blob: 1c96ca20807347238d660f588047b5517c2c7b86 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: [email protected] (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// DynamicMessage is implemented by constructing a data structure which
// has roughly the same memory layout as a generated message would have.
// Then, we use Reflection to implement our reflection interface. All
// the other operations we need to implement (e.g. parsing, copying,
// etc.) are already implemented in terms of Reflection, so the rest is
// easy.
//
// The up side of this strategy is that it's very efficient. We don't
// need to use hash_maps or generic representations of fields. The
// down side is that this is a low-level memory management hack which
// can be tricky to get right.
//
// As mentioned in the header, we only expose a DynamicMessageFactory
// publicly, not the DynamicMessage class itself. This is because
// GenericMessageReflection wants to have a pointer to a "default"
// copy of the class, with all fields initialized to their default
// values. We only want to construct one of these per message type,
// so DynamicMessageFactory stores a cache of default messages for
// each type it sees (each unique Descriptor pointer). The code
// refers to the "default" copy of the class as the "prototype".
//
// Note on memory allocation: This module often calls "operator new()"
// to allocate untyped memory, rather than calling something like
// "new uint8_t[]". This is because "operator new()" means "Give me some
// space which I can use as I please." while "new uint8_t[]" means "Give
// me an array of 8-bit integers.". In practice, the later may return
// a pointer that is not aligned correctly for general use. I believe
// Item 8 of "More Effective C++" discusses this in more detail, though
// I don't have the book on me right now so I'm not sure.
#include <google/protobuf/dynamic_message.h>
#include <algorithm>
#include <cstddef>
#include <memory>
#include <new>
#include <unordered_map>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/generated_message_reflection.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/unknown_field_set.h>
#include <google/protobuf/stubs/hash.h>
#include <google/protobuf/arenastring.h>
#include <google/protobuf/extension_set.h>
#include <google/protobuf/map_field.h>
#include <google/protobuf/map_field_inl.h>
#include <google/protobuf/map_type_handler.h>
#include <google/protobuf/reflection_ops.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/wire_format.h>
// Must be included last.
#include <google/protobuf/port_def.inc>
namespace google {
namespace protobuf {
using internal::DynamicMapField;
using internal::ExtensionSet;
using internal::MapField;
using internal::ArenaStringPtr;
// ===================================================================
// Some helper tables and functions...
namespace {
bool IsMapFieldInApi(const FieldDescriptor* field) { return field->is_map(); }
// Sync with helpers.h.
inline bool HasHasbit(const FieldDescriptor* field) {
// This predicate includes proto3 message fields only if they have "optional".
// Foo submsg1 = 1; // HasHasbit() == false
// optional Foo submsg2 = 2; // HasHasbit() == true
// This is slightly odd, as adding "optional" to a singular proto3 field does
// not change the semantics or API. However whenever any field in a message
// has a hasbit, it forces reflection to include hasbit offsets for *all*
// fields, even if almost all of them are set to -1 (no hasbit). So to avoid
// causing a sudden size regression for ~all proto3 messages, we give proto3
// message fields a hasbit only if "optional" is present. If the user is
// explicitly writing "optional", it is likely they are writing it on
// primitive fields also.
return (field->has_optional_keyword() || field->is_required()) &&
!field->options().weak();
}
inline bool InRealOneof(const FieldDescriptor* field) {
return field->containing_oneof() &&
!field->containing_oneof()->is_synthetic();
}
// Compute the byte size of the in-memory representation of the field.
