| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
| #define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <string> |
| #include <type_traits> |
| |
| #include <google/protobuf/io/coded_stream.h> |
| #include <google/protobuf/io/zero_copy_stream.h> |
| #include <google/protobuf/arena.h> |
| #include <google/protobuf/port.h> |
| #include <google/protobuf/stubs/strutil.h> |
| #include <google/protobuf/arenastring.h> |
| #include <google/protobuf/endian.h> |
| #include <google/protobuf/implicit_weak_message.h> |
| #include <google/protobuf/inlined_string_field.h> |
| #include <google/protobuf/metadata_lite.h> |
| #include <google/protobuf/repeated_field.h> |
| #include <google/protobuf/wire_format_lite.h> |
| |
| // Must be included last. |
| #include <google/protobuf/port_def.inc> |
| |
| |
| namespace google { |
| namespace protobuf { |
| |
| class UnknownFieldSet; |
| class DescriptorPool; |
| class MessageFactory; |
| |
| namespace internal { |
| |
| // Template code below needs to know about the existence of these functions. |
| PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s); |
| PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, StringPiece val, |
| std::string* s); |
| // Inline because it is just forwarding to s->WriteVarint |
| inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s); |
| inline void WriteLengthDelimited(uint32_t num, StringPiece val, |
| UnknownFieldSet* s); |
| |
| |
| // The basic abstraction the parser is designed for is a slight modification |
| // of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized |
| // stream as a series of buffers that concatenate to the full stream. |
| // Pictorially a ZCIS presents a stream in chunks like so |
| // [---------------------------------------------------------------] |
| // [---------------------] chunk 1 |
| // [----------------------------] chunk 2 |
| // chunk 3 [--------------] |
| // |
| // Where the '-' represent the bytes which are vertically lined up with the |
| // bytes of the stream. The proto parser requires its input to be presented |
| // similarly with the extra |
| // property that each chunk has kSlopBytes past its end that overlaps with the |
| // first kSlopBytes of the next chunk, or if there is no next chunk at least its |
| // still valid to read those bytes. Again, pictorially, we now have |
| // |
| // [---------------------------------------------------------------] |
| // [-------------------....] chunk 1 |
| // [------------------------....] chunk 2 |
| // chunk 3 [------------------..**] |
| // chunk 4 [--****] |
| // Here '-' mean the bytes of the stream or chunk and '.' means bytes past the |
| // chunk that match up with the start of the next chunk. Above each chunk has |
| // 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes |
| // past the stream, indicated by '*' above, their values are unspecified. It is |
| // still legal to read them (ie. should not segfault). Reading past the |
| // end should be detected by the user and indicated as an error. |
| // |
| // The reason for this, admittedly, unconventional invariant is to ruthlessly |
| // optimize the protobuf parser. Having an overlap helps in two important ways. |
| // Firstly it alleviates having to performing bounds checks if a piece of code |
| // is guaranteed to not read more than kSlopBytes. Secondly, and more |
| // importantly, the protobuf wireformat is such that reading a key/value pair is |
| // always less than 16 bytes. This removes the need to change to next buffer in |
| // the middle of reading primitive values. Hence there is no need to store and |
| // load the current position. |
| |
| class PROTOBUF_EXPORT EpsCopyInputStream { |
| public: |
| enum { kSlopBytes = 16, kMaxCordBytesToCopy = 512 }; |
| |
| explicit EpsCopyInputStream(bool enable_aliasing) |
| : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} |
| |
| void BackUp(const char* ptr) { |
| GOOGLE_DCHECK(ptr <= buffer_end_ + kSlopBytes); |
| int count; |
| if (next_chunk_ == buffer_) { |
| count = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
| } else { |
| count = size_ + static_cast<int>(buffer_end_ - ptr); |
| } |
| if (count > 0) StreamBackUp(count); |
| } |
| |
| // If return value is negative it's an error |
| PROTOBUF_NODISCARD int PushLimit(const char* ptr, int limit) { |
| GOOGLE_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes); |
| // This add is safe due to the invariant above, because |
