| // Protocol Buffers - Google's data interchange format |
| // Copyright 2014 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "protobuf.h" |
| |
| #include <math.h> |
| |
| #include <ruby/encoding.h> |
| |
| // ----------------------------------------------------------------------------- |
| // Ruby <-> native slot management. |
| // ----------------------------------------------------------------------------- |
| |
| #define CHARPTR_AT(msg, ofs) ((char*)msg + ofs) |
| #define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs) |
| #define DEREF(memory, type) *(type*)(memory) |
| |
| size_t native_slot_size(upb_fieldtype_t type) { |
| switch (type) { |
| case UPB_TYPE_FLOAT: return 4; |
| case UPB_TYPE_DOUBLE: return 8; |
| case UPB_TYPE_BOOL: return 1; |
| case UPB_TYPE_STRING: return sizeof(VALUE); |
| case UPB_TYPE_BYTES: return sizeof(VALUE); |
| case UPB_TYPE_MESSAGE: return sizeof(VALUE); |
| case UPB_TYPE_ENUM: return 4; |
| case UPB_TYPE_INT32: return 4; |
| case UPB_TYPE_INT64: return 8; |
| case UPB_TYPE_UINT32: return 4; |
| case UPB_TYPE_UINT64: return 8; |
| default: return 0; |
| } |
| } |
| |
| static bool is_ruby_num(VALUE value) { |
| return (TYPE(value) == T_FLOAT || |
| TYPE(value) == T_FIXNUM || |
| TYPE(value) == T_BIGNUM); |
| } |
| |
| void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) { |
| if (!is_ruby_num(val)) { |
| rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(val))); |
| } |
| |
| // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper |
| // bound; we just need to do precision checks (i.e., disallow rounding) and |
| // check for < 0 on unsigned types. |
| if (TYPE(val) == T_FLOAT) { |
| double dbl_val = NUM2DBL(val); |
| if (floor(dbl_val) != dbl_val) { |
| rb_raise(rb_eRangeError, |
| "Non-integral floating point value assigned to integer field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(val))); |
| } |
| } |
| if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) { |
| if (NUM2DBL(val) < 0) { |
| rb_raise(rb_eRangeError, |
| "Assigning negative value to unsigned integer field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(val))); |
| } |
| } |
| } |
| |
| VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) { |
| rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ? |
| kRubyStringUtf8Encoding : kRubyString8bitEncoding; |
| VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding); |
| |
| if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) { |
| // Note: this will not duplicate underlying string data unless necessary. |
| value = rb_str_encode(value, desired_encoding_value, 0, Qnil); |
| |
| if (type == UPB_TYPE_STRING && |
| rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) { |
| rb_raise(rb_eEncodingError, "String is invalid UTF-8"); |
| } |
| |
| // Ensure the data remains valid. Since we called #encode a moment ago, |
| // this does not freeze the string the user assigned. |
| rb_obj_freeze(value); |
| } |
| |
| return value; |
| } |
| |
| void native_slot_set(const char* name, |
| upb_fieldtype_t type, VALUE type_class, |
| void* memory, VALUE value) { |
| native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0); |
| } |
| |
| void native_slot_set_value_and_case(const char* name, |
| upb_fieldtype_t type, VALUE type_class, |
| void* memory, VALUE value, |
| uint32_t* case_memory, |
| uint32_t case_number) { |
| // Note that in order to atomically change the value in memory and the case |
| // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after |
| // all Ruby VM calls are complete. The case is then set at the bottom of this |
| // function. |
| switch (type) { |
| case UPB_TYPE_FLOAT: |
| if (!is_ruby_num(value)) { |
| rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(value))); |
| } |
| DEREF(memory, float) = NUM2DBL(value); |
| break; |
| case UPB_TYPE_DOUBLE: |
| if (!is_ruby_num(value)) { |
| rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(value))); |
| } |
| DEREF(memory, double) = NUM2DBL(value); |
| break; |
| case UPB_TYPE_BOOL: { |
| int8_t val = -1; |
| if (value == Qtrue) { |
| val = 1; |
| } else if (value == Qfalse) { |
| val = 0; |
| } else { |
| rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(value))); |
| } |
| DEREF(memory, int8_t) = val; |
| break; |
| } |
| case UPB_TYPE_STRING: |
| if (CLASS_OF(value) == rb_cSymbol) { |
| value = rb_funcall(value, rb_intern("to_s"), 0); |
| } else if (CLASS_OF(value) != rb_cString) { |
| rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(value))); |
| } |
| |
| DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value); |
| break; |
| |
| case UPB_TYPE_BYTES: { |
| if (CLASS_OF(value) != rb_cString) { |
| rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).", |
| name, rb_class2name(CLASS_OF(value))); |
| } |
| |
| DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value); |
| break; |
| } |
| case UPB_TYPE_MESSAGE: { |
| if (CLASS_OF(value) == CLASS_OF(Qnil)) { |
| value = Qnil; |
| } else if (CLASS_OF(value) != type_class) { |
| // check for possible implicit conversions |
| VALUE converted_value = Qnil; |
| const char* field_type_name = rb_class2name(type_class); |
| |
| if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 && |
| rb_obj_is_kind_of(value, rb_cTime)) { |
| // Time -> Google::Protobuf::Timestamp |
| VALUE hash = rb_hash_new(); |
| rb_hash_aset(hash, rb_str_new2("seconds"), |
| rb_funcall(value, rb_intern("to_i"), 0)); |
| rb_hash_aset(hash, rb_str_new2("nanos"), |
| rb_funcall(value, rb_intern("nsec"), 0)); |
| { |
| VALUE args[1] = {hash}; |
| converted_value = rb_class_new_instance(1, args, type_class); |
| } |
| } else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 && |
| rb_obj_is_kind_of(value, rb_cNumeric)) { |
| // Numeric -> Google::Protobuf::Duration |
| VALUE hash = rb_hash_new(); |
| rb_hash_aset(hash, rb_str_new2("seconds"), |
| rb_funcall(value, rb_intern("to_i"), 0)); |
| { |
| VALUE n_value = |
| rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1)); |
| n_value = |
| rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000)); |
| n_value = rb_funcall(n_value, rb_intern("round"), 0); |
| rb_hash_aset(hash, rb_str_new2("nanos"), n_value); |
| } |
| { |
| VALUE args[1] = { hash }; |
| converted_value = rb_class_new_instance(1, args, type_class); |
| } |
| } |
| |
| // raise if no suitable conversaion could be found |
| if (converted_value == Qnil) { |
| rb_raise(cTypeError, |
| "Invalid type %s to assign to submessage field '%s'.", |
| rb_class2name(CLASS_OF(value)), name); |
| } else { |
| value = converted_value; |
| } |
| } |
| DEREF(memory, VALUE) = value; |
| break; |
| } |
| case UPB_TYPE_ENUM: { |
| int32_t int_val = 0; |
| if (TYPE(value) == T_STRING) { |
| value = rb_funcall(value, rb_intern("to_sym"), 0); |
| } else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) { |
| rb_raise(cTypeError, |
| "Expected number or symbol type for enum field '%s'.", name); |
| } |
| if (TYPE(value) == T_SYMBOL) { |
| // Ensure that the given symbol exists in the enum module. |
| VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value); |
| if (lookup == Qnil) { |
| rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name); |
| } else { |
| int_val = NUM2INT(lookup); |
| } |
| } else { |
| native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value); |
| int_val = NUM2INT(value); |
| } |
| DEREF(memory, int32_t) = int_val; |
| break; |
| } |
| case UPB_TYPE_INT32: |
| case UPB_TYPE_INT64: |
| case UPB_TYPE_UINT32: |
| case UPB_TYPE_UINT64: |
| native_slot_check_int_range_precision(name, type, value); |
| switch (type) { |
| case UPB_TYPE_INT32: |
| DEREF(memory, int32_t) = NUM2INT(value); |
| break; |
| case UPB_TYPE_INT64: |
| DEREF(memory, int64_t) = NUM2LL(value); |
| break; |
| case UPB_TYPE_UINT32: |
| DEREF(memory, uint32_t) = NUM2UINT(value); |
| break; |
| case UPB_TYPE_UINT64: |
| DEREF(memory, uint64_t) = NUM2ULL(value); |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (case_memory != NULL) { |
| *case_memory = case_number; |
| } |
| } |
| |
| VALUE native_slot_get(upb_fieldtype_t type, |
| VALUE type_class, |
| const void* memory) { |
| switch (type) { |
| case UPB_TYPE_FLOAT: |
| return DBL2NUM(DEREF(memory, float)); |
| case UPB_TYPE_DOUBLE: |
| return DBL2NUM(DEREF(memory, double)); |
| case UPB_TYPE_BOOL: |
| return DEREF(memory, int8_t) ? Qtrue : Qfalse; |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: |
| return DEREF(memory, VALUE); |
| case UPB_TYPE_MESSAGE: { |
| VALUE val = DEREF(memory, VALUE); |
| |
| // Lazily expand wrapper type if necessary. |
| int type = TYPE(val); |
| if (type != T_DATA && type != T_NIL) { |
| // This must be a wrapper type. |
| val = ruby_wrapper_type(type_class, val); |
| DEREF(memory, VALUE) = val; |
| } |
| |
| return val; |
| } |
| case UPB_TYPE_ENUM: { |
| int32_t val = DEREF(memory, int32_t); |
