| // Protocol Buffers - Google's data interchange format |
| // Copyright 2014 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "protobuf.h" |
| |
| // ----------------------------------------------------------------------------- |
| // Parsing. |
| // ----------------------------------------------------------------------------- |
| |
| #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) |
| |
| // Creates a handlerdata that simply contains the offset for this field. |
| static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { |
| size_t* hd_ofs = ALLOC(size_t); |
| *hd_ofs = ofs; |
| upb_handlers_addcleanup(h, hd_ofs, free); |
| return hd_ofs; |
| } |
| |
| typedef struct { |
| size_t ofs; |
| const upb_msgdef *md; |
| } submsg_handlerdata_t; |
| |
| // Creates a handlerdata that contains offset and submessage type information. |
| static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, |
| const upb_fielddef* f) { |
| submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); |
| hd->ofs = ofs; |
| hd->md = upb_fielddef_msgsubdef(f); |
| upb_handlers_addcleanup(h, hd, free); |
| return hd; |
| } |
| |
| // A handler that starts a repeated field. Gets the Repeated*Field instance for |
| // this field (such an instance always exists even in an empty message). |
| static void *startseq_handler(void* closure, const void* hd) { |
| MessageHeader* msg = closure; |
| const size_t *ofs = hd; |
| return (void*)DEREF(Message_data(msg), *ofs, VALUE); |
| } |
| |
| // Handlers that append primitive values to a repeated field (a regular Ruby |
| // array for now). |
| #define DEFINE_APPEND_HANDLER(type, ctype) \ |
| static bool append##type##_handler(void *closure, const void *hd, \ |
| ctype val) { \ |
| VALUE ary = (VALUE)closure; \ |
| RepeatedField_push_native(ary, &val); \ |
| return true; \ |
| } |
| |
| DEFINE_APPEND_HANDLER(bool, bool) |
| DEFINE_APPEND_HANDLER(int32, int32_t) |
| DEFINE_APPEND_HANDLER(uint32, uint32_t) |
| DEFINE_APPEND_HANDLER(float, float) |
| DEFINE_APPEND_HANDLER(int64, int64_t) |
| DEFINE_APPEND_HANDLER(uint64, uint64_t) |
| DEFINE_APPEND_HANDLER(double, double) |
| |
| // Appends a string to a repeated field (a regular Ruby array for now). |
| static void* appendstr_handler(void *closure, |
| const void *hd, |
| size_t size_hint) { |
| VALUE ary = (VALUE)closure; |
| VALUE str = rb_str_new2(""); |
| rb_enc_associate(str, kRubyStringUtf8Encoding); |
| RepeatedField_push(ary, str); |
| return (void*)str; |
| } |
| |
| // Appends a 'bytes' string to a repeated field (a regular Ruby array for now). |
| static void* appendbytes_handler(void *closure, |
| const void *hd, |
| size_t size_hint) { |
| VALUE ary = (VALUE)closure; |
| VALUE str = rb_str_new2(""); |
| rb_enc_associate(str, kRubyString8bitEncoding); |
| RepeatedField_push(ary, str); |
| return (void*)str; |
| } |
| |
| // Sets a non-repeated string field in a message. |
| static void* str_handler(void *closure, |
| const void *hd, |
| size_t size_hint) { |
| MessageHeader* msg = closure; |
| const size_t *ofs = hd; |
| VALUE str = rb_str_new2(""); |
| rb_enc_associate(str, kRubyStringUtf8Encoding); |
| DEREF(Message_data(msg), *ofs, VALUE) = str; |
| return (void*)str; |
| } |
| |
| // Sets a non-repeated 'bytes' field in a message. |
| static void* bytes_handler(void *closure, |
| const void *hd, |
| size_t size_hint) { |
| MessageHeader* msg = closure; |
| const size_t *ofs = hd; |
| VALUE str = rb_str_new2(""); |
| rb_enc_associate(str, kRubyString8bitEncoding); |
| DEREF(Message_data(msg), *ofs, VALUE) = str; |
| return (void*)str; |
| } |
| |
| static size_t stringdata_handler(void* closure, const void* hd, |
| const char* str, size_t len, |
| const upb_bufhandle* handle) { |
| VALUE rb_str = (VALUE)closure; |
| rb_str_cat(rb_str, str, len); |
| return len; |
| } |
| |
| // Appends a submessage to a repeated field (a regular Ruby array for now). |