| // ptr - buffer_end_ <= kSlopBytes. |
| limit += static_cast<int>(ptr - buffer_end_); |
| limit_end_ = buffer_end_ + (std::min)(0, limit); |
| auto old_limit = limit_; |
| limit_ = limit; |
| return old_limit - limit; |
| } |
| |
| PROTOBUF_NODISCARD bool PopLimit(int delta) { |
| if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false; |
| limit_ = limit_ + delta; |
| // TODO(gerbens) We could remove this line and hoist the code to |
| // DoneFallback. Study the perf/bin-size effects. |
| limit_end_ = buffer_end_ + (std::min)(0, limit_); |
| return true; |
| } |
| |
| PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) { |
| if (size <= buffer_end_ + kSlopBytes - ptr) { |
| return ptr + size; |
| } |
| return SkipFallback(ptr, size); |
| } |
| PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size, |
| std::string* s) { |
| if (size <= buffer_end_ + kSlopBytes - ptr) { |
| s->assign(ptr, size); |
| return ptr + size; |
| } |
| return ReadStringFallback(ptr, size, s); |
| } |
| PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size, |
| std::string* s) { |
| if (size <= buffer_end_ + kSlopBytes - ptr) { |
| s->append(ptr, size); |
| return ptr + size; |
| } |
| return AppendStringFallback(ptr, size, s); |
| } |
| // Implemented in arenastring.cc |
| PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr, |
| ArenaStringPtr* s, |
| Arena* arena); |
| |
| template <typename Tag, typename T> |
| PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr, |
| Tag expected_tag, |
| RepeatedField<T>* out); |
| |
| template <typename T> |
| PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size, |
| RepeatedField<T>* out); |
| template <typename Add> |
| PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add); |
| |
| uint32_t LastTag() const { return last_tag_minus_1_ + 1; } |
| bool ConsumeEndGroup(uint32_t start_tag) { |
| bool res = last_tag_minus_1_ == start_tag; |
| last_tag_minus_1_ = 0; |
| return res; |
| } |
| bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } |
| bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } |
| void SetLastTag(uint32_t tag) { |
| #if __has_builtin(__builtin_sub_overflow) |
| __builtin_sub_overflow(tag, 1, &last_tag_minus_1_); |
| #else |
| last_tag_minus_1_ = tag - 1; |
| #endif |
| } |
| void SetEndOfStream() { last_tag_minus_1_ = 1; } |
| bool IsExceedingLimit(const char* ptr) { |
| return ptr > limit_end_ && |
| (next_chunk_ == nullptr || ptr - buffer_end_ > limit_); |
| } |
| bool AliasingEnabled() const { return aliasing_ != kNoAliasing; } |
| int BytesUntilLimit(const char* ptr) const { |
| return limit_ + static_cast<int>(buffer_end_ - ptr); |
| } |
| // Returns true if more data is available, if false is returned one has to |
| // call Done for further checks. |
| bool DataAvailable(const char* ptr) { return ptr < limit_end_; } |
| |
| protected: |
| // Returns true is limit (either an explicit limit or end of stream) is |
| // reached. It aligns *ptr across buffer seams. |
| // If limit is exceeded it returns true and ptr is set to null. |
| bool DoneWithCheck(const char** ptr, int d) { |
| GOOGLE_DCHECK(*ptr); |
| if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false; |
| int overrun = static_cast<int>(*ptr - buffer_end_); |
| GOOGLE_DCHECK_LE(overrun, kSlopBytes); // Guaranteed by parse loop. |
| if (overrun == |
| limit_) { // No need to flip buffers if we ended on a limit. |
| // If we actually overrun the buffer and next_chunk_ is null. It means |
| // the stream ended and we passed the stream end. |
| if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr; |
| return true; |
| } |
| auto res = DoneFallback(overrun, d); |
| *ptr = res.first; |
| return res.second; |
| } |
| |
| const char* InitFrom(StringPiece flat) { |
| overall_limit_ = 0; |
| if (flat.size() > kSlopBytes) { |
| limit_ = kSlopBytes; |
| limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes; |
| next_chunk_ = buffer_; |
| if (aliasing_ == kOnPatch) aliasing_ = kNoDelta; |
| return flat.data(); |
| } else { |
| std::memcpy(buffer_, flat.data(), flat.size()); |
| limit_ = 0; |
| limit_end_ = buffer_end_ = buffer_ + flat.size(); |
| next_chunk_ = nullptr; |
| if (aliasing_ == kOnPatch) { |
| aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) - |
| reinterpret_cast<std::uintptr_t>(buffer_); |
| } |
| return buffer_; |
| } |
| } |
| |
| const char* InitFrom(io::ZeroCopyInputStream* zcis); |
| |
| const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { |
| if (limit == -1) return InitFrom(zcis); |
| overall_limit_ = limit; |
| auto res = InitFrom(zcis); |
| limit_ = limit - static_cast<int>(buffer_end_ - res); |
| limit_end_ = buffer_end_ + (std::min)(0, limit_); |
| return res; |
| } |
| |
| private: |
| const char* limit_end_; // buffer_end_ + min(limit_, 0) |
| const char* buffer_end_; |
| const char* next_chunk_; |
| int size_; |
| int limit_; // relative to buffer_end_; |
| io::ZeroCopyInputStream* zcis_ = nullptr; |
| char buffer_[2 * kSlopBytes] = {}; |
| enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; |
| std::uintptr_t aliasing_ = kNoAliasing; |
| // This variable is used to communicate how the parse ended, in order to |
| // completely verify the parsed data. A wire-format parse can end because of |
| // one of the following conditions: |
| // 1) A parse can end on a pushed limit. |
| // 2) A parse can end on End Of Stream (EOS). |
| // 3) A parse can end on 0 tag (only valid for toplevel message). |
| // 4) A parse can end on an end-group tag. |
| // This variable should always be set to 0, which indicates case 1. If the |
| // parse terminated due to EOS (case 2), it's set to 1. In case the parse |
| // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1). |
| // This var doesn't really belong in EpsCopyInputStream and should be part of |
| // the ParseContext, but case 2 is most easily and optimally implemented in |
| // DoneFallback. |
| uint32_t last_tag_minus_1_ = 0; |
| int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits. |
| // Pretty random large number that seems like a safe allocation on most |
| // systems. TODO(gerbens) do we need to set this as build flag? |
| enum { kSafeStringSize = 50000000 }; |
| |
| // Advances to next buffer chunk returns a pointer to the same logical place |
| // in the stream as set by overrun. Overrun indicates the position in the slop |
| // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at |
| // limit, at which point the returned pointer maybe null if there was an |
| // error. The invariant of this function is that it's guaranteed that |
| // kSlopBytes bytes can be accessed from the returned ptr. This function might |
| // advance more buffers than one in the underlying ZeroCopyInputStream. |
| std::pair<const char*, bool> DoneFallback(int overrun, int depth); |
| // Advances to the next buffer, at most one call to Next() on the underlying |
| // ZeroCopyInputStream is made. This function DOES NOT match the returned |
| // pointer to where in the slop region the parse ends, hence no overrun |
| // parameter. This is useful for string operations where you always copy |
| // to the end of the buffer (including the slop region). |
| const char* Next(); |
| // overrun is the location in the slop region the stream currently is |
| // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of |
| // the ZeroCopyInputStream in the case the parse will end in the last |
| // kSlopBytes of the current buffer. depth is the current depth of nested |
| // groups (or negative if the use case does not need careful tracking). |
| inline const char* NextBuffer(int overrun, int depth); |
| const char* SkipFallback(const char* ptr, int size); |
| const char* AppendStringFallback(const char* ptr, int size, std::string* str); |
| const char* ReadStringFallback(const char* ptr, int size, std::string* str); |
| bool StreamNext(const void** data) { |
| bool res = zcis_->Next(data, &size_); |
| if (res) overall_limit_ -= size_; |
| return res; |
| } |
| void StreamBackUp(int count) { |
| zcis_->BackUp(count); |
| overall_limit_ += count; |
| } |
| |
| template <typename A> |
| const char* AppendSize(const char* ptr, int size, const A& append) { |
| int chunk_size = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
| do { |
| GOOGLE_DCHECK(size > chunk_size); |
| if (next_chunk_ == nullptr) return nullptr; |
| append(ptr, chunk_size); |
| ptr += chunk_size; |
| size -= chunk_size; |
| // TODO(gerbens) Next calls NextBuffer which generates buffers with |
| // overlap and thus incurs cost of copying the slop regions. This is not |
| // necessary for reading strings. We should just call Next buffers. |
| if (limit_ <= kSlopBytes) return nullptr; |
| ptr = Next(); |
| if (ptr == nullptr) return nullptr; // passed the limit |
| ptr += kSlopBytes; |
| chunk_size = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
| } while (size > chunk_size); |
| append(ptr, size); |
| return ptr + size; |
| } |
| |
