |
| // relative to this pointer. |
| std::vector<unsigned char> extractBytes(size_t pos, size_t length) const; |
| |
| // Equivalent to calling convert(0, output). |
| template <class T> |
| bool convert(T *output) const { |
| union { |
| T t; |
| unsigned char ch[sizeof(T)]; |
| } buffer; |
| for (size_t i = 0; i < sizeof(T); i++) { |
| buffer.ch[i] = (*this)[i]; |
| } |
| if (!errorOccurred()) { |
| *output = buffer.t; |
| } |
| return !errorOccurred(); |
| } |
| |
| // Reinterprets this pointer as a pointer to an array of T, then returns the |
| // element at position 'index' in this array of T. (Note that this position |
| // corresponds to position index * sizeof(T) in the underlying byte array.) |
| // |
| // Returns true if successful; false if an out-of-range error occurred or if |
| // the error flag was already set on the pointer when calling convert(). |
| // |
| // The conversion from a sequence of sizeof(T) bytes to a T is performed in an |
| // implementation-defined fashion. This conversion is equivalent to the one |
| // obtained using the following union by filling the array 'ch' and then |
| // reading the member 't': |
| // |
| // union { |
| // T t; |
| // unsigned char ch[sizeof(T)]; |
| // }; |
| // |
| // Callers should note that, among other things, the conversion is not |
| // endian-agnostic with respect to the endianness of T. |
| template <class T> |
| bool convert(size_t index, T *output) const { |
| RangeCheckedBytePtr p = (*this) + index * sizeof(T); |
| bool valid = p.convert(output); |
| if (!valid) { |
| error_flag_ = p.error_flag_; |
| } |
| return valid; |
| } |
| |
| // Operators. Unless otherwise noted, these operators have the same semantics |
| // as the same operators on an unsigned char pointer. |
| |
| // If an out-of-range access is attempted, returns 0 (and sets the error |
| // flag). |
| inline unsigned char operator[](size_t i) const; |
| |
| inline unsigned char operator*() const; |
| |
| inline RangeCheckedBytePtr &operator++(); |
| |
| inline RangeCheckedBytePtr operator++(int); |
| |
| inline RangeCheckedBytePtr &operator--(); |
| |
| inline RangeCheckedBytePtr operator--(int); |
| |
| inline RangeCheckedBytePtr &operator+=(size_t x); |
| |
| inline RangeCheckedBytePtr &operator-=(size_t x); |
| |
| inline friend RangeCheckedBytePtr operator+(const RangeCheckedBytePtr &p, |
| size_t x); |
| |
| inline friend RangeCheckedBytePtr operator-(const RangeCheckedBytePtr &p, |
| size_t x); |
| |
| // Tests whether x and y point at the same position in the underlying array. |
| // Two pointers that point at the same position but have different |
| // sub-arrays still compare equal. It is not legal to compare two pointers |
| // that point into different paged byte arrays. |
| friend bool operator==(const RangeCheckedBytePtr &x, |
| const RangeCheckedBytePtr &y); |
| |
| // Returns !(x == y). |
| friend bool operator!=(const RangeCheckedBytePtr &x, |
| const RangeCheckedBytePtr &y); |
| |
| private: |
| void loadPageForOffset(size_t offset) const; |
| void restrictPageToSubArray() const; |
| }; |
| |
| // Returns the result of calling std::memcmp() on the sequences of 'num' bytes |
| // pointed to by 'x' and 'y'. The result is undefined if either |
| // x.remainingLength() or y.remainingLength() is less than 'num'. |
| int memcmp(const RangeCheckedBytePtr &x, const RangeCheckedBytePtr &y, |
| size_t num); |
| |
| // Returns the result of calling std::memcmp() (note: _not_ strcmp()) on the |