| VALUE symbol = enum_lookup(type_class, INT2NUM(val)); |
| if (symbol == Qnil) { |
| return INT2NUM(val); |
| } else { |
| return symbol; |
| } |
| } |
| case UPB_TYPE_INT32: |
| return INT2NUM(DEREF(memory, int32_t)); |
| case UPB_TYPE_INT64: |
| return LL2NUM(DEREF(memory, int64_t)); |
| case UPB_TYPE_UINT32: |
| return UINT2NUM(DEREF(memory, uint32_t)); |
| case UPB_TYPE_UINT64: |
| return ULL2NUM(DEREF(memory, uint64_t)); |
| default: |
| return Qnil; |
| } |
| } |
| |
| void native_slot_init(upb_fieldtype_t type, void* memory) { |
| switch (type) { |
| case UPB_TYPE_FLOAT: |
| DEREF(memory, float) = 0.0; |
| break; |
| case UPB_TYPE_DOUBLE: |
| DEREF(memory, double) = 0.0; |
| break; |
| case UPB_TYPE_BOOL: |
| DEREF(memory, int8_t) = 0; |
| break; |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: |
| DEREF(memory, VALUE) = rb_str_new2(""); |
| rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ? |
| kRubyString8bitEncoding : kRubyStringUtf8Encoding); |
| break; |
| case UPB_TYPE_MESSAGE: |
| DEREF(memory, VALUE) = Qnil; |
| break; |
| case UPB_TYPE_ENUM: |
| case UPB_TYPE_INT32: |
| DEREF(memory, int32_t) = 0; |
| break; |
| case UPB_TYPE_INT64: |
| DEREF(memory, int64_t) = 0; |
| break; |
| case UPB_TYPE_UINT32: |
| DEREF(memory, uint32_t) = 0; |
| break; |
| case UPB_TYPE_UINT64: |
| DEREF(memory, uint64_t) = 0; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void native_slot_mark(upb_fieldtype_t type, void* memory) { |
| switch (type) { |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: |
| case UPB_TYPE_MESSAGE: |
| rb_gc_mark(DEREF(memory, VALUE)); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void native_slot_dup(upb_fieldtype_t type, void* to, void* from) { |
| memcpy(to, from, native_slot_size(type)); |
| } |
| |
| void native_slot_deep_copy(upb_fieldtype_t type, VALUE type_class, void* to, |
| void* from) { |
| switch (type) { |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: { |
| VALUE from_val = DEREF(from, VALUE); |
| DEREF(to, VALUE) = (from_val != Qnil) ? |
| rb_funcall(from_val, rb_intern("dup"), 0) : Qnil; |
| break; |
| } |
| case UPB_TYPE_MESSAGE: { |
| VALUE from_val = native_slot_get(type, type_class, from); |
| DEREF(to, VALUE) = (from_val != Qnil) ? |
| Message_deep_copy(from_val) : Qnil; |
| break; |
| } |
| default: |
| memcpy(to, from, native_slot_size(type)); |
| } |
| } |
| |
| bool native_slot_eq(upb_fieldtype_t type, VALUE type_class, void* mem1, |
| void* mem2) { |
| switch (type) { |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: |
| case UPB_TYPE_MESSAGE: { |
| VALUE val1 = native_slot_get(type, type_class, mem1); |
| VALUE val2 = native_slot_get(type, type_class, mem2); |
| VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2); |
| return ret == Qtrue; |
| } |
| default: |
| return !memcmp(mem1, mem2, native_slot_size(type)); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Map field utilities. |
| // ----------------------------------------------------------------------------- |
| |
| const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) { |
| const upb_msgdef* subdef; |
| if (upb_fielddef_label(field) != UPB_LABEL_REPEATED || |
| upb_fielddef_type(field) != UPB_TYPE_MESSAGE) { |
| return NULL; |
| } |
| subdef = upb_fielddef_msgsubdef(field); |
| return upb_msgdef_mapentry(subdef) ? subdef : NULL; |
| } |
| |
| const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) { |
| const upb_msgdef* subdef = tryget_map_entry_msgdef(field); |
| assert(subdef); |
| return subdef; |
| } |
| |
| bool is_map_field(const upb_fielddef *field) { |
| const upb_msgdef* subdef = tryget_map_entry_msgdef(field); |
| if (subdef == NULL) return false; |
| |
| // Map fields are a proto3 feature. |
| // If we're using proto2 syntax we need to fallback to the repeated field. |
| return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3; |
| } |
| |
| const upb_fielddef* map_field_key(const upb_fielddef* field) { |
| const upb_msgdef* subdef = map_entry_msgdef(field); |
| return map_entry_key(subdef); |
| } |
| |
| const upb_fielddef* map_field_value(const upb_fielddef* field) { |
| const upb_msgdef* subdef = map_entry_msgdef(field); |
| return map_entry_value(subdef); |
| } |
| |
| const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) { |
| const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD); |
| assert(key_field != NULL); |
| return key_field; |
| } |
| |
| const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) { |