int FieldSpaceUsed(const FieldDescriptor* field) {
typedef FieldDescriptor FD; // avoid line wrapping
if (field->label() == FD::LABEL_REPEATED) {
switch (field->cpp_type()) {
case FD::CPPTYPE_INT32:
return sizeof(RepeatedField<int32_t>);
case FD::CPPTYPE_INT64:
return sizeof(RepeatedField<int64_t>);
case FD::CPPTYPE_UINT32:
return sizeof(RepeatedField<uint32_t>);
case FD::CPPTYPE_UINT64:
return sizeof(RepeatedField<uint64_t>);
case FD::CPPTYPE_DOUBLE:
return sizeof(RepeatedField<double>);
case FD::CPPTYPE_FLOAT:
return sizeof(RepeatedField<float>);
case FD::CPPTYPE_BOOL:
return sizeof(RepeatedField<bool>);
case FD::CPPTYPE_ENUM:
return sizeof(RepeatedField<int>);
case FD::CPPTYPE_MESSAGE:
if (IsMapFieldInApi(field)) {
return sizeof(DynamicMapField);
} else {
return sizeof(RepeatedPtrField<Message>);
}
case FD::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
return sizeof(RepeatedPtrField<std::string>);
}
break;
}
} else {
switch (field->cpp_type()) {
case FD::CPPTYPE_INT32:
return sizeof(int32_t);
case FD::CPPTYPE_INT64:
return sizeof(int64_t);
case FD::CPPTYPE_UINT32:
return sizeof(uint32_t);
case FD::CPPTYPE_UINT64:
return sizeof(uint64_t);
case FD::CPPTYPE_DOUBLE:
return sizeof(double);
case FD::CPPTYPE_FLOAT:
return sizeof(float);
case FD::CPPTYPE_BOOL:
return sizeof(bool);
case FD::CPPTYPE_ENUM:
return sizeof(int);
case FD::CPPTYPE_MESSAGE:
return sizeof(Message*);
case FD::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
return sizeof(ArenaStringPtr);
}
break;
}
}
GOOGLE_LOG(DFATAL) << "Can't get here.";
return 0;
}
inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; }
static const int kSafeAlignment = sizeof(uint64_t);
static const int kMaxOneofUnionSize = sizeof(uint64_t);
inline int AlignTo(int offset, int alignment) {
return DivideRoundingUp(offset, alignment) * alignment;
}
// Rounds the given byte offset up to the next offset aligned such that any
// type may be stored at it.
inline int AlignOffset(int offset) { return AlignTo(offset, kSafeAlignment); }
#define bitsizeof(T) (sizeof(T) * 8)
} // namespace
// ===================================================================
class DynamicMessage : public Message {
public:
explicit DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info);
// This should only be used by GetPrototypeNoLock() to avoid dead lock.
DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, bool lock_factory);
~DynamicMessage() override;
// Called on the prototype after construction to initialize message fields.
// Cross linking the default instances allows for fast reflection access of
// unset message fields. Without it we would have to go to the MessageFactory
// to get the prototype, which is a much more expensive operation.
//
// Generated messages do not cross-link to avoid dynamic initialization of the
// global instances.
// Instead, they keep the default instances in the FieldDescriptor objects.
void CrossLinkPrototypes();
// implements Message ----------------------------------------------
Message* New(Arena* arena) const override;
int GetCachedSize() const override;
void SetCachedSize(int size) const override;
Metadata GetMetadata() const override;
#if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation)
static void operator delete(DynamicMessage* msg, std::destroying_delete_t);
#else
// We actually allocate more memory than sizeof(*this) when this
// class's memory is allocated via the global operator new. Thus, we need to
// manually call the global operator delete. Calling the destructor is taken
// care of for us. This makes DynamicMessage compatible with -fsized-delete.
// It doesn't work for MSVC though.
#ifndef _MSC_VER
static void operator delete(void* ptr) { ::operator delete(ptr); }
#endif // !_MSC_VER
#endif
private:
DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info,
Arena* arena);
void SharedCtor(bool lock_factory);
// Needed to get the offset of the internal metadata member.
friend class DynamicMessageFactory;
bool is_prototype() const;
inline void* OffsetToPointer(int offset) {
return reinterpret_cast<uint8_t*>(this) + offset;
}
inline const void* OffsetToPointer(int offset) const {
return reinterpret_cast<const uint8_t*>(this) + offset;
}
void* MutableRaw(int i);
void* MutableExtensionsRaw();
void* MutableWeakFieldMapRaw();
void* MutableOneofCaseRaw(int i);
void* MutableOneofFieldRaw(const FieldDescriptor* f);
const DynamicMessageFactory::TypeInfo* type_info_;
mutable std::atomic<int> cached_byte_size_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
};
struct DynamicMessageFactory::TypeInfo {
int size;
int has_bits_offset;
int oneof_case_offset;
int extensions_offset;
// Not owned by the TypeInfo.
DynamicMessageFactory* factory; // The factory that created this object.
const DescriptorPool* pool; // The factory's DescriptorPool.
const Descriptor* type; // Type of this DynamicMessage.
// Warning: The order in which the following pointers are defined is
// important (the prototype must be deleted *before* the offsets).
std::unique_ptr<uint32_t[]> offsets;
std::unique_ptr<uint32_t[]> has_bits_indices;
std::unique_ptr<const Reflection> reflection;
// Don't use a unique_ptr to hold the prototype: the destructor for
// DynamicMessage needs to know whether it is the prototype, and does so by
// looking back at this field. This would assume details about the
// implementation of unique_ptr.
const DynamicMessage* prototype;
int weak_field_map_offset; // The offset for the weak_field_map;
TypeInfo() : prototype(nullptr) {}
~TypeInfo() { delete prototype; }
};
DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info)
: type_info_(type_info), cached_byte_size_(0) {
SharedCtor(true);
}
DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info,
Arena* arena)
: Message(arena), type_info_(type_info), cached_byte_size_(0) {
SharedCtor(true);
}
DynamicMessage::DynamicMessage(DynamicMessageFactory::TypeInfo* type_info,
bool lock_factory)
: type_info_(type_info), cached_byte_size_(0) {
// The prototype in type_info has to be set before creating the prototype
// instance on memory. e.g., message Foo { map<int32_t, Foo> a = 1; }. When
// creating prototype for Foo, prototype of the map entry will also be
// created, which needs the address of the prototype of Foo (the value in
// map). To break the cyclic dependency, we have to assign the address of
// prototype into type_info first.
type_info->prototype = this;
SharedCtor(lock_factory);
}
inline void* DynamicMessage::MutableRaw(int i) {
return OffsetToPointer(type_info_->offsets[i]);
}
inline void* DynamicMessage::MutableExtensionsRaw() {
return OffsetToPointer(type_info_->extensions_offset);
}
inline void* DynamicMessage::MutableWeakFieldMapRaw() {
return OffsetToPointer(type_info_->weak_field_map_offset);
}
inline void* DynamicMessage::MutableOneofCaseRaw(int i) {
return OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32_t) * i);
}
inline void* DynamicMessage::MutableOneofFieldRaw(const FieldDescriptor* f) {
return OffsetToPointer(type_info_->offsets[type_info_->type->field_count() +
f->containing_oneof()->index()]);
}
void DynamicMessage::SharedCtor(bool lock_factory) {
// We need to call constructors for various fields manually and set
// default values where appropriate. We use placement new to call
// constructors. If you haven't heard of placement new, I suggest Googling
// it now. We use placement new even for primitive types that don't have
// constructors for consistency. (In theory, placement new should be used
// any time you are trying to convert untyped memory to typed memory, though
// in practice that's not strictly necessary for types that don't have a
// constructor.)
const Descriptor* descriptor = type_info_->type;
// Initialize oneof cases.
int oneof_count = 0;
for (int i = 0; i < descriptor->oneof_decl_count(); ++i) {
if (descriptor->oneof_decl(i)->is_synthetic()) continue;
new (MutableOneofCaseRaw(oneof_count++)) uint32_t{0};
}
if (type_info_->extensions_offset != -1) {
new (MutableExtensionsRaw()) ExtensionSet(GetArenaForAllocation());
}
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
void* field_ptr = MutableRaw(i);
if (InRealOneof(field)) {
continue;
}
switch (field->cpp_type()) {
#define HANDLE_TYPE(CPPTYPE, TYPE) \
case FieldDescriptor::CPPTYPE_##CPPTYPE: \
if (!field->is_repeated()) { \
new (field_ptr) TYPE(field->default_value_##TYPE()); \
} else { \
new (field_ptr) RepeatedField<TYPE>(GetArenaForAllocation()); \
} \
break;
HANDLE_TYPE(INT32, int32_t);
HANDLE_TYPE(INT64, int64_t);
HANDLE_TYPE(UINT32, uint32_t);
HANDLE_TYPE(UINT64, uint64_t);
HANDLE_TYPE(DOUBLE, double);
HANDLE_TYPE(FLOAT, float);
HANDLE_TYPE(BOOL, bool);
#undef HANDLE_TYPE
case FieldDescriptor::CPPTYPE_ENUM:
if (!field->is_repeated()) {
new (field_ptr) int{field->default_value_enum()->number()};
} else {
new (field_ptr) RepeatedField<int>(GetArenaForAllocation());
}
break;
case FieldDescriptor::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
if (!field->is_repeated()) {
ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr();
asp->InitDefault();
} else {
new (field_ptr)
RepeatedPtrField<std::string>(GetArenaForAllocation());
}
break;
}
break;
case FieldDescriptor::CPPTYPE_MESSAGE: {
if (!field->is_repeated()) {
new (field_ptr) Message*(nullptr);
} else {
if (IsMapFieldInApi(field)) {
// We need to lock in most cases to avoid data racing. Only not lock
// when the constructor is called inside GetPrototype(), in which
// case we have already locked the factory.