| // AppendUntilEnd appends data until a limit (either a PushLimit or end of |
| // stream. Normal payloads are from length delimited fields which have an |
| // explicit size. Reading until limit only comes when the string takes |
| // the place of a protobuf, ie RawMessage/StringRawMessage, lazy fields and |
| // implicit weak messages. We keep these methods private and friend them. |
| template <typename A> |
| const char* AppendUntilEnd(const char* ptr, const A& append) { |
| if (ptr - buffer_end_ > limit_) return nullptr; |
| while (limit_ > kSlopBytes) { |
| size_t chunk_size = buffer_end_ + kSlopBytes - ptr; |
| append(ptr, chunk_size); |
| ptr = Next(); |
| if (ptr == nullptr) return limit_end_; |
| ptr += kSlopBytes; |
| } |
| auto end = buffer_end_ + limit_; |
| GOOGLE_DCHECK(end >= ptr); |
| append(ptr, end - ptr); |
| return end; |
| } |
| |
| PROTOBUF_NODISCARD const char* AppendString(const char* ptr, |
| std::string* str) { |
| return AppendUntilEnd( |
| ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); }); |
| } |
| friend class ImplicitWeakMessage; |
| }; |
| |
| using LazyEagerVerifyFnType = const char* (*)(const char* ptr, |
| ParseContext* ctx); |
| using LazyEagerVerifyFnRef = std::remove_pointer<LazyEagerVerifyFnType>::type&; |
| |
| // ParseContext holds all data that is global to the entire parse. Most |
| // importantly it contains the input stream, but also recursion depth and also |
| // stores the end group tag, in case a parser ended on a endgroup, to verify |
| // matching start/end group tags. |
| class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { |
| public: |
| struct Data { |
| const DescriptorPool* pool = nullptr; |
| MessageFactory* factory = nullptr; |
| Arena* arena = nullptr; |
| }; |
| |
| template <typename... T> |
| ParseContext(int depth, bool aliasing, const char** start, T&&... args) |
| : EpsCopyInputStream(aliasing), depth_(depth) { |
| *start = InitFrom(std::forward<T>(args)...); |
| } |
| |
| void TrackCorrectEnding() { group_depth_ = 0; } |
| |
| bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); } |
| |
| int depth() const { return depth_; } |
| |
| Data& data() { return data_; } |
| const Data& data() const { return data_; } |
| |
| const char* ParseMessage(MessageLite* msg, const char* ptr); |
| |
| // Spawns a child parsing context that inherits key properties. New context |
| // inherits the following: |
| // --depth_, data_, check_required_fields_, lazy_parse_mode_ |
| // The spawned context always disables aliasing (different input). |
| template <typename... T> |
| ParseContext Spawn(const char** start, T&&... args) { |
| ParseContext spawned(depth_, false, start, std::forward<T>(args)...); |
| // Transfer key context states. |
| spawned.data_ = data_; |
| return spawned; |
| } |
| |
| // This overload supports those few cases where ParseMessage is called |
| // on a class that is not actually a proto message. |
| // TODO(jorg): Eliminate this use case. |
| template <typename T, |
| typename std::enable_if<!std::is_base_of<MessageLite, T>::value, |
| bool>::type = true> |
| PROTOBUF_NODISCARD const char* ParseMessage(T* msg, const char* ptr); |
| |
| template <typename T> |
| PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup( |
| T* msg, const char* ptr, uint32_t tag) { |
| if (--depth_ < 0) return nullptr; |
| group_depth_++; |
| ptr = msg->_InternalParse(ptr, this); |
| group_depth_--; |
| depth_++; |
| if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr; |
| return ptr; |
| } |
| |
| private: |
| // Out-of-line routine to save space in ParseContext::ParseMessage<T> |
| // int old; |
| // ptr = ReadSizeAndPushLimitAndDepth(ptr, &old) |
| // is equivalent to: |
| // int size = ReadSize(&ptr); |
| // if (!ptr) return nullptr; |
| // int old = PushLimit(ptr, size); |
| // if (--depth_ < 0) return nullptr; |
| PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth(const char* ptr, |
| int* old_limit); |
| |
| // The context keeps an internal stack to keep track of the recursive |
| // part of the parse state. |
| // Current depth of the active parser, depth counts down. |
| // This is used to limit recursion depth (to prevent overflow on malicious |
| // data), but is also used to index in stack_ to store the current state. |
| int depth_; |
| // Unfortunately necessary for the fringe case of ending on 0 or end-group tag |
| // in the last kSlopBytes of a ZeroCopyInputStream chunk. |
| int group_depth_ = INT_MIN; |