| const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD); |
| assert(value_field != NULL); |
| return value_field; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Memory layout management. |
| // ----------------------------------------------------------------------------- |
| |
| bool field_contains_hasbit(MessageLayout* layout, |
| const upb_fielddef* field) { |
| return layout->fields[upb_fielddef_index(field)].hasbit != |
| MESSAGE_FIELD_NO_HASBIT; |
| } |
| |
| static size_t align_up_to(size_t offset, size_t granularity) { |
| // Granularity must be a power of two. |
| return (offset + granularity - 1) & ~(granularity - 1); |
| } |
| |
| bool is_value_field(const upb_fielddef* f) { |
| return upb_fielddef_isseq(f) || upb_fielddef_issubmsg(f) || |
| upb_fielddef_isstring(f); |
| } |
| |
| void create_layout(Descriptor* desc) { |
| const upb_msgdef *msgdef = desc->msgdef; |
| MessageLayout* layout = ALLOC(MessageLayout); |
| int nfields = upb_msgdef_numfields(msgdef); |
| int noneofs = upb_msgdef_numoneofs(msgdef); |
| upb_msg_field_iter it; |
| upb_msg_oneof_iter oit; |
| size_t off = 0; |
| size_t hasbit = 0; |
| |
| layout->empty_template = NULL; |
| layout->desc = desc; |
| desc->layout = layout; |
| |
| layout->fields = ALLOC_N(MessageField, nfields); |
| layout->oneofs = NULL; |
| |
| if (noneofs > 0) { |
| layout->oneofs = ALLOC_N(MessageOneof, noneofs); |
| } |
| |
| for (upb_msg_field_begin(&it, msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| if (upb_fielddef_haspresence(field)) { |
| layout->fields[upb_fielddef_index(field)].hasbit = hasbit++; |
| } else { |
| layout->fields[upb_fielddef_index(field)].hasbit = |
| MESSAGE_FIELD_NO_HASBIT; |
| } |
| } |
| |
| if (hasbit != 0) { |
| off += (hasbit + 8 - 1) / 8; |
| } |
| |
| off = align_up_to(off, sizeof(VALUE)); |
| layout->value_offset = off; |
| layout->repeated_count = 0; |
| layout->map_count = 0; |
| layout->value_count = 0; |
| |
| // Place all VALUE fields for repeated fields. |
| for (upb_msg_field_begin(&it, msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| if (upb_fielddef_containingoneof(field) || !upb_fielddef_isseq(field) || |
| upb_fielddef_ismap(field)) { |
| continue; |
| } |
| |
| layout->fields[upb_fielddef_index(field)].offset = off; |
| off += sizeof(VALUE); |
| layout->repeated_count++; |
| } |
| |
| // Place all VALUE fields for map fields. |
| for (upb_msg_field_begin(&it, msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| if (upb_fielddef_containingoneof(field) || !upb_fielddef_isseq(field) || |
| !upb_fielddef_ismap(field)) { |
| continue; |
| } |
| |
| layout->fields[upb_fielddef_index(field)].offset = off; |
| off += sizeof(VALUE); |
| layout->map_count++; |
| } |
| |
| layout->value_count = layout->repeated_count + layout->map_count; |
| |
| // Next place all other (non-oneof) VALUE fields. |
| for (upb_msg_field_begin(&it, msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| if (upb_fielddef_containingoneof(field) || !is_value_field(field) || |
| upb_fielddef_isseq(field)) { |
| continue; |
| } |
| |
| layout->fields[upb_fielddef_index(field)].offset = off; |
| off += sizeof(VALUE); |
| layout->value_count++; |
| } |
| |
| // Now place all other (non-oneof) fields. |
| for (upb_msg_field_begin(&it, msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| size_t field_size; |
| |
| if (upb_fielddef_containingoneof(field) || is_value_field(field)) { |
| continue; |
| } |
| |
| // Allocate |field_size| bytes for this field in the layout. |
| field_size = native_slot_size(upb_fielddef_type(field)); |
| |
| // Align current offset up to |size| granularity. |
| off = align_up_to(off, field_size); |
| layout->fields[upb_fielddef_index(field)].offset = off; |
| off += field_size; |
| } |
| |
| // Handle oneofs now -- we iterate over oneofs specifically and allocate only |
| // one slot per oneof. |
| // |
| // We assign all value slots first, then pack the 'case' fields at the end, |
| // since in the common case (modern 64-bit platform) these are 8 bytes and 4 |
| // bytes respectively and we want to avoid alignment overhead. |
| // |
| // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value |
| // space for oneof cases is conceptually as wide as field tag numbers. In |
| // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K |
| // members (8 or 16 bits respectively), so conceivably we could assign |
| // consecutive case numbers and then pick a smaller oneof case slot size, but |
| // the complexity to implement this indirection is probably not worthwhile. |
| for (upb_msg_oneof_begin(&oit, msgdef); |
| !upb_msg_oneof_done(&oit); |
| upb_msg_oneof_next(&oit)) { |
| const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); |
| upb_oneof_iter fit; |
| |
| // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between |
| // all fields. |
| size_t field_size = NATIVE_SLOT_MAX_SIZE; |
| // Align the offset. |
| off = align_up_to(off, field_size); |
| // Assign all fields in the oneof this same offset. |
| for (upb_oneof_begin(&fit, oneof); |
| !upb_oneof_done(&fit); |
| upb_oneof_next(&fit)) { |
| const upb_fielddef* field = upb_oneof_iter_field(&fit); |
| layout->fields[upb_fielddef_index(field)].offset = off; |
| layout->oneofs[upb_oneofdef_index(oneof)].offset = off; |
| } |
| off += field_size; |
| } |
| |
| // Now the case fields. |
| for (upb_msg_oneof_begin(&oit, msgdef); |
| !upb_msg_oneof_done(&oit); |
| upb_msg_oneof_next(&oit)) { |
| const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); |
| size_t field_size = sizeof(uint32_t); |
| // Align the offset. |
| off = (off + field_size - 1) & ~(field_size - 1); |
| layout->oneofs[upb_oneofdef_index(oneof)].case_offset = off; |
| off += field_size; |
| } |
| |
| layout->size = off; |
| layout->msgdef = msgdef; |
| |
| // Create the empty message template. |
| layout->empty_template = ALLOC_N(char, layout->size); |
| memset(layout->empty_template, 0, layout->size); |
| |
| for (upb_msg_field_begin(&it, layout->msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| layout_clear(layout, layout->empty_template, upb_msg_iter_field(&it)); |
| } |
| } |
| |
| void free_layout(MessageLayout* layout) { |
| xfree(layout->empty_template); |
| xfree(layout->fields); |
| xfree(layout->oneofs); |
| xfree(layout); |
| } |
| |
| VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) { |
| VALUE type_class = Qnil; |
| if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { |
| VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool, |
| upb_fielddef_msgsubdef(field)); |
| type_class = Descriptor_msgclass(submsgdesc); |
| } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) { |
| VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool, |
| upb_fielddef_enumsubdef(field)); |
| type_class = EnumDescriptor_enummodule(subenumdesc); |
| } |
| return type_class; |
| } |
| |
| static void* slot_memory(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| return ((uint8_t *)storage) + |
| layout->fields[upb_fielddef_index(field)].offset; |
| } |
| |
| static uint32_t* slot_oneof_case(MessageLayout* layout, |
| const void* storage, |
| const upb_oneofdef* oneof) { |
| return (uint32_t*)(((uint8_t*)storage) + |
| layout->oneofs[upb_oneofdef_index(oneof)].case_offset); |
| } |
| |
| uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage, |
| const upb_oneofdef* oneof) { |
| uint32_t* ptr = slot_oneof_case(layout, storage, oneof); |
| return *ptr & ~ONEOF_CASE_MASK; |
| } |
| |
| static void slot_set_hasbit(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit; |
| assert(hasbit != MESSAGE_FIELD_NO_HASBIT); |
| |
| ((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8); |
| } |
| |
| static void slot_clear_hasbit(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit; |
| assert(hasbit != MESSAGE_FIELD_NO_HASBIT); |
| ((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8)); |
| } |
| |
| static bool slot_is_hasbit_set(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit; |
| if (hasbit == MESSAGE_FIELD_NO_HASBIT) { |
| return false; |
| } |
| |
| return DEREF_OFFSET( |
| (uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8)); |
| } |
| |
| VALUE layout_has(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| assert(field_contains_hasbit(layout, field)); |
| return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse; |
| } |
| |
| void layout_clear(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| void* memory = slot_memory(layout, storage, field); |
| const upb_oneofdef* oneof = upb_fielddef_containingoneof(field); |
| |
| if (field_contains_hasbit(layout, field)) { |
| slot_clear_hasbit(layout, storage, field); |
| } |
| |
| if (oneof) { |
| uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof); |
| memset(memory, 0, NATIVE_SLOT_MAX_SIZE); |
| *oneof_case = ONEOF_CASE_NONE; |
| } else if (is_map_field(field)) { |
| VALUE map = Qnil; |
| |
| const upb_fielddef* key_field = map_field_key(field); |
| const upb_fielddef* value_field = map_field_value(field); |
| VALUE type_class = field_type_class(layout, value_field); |
| |
| if (type_class != Qnil) { |
| VALUE args[3] = { |
| fieldtype_to_ruby(upb_fielddef_type(key_field)), |
| fieldtype_to_ruby(upb_fielddef_type(value_field)), |
| type_class, |
| }; |
| map = rb_class_new_instance(3, args, cMap); |
| } else { |
| VALUE args[2] = { |
| fieldtype_to_ruby(upb_fielddef_type(key_field)), |
| fieldtype_to_ruby(upb_fielddef_type(value_field)), |
| }; |
| map = rb_class_new_instance(2, args, cMap); |
| } |
| |
| DEREF(memory, VALUE) = map; |
| } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| VALUE ary = Qnil; |
| |
| VALUE type_class = field_type_class(layout, field); |
| |
| if (type_class != Qnil) { |
| VALUE args[2] = { |
| fieldtype_to_ruby(upb_fielddef_type(field)), |
| type_class, |
| }; |
| ary = rb_class_new_instance(2, args, cRepeatedField); |
| } else { |
| VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) }; |
| ary = rb_class_new_instance(1, args, cRepeatedField); |
| } |
| |
| DEREF(memory, VALUE) = ary; |
| } else { |
| native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field), |
| field_type_class(layout, field), memory, |
| layout_get_default(field)); |
| } |
| } |
| |
| VALUE layout_get_default(const upb_fielddef *field) { |
| switch (upb_fielddef_type(field)) { |
| case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field)); |
| case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field)); |
| case UPB_TYPE_BOOL: |
| return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse; |
| case UPB_TYPE_MESSAGE: return Qnil; |
| case UPB_TYPE_ENUM: { |
| const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field); |
| int32_t num = upb_fielddef_defaultint32(field); |
| const char *label = upb_enumdef_iton(enumdef, num); |
| if (label) { |
| return ID2SYM(rb_intern(label)); |
| } else { |
| return INT2NUM(num); |
| } |
| } |
| case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field)); |
| case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));; |
| case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field)); |
| case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field)); |
| case UPB_TYPE_STRING: |
| case UPB_TYPE_BYTES: { |
| size_t size; |
| const char *str = upb_fielddef_defaultstr(field, &size); |
| return get_frozen_string(str, size, |
| upb_fielddef_type(field) == UPB_TYPE_BYTES); |
| } |
| default: return Qnil; |
| } |
| } |
| |
| VALUE layout_get(MessageLayout* layout, |
| const void* storage, |
| const upb_fielddef* field) { |
| void* memory = slot_memory(layout, storage, field); |
| const upb_oneofdef* oneof = upb_fielddef_containingoneof(field); |
| bool field_set; |
| if (field_contains_hasbit(layout, field)) { |
| field_set = slot_is_hasbit_set(layout, storage, field); |
| } else { |
| field_set = true; |
| } |
| |
| if (oneof) { |
| uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof); |
| if (oneof_case != upb_fielddef_number(field)) { |
| return layout_get_default(field); |
| } |
| return native_slot_get(upb_fielddef_type(field), |
| field_type_class(layout, field), memory); |
| } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| return *((VALUE *)memory); |
| } else if (!field_set) { |
| return layout_get_default(field); |
| } else { |
| return native_slot_get(upb_fielddef_type(field), |
| field_type_class(layout, field), memory); |
| } |
| } |
| |
| static void check_repeated_field_type(const MessageLayout* layout, VALUE val, |
| const upb_fielddef* field) { |
| RepeatedField* self; |
| assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED); |
| |
| if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || |
| RTYPEDDATA_TYPE(val) != &RepeatedField_type) { |
| rb_raise(cTypeError, "Expected repeated field array"); |
| } |
| |
| self = ruby_to_RepeatedField(val); |
| if (self->field_type != upb_fielddef_type(field)) { |
| rb_raise(cTypeError, "Repeated field array has wrong element type"); |
| } |
| |
| if (self->field_type_class != field_type_class(layout, field)) { |
| rb_raise(cTypeError, "Repeated field array has wrong message/enum class"); |
| } |
| } |
| |
| static void check_map_field_type(const MessageLayout* layout, VALUE val, |
| const upb_fielddef* field) { |
| const upb_fielddef* key_field = map_field_key(field); |