| // y.length() number of bytes pointed to by 'x' and the string 'y'. The result |
| // is undefined if x.remainingLength() is less than y.length(). |
| int strcmp(const RangeCheckedBytePtr &x, const std::string &y); |
| |
| // Returns the length of the zero-terminated string starting at 'src' (not |
| // including the '\0' terminator). If no '\0' occurs before the end of the |
| // array, the result is undefined. |
| size_t strlen(const RangeCheckedBytePtr &src); |
| |
| // Integer decoding functions. |
| // |
| // These functions read signed (Get16s, Get32s) or unsigned (Get16u, Get32u) |
| // integers from 'input'. The integer read from the input can be specified to be |
| // either big-endian (big_endian == true) or little-endian |
| // (little_endian == false). Signed integers are read in two's-complement |
| // representation. The integer read in the specified format is then converted to |
| // the implementation's native integer representation and returned. In other |
| // words, the semantics of these functions are independent of the |
| // implementation's endianness and signed integer representation. |
| // |
| // If an out-of-range error occurs, these functions do _not_ set the error flag |
| // on 'input'. Instead, they set 'status' to RANGE_CHECKED_BYTE_ERROR and return |
| // 0. |
| // |
| // Note: |
| // - If an error occurs and 'status' is already set to an error value (i.e. a |
| // value different from RANGE_CHECKED_BYTE_SUCCESS), the value of 'status' is |
| // left unchanged. |
| // - If the operation is successful, 'status' is left unchanged (i.e. it is not |
| // actively set to RANGE_CHECKED_BYTE_SUCCESS). |
| // |
| // Together, these two properties mean that these functions can be used to read |
| // a number of integers in succession with only a single error check, like this: |
| // |
| // MemoryStatus status = RANGE_CHECKED_BYTE_SUCCESS; |
| // int16 val1 = Get16s(input, false, &status); |
| // int32 val2 = Get32s(input + 2, false, &status); |
| // uint32 val3 = Get32u(input + 6, false, &status); |
| // if (status != RANGE_CHECKED_BYTE_SUCCESS) { |
| // // error handling |
| // } |
| int16 Get16s(const RangeCheckedBytePtr &input, const bool big_endian, |
| MemoryStatus *status); |
| uint16 Get16u(const RangeCheckedBytePtr &input, const bool big_endian, |
| MemoryStatus *status); |
| int32 Get32s(const RangeCheckedBytePtr &input, const bool big_endian, |
| MemoryStatus *status); |
| uint32 Get32u(const RangeCheckedBytePtr &input, const bool big_endian, |
| MemoryStatus *status); |
| |
| size_t RangeCheckedBytePtr::remainingLength() const { |
| if (!errorOccurred()) { |
| // current_pos_ <= sub_array_end_ is a class invariant, but protect |
| // against violations of this invariant. |
| if (current_pos_ <= sub_array_end_) { |
| return sub_array_end_ - current_pos_; |
| } else { |
| assert(false); |
| return 0; |
| } |
| } else { |
| return 0; |
| } |
| } |
| |
| bool RangeCheckedBytePtr::errorOccurred() const { |
| return error_flag_ != RANGE_CHECKED_BYTE_SUCCESS; |
| } |
| |
| unsigned char RangeCheckedBytePtr::operator[](size_t i) const { |
| // Check that pointer doesn't have an error flag set. |
| if (!errorOccurred()) { |
| // Offset in array to read from. |
| const size_t read_offset = current_pos_ + i; |
| |
| // Check for the common case first: The byte we want to read lies in the |
| // current page. For performance reasons, we don't check for the case |