| static void *appendsubmsg_handler(void *closure, const void *hd) { |
| VALUE ary = (VALUE)closure; |
| const submsg_handlerdata_t *submsgdata = hd; |
| VALUE subdesc = |
| get_def_obj((void*)submsgdata->md); |
| VALUE subklass = Descriptor_msgclass(subdesc); |
| |
| VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); |
| RepeatedField_push(ary, submsg_rb); |
| |
| MessageHeader* submsg; |
| TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
| return submsg; |
| } |
| |
| // Sets a non-repeated submessage field in a message. |
| static void *submsg_handler(void *closure, const void *hd) { |
| MessageHeader* msg = closure; |
| const submsg_handlerdata_t* submsgdata = hd; |
| VALUE subdesc = |
| get_def_obj((void*)submsgdata->md); |
| VALUE subklass = Descriptor_msgclass(subdesc); |
| |
| if (DEREF(Message_data(msg), submsgdata->ofs, VALUE) == Qnil) { |
| DEREF(Message_data(msg), submsgdata->ofs, VALUE) = |
| rb_class_new_instance(0, NULL, subklass); |
| } |
| |
| VALUE submsg_rb = DEREF(Message_data(msg), submsgdata->ofs, VALUE); |
| MessageHeader* submsg; |
| TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
| return submsg; |
| } |
| |
| static void add_handlers_for_message(const void *closure, upb_handlers *h) { |
| Descriptor* desc = ruby_to_Descriptor( |
| get_def_obj((void*)upb_handlers_msgdef(h))); |
| // Ensure layout exists. We may be invoked to create handlers for a given |
| // message if we are included as a submsg of another message type before our |
| // class is actually built, so to work around this, we just create the layout |
| // (and handlers, in the class-building function) on-demand. |
| if (desc->layout == NULL) { |
| desc->layout = create_layout(desc->msgdef); |
| } |
| |
| upb_msg_iter i; |
| |
| for (upb_msg_begin(&i, desc->msgdef); |
| !upb_msg_done(&i); |
| upb_msg_next(&i)) { |
| const upb_fielddef *f = upb_msg_iter_field(&i); |
| size_t offset = desc->layout->offsets[upb_fielddef_index(f)]; |
| |
| if (upb_fielddef_isseq(f)) { |
| upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); |
| upb_handlers_setstartseq(h, f, startseq_handler, &attr); |
| upb_handlerattr_uninit(&attr); |
| |
| switch (upb_fielddef_type(f)) { |
| |
| #define SET_HANDLER(utype, ltype) \ |
| case utype: \ |
| upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ |
| break; |
| |
| SET_HANDLER(UPB_TYPE_BOOL, bool); |
| SET_HANDLER(UPB_TYPE_INT32, int32); |
| SET_HANDLER(UPB_TYPE_UINT32, uint32); |
| SET_HANDLER(UPB_TYPE_ENUM, int32); |
| SET_HANDLER(UPB_TYPE_FLOAT, float); |
| SET_HANDLER(UPB_TYPE_INT64, int64); |
| SET_HANDLER(UPB_TYPE_UINT64, uint64); |
| SET_HANDLER(UPB_TYPE_DOUBLE, double); |
| |
| #undef SET_HANDLER |
| |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: { |
| bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
| upb_handlers_setstartstr(h, f, is_bytes ? |
| appendbytes_handler : appendstr_handler, |
| NULL); |
| upb_handlers_setstring(h, f, stringdata_handler, NULL); |
| } |
| case UPB_TYPE_MESSAGE: { |
| upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); |
| upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); |
| upb_handlerattr_uninit(&attr); |
| break; |
| } |
| } |
| } |
| |
| switch (upb_fielddef_type(f)) { |
| case UPB_TYPE_BOOL: |
| case UPB_TYPE_INT32: |
| case UPB_TYPE_UINT32: |
| case UPB_TYPE_ENUM: |
| case UPB_TYPE_FLOAT: |
| case UPB_TYPE_INT64: |
| case UPB_TYPE_UINT64: |
| case UPB_TYPE_DOUBLE: |
| // The shim writes directly at the given offset (instead of using |
| // DEREF()) so we need to add the msg overhead. |
| upb_shim_set(h, f, offset + sizeof(MessageHeader), -1); |
| break; |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: { |
| bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
| upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); |
| upb_handlers_setstartstr(h, f, |
| is_bytes ? bytes_handler : str_handler, |
| &attr); |
| upb_handlers_setstring(h, f, stringdata_handler, &attr); |