if (lock_factory) {
if (GetArenaForAllocation() != nullptr) {
new (field_ptr) DynamicMapField(
type_info_->factory->GetPrototype(field->message_type()),
GetArenaForAllocation());
if (GetOwningArena() != nullptr) {
// Needs to destroy the mutex member.
GetOwningArena()->OwnDestructor(
static_cast<DynamicMapField*>(field_ptr));
}
} else {
new (field_ptr) DynamicMapField(
type_info_->factory->GetPrototype(field->message_type()));
}
} else {
if (GetArenaForAllocation() != nullptr) {
new (field_ptr)
DynamicMapField(type_info_->factory->GetPrototypeNoLock(
field->message_type()),
GetArenaForAllocation());
if (GetOwningArena() != nullptr) {
// Needs to destroy the mutex member.
GetOwningArena()->OwnDestructor(
static_cast<DynamicMapField*>(field_ptr));
}
} else {
new (field_ptr)
DynamicMapField(type_info_->factory->GetPrototypeNoLock(
field->message_type()));
}
}
} else {
new (field_ptr) RepeatedPtrField<Message>(GetArenaForAllocation());
}
}
break;
}
}
}
}
bool DynamicMessage::is_prototype() const {
return type_info_->prototype == this ||
// If type_info_->prototype is nullptr, then we must be constructing
// the prototype now, which means we must be the prototype.
type_info_->prototype == nullptr;
}
#if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation)
void DynamicMessage::operator delete(DynamicMessage* msg,
std::destroying_delete_t) {
const size_t size = msg->type_info_->size;
msg->~DynamicMessage();
::operator delete(msg, size);
}
#endif
DynamicMessage::~DynamicMessage() {
const Descriptor* descriptor = type_info_->type;
_internal_metadata_.Delete<UnknownFieldSet>();
if (type_info_->extensions_offset != -1) {
reinterpret_cast<ExtensionSet*>(MutableExtensionsRaw())->~ExtensionSet();
}
// We need to manually run the destructors for repeated fields and strings,
// just as we ran their constructors in the DynamicMessage constructor.
// We also need to manually delete oneof fields if it is set and is string
// or message.
// Additionally, if any singular embedded messages have been allocated, we
// need to delete them, UNLESS we are the prototype message of this type,
// in which case any embedded messages are other prototypes and shouldn't
// be touched.
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
if (InRealOneof(field)) {
void* field_ptr = MutableOneofCaseRaw(field->containing_oneof()->index());
if (*(reinterpret_cast<const int32_t*>(field_ptr)) == field->number()) {
field_ptr = MutableOneofFieldRaw(field);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
switch (field->options().ctype()) {
default:
case FieldOptions::STRING: {
reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy();
break;
}
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
delete *reinterpret_cast<Message**>(field_ptr);
}
}
continue;
}
void* field_ptr = MutableRaw(i);
if (field->is_repeated()) {
switch (field->cpp_type()) {
#define HANDLE_TYPE(UPPERCASE, LOWERCASE) \
case FieldDescriptor::CPPTYPE_##UPPERCASE: \
reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr) \
->~RepeatedField<LOWERCASE>(); \
break
HANDLE_TYPE(INT32, int32_t);
HANDLE_TYPE(INT64, int64_t);
HANDLE_TYPE(UINT32, uint32_t);
HANDLE_TYPE(UINT64, uint64_t);
HANDLE_TYPE(DOUBLE, double);
HANDLE_TYPE(FLOAT, float);
HANDLE_TYPE(BOOL, bool);
HANDLE_TYPE(ENUM, int);
#undef HANDLE_TYPE
case FieldDescriptor::CPPTYPE_STRING:
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING:
reinterpret_cast<RepeatedPtrField<std::string>*>(field_ptr)
->~RepeatedPtrField<std::string>();
break;
}
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
if (IsMapFieldInApi(field)) {
reinterpret_cast<DynamicMapField*>(field_ptr)->~DynamicMapField();
} else {
reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
->~RepeatedPtrField<Message>();
}
break;
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
switch (field->options().ctype()) {
default: // TODO(kenton): Support other string reps.
case FieldOptions::STRING: {
reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy();
break;
}
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
if (!is_prototype()) {
Message* message = *reinterpret_cast<Message**>(field_ptr);
if (message != nullptr) {
delete message;
}
}
}
}
}
void DynamicMessage::CrossLinkPrototypes() {
// This should only be called on the prototype message.
GOOGLE_CHECK(is_prototype());
DynamicMessageFactory* factory = type_info_->factory;
const Descriptor* descriptor = type_info_->type;
// Cross-link default messages.
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!field->options().weak() && !InRealOneof(field) &&
!field->is_repeated()) {
void* field_ptr = MutableRaw(i);
// For fields with message types, we need to cross-link with the
// prototype for the field's type.
// For singular fields, the field is just a pointer which should
// point to the prototype.
*reinterpret_cast<const Message**>(field_ptr) =
factory->GetPrototypeNoLock(field->message_type());
}
}
}
Message* DynamicMessage::New(Arena* arena) const {
if (arena != nullptr) {
void* new_base = Arena::CreateArray<char>(arena, type_info_->size);
memset(new_base, 0, type_info_->size);
return new (new_base) DynamicMessage(type_info_, arena);
} else {
void* new_base = operator new(type_info_->size);
memset(new_base, 0, type_info_->size);
return new (new_base) DynamicMessage(type_info_);
}
}
int DynamicMessage::GetCachedSize() const {
return cached_byte_size_.load(std::memory_order_relaxed);
}
void DynamicMessage::SetCachedSize(int size) const {
cached_byte_size_.store(size, std::memory_order_relaxed);
}
Metadata DynamicMessage::GetMetadata() const {
Metadata metadata;
metadata.descriptor = type_info_->type;
metadata.reflection = type_info_->reflection.get();
return metadata;
}
// ===================================================================
DynamicMessageFactory::DynamicMessageFactory()
: pool_(nullptr), delegate_to_generated_factory_(false) {}
DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
: pool_(pool), delegate_to_generated_factory_(false) {}
DynamicMessageFactory::~DynamicMessageFactory() {
for (auto iter = prototypes_.begin(); iter != prototypes_.end(); ++iter) {
delete iter->second;
}
}
const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
MutexLock lock(&prototypes_mutex_);
return GetPrototypeNoLock(type);
}
const Message* DynamicMessageFactory::GetPrototypeNoLock(
const Descriptor* type) {
if (delegate_to_generated_factory_ &&
type->file()->pool() == DescriptorPool::generated_pool()) {
return MessageFactory::generated_factory()->GetPrototype(type);
}
const TypeInfo** target = &prototypes_[type];
if (*target != nullptr) {
// Already exists.
return (*target)->prototype;
}
TypeInfo* type_info = new TypeInfo;
*target = type_info;
type_info->type = type;
type_info->pool = (pool_ == nullptr) ? type->file()->pool() : pool_;
type_info->factory = this;
// We need to construct all the structures passed to Reflection's constructor.
// This includes:
// - A block of memory that contains space for all the message's fields.
// - An array of integers indicating the byte offset of each field within
// this block.
// - A big bitfield containing a bit for each field indicating whether
// or not that field is set.
int real_oneof_count = 0;
for (int i = 0; i < type->oneof_decl_count(); i++) {
if (!type->oneof_decl(i)->is_synthetic()) {
real_oneof_count++;
}
}
// Compute size and offsets.
uint32_t* offsets = new uint32_t[type->field_count() + real_oneof_count];
type_info->offsets.reset(offsets);
// Decide all field offsets by packing in order.