| // "read_offset < page_begin_offset_" explicitly; if it occurs, it will |
| // lead to wraparound (which is well-defined for unsigned quantities), and |
| // this will cause the test "pos_in_page < current_page_len_" to fail. |
| size_t pos_in_page = read_offset - page_begin_offset_; |
| if (pos_in_page < current_page_len_) { |
| return page_data_[pos_in_page]; |
| } |
| |
| // Check that the offset we're trying to read lies within the sub-array |
| // we're allowed to access. |
| if (read_offset >= sub_array_begin_ && read_offset < sub_array_end_) { |
| // Read the page that contains the offset "read_offset". |
| loadPageForOffset(read_offset); |
| |
| // Compute the position within the new page from which we need to read. |
| pos_in_page = read_offset - page_begin_offset_; |
| |
| // After the call to loadPageForOffset(), read_offset must lie within |
| // the current page, and therefore pos_in_page must be less than the |
| // length of the page. We nevertheless check for this to protect against |
| // potential bugs in loadPageForOffset(). |
| assert(pos_in_page < current_page_len_); |
| if (pos_in_page < current_page_len_) { |
| return page_data_[pos_in_page]; |
| } |
| } |
| } |
| |
| // All error cases fall through to here. |
| #ifdef BREAK_IF_DEBUGGING_AND_OUT_OF_RANGE |
| assert(false); |
| #endif |
| error_flag_ = RANGE_CHECKED_BYTE_ERROR_OVERFLOW; |
| // return 0, which represents the invalid value |
| return static_cast<unsigned char>(0); |
| } |
| |
| unsigned char RangeCheckedBytePtr::operator*() const { return (*this)[0]; } |
| |
| RangeCheckedBytePtr &RangeCheckedBytePtr::operator++() { |
| if (current_pos_ < sub_array_end_) { |
| current_pos_++; |
| } else { |
| #ifdef BREAK_IF_DEBUGGING_AND_OUT_OF_RANGE |
| assert(false); |
| #endif |
| error_flag_ = RANGE_CHECKED_BYTE_ERROR_OVERFLOW; |
| } |
| return *this; |
| } |
| |
| RangeCheckedBytePtr RangeCheckedBytePtr::operator++(int) { |
| RangeCheckedBytePtr result(*this); |
| ++(*this); |
| return result; |
| } |
| |
| RangeCheckedBytePtr &RangeCheckedBytePtr::operator--() { |
| if (current_pos_ > sub_array_begin_) { |
| current_pos_--; |
| } else { |
| #ifdef BREAK_IF_DEBUGGING_AND_OUT_OF_RANGE |
| assert(false); |
| #endif |
| error_flag_ = RANGE_CHECKED_BYTE_ERROR_UNDERFLOW; |
| } |
| return *this; |
| } |
| |
| RangeCheckedBytePtr RangeCheckedBytePtr::operator--(int) { |
| RangeCheckedBytePtr result(*this); |
| --(*this); |
| return result; |
| } |
| |
| RangeCheckedBytePtr &RangeCheckedBytePtr::operator+=(size_t x) { |
| if (remainingLength() >= x) { |
| current_pos_ += x; |
| } else { |
| #ifdef BREAK_IF_DEBUGGING_AND_OUT_OF_RANGE |
| assert(false); |
| #endif |
| error_flag_ = RANGE_CHECKED_BYTE_ERROR_OVERFLOW; |
| } |
| return *this; |
| } |
| |
| RangeCheckedBytePtr &RangeCheckedBytePtr::operator-=(size_t x) { |
| if (x <= current_pos_ - sub_array_begin_) { |
| current_pos_ -= x; |
| } else { |
| #ifdef BREAK_IF_DEBUGGING_AND_OUT_OF_RANGE |
| assert(false); |
| #endif |
| error_flag_ = RANGE_CHECKED_BYTE_ERROR_UNDERFLOW; |
| } |
| return *this; |
| } |
| |
| RangeCheckedBytePtr operator+(const RangeCheckedBytePtr &p, size_t x) { |
| RangeCheckedBytePtr result(p); |
| result += x; |
| return result; |
| } |
| |
| RangeCheckedBytePtr operator-(const RangeCheckedBytePtr &p, size_t x) { |
| RangeCheckedBytePtr result(p); |
| result -= x; |
| return result; |
| } |
| |
| } // namespace binary_parse |
| } // namespace piex |
| |
| #endif // PIEX_BINARY_PARSE_RANGE_CHECKED_BYTE_PTR_H_ |