| Data data_; |
| }; |
| |
| template <uint32_t tag> |
| bool ExpectTag(const char* ptr) { |
| if (tag < 128) { |
| return *ptr == static_cast<char>(tag); |
| } else { |
| static_assert(tag < 128 * 128, "We only expect tags for 1 or 2 bytes"); |
| char buf[2] = {static_cast<char>(tag | 0x80), static_cast<char>(tag >> 7)}; |
| return std::memcmp(ptr, buf, 2) == 0; |
| } |
| } |
| |
| template <int> |
| struct EndianHelper; |
| |
| template <> |
| struct EndianHelper<1> { |
| static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); } |
| }; |
| |
| template <> |
| struct EndianHelper<2> { |
| static uint16_t Load(const void* p) { |
| uint16_t tmp; |
| std::memcpy(&tmp, p, 2); |
| return little_endian::ToHost(tmp); |
| } |
| }; |
| |
| template <> |
| struct EndianHelper<4> { |
| static uint32_t Load(const void* p) { |
| uint32_t tmp; |
| std::memcpy(&tmp, p, 4); |
| return little_endian::ToHost(tmp); |
| } |
| }; |
| |
| template <> |
| struct EndianHelper<8> { |
| static uint64_t Load(const void* p) { |
| uint64_t tmp; |
| std::memcpy(&tmp, p, 8); |
| return little_endian::ToHost(tmp); |
| } |
| }; |
| |
| template <typename T> |
| T UnalignedLoad(const char* p) { |
| auto tmp = EndianHelper<sizeof(T)>::Load(p); |
| T res; |
| memcpy(&res, &tmp, sizeof(T)); |
| return res; |
| } |
| |
| PROTOBUF_EXPORT |
| std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res); |
| PROTOBUF_EXPORT |
| std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res); |
| |
| inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) { |
| auto tmp = VarintParseSlow32(p, res); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) { |
| auto tmp = VarintParseSlow64(p, res); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| template <typename T> |
| PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) { |
| auto ptr = reinterpret_cast<const uint8_t*>(p); |
| uint32_t res = ptr[0]; |
| if (!(res & 0x80)) { |
| *out = res; |
| return p + 1; |
| } |
| uint32_t byte = ptr[1]; |
| res += (byte - 1) << 7; |
| if (!(byte & 0x80)) { |
| *out = res; |
| return p + 2; |
| } |
| return VarintParseSlow(p, res, out); |
| } |
| |
| // Used for tags, could read up to 5 bytes which must be available. |
| // Caller must ensure its safe to call. |
| |
| PROTOBUF_EXPORT |
| std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res); |
| |
| // Same as ParseVarint but only accept 5 bytes at most. |
| inline const char* ReadTag(const char* p, uint32_t* out, |
| uint32_t /*max_tag*/ = 0) { |
| uint32_t res = static_cast<uint8_t>(p[0]); |
| if (res < 128) { |
| *out = res; |
| return p + 1; |
| } |
| uint32_t second = static_cast<uint8_t>(p[1]); |
| #if __has_builtin(__builtin_add_overflow) && __has_builtin(__builtin_sub_overflow) |
| uint32_t second_minus_1; |
| __builtin_sub_overflow(second, 1, &second_minus_1); |
| __builtin_add_overflow(res, second_minus_1 << 7, &res); |
| #else |
| res += (second - 1) << 7; |
| #endif |
| if (second < 128) { |
| *out = res; |
| return p + 2; |
| } |
| auto tmp = ReadTagFallback(p, res); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| // As above, but optimized to consume very few registers while still being fast, |
| // ReadTagInlined is useful for callers that don't mind the extra code but would |
| // like to avoid an extern function call causing spills into the stack. |
| // |
| // Two support routines for ReadTagInlined come first... |
| template <class T> |
| PROTOBUF_NODISCARD PROTOBUF_ALWAYS_INLINE constexpr T RotateLeft( |
| T x, int s) noexcept { |
| return static_cast<T>(x << (s & (std::numeric_limits<T>::digits - 1))) | |
| static_cast<T>(x >> ((-s) & (std::numeric_limits<T>::digits - 1))); |
| } |
| |
| PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE uint64_t |
| RotRight7AndReplaceLowByte(uint64_t res, const char& byte) { |
| #if defined(__x86_64__) && defined(__GNUC__) |
| // This will only use one register for `res`. |
| // `byte` comes as a reference to allow the compiler to generate code like: |
| // |
| // rorq $7, %rcx |
| // movb 1(%rax), %cl |
| // |
| // which avoids loading the incoming bytes into a separate register first. |
| asm("ror $7,%0\n\t" |
| "movb %1,%b0" |
| : "+r"(res) |
| : "m"(byte)); |
| #else |
| res = RotateLeft(res, -7); |
| res = res & ~0xFF; |
| res |= 0xFF & byte; |
| #endif |
| return res; |
| }; |
| |
| inline PROTOBUF_ALWAYS_INLINE |
| const char* ReadTagInlined(const char* ptr, uint32_t* out) { |
| uint64_t res = 0xFF & ptr[0]; |
| if (PROTOBUF_PREDICT_FALSE(res >= 128)) { |
| res = RotRight7AndReplaceLowByte(res, ptr[1]); |
| if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
| res = RotRight7AndReplaceLowByte(res, ptr[2]); |
| if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
| res = RotRight7AndReplaceLowByte(res, ptr[3]); |
| if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
| // Note: this wouldn't work if res were 32-bit, |
| // because then replacing the low byte would overwrite |
| // the bottom 4 bits of the result. |
| res = RotRight7AndReplaceLowByte(res, ptr[4]); |
| if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { |
| // The proto format does not permit longer than 5-byte encodings for |
| // tags. |
| *out = 0; |
| return nullptr; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 28)); |
| #if defined(__GNUC__) |
| // Note: this asm statement prevents the compiler from |
| // trying to share the "return ptr + constant" among all |
| // branches. |
| asm("" : "+r"(ptr)); |
| #endif |
| return ptr + 5; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 21)); |
| return ptr + 4; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 14)); |
| return ptr + 3; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 7)); |
| return ptr + 2; |
| } |
| *out = static_cast<uint32_t>(res); |
| return ptr + 1; |
| } |
| |
| // Decode 2 consecutive bytes of a varint and returns the value, shifted left |
| // by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the |
| // first byte's continuation bit is set. |
| // If bit 15 of return value is set (equivalent to the continuation bits of both |
| // bytes being set) the varint continues, otherwise the parse is done. On x86 |
| // movsx eax, dil |
| // and edi, eax |
| // add eax, edi |
| // adc [rsi], 1 |
| inline uint32_t DecodeTwoBytes(const char** ptr) { |
| uint32_t value = UnalignedLoad<uint16_t>(*ptr); |
| // Sign extend the low byte continuation bit |
| uint32_t x = static_cast<int8_t>(value); |
| value &= x; // Mask out the high byte iff no continuation |
| // This add is an amazing operation, it cancels the low byte continuation bit |
| // from y transferring it to the carry. Simultaneously it also shifts the 7 |
| // LSB left by one tightly against high byte varint bits. Hence value now |
| // contains the unpacked value shifted left by 1. |
| value += x; |
| // Use the carry to update the ptr appropriately. |
| *ptr += value < x ? 2 : 1; |
| return value; |
| } |
| |
| // More efficient varint parsing for big varints |
| inline const char* ParseBigVarint(const char* p, uint64_t* out) { |
| auto pnew = p; |
| auto tmp = DecodeTwoBytes(&pnew); |
| uint64_t res = tmp >> 1; |
| if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { |
| *out = res; |
| return pnew; |
| } |
| for (std::uint32_t i = 1; i < 5; i++) { |
| pnew = p + 2 * i; |
| tmp = DecodeTwoBytes(&pnew); |
| res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1); |
| if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { |
| *out = res; |
| return pnew; |
| } |
| } |
| return nullptr; |
| } |
| |
| PROTOBUF_EXPORT |
| std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first); |
| // Used for tags, could read up to 5 bytes which must be available. Additionally |
| // it makes sure the unsigned value fits a int32_t, otherwise returns nullptr. |
| // Caller must ensure its safe to call. |
| inline uint32_t ReadSize(const char** pp) { |
| auto p = *pp; |
| uint32_t res = static_cast<uint8_t>(p[0]); |
| if (res < 128) { |
| *pp = p + 1; |
| return res; |
| } |
| auto x = ReadSizeFallback(p, res); |
| *pp = x.first; |
| return x.second; |
| } |
| |
| // Some convenience functions to simplify the generated parse loop code. |
| // Returning the value and updating the buffer pointer allows for nicer |
| // function composition. We rely on the compiler to inline this. |
| // Also in debug compiles having local scoped variables tend to generated |
| // stack frames that scale as O(num fields). |
| inline uint64_t ReadVarint64(const char** p) { |
| uint64_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return tmp; |
| } |
| |
| inline uint32_t ReadVarint32(const char** p) { |
| uint32_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return tmp; |
| } |
| |
| inline int64_t ReadVarintZigZag64(const char** p) { |
| uint64_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return WireFormatLite::ZigZagDecode64(tmp); |
| } |
| |
| inline int32_t ReadVarintZigZag32(const char** p) { |