| upb_handlerattr_uninit(&attr); |
| break; |
| } |
| case UPB_TYPE_MESSAGE: { |
| upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
| upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); |
| upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); |
| upb_handlerattr_uninit(&attr); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Creates upb handlers for populating a message. |
| static const upb_handlers *new_fill_handlers(Descriptor* desc, |
| const void* owner) { |
| // TODO(cfallin, haberman): once upb gets a caching/memoization layer for |
| // handlers, reuse subdef handlers so that e.g. if we already parse |
| // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to |
| // parse A-with-field-of-type-B-with-field-of-type-C. |
| return upb_handlers_newfrozen(desc->msgdef, owner, |
| add_handlers_for_message, NULL); |
| } |
| |
| // Constructs the handlers for filling a message's data into an in-memory |
| // object. |
| const upb_handlers* get_fill_handlers(Descriptor* desc) { |
| if (!desc->fill_handlers) { |
| desc->fill_handlers = |
| new_fill_handlers(desc, &desc->fill_handlers); |
| } |
| return desc->fill_handlers; |
| } |
| |
| // Constructs the upb decoder method for parsing messages of this type. |
| // This is called from the message class creation code. |
| const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, |
| const void* owner) { |
| const upb_handlers* handlers = get_fill_handlers(desc); |
| upb_pbdecodermethodopts opts; |
| upb_pbdecodermethodopts_init(&opts, handlers); |
| |
| const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner); |
| return ret; |
| } |
| |
| static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { |
| if (desc->fill_method == NULL) { |
| desc->fill_method = new_fillmsg_decodermethod( |
| desc, &desc->fill_method); |
| } |
| return desc->fill_method; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.decode(data) => message |
| * |
| * Decodes the given data (as a string containing bytes in protocol buffers wire |
| * format) under the interpretration given by this message class's definition |
| * and returns a message object with the corresponding field values. |
| */ |
| VALUE Message_decode(VALUE klass, VALUE data) { |
| VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); |
| Descriptor* desc = ruby_to_Descriptor(descriptor); |
| VALUE msgklass = Descriptor_msgclass(descriptor); |
| |
| if (TYPE(data) != T_STRING) { |
| rb_raise(rb_eArgError, "Expected string for binary protobuf data."); |
| } |
| |
| VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass); |
| MessageHeader* msg; |
| TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
| |
| const upb_pbdecodermethod* method = msgdef_decodermethod(desc); |
| const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); |
| upb_pbdecoder decoder; |
| upb_sink sink; |
| upb_status status = UPB_STATUS_INIT; |
| |
| upb_pbdecoder_init(&decoder, method, &status); |
| upb_sink_reset(&sink, h, msg); |
| upb_pbdecoder_resetoutput(&decoder, &sink); |
| upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), |
| upb_pbdecoder_input(&decoder)); |
| |
| upb_pbdecoder_uninit(&decoder); |
| if (!upb_ok(&status)) { |
| rb_raise(rb_eRuntimeError, "Error occurred during parsing: %s.", |
| upb_status_errmsg(&status)); |
| } |
| |
| return msg_rb; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.decode_json(data) => message |
| * |
| * Decodes the given data (as a string containing bytes in protocol buffers wire |
| * format) under the interpretration given by this message class's definition |
| * and returns a message object with the corresponding field values. |
| */ |
| VALUE Message_decode_json(VALUE klass, VALUE data) { |
| VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); |
| Descriptor* desc = ruby_to_Descriptor(descriptor); |
| VALUE msgklass = Descriptor_msgclass(descriptor); |
| |
| if (TYPE(data) != T_STRING) { |
| rb_raise(rb_eArgError, "Expected string for JSON data."); |
| } |
| // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to |
| // convert, because string handlers pass data directly to message string |
| // fields. |
| |
| VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass); |
| MessageHeader* msg; |
| TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
| |
| upb_status status = UPB_STATUS_INIT; |
| upb_json_parser parser; |
| upb_json_parser_init(&parser, &status); |
| |
| upb_sink sink; |
| upb_sink_reset(&sink, get_fill_handlers(desc), msg); |
| upb_json_parser_resetoutput(&parser, &sink); |
| upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), |
| upb_json_parser_input(&parser)); |
| |
| upb_json_parser_uninit(&parser); |
| if (!upb_ok(&status)) { |
| rb_raise(rb_eRuntimeError, "Error occurred during parsing: %s.", |
| upb_status_errmsg(&status)); |
| } |
| |
| return msg_rb; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Serializing. |
| // ----------------------------------------------------------------------------- |
| // |
| // The code below also comes from upb's prototype Ruby binding, developed by |
| // haberman@. |
| |
| /* stringsink *****************************************************************/ |
| |
| // This should probably be factored into a common upb component. |
| |
| typedef struct { |
| upb_byteshandler handler; |
| upb_bytessink sink; |
| char *ptr; |
| size_t len, size; |
| } stringsink; |
| |
| static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { |
| stringsink *sink = _sink; |
| sink->len = 0; |
| return sink; |
| } |
| |
| static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, |
| size_t len, const upb_bufhandle *handle) { |
| UPB_UNUSED(hd); |
| UPB_UNUSED(handle); |
| |
| stringsink *sink = _sink; |
| size_t new_size = sink->size; |
| |
| while (sink->len + len > new_size) { |
| new_size *= 2; |
| } |
| |
| if (new_size != sink->size) { |
| sink->ptr = realloc(sink->ptr, new_size); |
| sink->size = new_size; |
| } |
| |
| memcpy(sink->ptr + sink->len, ptr, len); |
| sink->len += len; |
| |
| return len; |
| } |
| |
| void stringsink_init(stringsink *sink) { |
| upb_byteshandler_init(&sink->handler); |
| upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); |
| upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); |
| |
| upb_bytessink_reset(&sink->sink, &sink->handler, sink); |
| |
| sink->size = 32; |
| sink->ptr = malloc(sink->size); |
| sink->len = 0; |
| } |
| |
| void stringsink_uninit(stringsink *sink) { |
| free(sink->ptr); |
| } |
| |
| /* msgvisitor *****************************************************************/ |
| |
| // TODO: If/when we support proto2 semantics in addition to the current proto3 |
| // semantics, which means that we have true field presence, we will want to |
| // modify msgvisitor so that it emits all present fields rather than all |
| // non-default-value fields. |
| // |
| // Likewise, when implementing JSON serialization, we may need to have a |
| // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only |
| // those with non-default values. |
| |
| static void putmsg(VALUE msg, const Descriptor* desc, |
| upb_sink *sink, int depth); |
| |
| static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { |
| upb_selector_t ret; |
| bool ok = upb_handlers_getselector(f, type, &ret); |
| UPB_ASSERT_VAR(ok, ok); |
| return ret; |
| } |
| |
| static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { |
| if (str == Qnil) return; |
| |
| assert(BUILTIN_TYPE(str) == RUBY_T_STRING); |
| upb_sink subsink; |
| |
| // Ensure that the string has the correct encoding. We also check at field-set |
| // time, but the user may have mutated the string object since then. |
| native_slot_validate_string_encoding(upb_fielddef_type(f), str); |
| |
| upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), |
| &subsink); |
| upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), |
| RSTRING_LEN(str), NULL); |
| upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); |
| } |
| |
| static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, |
| int depth) { |
| if (submsg == Qnil) return; |
| |
| upb_sink subsink; |
| VALUE descriptor = rb_iv_get(submsg, kDescriptorInstanceVar); |
| Descriptor* subdesc = ruby_to_Descriptor(descriptor); |
| |
| upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); |
| putmsg(submsg, subdesc, &subsink, depth + 1); |
| upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); |
| } |
| |
| static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, |
| int depth) { |
| if (ary == Qnil) return; |
| |
| upb_sink subsink; |
| |
| upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); |
| |
| upb_fieldtype_t type = upb_fielddef_type(f); |
| upb_selector_t sel = 0; |
| if (upb_fielddef_isprimitive(f)) { |
| sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
| } |
| |
| int size = NUM2INT(RepeatedField_length(ary)); |
| for (int i = 0; i < size; i++) { |
| void* memory = RepeatedField_index_native(ary, i); |
| switch (type) { |
| #define T(upbtypeconst, upbtype, ctype) \ |
| case upbtypeconst: \ |
| upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \ |
| break; |
| |
| T(UPB_TYPE_FLOAT, float, float) |
| T(UPB_TYPE_DOUBLE, double, double) |
| T(UPB_TYPE_BOOL, bool, int8_t) |
| case UPB_TYPE_ENUM: |
| T(UPB_TYPE_INT32, int32, int32_t) |
| T(UPB_TYPE_UINT32, uint32, uint32_t) |
| T(UPB_TYPE_INT64, int64, int64_t) |
| T(UPB_TYPE_UINT64, uint64, uint64_t) |
| |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: |
| putstr(*((VALUE *)memory), f, &subsink); |
| break; |
| case UPB_TYPE_MESSAGE: |
| putsubmsg(*((VALUE *)memory), f, &subsink, depth); |
| break; |
| |
| #undef T |
| |
| } |
| } |
| upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); |
| } |
| |
| static void putmsg(VALUE msg_rb, const Descriptor* desc, |
| upb_sink *sink, int depth) { |
| upb_sink_startmsg(sink); |
| |
| // Protect against cycles (possible because users may freely reassign message |
| // and repeated fields) by imposing a maximum recursion depth. |
| if (depth > UPB_SINK_MAX_NESTING) { |
| rb_raise(rb_eRuntimeError, |
| "Maximum recursion depth exceeded during encoding."); |
| } |
| |
| MessageHeader* msg; |
| TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
| void* msg_data = Message_data(msg); |
| |
| upb_msg_iter i; |
| for (upb_msg_begin(&i, desc->msgdef); |
| !upb_msg_done(&i); |
| upb_msg_next(&i)) { |
| upb_fielddef *f = upb_msg_iter_field(&i); |
| uint32_t offset = desc->layout->offsets[upb_fielddef_index(f)]; |
| |
| if (upb_fielddef_isseq(f)) { |
| VALUE ary = DEREF(msg_data, offset, VALUE); |
| if (ary != Qnil) { |
| putary(ary, f, sink, depth); |
| } |
| } else if (upb_fielddef_isstring(f)) { |
| VALUE str = DEREF(msg_data, offset, VALUE); |
| if (RSTRING_LEN(str) > 0) { |
| putstr(str, f, sink); |
| } |
| } else if (upb_fielddef_issubmsg(f)) { |
| putsubmsg(DEREF(msg_data, offset, VALUE), f, sink, depth); |
| } else { |
| upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
| |
| #define T(upbtypeconst, upbtype, ctype, default_value) \ |
| case upbtypeconst: { \ |
| ctype value = DEREF(msg_data, offset, ctype); \ |
| if (value != default_value) { \ |
| upb_sink_put##upbtype(sink, sel, value); \ |
| } \ |
| } \ |
| break; |
| |
| switch (upb_fielddef_type(f)) { |
| T(UPB_TYPE_FLOAT, float, float, 0.0) |
| T(UPB_TYPE_DOUBLE, double, double, 0.0) |
| T(UPB_TYPE_BOOL, bool, uint8_t, 0) |
| case UPB_TYPE_ENUM: |
| T(UPB_TYPE_INT32, int32, int32_t, 0) |
| T(UPB_TYPE_UINT32, uint32, uint32_t, 0) |
| T(UPB_TYPE_INT64, int64, int64_t, 0) |
| T(UPB_TYPE_UINT64, uint64, uint64_t, 0) |
| |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: |
| case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); |
| } |
| |
| #undef T |
| |
| } |
| } |
| |
| upb_status status; |
| upb_sink_endmsg(sink, &status); |
| } |
| |
| static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { |
| if (desc->pb_serialize_handlers == NULL) { |
| desc->pb_serialize_handlers = |
| upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); |
| } |
| return desc->pb_serialize_handlers; |
| } |
| |
| static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) { |
| if (desc->json_serialize_handlers == NULL) { |
| desc->json_serialize_handlers = |
| upb_json_printer_newhandlers( |
| desc->msgdef, &desc->json_serialize_handlers); |
| } |
| return desc->json_serialize_handlers; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.encode(msg) => bytes |
| * |
| * Encodes the given message object to its serialized form in protocol buffers |
| * wire format. |
| */ |
| VALUE Message_encode(VALUE klass, VALUE msg_rb) { |
| VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); |
| Descriptor* desc = ruby_to_Descriptor(descriptor); |
| |
| stringsink sink; |
| stringsink_init(&sink); |
| |
| const upb_handlers* serialize_handlers = |
| msgdef_pb_serialize_handlers(desc); |
| |
| upb_pb_encoder encoder; |
| upb_pb_encoder_init(&encoder, serialize_handlers); |
| upb_pb_encoder_resetoutput(&encoder, &sink.sink); |
| |
| putmsg(msg_rb, desc, upb_pb_encoder_input(&encoder), 0); |
| |
| VALUE ret = rb_str_new(sink.ptr, sink.len); |
| |
| upb_pb_encoder_uninit(&encoder); |
| stringsink_uninit(&sink); |
| |
| return ret; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.encode_json(msg) => json_string |
| * |
| * Encodes the given message object into its serialized JSON representation. |
| */ |
| VALUE Message_encode_json(VALUE klass, VALUE msg_rb) { |
| VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); |
| Descriptor* desc = ruby_to_Descriptor(descriptor); |
| |
| stringsink sink; |
| stringsink_init(&sink); |
| |
| const upb_handlers* serialize_handlers = |
| msgdef_json_serialize_handlers(desc); |
| |
| upb_json_printer printer; |
| upb_json_printer_init(&printer, serialize_handlers); |
| upb_json_printer_resetoutput(&printer, &sink.sink); |
| |
| putmsg(msg_rb, desc, upb_json_printer_input(&printer), 0); |
| |
| VALUE ret = rb_str_new(sink.ptr, sink.len); |
| |
| upb_json_printer_uninit(&printer); |
| stringsink_uninit(&sink); |
| |
| return ret; |
| } |
| |
| /* |
| * call-seq: |
| * Google::Protobuf.encode(msg) => bytes |
| * |
| * Encodes the given message object to protocol buffers wire format. This is an |
| * alternative to the #encode method on msg's class. |
| */ |
| VALUE Google_Protobuf_encode(VALUE self, VALUE msg_rb) { |
| VALUE klass = CLASS_OF(msg_rb); |
| return Message_encode(klass, msg_rb); |
| } |
| |
| /* |
| * call-seq: |
| * Google::Protobuf.encode_json(msg) => json_string |
| * |
| * Encodes the given message object to its JSON representation. This is an |
| * alternative to the #encode_json method on msg's class. |
| */ |
| VALUE Google_Protobuf_encode_json(VALUE self, VALUE msg_rb) { |
| VALUE klass = CLASS_OF(msg_rb); |
| return Message_encode_json(klass, msg_rb); |
| } |
| |
| /* |
| * call-seq: |
| * Google::Protobuf.decode(class, bytes) => msg |
| * |
| * Decodes the given bytes as protocol buffers wire format under the |
| * interpretation given by the given class's message definition. This is an |
| * alternative to the #decode method on the given class. |
| */ |
| VALUE Google_Protobuf_decode(VALUE self, VALUE klass, VALUE msg_rb) { |
| return Message_decode(klass, msg_rb); |
| } |
| |
| /* |
| * call-seq: |
| * Google::Protobuf.decode_json(class, json_string) => msg |
| * |
| * Decodes the given JSON string under the interpretation given by the given |
| * class's message definition. This is an alternative to the #decode_json method |
| * on the given class. |
| */ |
| VALUE Google_Protobuf_decode_json(VALUE self, VALUE klass, VALUE msg_rb) { |
| return Message_decode_json(klass, msg_rb); |
| } |