| const upb_fielddef* value_field = map_field_value(field); |
| Map* self; |
| |
| if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || |
| RTYPEDDATA_TYPE(val) != &Map_type) { |
| rb_raise(cTypeError, "Expected Map instance"); |
| } |
| |
| self = ruby_to_Map(val); |
| if (self->key_type != upb_fielddef_type(key_field)) { |
| rb_raise(cTypeError, "Map key type does not match field's key type"); |
| } |
| if (self->value_type != upb_fielddef_type(value_field)) { |
| rb_raise(cTypeError, "Map value type does not match field's value type"); |
| } |
| if (self->value_type_class != field_type_class(layout, value_field)) { |
| rb_raise(cTypeError, "Map value type has wrong message/enum class"); |
| } |
| } |
| |
| void layout_set(MessageLayout* layout, |
| void* storage, |
| const upb_fielddef* field, |
| VALUE val) { |
| void* memory = slot_memory(layout, storage, field); |
| const upb_oneofdef* oneof = upb_fielddef_containingoneof(field); |
| |
| if (oneof) { |
| uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof); |
| if (val == Qnil) { |
| // Assigning nil to a oneof field clears the oneof completely. |
| *oneof_case = ONEOF_CASE_NONE; |
| memset(memory, 0, NATIVE_SLOT_MAX_SIZE); |
| } else { |
| // The transition between field types for a single oneof (union) slot is |
| // somewhat complex because we need to ensure that a GC triggered at any |
| // point by a call into the Ruby VM sees a valid state for this field and |
| // does not either go off into the weeds (following what it thinks is a |
| // VALUE but is actually a different field type) or miss an object (seeing |
| // what it thinks is a primitive field but is actually a VALUE for the new |
| // field type). |
| // |
| // In order for the transition to be safe, the oneof case slot must be in |
| // sync with the value slot whenever the Ruby VM has been called. Thus, we |
| // use native_slot_set_value_and_case(), which ensures that both the value |
| // and case number are altered atomically (w.r.t. the Ruby VM). |
| uint32_t case_value = upb_fielddef_number(field); |
| if (upb_fielddef_issubmsg(field) || upb_fielddef_isstring(field)) { |
| case_value |= ONEOF_CASE_MASK; |
| } |
| |
| native_slot_set_value_and_case( |
| upb_fielddef_name(field), upb_fielddef_type(field), |
| field_type_class(layout, field), memory, val, oneof_case, case_value); |
| } |
| } else if (is_map_field(field)) { |
| check_map_field_type(layout, val, field); |
| DEREF(memory, VALUE) = val; |
| } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| check_repeated_field_type(layout, val, field); |
| DEREF(memory, VALUE) = val; |
| } else { |
| native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field), |
| field_type_class(layout, field), memory, val); |
| } |
| |
| if (layout->fields[upb_fielddef_index(field)].hasbit != |
| MESSAGE_FIELD_NO_HASBIT) { |
| slot_set_hasbit(layout, storage, field); |
| } |
| } |
| |
| void layout_init(MessageLayout* layout, void* storage) { |
| VALUE* value = (VALUE*)CHARPTR_AT(storage, layout->value_offset); |
| int i; |
| |
| for (i = 0; i < layout->repeated_count; i++, value++) { |
| *value = RepeatedField_new_this_type(*value); |
| } |
| |
| for (i = 0; i < layout->map_count; i++, value++) { |
| *value = Map_new_this_type(*value); |
| } |
| } |
| |
| void layout_mark(MessageLayout* layout, void* storage) { |
| VALUE* values = (VALUE*)CHARPTR_AT(storage, layout->value_offset); |
| int noneofs = upb_msgdef_numoneofs(layout->msgdef); |
| int i; |
| |
| for (i = 0; i < layout->value_count; i++) { |
| rb_gc_mark(values[i]); |
| } |
| |
| for (i = 0; i < noneofs; i++) { |
| MessageOneof* oneof = &layout->oneofs[i]; |
| uint32_t* case_ptr = (uint32_t*)CHARPTR_AT(storage, oneof->case_offset); |
| if (*case_ptr & ONEOF_CASE_MASK) { |
| rb_gc_mark(DEREF_OFFSET(storage, oneof->offset, VALUE)); |
| } |
| } |
| } |
| |
| void layout_dup(MessageLayout* layout, void* to, void* from) { |
| upb_msg_field_iter it; |
| for (upb_msg_field_begin(&it, layout->msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| const upb_oneofdef* oneof = upb_fielddef_containingoneof(field); |
| |
| void* to_memory = slot_memory(layout, to, field); |
| void* from_memory = slot_memory(layout, from, field); |
| |
| if (oneof) { |
| uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof); |
| uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof); |
| if (slot_read_oneof_case(layout, from, oneof) == |
| upb_fielddef_number(field)) { |
| *to_oneof_case = *from_oneof_case; |
| native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); |
| } |
| } else if (is_map_field(field)) { |
| DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE)); |
| } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE)); |
| } else { |
| if (field_contains_hasbit(layout, field)) { |
| if (!slot_is_hasbit_set(layout, from, field)) continue; |
| slot_set_hasbit(layout, to, field); |
| } |
| |
| native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); |
| } |
| } |
| } |
| |
| void layout_deep_copy(MessageLayout* layout, void* to, void* from) { |
| upb_msg_field_iter it; |
| for (upb_msg_field_begin(&it, layout->msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| const upb_oneofdef* oneof = upb_fielddef_containingoneof(field); |
| |
| void* to_memory = slot_memory(layout, to, field); |
| void* from_memory = slot_memory(layout, from, field); |
| |
| if (oneof) { |
| uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof); |
| uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof); |
| if (slot_read_oneof_case(layout, from, oneof) == |
| upb_fielddef_number(field)) { |
| *to_oneof_case = *from_oneof_case; |
| native_slot_deep_copy(upb_fielddef_type(field), |
| field_type_class(layout, field), to_memory, |
| from_memory); |
| } |
| } else if (is_map_field(field)) { |
| DEREF(to_memory, VALUE) = |
| Map_deep_copy(DEREF(from_memory, VALUE)); |
| } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| DEREF(to_memory, VALUE) = |
| RepeatedField_deep_copy(DEREF(from_memory, VALUE)); |
| } else { |
| if (field_contains_hasbit(layout, field)) { |
| if (!slot_is_hasbit_set(layout, from, field)) continue; |
| slot_set_hasbit(layout, to, field); |
| } |
| |
| native_slot_deep_copy(upb_fielddef_type(field), |
| field_type_class(layout, field), to_memory, |
| from_memory); |
| } |
| } |
| } |
| |
| VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) { |
| upb_msg_field_iter it; |
| for (upb_msg_field_begin(&it, layout->msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| const upb_oneofdef* oneof = upb_fielddef_containingoneof(field); |
| |
| void* msg1_memory = slot_memory(layout, msg1, field); |
| void* msg2_memory = slot_memory(layout, msg2, field); |
| |
| if (oneof) { |
| uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, oneof); |
| uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, oneof); |
| if (*msg1_oneof_case != *msg2_oneof_case || |
| (slot_read_oneof_case(layout, msg1, oneof) == |
| upb_fielddef_number(field) && |
| !native_slot_eq(upb_fielddef_type(field), |
| field_type_class(layout, field), msg1_memory, |
| msg2_memory))) { |
| return Qfalse; |
| } |
| } else if (is_map_field(field)) { |
| if (!Map_eq(DEREF(msg1_memory, VALUE), |
| DEREF(msg2_memory, VALUE))) { |
| return Qfalse; |
| } |
| } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { |
| if (!RepeatedField_eq(DEREF(msg1_memory, VALUE), |
| DEREF(msg2_memory, VALUE))) { |
| return Qfalse; |
| } |
| } else { |
| if (slot_is_hasbit_set(layout, msg1, field) != |
| slot_is_hasbit_set(layout, msg2, field) || |
| !native_slot_eq(upb_fielddef_type(field), |
| field_type_class(layout, field), msg1_memory, |
| msg2_memory)) { |
| return Qfalse; |
| } |
| } |
| } |
| return Qtrue; |
| } |
| |
| VALUE layout_hash(MessageLayout* layout, void* storage) { |
| upb_msg_field_iter it; |
| st_index_t h = rb_hash_start(0); |
| VALUE hash_sym = rb_intern("hash"); |
| for (upb_msg_field_begin(&it, layout->msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| VALUE field_val = layout_get(layout, storage, field); |
| h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0))); |
| } |
| h = rb_hash_end(h); |
| |
| return INT2FIX(h); |
| } |
| |
| VALUE layout_inspect(MessageLayout* layout, void* storage) { |
| VALUE str = rb_str_new2(""); |
| |
| upb_msg_field_iter it; |
| bool first = true; |
| for (upb_msg_field_begin(&it, layout->msgdef); |
| !upb_msg_field_done(&it); |
| upb_msg_field_next(&it)) { |
| const upb_fielddef* field = upb_msg_iter_field(&it); |
| VALUE field_val = layout_get(layout, storage, field); |
| |
| if (!first) { |
| str = rb_str_cat2(str, ", "); |
| } else { |
| first = false; |
| } |
| str = rb_str_cat2(str, upb_fielddef_name(field)); |
| str = rb_str_cat2(str, ": "); |
| |
| str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0)); |
| } |
| |
| return str; |
| } |