// We place the DynamicMessage object itself at the beginning of the allocated
// space.
int size = sizeof(DynamicMessage);
size = AlignOffset(size);
// Next the has_bits, which is an array of uint32s.
type_info->has_bits_offset = -1;
int max_hasbit = 0;
for (int i = 0; i < type->field_count(); i++) {
if (HasHasbit(type->field(i))) {
if (type_info->has_bits_offset == -1) {
// At least one field in the message requires a hasbit, so allocate
// hasbits.
type_info->has_bits_offset = size;
uint32_t* has_bits_indices = new uint32_t[type->field_count()];
for (int j = 0; j < type->field_count(); j++) {
// Initialize to -1, fields that need a hasbit will overwrite.
has_bits_indices[j] = static_cast<uint32_t>(-1);
}
type_info->has_bits_indices.reset(has_bits_indices);
}
type_info->has_bits_indices[i] = max_hasbit++;
}
}
if (max_hasbit > 0) {
int has_bits_array_size = DivideRoundingUp(max_hasbit, bitsizeof(uint32_t));
size += has_bits_array_size * sizeof(uint32_t);
size = AlignOffset(size);
}
// The oneof_case, if any. It is an array of uint32s.
if (real_oneof_count > 0) {
type_info->oneof_case_offset = size;
size += real_oneof_count * sizeof(uint32_t);
size = AlignOffset(size);
}
// The ExtensionSet, if any.
if (type->extension_range_count() > 0) {
type_info->extensions_offset = size;
size += sizeof(ExtensionSet);
size = AlignOffset(size);
} else {
// No extensions.
type_info->extensions_offset = -1;
}
// All the fields.
//
// TODO(b/31226269): Optimize the order of fields to minimize padding.
for (int i = 0; i < type->field_count(); i++) {
// Make sure field is aligned to avoid bus errors.
// Oneof fields do not use any space.
if (!InRealOneof(type->field(i))) {
int field_size = FieldSpaceUsed(type->field(i));
size = AlignTo(size, std::min(kSafeAlignment, field_size));
offsets[i] = size;
size += field_size;
}
}
// The oneofs.
for (int i = 0; i < type->oneof_decl_count(); i++) {
if (!type->oneof_decl(i)->is_synthetic()) {
size = AlignTo(size, kSafeAlignment);
offsets[type->field_count() + i] = size;
size += kMaxOneofUnionSize;
}
}
type_info->weak_field_map_offset = -1;
// Align the final size to make sure no clever allocators think that
// alignment is not necessary.
type_info->size = size;
// Construct the reflection object.
// Compute the size of default oneof instance and offsets of default
// oneof fields.
for (int i = 0; i < type->oneof_decl_count(); i++) {
if (type->oneof_decl(i)->is_synthetic()) continue;
for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
const FieldDescriptor* field = type->oneof_decl(i)->field(j);
// oneof fields are not accessed through offsets, but we still have the
// entry from a legacy implementation. This should be removed at some
// point.
// Mark the field to prevent unintentional access through reflection.
// Don't use the top bit because that is for unused fields.
offsets[field->index()] = internal::kInvalidFieldOffsetTag;
}
}
// Allocate the prototype fields.
void* base = operator new(size);
memset(base, 0, size);
// We have already locked the factory so we should not lock in the constructor
// of dynamic message to avoid dead lock.
DynamicMessage* prototype = new (base) DynamicMessage(type_info, false);
internal::ReflectionSchema schema = {
type_info->prototype,
type_info->offsets.get(),
type_info->has_bits_indices.get(),
type_info->has_bits_offset,
PROTOBUF_FIELD_OFFSET(DynamicMessage, _internal_metadata_),
type_info->extensions_offset,
type_info->oneof_case_offset,
type_info->size,
type_info->weak_field_map_offset,
nullptr /* inlined_string_indices_ */,
0 /* inlined_string_donated_offset_ */};
type_info->reflection.reset(
new Reflection(type_info->type, schema, type_info->pool, this));
// Cross link prototypes.
prototype->CrossLinkPrototypes();
return prototype;
}
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc> // NOLINT