| uint64_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp)); |
| } |
| |
| template <typename T, typename std::enable_if< |
| !std::is_base_of<MessageLite, T>::value, bool>::type> |
| PROTOBUF_NODISCARD const char* ParseContext::ParseMessage(T* msg, |
| const char* ptr) { |
| int old; |
| ptr = ReadSizeAndPushLimitAndDepth(ptr, &old); |
| ptr = ptr ? msg->_InternalParse(ptr, this) : nullptr; |
| depth_++; |
| if (!PopLimit(old)) return nullptr; |
| return ptr; |
| } |
| |
| template <typename Tag, typename T> |
| const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr, |
| Tag expected_tag, |
| RepeatedField<T>* out) { |
| do { |
| out->Add(UnalignedLoad<T>(ptr)); |
| ptr += sizeof(T); |
| if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr; |
| } while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag))); |
| return ptr; |
| } |
| |
| // Add any of the following lines to debug which parse function is failing. |
| |
| #define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \ |
| if (!(predicate)) { \ |
| /* ::raise(SIGINT); */ \ |
| /* GOOGLE_LOG(ERROR) << "Parse failure"; */ \ |
| return ret; \ |
| } |
| |
| #define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \ |
| GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr) |
| |
| template <typename T> |
| const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size, |
| RepeatedField<T>* out) { |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| int nbytes = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
| while (size > nbytes) { |
| int num = nbytes / sizeof(T); |
| int old_entries = out->size(); |
| out->Reserve(old_entries + num); |
| int block_size = num * sizeof(T); |
| auto dst = out->AddNAlreadyReserved(num); |
| #ifdef PROTOBUF_LITTLE_ENDIAN |
| std::memcpy(dst, ptr, block_size); |
| #else |
| for (int i = 0; i < num; i++) |
| dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); |
| #endif |
| size -= block_size; |
| if (limit_ <= kSlopBytes) return nullptr; |
| ptr = Next(); |
| if (ptr == nullptr) return nullptr; |
| ptr += kSlopBytes - (nbytes - block_size); |
| nbytes = static_cast<int>(buffer_end_ + kSlopBytes - ptr); |
| } |
| int num = size / sizeof(T); |
| int old_entries = out->size(); |
| out->Reserve(old_entries + num); |
| int block_size = num * sizeof(T); |
| auto dst = out->AddNAlreadyReserved(num); |
| #ifdef PROTOBUF_LITTLE_ENDIAN |
| std::memcpy(dst, ptr, block_size); |
| #else |
| for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); |
| #endif |
| ptr += block_size; |
| if (size != block_size) return nullptr; |
| return ptr; |
| } |
| |
| template <typename Add> |
| const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) { |
| while (ptr < end) { |
| uint64_t varint; |
| ptr = VarintParse(ptr, &varint); |
| if (ptr == nullptr) return nullptr; |
| add(varint); |
| } |
| return ptr; |
| } |
| |
| template <typename Add> |
| const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add) { |
| int size = ReadSize(&ptr); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| int chunk_size = static_cast<int>(buffer_end_ - ptr); |
| while (size > chunk_size) { |
| ptr = ReadPackedVarintArray(ptr, buffer_end_, add); |
| if (ptr == nullptr) return nullptr; |
| int overrun = static_cast<int>(ptr - buffer_end_); |
| GOOGLE_DCHECK(overrun >= 0 && overrun <= kSlopBytes); |
| if (size - chunk_size <= kSlopBytes) { |
| // The current buffer contains all the information needed, we don't need |
| // to flip buffers. However we must parse from a buffer with enough space |
| // so we are not prone to a buffer overflow. |
| char buf[kSlopBytes + 10] = {}; |
| std::memcpy(buf, buffer_end_, kSlopBytes); |
| GOOGLE_CHECK_LE(size - chunk_size, kSlopBytes); |
| auto end = buf + (size - chunk_size); |
| auto res = ReadPackedVarintArray(buf + overrun, end, add); |
| if (res == nullptr || res != end) return nullptr; |
| return buffer_end_ + (res - buf); |
| } |
| size -= overrun + chunk_size; |
| GOOGLE_DCHECK_GT(size, 0); |
| // We must flip buffers |
| if (limit_ <= kSlopBytes) return nullptr; |
| ptr = Next(); |
| if (ptr == nullptr) return nullptr; |
| ptr += overrun; |
| chunk_size = static_cast<int>(buffer_end_ - ptr); |
| } |
| auto end = ptr + size; |
| ptr = ReadPackedVarintArray(ptr, end, add); |
| return end == ptr ? ptr : nullptr; |
| } |
| |
| // Helper for verification of utf8 |
| PROTOBUF_EXPORT |
| bool VerifyUTF8(StringPiece s, const char* field_name); |
| |
| inline bool VerifyUTF8(const std::string* s, const char* field_name) { |
| return VerifyUTF8(*s, field_name); |
| } |
| |
| // All the string parsers with or without UTF checking and for all CTypes. |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* InlineGreedyStringParser( |
| std::string* s, const char* ptr, ParseContext* ctx); |
| |
| |
| template <typename T> |
| PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser, |
| const char* ptr, ParseContext* ctx) { |
| uint32_t number = static_cast<uint32_t>(tag >> 3); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0); |
| using WireType = internal::WireFormatLite::WireType; |
| switch (tag & 7) { |
| case WireType::WIRETYPE_VARINT: { |
| uint64_t value; |
| ptr = VarintParse(ptr, &value); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| field_parser.AddVarint(number, value); |
| break; |
| } |
| case WireType::WIRETYPE_FIXED64: { |
| uint64_t value = UnalignedLoad<uint64_t>(ptr); |
| ptr += 8; |
| field_parser.AddFixed64(number, value); |
| break; |
| } |
| case WireType::WIRETYPE_LENGTH_DELIMITED: { |
| ptr = field_parser.ParseLengthDelimited(number, ptr, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| break; |
| } |
| case WireType::WIRETYPE_START_GROUP: { |
| ptr = field_parser.ParseGroup(number, ptr, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| break; |
| } |
| case WireType::WIRETYPE_END_GROUP: { |
| GOOGLE_LOG(FATAL) << "Can't happen"; |
| break; |
| } |
| case WireType::WIRETYPE_FIXED32: { |
| uint32_t value = UnalignedLoad<uint32_t>(ptr); |
| ptr += 4; |
| field_parser.AddFixed32(number, value); |
| break; |
| } |
| default: |
| return nullptr; |
| } |
| return ptr; |
| } |
| |
| template <typename T> |
| PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser, |
| const char* ptr, |
| ParseContext* ctx) { |
| while (!ctx->Done(&ptr)) { |
| uint32_t tag; |
| ptr = ReadTag(ptr, &tag); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
| if (tag == 0 || (tag & 7) == 4) { |
| ctx->SetLastTag(tag); |
| return ptr; |
| } |
| ptr = FieldParser(tag, field_parser, ptr, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
| } |
| return ptr; |
| } |
| |
| // The packed parsers parse repeated numeric primitives directly into the |
| // corresponding field |
| |
| // These are packed varints |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedEnumParser( |
| void* object, const char* ptr, ParseContext* ctx); |
| |
| template <typename T> |
| PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr, |
| ParseContext* ctx, |
| bool (*is_valid)(int), |
| InternalMetadata* metadata, |
| int field_num) { |
| return ctx->ReadPackedVarint( |
| ptr, [object, is_valid, metadata, field_num](uint64_t val) { |
| if (is_valid(val)) { |
| static_cast<RepeatedField<int>*>(object)->Add(val); |
| } else { |
| WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
| } |
| }); |
| } |
| |
| template <typename T> |
| PROTOBUF_NODISCARD const char* PackedEnumParserArg( |
| void* object, const char* ptr, ParseContext* ctx, |
| bool (*is_valid)(const void*, int), const void* data, |
| InternalMetadata* metadata, int field_num) { |
| return ctx->ReadPackedVarint( |
| ptr, [object, is_valid, data, metadata, field_num](uint64_t val) { |
| if (is_valid(data, val)) { |
| static_cast<RepeatedField<int>*>(object)->Add(val); |
| } else { |
| WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
| } |
| }); |
| } |
| |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedBoolParser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFloatParser( |
| void* object, const char* ptr, ParseContext* ctx); |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedDoubleParser( |
| void* object, const char* ptr, ParseContext* ctx); |
| |
| // This is the only recursive parser. |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownGroupLiteParse( |
| std::string* unknown, const char* ptr, ParseContext* ctx); |
| // This is a helper to for the UnknownGroupLiteParse but is actually also |
| // useful in the generated code. It uses overload on std::string* vs |
| // UnknownFieldSet* to make the generated code isomorphic between full and lite. |
| PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownFieldParse( |
| uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx); |
| |
| } // namespace internal |
| } // namespace protobuf |
| } // namespace google |
| |
| #include <google/protobuf/port_undef.inc> |
| |
| #endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |