| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Author: [email protected] (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // RepeatedField and RepeatedPtrField are used by generated protocol message |
| // classes to manipulate repeated fields. These classes are very similar to |
| // STL's vector, but include a number of optimizations found to be useful |
| // specifically in the case of Protocol Buffers. RepeatedPtrField is |
| // particularly different from STL vector as it manages ownership of the |
| // pointers that it contains. |
| // |
| // This header covers RepeatedField. |
| |
| #ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
| #define GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
| |
| |
| #include <algorithm> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #include <google/protobuf/stubs/logging.h> |
| #include <google/protobuf/stubs/common.h> |
| #include <google/protobuf/arena.h> |
| #include <google/protobuf/port.h> |
| #include <google/protobuf/message_lite.h> |
| #include <google/protobuf/repeated_ptr_field.h> |
| |
| |
| // Must be included last. |
| #include <google/protobuf/port_def.inc> |
| |
| #ifdef SWIG |
| #error "You cannot SWIG proto headers" |
| #endif |
| |
| namespace google { |
| namespace protobuf { |
| |
| class Message; |
| |
| namespace internal { |
| |
| template <typename T, int kRepHeaderSize> |
| constexpr int RepeatedFieldLowerClampLimit() { |
| // The header is padded to be at least `sizeof(T)` when it would be smaller |
| // otherwise. |
| static_assert(sizeof(T) <= kRepHeaderSize, ""); |
| // We want to pad the minimum size to be a power of two bytes, including the |
| // header. |
| // The first allocation is kRepHeaderSize bytes worth of elements for a total |
| // of 2*kRepHeaderSize bytes. |
| // For an 8-byte header, we allocate 8 bool, 2 ints, or 1 int64. |
| return kRepHeaderSize / sizeof(T); |
| } |
| |
| // kRepeatedFieldUpperClampLimit is the lowest signed integer value that |
| // overflows when multiplied by 2 (which is undefined behavior). Sizes above |
| // this will clamp to the maximum int value instead of following exponential |
| // growth when growing a repeated field. |
| constexpr int kRepeatedFieldUpperClampLimit = |
| (std::numeric_limits<int>::max() / 2) + 1; |
| |
| template <typename Iter> |
| inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) { |
| return static_cast<int>(std::distance(begin, end)); |
| } |
| |
| template <typename Iter> |
| inline int CalculateReserve(Iter /*begin*/, Iter /*end*/, |
| std::input_iterator_tag /*unused*/) { |
| return -1; |
| } |
| |
| template <typename Iter> |
| inline int CalculateReserve(Iter begin, Iter end) { |
| typedef typename std::iterator_traits<Iter>::iterator_category Category; |
| return CalculateReserve(begin, end, Category()); |
| } |
| |
| // Swaps two blocks of memory of size sizeof(T). |
| template <typename T> |
| inline void SwapBlock(char* p, char* q) { |
| T tmp; |
| memcpy(&tmp, p, sizeof(T)); |
| memcpy(p, q, sizeof(T)); |
| memcpy(q, &tmp, sizeof(T)); |
| } |
| |
| // Swaps two blocks of memory of size kSize: |
| // template <int kSize> void memswap(char* p, char* q); |
| template <int kSize> |
| inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) { |
| } |
| |
| #define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \ |
| template <int kSize> \ |
| typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \ |
| void>::type \ |
| memswap(char* p, char* q) { \ |
| SwapBlock<reg_type>(p, q); \ |
| memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \ |
| q + sizeof(reg_type)); \ |
| } |
| |
| PROTO_MEMSWAP_DEF_SIZE(uint8_t, 2) |
| PROTO_MEMSWAP_DEF_SIZE(uint16_t, 4) |
| PROTO_MEMSWAP_DEF_SIZE(uint32_t, 8) |
| |
| #ifdef __SIZEOF_INT128__ |
| PROTO_MEMSWAP_DEF_SIZE(uint64_t, 16) |
| PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31)) |
| #else |
| PROTO_MEMSWAP_DEF_SIZE(uint64_t, (1u << 31)) |
| #endif |
| |
| #undef PROTO_MEMSWAP_DEF_SIZE |
| |
| template <typename Element> |
| class RepeatedIterator; |
| |
| } // namespace internal |
| |
| // RepeatedField is used to represent repeated fields of a primitive type (in |
| // other words, everything except strings and nested Messages). Most users will |
| // not ever use a RepeatedField directly; they will use the get-by-index, |
| // set-by-index, and add accessors that are generated for all repeated fields. |
| template <typename Element> |
| class RepeatedField final { |
| static_assert( |
| alignof(Arena) >= alignof(Element), |
| "We only support types that have an alignment smaller than Arena"); |
| |
| public: |
| constexpr RepeatedField(); |
| explicit RepeatedField(Arena* arena); |
| |
| RepeatedField(const RepeatedField& other); |
| |
| template <typename Iter, |
| typename = typename std::enable_if<std::is_constructible< |
| Element, decltype(*std::declval<Iter>())>::value>::type> |
| RepeatedField(Iter begin, Iter end); |
| |
| ~RepeatedField(); |
| |
| RepeatedField& operator=(const RepeatedField& other); |
| |
| RepeatedField(RepeatedField&& other) noexcept; |
| RepeatedField& operator=(RepeatedField&& other) noexcept; |
| |
| bool empty() const; |
| int size() const; |
| |
| const Element& Get(int index) const; |
| Element* Mutable(int index); |
| |
| const Element& operator[](int index) const { return Get(index); } |
| Element& operator[](int index) { return *Mutable(index); } |
| |
| const Element& at(int index) const; |
| Element& at(int index); |
| |
| void Set(int index, const Element& value); |
| void Add(const Element& value); |
| // Appends a new element and returns a pointer to it. |
| // The new element is uninitialized if |Element| is a POD type. |
| Element* Add(); |
| // Appends elements in the range [begin, end) after reserving |
| // the appropriate number of elements. |
| template <typename Iter> |
| void Add(Iter begin, Iter end); |
| |
| // Removes the last element in the array. |
| void RemoveLast(); |
| |
| // Extracts elements with indices in "[start .. start+num-1]". |
| // Copies them into "elements[0 .. num-1]" if "elements" is not nullptr. |
| // Caution: also moves elements with indices [start+num ..]. |
| // Calling this routine inside a loop can cause quadratic behavior. |
| void ExtractSubrange(int start, int num, Element* elements); |
| |
| PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear(); |
| void MergeFrom(const RepeatedField& other); |
| PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other); |
| |
| // Replaces the contents with RepeatedField(begin, end). |
| template <typename Iter> |
| PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end); |
| |
| // Reserves space to expand the field to at least the given size. If the |
| // array is grown, it will always be at least doubled in size. |
| void Reserve(int new_size); |
| |
| // Resizes the RepeatedField to a new, smaller size. This is O(1). |
| void Truncate(int new_size); |
| |
| void AddAlreadyReserved(const Element& value); |
| // Appends a new element and return a pointer to it. |
| // The new element is uninitialized if |Element| is a POD type. |
| // Should be called only if Capacity() > Size(). |
| Element* AddAlreadyReserved(); |
| Element* AddNAlreadyReserved(int elements); |
| int Capacity() const; |
| |
| // Like STL resize. Uses value to fill appended elements. |
| // Like Truncate() if new_size <= size(), otherwise this is |
| // O(new_size - size()). |
| void Resize(int new_size, const Element& value); |
| |
| // Gets the underlying array. This pointer is possibly invalidated by |
| // any add or remove operation. |
| Element* mutable_data(); |
| const Element* data() const; |
| |
| // Swaps entire contents with "other". If they are separate arenas then, |
| // copies data between each other. |
| void Swap(RepeatedField* other); |
| |
| // Swaps entire contents with "other". Should be called only if the caller can |
| // guarantee that both repeated fields are on the same arena or are on the |
| // heap. Swapping between different arenas is disallowed and caught by a |
| // GOOGLE_DCHECK (see API docs for details). |
| void UnsafeArenaSwap(RepeatedField* other); |
| |
| // Swaps two elements. |
| void SwapElements(int index1, int index2); |
| |
| // STL-like iterator support |
| typedef internal::RepeatedIterator<Element> iterator; |
| typedef internal::RepeatedIterator<const Element> const_iterator; |
| typedef Element value_type; |
| typedef value_type& reference; |
| typedef const value_type& const_reference; |
| typedef value_type* pointer; |
| typedef const value_type* const_pointer; |
| typedef int size_type; |
| typedef ptrdiff_t difference_type; |
| |
| iterator begin(); |
| const_iterator begin() const; |
| const_iterator cbegin() const; |
| iterator end(); |
| const_iterator end() const; |
| const_iterator cend() const; |
| |
| // Reverse iterator support |
| typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
| typedef std::reverse_iterator<iterator> reverse_iterator; |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // Returns the number of bytes used by the repeated field, excluding |
| // sizeof(*this) |
| size_t SpaceUsedExcludingSelfLong() const; |
| |
| int SpaceUsedExcludingSelf() const { |
| return internal::ToIntSize(SpaceUsedExcludingSelfLong()); |
| } |
| |
| // Removes the element referenced by position. |
| // |
| // Returns an iterator to the element immediately following the removed |
| // element. |
| // |
| // Invalidates all iterators at or after the removed element, including end(). |
| iterator erase(const_iterator position); |
| |
| // Removes the elements in the range [first, last). |
| // |
| // Returns an iterator to the element immediately following the removed range. |
| // |
| // Invalidates all iterators at or after the removed range, including end(). |
| iterator erase(const_iterator first, const_iterator last); |
| |
| // Gets the Arena on which this RepeatedField stores its elements. |
| inline Arena* GetArena() const { |
| return GetOwningArena(); |
| } |
| |
| // For internal use only. |
| // |
| // This is public due to it being called by generated code. |
| inline void InternalSwap(RepeatedField* other); |
| |
| private: |
| template <typename T> friend class Arena::InternalHelper; |
| |
| // Gets the Arena on which this RepeatedField stores its elements. |
| inline Arena* GetOwningArena() const { |
| return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_) |
| : rep()->arena; |
| } |
| |
| static constexpr int kInitialSize = 0; |
| // A note on the representation here (see also comment below for |
| // RepeatedPtrFieldBase's struct Rep): |
| // |
| // We maintain the same sizeof(RepeatedField) as before we added arena support |
| // so that we do not degrade performance by bloating memory usage. Directly |
| // adding an arena_ element to RepeatedField is quite costly. By using |
| // indirection in this way, we keep the same size when the RepeatedField is |
| // empty (common case), and add only an 8-byte header to the elements array |
| // when non-empty. We make sure to place the size fields directly in the |
| // RepeatedField class to avoid costly cache misses due to the indirection. |
| int current_size_; |
| int total_size_; |
| // Pad the Rep after arena allow for power-of-two byte sizes when |
| // sizeof(Element) > sizeof(Arena*). eg for 16-byte objects. |
| static PROTOBUF_CONSTEXPR const size_t kRepHeaderSize = |
| sizeof(Arena*) < sizeof(Element) ? sizeof(Element) : sizeof(Arena*); |
| struct Rep { |
| Arena* arena; |
| Element* elements() { |
| return reinterpret_cast<Element*>(reinterpret_cast<char*>(this) + |
| kRepHeaderSize); |
| } |
| }; |
| |
| // If total_size_ == 0 this points to an Arena otherwise it points to the |
| // elements member of a Rep struct. Using this invariant allows the storage of |
| // the arena pointer without an extra allocation in the constructor. |
| void* arena_or_elements_; |
| |
| // Returns a pointer to elements array. |
| // pre-condition: the array must have been allocated. |
| Element* elements() const { |
| GOOGLE_DCHECK_GT(total_size_, 0); |
| // Because of above pre-condition this cast is safe. |
| return unsafe_elements(); |
| } |
| |
| // Returns a pointer to elements array if it exists; otherwise either null or |
| // an invalid pointer is returned. This only happens for empty repeated |
| // fields, where you can't dereference this pointer anyway (it's empty). |
| Element* unsafe_elements() const { |
| return static_cast<Element*>(arena_or_elements_); |
| } |
| |
| // Returns a pointer to the Rep struct. |
| // pre-condition: the Rep must have been allocated, ie elements() is safe. |
| Rep* rep() const { |
| return reinterpret_cast<Rep*>(reinterpret_cast<char*>(elements()) - |
| kRepHeaderSize); |
| } |
| |
| friend class Arena; |
| typedef void InternalArenaConstructable_; |
| |
| // Moves the contents of |from| into |to|, possibly clobbering |from| in the |
| // process. For primitive types this is just a memcpy(), but it could be |
| // specialized for non-primitive types to, say, swap each element instead. |
| void MoveArray(Element* to, Element* from, int size); |
| |
| // Copies the elements of |from| into |to|. |
| void CopyArray(Element* to, const Element* from, int size); |
| |
| // Internal helper to delete all elements and deallocate the storage. |
| void InternalDeallocate(Rep* rep, int size, bool in_destructor) { |
| if (rep != nullptr) { |
| Element* e = &rep->elements()[0]; |
| if (!std::is_trivial<Element>::value) { |
| Element* limit = &rep->elements()[size]; |
| for (; e < limit; e++) { |
| e->~Element(); |
| } |
| } |
| const size_t bytes = size * sizeof(*e) + kRepHeaderSize; |
| if (rep->arena == nullptr) { |
| internal::SizedDelete(rep, bytes); |
| } else if (!in_destructor) { |
| // If we are in the destructor, we might be being destroyed as part of |
| // the arena teardown. We can't try and return blocks to the arena then. |
| rep->arena->ReturnArrayMemory(rep, bytes); |
| } |
| } |
| } |
| |
| // This class is a performance wrapper around RepeatedField::Add(const T&) |
| // function. In general unless a RepeatedField is a local stack variable LLVM |
| // has a hard time optimizing Add. The machine code tends to be |
| // loop: |
| // mov %size, dword ptr [%repeated_field] // load |
| // cmp %size, dword ptr [%repeated_field + 4] |
| // jae fallback |
| // mov %buffer, qword ptr [%repeated_field + 8] |
| // mov dword [%buffer + %size * 4], %value |
| // inc %size // increment |
| // mov dword ptr [%repeated_field], %size // store |
| // jmp loop |
| // |
| // This puts a load/store in each iteration of the important loop variable |
| // size. It's a pretty bad compile that happens even in simple cases, but |
| // largely the presence of the fallback path disturbs the compilers mem-to-reg |
| // analysis. |
| // |
| // This class takes ownership of a repeated field for the duration of its |
| // lifetime. The repeated field should not be accessed during this time, ie. |
| // only access through this class is allowed. This class should always be a |
| // function local stack variable. Intended use |
| // |
| // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out) |
| // { |
| // RepeatedFieldAdder<int> adder(out); // Take ownership of out |
| // for (auto it = begin; it != end; ++it) { |
| // adder.Add(*it); |
| // } |
| // } |
| // |
| // Typically, due to the fact that adder is a local stack variable, the |
| // compiler will be successful in mem-to-reg transformation and the machine |
| // code will be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer |
| // + %size * 4], %val inc %size jmp loop |
| // |
| // The first version executes at 7 cycles per iteration while the second |
| // version executes at only 1 or 2 cycles. |
| template <int = 0, bool = std::is_trivial<Element>::value> |
| class FastAdderImpl { |
| public: |
| explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) { |
| index_ = repeated_field_->current_size_; |
| capacity_ = repeated_field_->total_size_; |
| buffer_ = repeated_field_->unsafe_elements(); |
| } |
| ~FastAdderImpl() { repeated_field_->current_size_ = index_; } |
| |
| void Add(Element val) { |
| if (index_ == capacity_) { |
| repeated_field_->current_size_ = index_; |
| repeated_field_->Reserve(index_ + 1); |
| capacity_ = repeated_field_->total_size_; |
| buffer_ = repeated_field_->unsafe_elements(); |
| } |
| buffer_[index_++] = val; |
| } |
| |
| private: |
| RepeatedField* repeated_field_; |
| int index_; |
| int capacity_; |
| Element* buffer_; |
| |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl); |
| }; |
| |
| // FastAdder is a wrapper for adding fields. The specialization above handles |
| // POD types more efficiently than RepeatedField. |
| template <int I> |
| class FastAdderImpl<I, false> { |
| public: |
| explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {} |
| void Add(const Element& val) { repeated_field_->Add(val); } |
| |
| private: |
| RepeatedField* repeated_field_; |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl); |
| }; |
| |
| using FastAdder = FastAdderImpl<>; |
| |
| friend class TestRepeatedFieldHelper; |
| friend class ::google::protobuf::internal::ParseContext; |
| }; |
| |
| namespace internal { |
| |
| // This is a helper template to copy an array of elements efficiently when they |
| // have a trivial copy constructor, and correctly otherwise. This really |
| // shouldn't be necessary, but our compiler doesn't optimize std::copy very |
| // effectively. |
| template <typename Element, |
| bool HasTrivialCopy = std::is_trivial<Element>::value> |
| struct ElementCopier { |
| void operator()(Element* to, const Element* from, int array_size); |
| }; |
| |
| } // namespace internal |
| |
| // implementation ==================================================== |
| |
| template <typename Element> |
| constexpr RepeatedField<Element>::RepeatedField() |
| : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {} |
| |
| template <typename Element> |
| inline RepeatedField<Element>::RepeatedField(Arena* arena) |
| : current_size_(0), total_size_(0), arena_or_elements_(arena) {} |
| |
| template <typename Element> |
| inline RepeatedField<Element>::RepeatedField(const RepeatedField& other) |
| : current_size_(0), total_size_(0), arena_or_elements_(nullptr) { |
| if (other.current_size_ != 0) { |
| Reserve(other.size()); |
| AddNAlreadyReserved(other.size()); |
| CopyArray(Mutable(0), &other.Get(0), other.size()); |
| } |
| } |
| |
| template <typename Element> |
| template <typename Iter, typename> |
| RepeatedField<Element>::RepeatedField(Iter begin, Iter end) |
| : current_size_(0), total_size_(0), arena_or_elements_(nullptr) { |
| Add(begin, end); |
| } |
| |
| template <typename Element> |
| RepeatedField<Element>::~RepeatedField() { |
| #ifndef NDEBUG |
| // Try to trigger segfault / asan failure in non-opt builds if arena_ |
| // lifetime has ended before the destructor. |
| auto arena = GetOwningArena(); |
| if (arena) (void)arena->SpaceAllocated(); |
| #endif |
| if (total_size_ > 0) { |
| InternalDeallocate(rep(), total_size_, true); |
| } |
| } |
| |
| template <typename Element> |
| inline RepeatedField<Element>& RepeatedField<Element>::operator=( |
| const RepeatedField& other) { |
| if (this != &other) CopyFrom(other); |
| return *this; |
| } |
| |
| template <typename Element> |
| inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept |
| : RepeatedField() { |
| #ifdef PROTOBUF_FORCE_COPY_IN_MOVE |
| CopyFrom(other); |
| #else // PROTOBUF_FORCE_COPY_IN_MOVE |
| // We don't just call Swap(&other) here because it would perform 3 copies if |
| // other is on an arena. This field can't be on an arena because arena |
| // construction always uses the Arena* accepting constructor. |
| if (other.GetOwningArena()) { |
| CopyFrom(other); |
| } else { |
| InternalSwap(&other); |
| } |
| #endif // !PROTOBUF_FORCE_COPY_IN_MOVE |
| } |
| |
| template <typename Element> |
| inline RepeatedField<Element>& RepeatedField<Element>::operator=( |
| RepeatedField&& other) noexcept { |
| // We don't just call Swap(&other) here because it would perform 3 copies if |
| // the two fields are on different arenas. |
| if (this != &other) { |
| if (GetOwningArena() != other.GetOwningArena() |
| #ifdef PROTOBUF_FORCE_COPY_IN_MOVE |
| || GetOwningArena() == nullptr |
| #endif // !PROTOBUF_FORCE_COPY_IN_MOVE |
| ) { |
| CopyFrom(other); |
| } else { |
| InternalSwap(&other); |
| } |
| } |
| return *this; |
| } |
| |
| template <typename Element> |
| inline bool RepeatedField<Element>::empty() const { |
| return current_size_ == 0; |
| } |
| |
| template <typename Element> |
| inline int RepeatedField<Element>::size() const { |
| return current_size_; |
| } |
| |
| template <typename Element> |
| inline int RepeatedField<Element>::Capacity() const { |
| return total_size_; |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) { |
| GOOGLE_DCHECK_LT(current_size_, total_size_); |
| elements()[current_size_++] = value; |
| } |
| |
| template <typename Element> |
| inline Element* RepeatedField<Element>::AddAlreadyReserved() { |
| GOOGLE_DCHECK_LT(current_size_, total_size_); |
| return &elements()[current_size_++]; |
| } |
| |
| template <typename Element> |
| inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) { |
| GOOGLE_DCHECK_GE(total_size_ - current_size_, elements) |
| << total_size_ << ", " << current_size_; |
| // Warning: sometimes people call this when elements == 0 and |
| // total_size_ == 0. In this case the return pointer points to a zero size |
| // array (n == 0). Hence we can just use unsafe_elements(), because the user |
| // cannot dereference the pointer anyway. |
| Element* ret = unsafe_elements() + current_size_; |
| current_size_ += elements; |
| return ret; |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::Resize(int new_size, const Element& value) { |
| GOOGLE_DCHECK_GE(new_size, 0); |
| if (new_size > current_size_) { |
| Reserve(new_size); |
| std::fill(&elements()[current_size_], &elements()[new_size], value); |
| } |
| current_size_ = new_size; |
| } |
| |
| template <typename Element> |
| inline const Element& RepeatedField<Element>::Get(int index) const { |
| GOOGLE_DCHECK_GE(index, 0); |
| GOOGLE_DCHECK_LT(index, current_size_); |
| return elements()[index]; |
| } |
| |
| template <typename Element> |
| inline const Element& RepeatedField<Element>::at(int index) const { |
| GOOGLE_CHECK_GE(index, 0); |
| GOOGLE_CHECK_LT(index, current_size_); |
| return elements()[index]; |
| } |
| |
| template <typename Element> |
| inline Element& RepeatedField<Element>::at(int index) { |
| GOOGLE_CHECK_GE(index, 0); |
| GOOGLE_CHECK_LT(index, current_size_); |
| return elements()[index]; |
| } |
| |
| template <typename Element> |
| inline Element* RepeatedField<Element>::Mutable(int index) { |
| GOOGLE_DCHECK_GE(index, 0); |
| GOOGLE_DCHECK_LT(index, current_size_); |
| return &elements()[index]; |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::Set(int index, const Element& value) { |
| GOOGLE_DCHECK_GE(index, 0); |
| GOOGLE_DCHECK_LT(index, current_size_); |
| elements()[index] = value; |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::Add(const Element& value) { |
| uint32_t size = current_size_; |
| if (static_cast<int>(size) == total_size_) { |
| // value could reference an element of the array. Reserving new space will |
| // invalidate the reference. So we must make a copy first. |
| auto tmp = value; |
| Reserve(total_size_ + 1); |
| elements()[size] = std::move(tmp); |
| } else { |
| elements()[size] = value; |
| } |
| current_size_ = size + 1; |
| } |
| |
| template <typename Element> |
| inline Element* RepeatedField<Element>::Add() { |
| uint32_t size = current_size_; |
| if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1); |
| auto ptr = &elements()[size]; |
| current_size_ = size + 1; |
| return ptr; |
| } |
| |
| template <typename Element> |
| template <typename Iter> |
| inline void RepeatedField<Element>::Add(Iter begin, Iter end) { |
| int reserve = internal::CalculateReserve(begin, end); |
| if (reserve != -1) { |
| if (reserve == 0) { |
| return; |
| } |
| |
| Reserve(reserve + size()); |
| // TODO(ckennelly): The compiler loses track of the buffer freshly |
| // allocated by Reserve() by the time we call elements, so it cannot |
| // guarantee that elements does not alias [begin(), end()). |
| // |
| // If restrict is available, annotating the pointer obtained from elements() |
| // causes this to lower to memcpy instead of memmove. |
| std::copy(begin, end, elements() + size()); |
| current_size_ = reserve + size(); |
| } else { |
| FastAdder fast_adder(this); |
| for (; begin != end; ++begin) fast_adder.Add(*begin); |
| } |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::RemoveLast() { |
| GOOGLE_DCHECK_GT(current_size_, 0); |
| current_size_--; |
| } |
| |
| template <typename Element> |
| void RepeatedField<Element>::ExtractSubrange(int start, int num, |
| Element* elements) { |
| GOOGLE_DCHECK_GE(start, 0); |
| GOOGLE_DCHECK_GE(num, 0); |
| GOOGLE_DCHECK_LE(start + num, this->current_size_); |
| |
| // Save the values of the removed elements if requested. |
| if (elements != nullptr) { |
| for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start); |
| } |
| |
| // Slide remaining elements down to fill the gap. |
| if (num > 0) { |
| for (int i = start + num; i < this->current_size_; ++i) |
| this->Set(i - num, this->Get(i)); |
| this->Truncate(this->current_size_ - num); |
| } |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::Clear() { |
| current_size_ = 0; |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) { |
| GOOGLE_DCHECK_NE(&other, this); |
| if (other.current_size_ != 0) { |
| int existing_size = size(); |
| Reserve(existing_size + other.size()); |
| AddNAlreadyReserved(other.size()); |
| CopyArray(Mutable(existing_size), &other.Get(0), other.size()); |
| } |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) { |
| if (&other == this) return; |
| Clear(); |
| MergeFrom(other); |
| } |
| |
| template <typename Element> |
| template <typename Iter> |
| inline void RepeatedField<Element>::Assign(Iter begin, Iter end) { |
| Clear(); |
| Add(begin, end); |
| } |
| |
| template <typename Element> |
| inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase( |
| const_iterator position) { |
| return erase(position, position + 1); |
| } |
| |
| template <typename Element> |
| inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase( |
| const_iterator first, const_iterator last) { |
| size_type first_offset = first - cbegin(); |
| if (first != last) { |
| Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin()); |
| } |
| return begin() + first_offset; |
| } |
| |
| template <typename Element> |
| inline Element* RepeatedField<Element>::mutable_data() { |
| return unsafe_elements(); |
| } |
| |
| template <typename Element> |
| inline const Element* RepeatedField<Element>::data() const { |
| return unsafe_elements(); |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) { |
| GOOGLE_DCHECK(this != other); |
| |
| // Swap all fields at once. |
| static_assert(std::is_standard_layout<RepeatedField<Element>>::value, |
| "offsetof() requires standard layout before c++17"); |
| internal::memswap<offsetof(RepeatedField, arena_or_elements_) + |
| sizeof(this->arena_or_elements_) - |
| offsetof(RepeatedField, current_size_)>( |
| reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_), |
| reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_)); |
| } |
| |
| template <typename Element> |
| void RepeatedField<Element>::Swap(RepeatedField* other) { |
| if (this == other) return; |
| #ifdef PROTOBUF_FORCE_COPY_IN_SWAP |
| if (GetOwningArena() != nullptr && |
| GetOwningArena() == other->GetOwningArena()) { |
| #else // PROTOBUF_FORCE_COPY_IN_SWAP |
| if (GetOwningArena() == other->GetOwningArena()) { |
| #endif // !PROTOBUF_FORCE_COPY_IN_SWAP |
| InternalSwap(other); |
| } else { |
| RepeatedField<Element> temp(other->GetOwningArena()); |
| temp.MergeFrom(*this); |
| CopyFrom(*other); |
| other->UnsafeArenaSwap(&temp); |
| } |
| } |
| |
| template <typename Element> |
| void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) { |
| if (this == other) return; |
| GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena()); |
| InternalSwap(other); |
| } |
| |
| template <typename Element> |
| void RepeatedField<Element>::SwapElements(int index1, int index2) { |
| using std::swap; // enable ADL with fallback |
| swap(elements()[index1], elements()[index2]); |
| } |
| |
| template <typename Element> |
| inline typename RepeatedField<Element>::iterator |
| RepeatedField<Element>::begin() { |
| return iterator(unsafe_elements()); |
| } |
| template <typename Element> |
| inline typename RepeatedField<Element>::const_iterator |
| RepeatedField<Element>::begin() const { |
| return const_iterator(unsafe_elements()); |
| } |
| template <typename Element> |
| inline typename RepeatedField<Element>::const_iterator |
| RepeatedField<Element>::cbegin() const { |
| return const_iterator(unsafe_elements()); |
| } |
| template <typename Element> |
| inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() { |
| return iterator(unsafe_elements() + current_size_); |
| } |
| template <typename Element> |
| inline typename RepeatedField<Element>::const_iterator |
| RepeatedField<Element>::end() const { |
| return const_iterator(unsafe_elements() + current_size_); |
| } |
| template <typename Element> |
| inline typename RepeatedField<Element>::const_iterator |
| RepeatedField<Element>::cend() const { |
| return const_iterator(unsafe_elements() + current_size_); |
| } |
| |
| template <typename Element> |
| inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const { |
| return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0; |
| } |
| |
| namespace internal { |
| // Returns the new size for a reserved field based on its 'total_size' and the |
| // requested 'new_size'. The result is clamped to the closed interval: |
| // [internal::kMinRepeatedFieldAllocationSize, |
| // std::numeric_limits<int>::max()] |
| // Requires: |
| // new_size > total_size && |
| // (total_size == 0 || |
| // total_size >= kRepeatedFieldLowerClampLimit) |
| template <typename T, int kRepHeaderSize> |
| inline int CalculateReserveSize(int total_size, int new_size) { |
| constexpr int lower_limit = RepeatedFieldLowerClampLimit<T, kRepHeaderSize>(); |
| if (new_size < lower_limit) { |
| // Clamp to smallest allowed size. |
| return lower_limit; |
| } |
| constexpr int kMaxSizeBeforeClamp = |
| (std::numeric_limits<int>::max() - kRepHeaderSize) / 2; |
| if (PROTOBUF_PREDICT_FALSE(total_size > kMaxSizeBeforeClamp)) { |
| return std::numeric_limits<int>::max(); |
| } |
| // We want to double the number of bytes, not the number of elements, to try |
| // to stay within power-of-two allocations. |
| // The allocation has kRepHeaderSize + sizeof(T) * capacity. |
| int doubled_size = 2 * total_size + kRepHeaderSize / sizeof(T); |
| return std::max(doubled_size, new_size); |
| } |
| } // namespace internal |
| |
| // Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant |
| // amount of code bloat. |
| template <typename Element> |
| void RepeatedField<Element>::Reserve(int new_size) { |
| if (total_size_ >= new_size) return; |
| Rep* old_rep = total_size_ > 0 ? rep() : nullptr; |
| Rep* new_rep; |
| Arena* arena = GetOwningArena(); |
| |
| new_size = internal::CalculateReserveSize<Element, kRepHeaderSize>( |
| total_size_, new_size); |
| |
| GOOGLE_DCHECK_LE( |
| static_cast<size_t>(new_size), |
| (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element)) |
| << "Requested size is too large to fit into size_t."; |
| size_t bytes = |
| kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size); |
| if (arena == nullptr) { |
| new_rep = static_cast<Rep*>(::operator new(bytes)); |
| } else { |
| new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes)); |
| } |
| new_rep->arena = arena; |
| int old_total_size = total_size_; |
| // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize |
| // Maintain invariant: |
| // total_size_ == 0 || |
| // total_size_ >= internal::kMinRepeatedFieldAllocationSize |
| total_size_ = new_size; |
| arena_or_elements_ = new_rep->elements(); |
| // Invoke placement-new on newly allocated elements. We shouldn't have to do |
| // this, since Element is supposed to be POD, but a previous version of this |
| // code allocated storage with "new Element[size]" and some code uses |
| // RepeatedField with non-POD types, relying on constructor invocation. If |
| // Element has a trivial constructor (e.g., int32_t), gcc (tested with -O2) |
| // completely removes this loop because the loop body is empty, so this has no |
| // effect unless its side-effects are required for correctness. |
| // Note that we do this before MoveArray() below because Element's copy |
| // assignment implementation will want an initialized instance first. |
| Element* e = &elements()[0]; |
| Element* limit = e + total_size_; |
| for (; e < limit; e++) { |
| new (e) Element; |
| } |
| if (current_size_ > 0) { |
| MoveArray(&elements()[0], old_rep->elements(), current_size_); |
| } |
| |
| // Likewise, we need to invoke destructors on the old array. |
| InternalDeallocate(old_rep, old_total_size, false); |
| |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::Truncate(int new_size) { |
| GOOGLE_DCHECK_LE(new_size, current_size_); |
| if (current_size_ > 0) { |
| current_size_ = new_size; |
| } |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::MoveArray(Element* to, Element* from, |
| int array_size) { |
| CopyArray(to, from, array_size); |
| } |
| |
| template <typename Element> |
| inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from, |
| int array_size) { |
| internal::ElementCopier<Element>()(to, from, array_size); |
| } |
| |
| namespace internal { |
| |
| template <typename Element, bool HasTrivialCopy> |
| void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to, |
| const Element* from, |
| int array_size) { |
| std::copy(from, from + array_size, to); |
| } |
| |
| template <typename Element> |
| struct ElementCopier<Element, true> { |
| void operator()(Element* to, const Element* from, int array_size) { |
| memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element)); |
| } |
| }; |
| |
| } // namespace internal |
| |
| |
| // ------------------------------------------------------------------- |
| |
| // Iterators and helper functions that follow the spirit of the STL |
| // std::back_insert_iterator and std::back_inserter but are tailor-made |
| // for RepeatedField and RepeatedPtrField. Typical usage would be: |
| // |
| // std::copy(some_sequence.begin(), some_sequence.end(), |
| // RepeatedFieldBackInserter(proto.mutable_sequence())); |
| // |
| // Ported by johannes from util/gtl/proto-array-iterators.h |
| |
| namespace internal { |
| |
| // STL-like iterator implementation for RepeatedField. You should not |
| // refer to this class directly; use RepeatedField<T>::iterator instead. |
| // |
| // Note: All of the iterator operators *must* be inlined to avoid performance |
| // regressions. This is caused by the extern template declarations below (which |
| // are required because of the RepeatedField extern template declarations). If |
| // any of these functions aren't explicitly inlined (e.g. defined in the class), |
| // the compiler isn't allowed to inline them. |
| template <typename Element> |
| class RepeatedIterator { |
| public: |
| using iterator_category = std::random_access_iterator_tag; |
| // Note: remove_const is necessary for std::partial_sum, which uses value_type |
| // to determine the summation variable type. |
| using value_type = typename std::remove_const<Element>::type; |
| using difference_type = std::ptrdiff_t; |
| using pointer = Element*; |
| using reference = Element&; |
| |
| constexpr RepeatedIterator() noexcept : it_(nullptr) {} |
| |
| // Allows "upcasting" from RepeatedIterator<T**> to |
| // RepeatedIterator<const T*const*>. |
| template <typename OtherElement, |
| typename std::enable_if<std::is_convertible< |
| OtherElement*, pointer>::value>::type* = nullptr> |
| constexpr RepeatedIterator( |
| const RepeatedIterator<OtherElement>& other) noexcept |
| : it_(other.it_) {} |
| |
| // dereferenceable |
| constexpr reference operator*() const noexcept { return *it_; } |
| constexpr pointer operator->() const noexcept { return it_; } |
| |
| private: |
| // Helper alias to hide the internal type. |
| using iterator = RepeatedIterator<Element>; |
| |
| public: |
| // {inc,dec}rementable |
| iterator& operator++() noexcept { |
| ++it_; |
| return *this; |
| } |
| iterator operator++(int) noexcept { return iterator(it_++); } |
| iterator& operator--() noexcept { |
| --it_; |
| return *this; |
| } |
| iterator operator--(int) noexcept { return iterator(it_--); } |
| |
| // equality_comparable |
| friend constexpr bool operator==(const iterator& x, |
| const iterator& y) noexcept { |
| return x.it_ == y.it_; |
| } |
| friend constexpr bool operator!=(const iterator& x, |
| const iterator& y) noexcept { |
| return x.it_ != y.it_; |
| } |
| |
| // less_than_comparable |
| friend constexpr bool operator<(const iterator& x, |
| const iterator& y) noexcept { |
| return x.it_ < y.it_; |
| } |
| friend constexpr bool operator<=(const iterator& x, |
| const iterator& y) noexcept { |
| return x.it_ <= y.it_; |
| } |
| friend constexpr bool operator>(const iterator& x, |
| const iterator& y) noexcept { |
| return x.it_ > y.it_; |
| } |
| friend constexpr bool operator>=(const iterator& x, |
| const iterator& y) noexcept { |
| return x.it_ >= y.it_; |
| } |
| |
| // addable, subtractable |
| iterator& operator+=(difference_type d) noexcept { |
| it_ += d; |
| return *this; |
| } |
| constexpr iterator operator+(difference_type d) const noexcept { |
| return iterator(it_ + d); |
| } |
| friend constexpr iterator operator+(const difference_type d, |
| iterator it) noexcept { |
| return it + d; |
| } |
| |
| iterator& operator-=(difference_type d) noexcept { |
| it_ -= d; |
| return *this; |
| } |
| iterator constexpr operator-(difference_type d) const noexcept { |
| return iterator(it_ - d); |
| } |
| |
| // indexable |
| constexpr reference operator[](difference_type d) const noexcept { |
| return it_[d]; |
| } |
| |
| // random access iterator |
| friend constexpr difference_type operator-(iterator it1, |
| iterator it2) noexcept { |
| return it1.it_ - it2.it_; |
| } |
| |
| private: |
| template <typename OtherElement> |
| friend class RepeatedIterator; |
| |
| // Allow construction from RepeatedField. |
| friend class RepeatedField<value_type>; |
| explicit RepeatedIterator(Element* it) noexcept : it_(it) {} |
| |
| // The internal iterator. |
| Element* it_; |
| }; |
| |
| // A back inserter for RepeatedField objects. |
| template <typename T> |
| class RepeatedFieldBackInsertIterator { |
| public: |
| using iterator_category = std::output_iterator_tag; |
| using value_type = T; |
| using pointer = void; |
| using reference = void; |
| using difference_type = std::ptrdiff_t; |
| |
| explicit RepeatedFieldBackInsertIterator( |
| RepeatedField<T>* const mutable_field) |
| : field_(mutable_field) {} |
| RepeatedFieldBackInsertIterator<T>& operator=(const T& value) { |
| field_->Add(value); |
| return *this; |
| } |
| RepeatedFieldBackInsertIterator<T>& operator*() { return *this; } |
| RepeatedFieldBackInsertIterator<T>& operator++() { return *this; } |
| RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) { |
| return *this; |
| } |
| |
| private: |
| RepeatedField<T>* field_; |
| }; |
| |
| } // namespace internal |
| |
| // Provides a back insert iterator for RepeatedField instances, |
| // similar to std::back_inserter(). |
| template <typename T> |
| internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter( |
| RepeatedField<T>* const mutable_field) { |
| return internal::RepeatedFieldBackInsertIterator<T>(mutable_field); |
| } |
| |
| // Extern declarations of common instantiations to reduce library bloat. |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>; |
| |
| namespace internal { |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<bool>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| RepeatedIterator<int32_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| RepeatedIterator<uint32_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| RepeatedIterator<int64_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| RepeatedIterator<uint64_t>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<float>; |
| extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<double>; |
| } // namespace internal |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #include <google/protobuf/port_undef.inc> |
| |
| #endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |