| |
| #include "Python.h" |
| #include "pycore_ceval.h" // _PyEval_SignalReceived() |
| #include "pycore_initconfig.h" // _PyStatus_OK() |
| #include "pycore_interp.h" // _Py_RunGC() |
| #include "pycore_pyerrors.h" // _PyErr_GetRaisedException() |
| #include "pycore_pylifecycle.h" // _PyErr_Print() |
| #include "pycore_pymem.h" // _PyMem_IsPtrFreed() |
| #include "pycore_pystats.h" // _Py_PrintSpecializationStats() |
| |
| /* |
| Notes about the implementation: |
| |
| - The GIL is just a boolean variable (locked) whose access is protected |
| by a mutex (gil_mutex), and whose changes are signalled by a condition |
| variable (gil_cond). gil_mutex is taken for short periods of time, |
| and therefore mostly uncontended. |
| |
| - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be |
| able to release the GIL on demand by another thread. A volatile boolean |
| variable (gil_drop_request) is used for that purpose, which is checked |
| at every turn of the eval loop. That variable is set after a wait of |
| `interval` microseconds on `gil_cond` has timed out. |
| |
| [Actually, another volatile boolean variable (eval_breaker) is used |
| which ORs several conditions into one. Volatile booleans are |
| sufficient as inter-thread signalling means since Python is run |
| on cache-coherent architectures only.] |
| |
| - A thread wanting to take the GIL will first let pass a given amount of |
| time (`interval` microseconds) before setting gil_drop_request. This |
| encourages a defined switching period, but doesn't enforce it since |
| opcodes can take an arbitrary time to execute. |
| |
| The `interval` value is available for the user to read and modify |
| using the Python API `sys.{get,set}switchinterval()`. |
| |
| - When a thread releases the GIL and gil_drop_request is set, that thread |
| ensures that another GIL-awaiting thread gets scheduled. |
| It does so by waiting on a condition variable (switch_cond) until |
| the value of last_holder is changed to something else than its |
| own thread state pointer, indicating that another thread was able to |
| take the GIL. |
| |
| This is meant to prohibit the latency-adverse behaviour on multi-core |
| machines where one thread would speculatively release the GIL, but still |
| run and end up being the first to re-acquire it, making the "timeslices" |
| much longer than expected. |
| (Note: this mechanism is enabled with FORCE_SWITCHING above) |
| */ |
| |
| // GH-89279: Force inlining by using a macro. |
| #if defined(_MSC_VER) && SIZEOF_INT == 4 |
| #define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value))) |
| #else |
| #define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL) |
| #endif |
| |
| // Atomically copy the bits indicated by mask between two values. |
| static inline void |
| copy_eval_breaker_bits(uintptr_t *from, uintptr_t *to, uintptr_t mask) |
| { |
| uintptr_t from_bits = _Py_atomic_load_uintptr_relaxed(from) & mask; |
| uintptr_t old_value = _Py_atomic_load_uintptr_relaxed(to); |
| uintptr_t to_bits = old_value & mask; |
| if (from_bits == to_bits) { |
| return; |
| } |
| |
| uintptr_t new_value; |
| do { |
| new_value = (old_value & ~mask) | from_bits; |
| } while (!_Py_atomic_compare_exchange_uintptr(to, &old_value, new_value)); |
| } |
| |
| // When attaching a thread, set the global instrumentation version and |
| // _PY_CALLS_TO_DO_BIT from the current state of the interpreter. |
| static inline void |
| update_eval_breaker_for_thread(PyInterpreterState *interp, PyThreadState *tstate) |
| { |
| #ifdef Py_GIL_DISABLED |
| // Free-threaded builds eagerly update the eval_breaker on *all* threads as |
| // needed, so this function doesn't apply. |
| return; |
| #endif |
| |
| int32_t npending = _Py_atomic_load_int32_relaxed( |
| &interp->ceval.pending.npending); |
| if (npending) { |
| _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT); |
| } |
| else if (_Py_IsMainThread()) { |
| npending = _Py_atomic_load_int32_relaxed( |
| &_PyRuntime.ceval.pending_mainthread.npending); |
| if (npending) { |
| _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT); |
| } |
| } |
| |
| // _PY_CALLS_TO_DO_BIT was derived from other state above, so the only bits |
| // we copy from our interpreter's state are the instrumentation version. |
| copy_eval_breaker_bits(&interp->ceval.instrumentation_version, |
| &tstate->eval_breaker, |
| ~_PY_EVAL_EVENTS_MASK); |
| } |
| |
| /* |
| * Implementation of the Global Interpreter Lock (GIL). |
| */ |
| |
| #include <stdlib.h> |
| #include <errno.h> |
| |
| #include "condvar.h" |
| |
| #define MUTEX_INIT(mut) \ |
| if (PyMUTEX_INIT(&(mut))) { \ |
| Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); }; |
| #define MUTEX_FINI(mut) \ |
| if (PyMUTEX_FINI(&(mut))) { \ |
| Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); }; |
| #define MUTEX_LOCK(mut) \ |
| if (PyMUTEX_LOCK(&(mut))) { \ |
| Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); }; |
| #define MUTEX_UNLOCK(mut) \ |
| if (PyMUTEX_UNLOCK(&(mut))) { \ |
| Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); }; |
| |
| #define COND_INIT(cond) \ |
| if (PyCOND_INIT(&(cond))) { \ |
| Py_FatalError("PyCOND_INIT(" #cond ") failed"); }; |
| #define COND_FINI(cond) \ |
| if (PyCOND_FINI(&(cond))) { \ |
| Py_FatalError("PyCOND_FINI(" #cond ") failed"); }; |
| #define COND_SIGNAL(cond) \ |
| if (PyCOND_SIGNAL(&(cond))) { \ |
| Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); }; |
| #define COND_WAIT(cond, mut) \ |
| if (PyCOND_WAIT(&(cond), &(mut))) { \ |
| Py_FatalError("PyCOND_WAIT(" #cond ") failed"); }; |
| #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ |
| { \ |
| int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \ |
| if (r < 0) \ |
| Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \ |
| if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \ |
| timeout_result = 1; \ |
| else \ |
| timeout_result = 0; \ |
| } \ |
| |
| |
| #define DEFAULT_INTERVAL 5000 |
| |
| static void _gil_initialize(struct _gil_runtime_state *gil) |
| { |
| gil->locked = -1; |
| gil->interval = DEFAULT_INTERVAL; |
| } |
| |
| static int gil_created(struct _gil_runtime_state *gil) |
| { |
| if (gil == NULL) { |
| return 0; |
| } |
| return (_Py_atomic_load_int_acquire(&gil->locked) >= 0); |
| } |
| |
| static void create_gil(struct _gil_runtime_state *gil) |
| { |
| MUTEX_INIT(gil->mutex); |
| #ifdef FORCE_SWITCHING |
| MUTEX_INIT(gil->switch_mutex); |
| #endif |
| COND_INIT(gil->cond); |
| #ifdef FORCE_SWITCHING |
| COND_INIT(gil->switch_cond); |
| #endif |
| _Py_atomic_store_ptr_relaxed(&gil->last_holder, 0); |
| _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked); |
| _Py_atomic_store_int_release(&gil->locked, 0); |
| } |
| |
| static void destroy_gil(struct _gil_runtime_state *gil) |
| { |
| /* some pthread-like implementations tie the mutex to the cond |
| * and must have the cond destroyed first. |
| */ |
| COND_FINI(gil->cond); |
| MUTEX_FINI(gil->mutex); |
| #ifdef FORCE_SWITCHING |
| COND_FINI(gil->switch_cond); |
| MUTEX_FINI(gil->switch_mutex); |
| #endif |
| _Py_atomic_store_int_release(&gil->locked, -1); |
| _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); |
| } |
| |
| #ifdef HAVE_FORK |
| static void recreate_gil(struct _gil_runtime_state *gil) |
| { |
| _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked); |
| /* XXX should we destroy the old OS resources here? */ |
| create_gil(gil); |
| } |
| #endif |
| |
| static inline void |
| drop_gil_impl(PyThreadState *tstate, struct _gil_runtime_state *gil) |
| { |
| MUTEX_LOCK(gil->mutex); |
| _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1); |
| _Py_atomic_store_int_relaxed(&gil->locked, 0); |
| if (tstate != NULL) { |
| tstate->_status.holds_gil = 0; |
| } |
| COND_SIGNAL(gil->cond); |
| MUTEX_UNLOCK(gil->mutex); |
| } |
| |
| static void |
| drop_gil(PyInterpreterState *interp, PyThreadState *tstate, int final_release) |
| { |
| struct _ceval_state *ceval = &interp->ceval; |
| /* If final_release is true, the caller is indicating that we're releasing |
| the GIL for the last time in this thread. This is particularly |
| relevant when the current thread state is finalizing or its |
| interpreter is finalizing (either may be in an inconsistent |
| state). In that case the current thread will definitely |
| never try to acquire the GIL again. */ |
| // XXX It may be more correct to check tstate->_status.finalizing. |
| // XXX assert(final_release || !tstate->_status.cleared); |
| |
| assert(final_release || tstate != NULL); |
| struct _gil_runtime_state *gil = ceval->gil; |
| #ifdef Py_GIL_DISABLED |
| // Check if we have the GIL before dropping it. tstate will be NULL if |
| // take_gil() detected that this thread has been destroyed, in which case |
| // we know we have the GIL. |
| if (tstate != NULL && !tstate->_status.holds_gil) { |
| return; |
| } |
| #endif |
| if (!_Py_atomic_load_int_relaxed(&gil->locked)) { |
| Py_FatalError("drop_gil: GIL is not locked"); |
| } |
| |
| if (!final_release) { |
| /* Sub-interpreter support: threads might have been switched |
| under our feet using PyThreadState_Swap(). Fix the GIL last |
| holder variable so that our heuristics work. */ |
| _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate); |
| } |
| |
| drop_gil_impl(tstate, gil); |
| |
| #ifdef FORCE_SWITCHING |
| /* We might be releasing the GIL for the last time in this thread. In that |
| case there's a possible race with tstate->interp getting deleted after |
| gil->mutex is unlocked and before the following code runs, leading to a |
| crash. We can use final_release to indicate the thread is done with the |
| GIL, and that's the only time we might delete the interpreter. See |
| https://github.com/python/cpython/issues/104341. */ |
| if (!final_release && |
| _Py_eval_breaker_bit_is_set(tstate, _PY_GIL_DROP_REQUEST_BIT)) { |
| MUTEX_LOCK(gil->switch_mutex); |
| /* Not switched yet => wait */ |
| if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate) |
| { |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT); |
| /* NOTE: if COND_WAIT does not atomically start waiting when |
| releasing the mutex, another thread can run through, take |
| the GIL and drop it again, and reset the condition |
| before we even had a chance to wait for it. */ |
| COND_WAIT(gil->switch_cond, gil->switch_mutex); |
| } |
| MUTEX_UNLOCK(gil->switch_mutex); |
| } |
| #endif |
| } |
| |
| |
| /* Take the GIL. |
| |
| The function saves errno at entry and restores its value at exit. |
| |
| tstate must be non-NULL. |
| |
| Returns 1 if the GIL was acquired, or 0 if not. */ |
| static void |
| take_gil(PyThreadState *tstate) |
| { |
| int err = errno; |
| |
| assert(tstate != NULL); |
| /* We shouldn't be using a thread state that isn't viable any more. */ |
| // XXX It may be more correct to check tstate->_status.finalizing. |
| // XXX assert(!tstate->_status.cleared); |
| |
| if (_PyThreadState_MustExit(tstate)) { |
| /* bpo-39877: If Py_Finalize() has been called and tstate is not the |
| thread which called Py_Finalize(), exit immediately the thread. |
| |
| This code path can be reached by a daemon thread after Py_Finalize() |
| completes. In this case, tstate is a dangling pointer: points to |
| PyThreadState freed memory. */ |
| PyThread_exit_thread(); |
| } |
| |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| PyInterpreterState *interp = tstate->interp; |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| #ifdef Py_GIL_DISABLED |
| if (!_Py_atomic_load_int_relaxed(&gil->enabled)) { |
| return; |
| } |
| #endif |
| |
| /* Check that _PyEval_InitThreads() was called to create the lock */ |
| assert(gil_created(gil)); |
| |
| MUTEX_LOCK(gil->mutex); |
| |
| int drop_requested = 0; |
| while (_Py_atomic_load_int_relaxed(&gil->locked)) { |
| unsigned long saved_switchnum = gil->switch_number; |
| |
| unsigned long interval = (gil->interval >= 1 ? gil->interval : 1); |
| int timed_out = 0; |
| COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out); |
| |
| /* If we timed out and no switch occurred in the meantime, it is time |
| to ask the GIL-holding thread to drop it. */ |
| if (timed_out && |
| _Py_atomic_load_int_relaxed(&gil->locked) && |
| gil->switch_number == saved_switchnum) |
| { |
| PyThreadState *holder_tstate = |
| (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder); |
| if (_PyThreadState_MustExit(tstate)) { |
| MUTEX_UNLOCK(gil->mutex); |
| // gh-96387: If the loop requested a drop request in a previous |
| // iteration, reset the request. Otherwise, drop_gil() can |
| // block forever waiting for the thread which exited. Drop |
| // requests made by other threads are also reset: these threads |
| // may have to request again a drop request (iterate one more |
| // time). |
| if (drop_requested) { |
| _Py_unset_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT); |
| } |
| PyThread_exit_thread(); |
| } |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| _Py_set_eval_breaker_bit(holder_tstate, _PY_GIL_DROP_REQUEST_BIT); |
| drop_requested = 1; |
| } |
| } |
| |
| #ifdef Py_GIL_DISABLED |
| if (!_Py_atomic_load_int_relaxed(&gil->enabled)) { |
| // Another thread disabled the GIL between our check above and |
| // now. Don't take the GIL, signal any other waiting threads, and |
| // return. |
| COND_SIGNAL(gil->cond); |
| MUTEX_UNLOCK(gil->mutex); |
| return; |
| } |
| #endif |
| |
| #ifdef FORCE_SWITCHING |
| /* This mutex must be taken before modifying gil->last_holder: |
| see drop_gil(). */ |
| MUTEX_LOCK(gil->switch_mutex); |
| #endif |
| /* We now hold the GIL */ |
| _Py_atomic_store_int_relaxed(&gil->locked, 1); |
| _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1); |
| |
| if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) { |
| _Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate); |
| ++gil->switch_number; |
| } |
| |
| #ifdef FORCE_SWITCHING |
| COND_SIGNAL(gil->switch_cond); |
| MUTEX_UNLOCK(gil->switch_mutex); |
| #endif |
| |
| if (_PyThreadState_MustExit(tstate)) { |
| /* bpo-36475: If Py_Finalize() has been called and tstate is not |
| the thread which called Py_Finalize(), exit immediately the |
| thread. |
| |
| This code path can be reached by a daemon thread which was waiting |
| in take_gil() while the main thread called |
| wait_for_thread_shutdown() from Py_Finalize(). */ |
| MUTEX_UNLOCK(gil->mutex); |
| /* tstate could be a dangling pointer, so don't pass it to |
| drop_gil(). */ |
| drop_gil(interp, NULL, 1); |
| PyThread_exit_thread(); |
| } |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| tstate->_status.holds_gil = 1; |
| _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT); |
| update_eval_breaker_for_thread(interp, tstate); |
| |
| MUTEX_UNLOCK(gil->mutex); |
| |
| errno = err; |
| return; |
| } |
| |
| void _PyEval_SetSwitchInterval(unsigned long microseconds) |
| { |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| assert(gil != NULL); |
| gil->interval = microseconds; |
| } |
| |
| unsigned long _PyEval_GetSwitchInterval(void) |
| { |
| PyInterpreterState *interp = _PyInterpreterState_GET(); |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| assert(gil != NULL); |
| return gil->interval; |
| } |
| |
| |
| int |
| _PyEval_ThreadsInitialized(void) |
| { |
| /* XXX This is only needed for an assert in PyGILState_Ensure(), |
| * which currently does not work with subinterpreters. |
| * Thus we only use the main interpreter. */ |
| PyInterpreterState *interp = _PyInterpreterState_Main(); |
| if (interp == NULL) { |
| return 0; |
| } |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| return gil_created(gil); |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(int) |
| PyEval_ThreadsInitialized(void) |
| { |
| return _PyEval_ThreadsInitialized(); |
| } |
| |
| #ifndef NDEBUG |
| static inline int |
| current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate) |
| { |
| int holds_gil = tstate->_status.holds_gil; |
| |
| // holds_gil is the source of truth; check that last_holder and gil->locked |
| // are consistent with it. |
| int locked = _Py_atomic_load_int_relaxed(&gil->locked); |
| int is_last_holder = |
| ((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate; |
| assert(!holds_gil || locked); |
| assert(!holds_gil || is_last_holder); |
| |
| return holds_gil; |
| } |
| #endif |
| |
| static void |
| init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil) |
| { |
| assert(gil_created(gil)); |
| interp->ceval.gil = gil; |
| interp->ceval.own_gil = 0; |
| } |
| |
| static void |
| init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil) |
| { |
| assert(!gil_created(gil)); |
| #ifdef Py_GIL_DISABLED |
| const PyConfig *config = _PyInterpreterState_GetConfig(interp); |
| gil->enabled = config->enable_gil == _PyConfig_GIL_ENABLE ? INT_MAX : 0; |
| #endif |
| create_gil(gil); |
| assert(gil_created(gil)); |
| interp->ceval.gil = gil; |
| interp->ceval.own_gil = 1; |
| } |
| |
| void |
| _PyEval_InitGIL(PyThreadState *tstate, int own_gil) |
| { |
| assert(tstate->interp->ceval.gil == NULL); |
| if (!own_gil) { |
| /* The interpreter will share the main interpreter's instead. */ |
| PyInterpreterState *main_interp = _PyInterpreterState_Main(); |
| assert(tstate->interp != main_interp); |
| struct _gil_runtime_state *gil = main_interp->ceval.gil; |
| init_shared_gil(tstate->interp, gil); |
| assert(!current_thread_holds_gil(gil, tstate)); |
| } |
| else { |
| PyThread_init_thread(); |
| init_own_gil(tstate->interp, &tstate->interp->_gil); |
| } |
| |
| // Lock the GIL and mark the current thread as attached. |
| _PyThreadState_Attach(tstate); |
| } |
| |
| void |
| _PyEval_FiniGIL(PyInterpreterState *interp) |
| { |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| if (gil == NULL) { |
| /* It was already finalized (or hasn't been initialized yet). */ |
| assert(!interp->ceval.own_gil); |
| return; |
| } |
| else if (!interp->ceval.own_gil) { |
| #ifdef Py_DEBUG |
| PyInterpreterState *main_interp = _PyInterpreterState_Main(); |
| assert(main_interp != NULL && interp != main_interp); |
| assert(interp->ceval.gil == main_interp->ceval.gil); |
| #endif |
| interp->ceval.gil = NULL; |
| return; |
| } |
| |
| if (!gil_created(gil)) { |
| /* First Py_InitializeFromConfig() call: the GIL doesn't exist |
| yet: do nothing. */ |
| return; |
| } |
| |
| destroy_gil(gil); |
| assert(!gil_created(gil)); |
| interp->ceval.gil = NULL; |
| } |
| |
| void |
| PyEval_InitThreads(void) |
| { |
| /* Do nothing: kept for backward compatibility */ |
| } |
| |
| void |
| _PyEval_Fini(void) |
| { |
| #ifdef Py_STATS |
| _Py_PrintSpecializationStats(1); |
| #endif |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(void) |
| PyEval_AcquireLock(void) |
| { |
| PyThreadState *tstate = _PyThreadState_GET(); |
| _Py_EnsureTstateNotNULL(tstate); |
| |
| take_gil(tstate); |
| } |
| |
| // Function removed in the Python 3.13 API but kept in the stable ABI. |
| PyAPI_FUNC(void) |
| PyEval_ReleaseLock(void) |
| { |
| PyThreadState *tstate = _PyThreadState_GET(); |
| /* This function must succeed when the current thread state is NULL. |
| We therefore avoid PyThreadState_Get() which dumps a fatal error |
| in debug mode. */ |
| drop_gil(tstate->interp, tstate, 0); |
| } |
| |
| void |
| _PyEval_AcquireLock(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| take_gil(tstate); |
| } |
| |
| void |
| _PyEval_ReleaseLock(PyInterpreterState *interp, |
| PyThreadState *tstate, |
| int final_release) |
| { |
| assert(tstate != NULL); |
| assert(tstate->interp == interp); |
| drop_gil(interp, tstate, final_release); |
| } |
| |
| void |
| PyEval_AcquireThread(PyThreadState *tstate) |
| { |
| _Py_EnsureTstateNotNULL(tstate); |
| _PyThreadState_Attach(tstate); |
| } |
| |
| void |
| PyEval_ReleaseThread(PyThreadState *tstate) |
| { |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| _PyThreadState_Detach(tstate); |
| } |
| |
| #ifdef HAVE_FORK |
| /* This function is called from PyOS_AfterFork_Child to re-initialize the |
| GIL and pending calls lock. */ |
| PyStatus |
| _PyEval_ReInitThreads(PyThreadState *tstate) |
| { |
| assert(tstate->interp == _PyInterpreterState_Main()); |
| |
| struct _gil_runtime_state *gil = tstate->interp->ceval.gil; |
| if (!gil_created(gil)) { |
| return _PyStatus_OK(); |
| } |
| recreate_gil(gil); |
| |
| take_gil(tstate); |
| |
| struct _pending_calls *pending = &tstate->interp->ceval.pending; |
| _PyMutex_at_fork_reinit(&pending->mutex); |
| |
| return _PyStatus_OK(); |
| } |
| #endif |
| |
| PyThreadState * |
| PyEval_SaveThread(void) |
| { |
| PyThreadState *tstate = _PyThreadState_GET(); |
| _PyThreadState_Detach(tstate); |
| return tstate; |
| } |
| |
| void |
| PyEval_RestoreThread(PyThreadState *tstate) |
| { |
| #ifdef MS_WINDOWS |
| int err = GetLastError(); |
| #endif |
| |
| _Py_EnsureTstateNotNULL(tstate); |
| _PyThreadState_Attach(tstate); |
| |
| #ifdef MS_WINDOWS |
| SetLastError(err); |
| #endif |
| } |
| |
| |
| void |
| _PyEval_SignalReceived(void) |
| { |
| _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_SIGNALS_PENDING_BIT); |
| } |
| |
| |
| #ifndef Py_GIL_DISABLED |
| static void |
| signal_active_thread(PyInterpreterState *interp, uintptr_t bit) |
| { |
| struct _gil_runtime_state *gil = interp->ceval.gil; |
| |
| // If a thread from the targeted interpreter is holding the GIL, signal |
| // that thread. Otherwise, the next thread to run from the targeted |
| // interpreter will have its bit set as part of taking the GIL. |
| MUTEX_LOCK(gil->mutex); |
| if (_Py_atomic_load_int_relaxed(&gil->locked)) { |
| PyThreadState *holder = (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder); |
| if (holder->interp == interp) { |
| _Py_set_eval_breaker_bit(holder, bit); |
| } |
| } |
| MUTEX_UNLOCK(gil->mutex); |
| } |
| #endif |
| |
| |
| /* Mechanism whereby asynchronously executing callbacks (e.g. UNIX |
| signal handlers or Mac I/O completion routines) can schedule calls |
| to a function to be called synchronously. |
| The synchronous function is called with one void* argument. |
| It should return 0 for success or -1 for failure -- failure should |
| be accompanied by an exception. |
| |
| If registry succeeds, the registry function returns 0; if it fails |
| (e.g. due to too many pending calls) it returns -1 (without setting |
| an exception condition). |
| |
| Note that because registry may occur from within signal handlers, |
| or other asynchronous events, calling malloc() is unsafe! |
| |
| Any thread can schedule pending calls, but only the main thread |
| will execute them. |
| There is no facility to schedule calls to a particular thread, but |
| that should be easy to change, should that ever be required. In |
| that case, the static variables here should go into the python |
| threadstate. |
| */ |
| |
| /* Push one item onto the queue while holding the lock. */ |
| static int |
| _push_pending_call(struct _pending_calls *pending, |
| _Py_pending_call_func func, void *arg, int flags) |
| { |
| if (pending->npending == pending->max) { |
| return _Py_ADD_PENDING_FULL; |
| } |
| assert(pending->npending < pending->max); |
| |
| int i = pending->next; |
| assert(pending->calls[i].func == NULL); |
| |
| pending->calls[i].func = func; |
| pending->calls[i].arg = arg; |
| pending->calls[i].flags = flags; |
| |
| assert(pending->npending < PENDINGCALLSARRAYSIZE); |
| _Py_atomic_add_int32(&pending->npending, 1); |
| |
| pending->next = (i + 1) % PENDINGCALLSARRAYSIZE; |
| assert(pending->next != pending->first |
| || pending->npending == pending->max); |
| |
| return _Py_ADD_PENDING_SUCCESS; |
| } |
| |
| static int |
| _next_pending_call(struct _pending_calls *pending, |
| int (**func)(void *), void **arg, int *flags) |
| { |
| int i = pending->first; |
| if (pending->npending == 0) { |
| /* Queue empty */ |
| assert(i == pending->next); |
| assert(pending->calls[i].func == NULL); |
| return -1; |
| } |
| *func = pending->calls[i].func; |
| *arg = pending->calls[i].arg; |
| *flags = pending->calls[i].flags; |
| return i; |
| } |
| |
| /* Pop one item off the queue while holding the lock. */ |
| static void |
| _pop_pending_call(struct _pending_calls *pending, |
| int (**func)(void *), void **arg, int *flags) |
| { |
| int i = _next_pending_call(pending, func, arg, flags); |
| if (i >= 0) { |
| pending->calls[i] = (struct _pending_call){0}; |
| pending->first = (i + 1) % PENDINGCALLSARRAYSIZE; |
| assert(pending->npending > 0); |
| _Py_atomic_add_int32(&pending->npending, -1); |
| } |
| } |
| |
| /* This implementation is thread-safe. It allows |
| scheduling to be made from any thread, and even from an executing |
| callback. |
| */ |
| |
| _Py_add_pending_call_result |
| _PyEval_AddPendingCall(PyInterpreterState *interp, |
| _Py_pending_call_func func, void *arg, int flags) |
| { |
| struct _pending_calls *pending = &interp->ceval.pending; |
| int main_only = (flags & _Py_PENDING_MAINTHREADONLY) != 0; |
| if (main_only) { |
| /* The main thread only exists in the main interpreter. */ |
| assert(_Py_IsMainInterpreter(interp)); |
| pending = &_PyRuntime.ceval.pending_mainthread; |
| } |
| |
| PyMutex_Lock(&pending->mutex); |
| _Py_add_pending_call_result result = |
| _push_pending_call(pending, func, arg, flags); |
| PyMutex_Unlock(&pending->mutex); |
| |
| if (main_only) { |
| _Py_set_eval_breaker_bit(_PyRuntime.main_tstate, _PY_CALLS_TO_DO_BIT); |
| } |
| else { |
| #ifdef Py_GIL_DISABLED |
| _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT); |
| #else |
| signal_active_thread(interp, _PY_CALLS_TO_DO_BIT); |
| #endif |
| } |
| |
| return result; |
| } |
| |
| int |
| Py_AddPendingCall(_Py_pending_call_func func, void *arg) |
| { |
| /* Legacy users of this API will continue to target the main thread |
| (of the main interpreter). */ |
| PyInterpreterState *interp = _PyInterpreterState_Main(); |
| _Py_add_pending_call_result r = |
| _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY); |
| if (r == _Py_ADD_PENDING_FULL) { |
| return -1; |
| } |
| else { |
| assert(r == _Py_ADD_PENDING_SUCCESS); |
| return 0; |
| } |
| } |
| |
| static int |
| handle_signals(PyThreadState *tstate) |
| { |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| _Py_unset_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT); |
| if (!_Py_ThreadCanHandleSignals(tstate->interp)) { |
| return 0; |
| } |
| if (_PyErr_CheckSignalsTstate(tstate) < 0) { |
| /* On failure, re-schedule a call to handle_signals(). */ |
| _Py_set_eval_breaker_bit(tstate, _PY_SIGNALS_PENDING_BIT); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int |
| _make_pending_calls(struct _pending_calls *pending, int32_t *p_npending) |
| { |
| int res = 0; |
| int32_t npending = -1; |
| |
| assert(sizeof(pending->max) <= sizeof(size_t) |
| && ((size_t)pending->max) <= Py_ARRAY_LENGTH(pending->calls)); |
| int32_t maxloop = pending->maxloop; |
| if (maxloop == 0) { |
| maxloop = pending->max; |
| } |
| assert(maxloop > 0 && maxloop <= pending->max); |
| |
| /* perform a bounded number of calls, in case of recursion */ |
| for (int i=0; i<maxloop; i++) { |
| _Py_pending_call_func func = NULL; |
| void *arg = NULL; |
| int flags = 0; |
| |
| /* pop one item off the queue while holding the lock */ |
| PyMutex_Lock(&pending->mutex); |
| _pop_pending_call(pending, &func, &arg, &flags); |
| npending = pending->npending; |
| PyMutex_Unlock(&pending->mutex); |
| |
| /* Check if there are any more pending calls. */ |
| if (func == NULL) { |
| assert(npending == 0); |
| break; |
| } |
| |
| /* having released the lock, perform the callback */ |
| res = func(arg); |
| if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) { |
| PyMem_RawFree(arg); |
| } |
| if (res != 0) { |
| res = -1; |
| goto finally; |
| } |
| } |
| |
| finally: |
| *p_npending = npending; |
| return res; |
| } |
| |
| static void |
| signal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp) |
| { |
| #ifdef Py_GIL_DISABLED |
| _Py_set_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT); |
| #else |
| _Py_set_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT); |
| #endif |
| } |
| |
| static void |
| unsignal_pending_calls(PyThreadState *tstate, PyInterpreterState *interp) |
| { |
| #ifdef Py_GIL_DISABLED |
| _Py_unset_eval_breaker_bit_all(interp, _PY_CALLS_TO_DO_BIT); |
| #else |
| _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT); |
| #endif |
| } |
| |
| static void |
| clear_pending_handling_thread(struct _pending_calls *pending) |
| { |
| #ifdef Py_GIL_DISABLED |
| PyMutex_Lock(&pending->mutex); |
| pending->handling_thread = NULL; |
| PyMutex_Unlock(&pending->mutex); |
| #else |
| pending->handling_thread = NULL; |
| #endif |
| } |
| |
| static int |
| make_pending_calls(PyThreadState *tstate) |
| { |
| PyInterpreterState *interp = tstate->interp; |
| struct _pending_calls *pending = &interp->ceval.pending; |
| struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread; |
| |
| /* Only one thread (per interpreter) may run the pending calls |
| at once. In the same way, we don't do recursive pending calls. */ |
| PyMutex_Lock(&pending->mutex); |
| if (pending->handling_thread != NULL) { |
| /* A pending call was added after another thread was already |
| handling the pending calls (and had already "unsignaled"). |
| Once that thread is done, it may have taken care of all the |
| pending calls, or there might be some still waiting. |
| To avoid all threads constantly stopping on the eval breaker, |
| we clear the bit for this thread and make sure it is set |
| for the thread currently handling the pending call. */ |
| _Py_set_eval_breaker_bit(pending->handling_thread, _PY_CALLS_TO_DO_BIT); |
| _Py_unset_eval_breaker_bit(tstate, _PY_CALLS_TO_DO_BIT); |
| PyMutex_Unlock(&pending->mutex); |
| return 0; |
| } |
| pending->handling_thread = tstate; |
| PyMutex_Unlock(&pending->mutex); |
| |
| /* unsignal before starting to call callbacks, so that any callback |
| added in-between re-signals */ |
| unsignal_pending_calls(tstate, interp); |
| |
| int32_t npending; |
| if (_make_pending_calls(pending, &npending) != 0) { |
| clear_pending_handling_thread(pending); |
| /* There might not be more calls to make, but we play it safe. */ |
| signal_pending_calls(tstate, interp); |
| return -1; |
| } |
| if (npending > 0) { |
| /* We hit pending->maxloop. */ |
| signal_pending_calls(tstate, interp); |
| } |
| |
| if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) { |
| if (_make_pending_calls(pending_main, &npending) != 0) { |
| clear_pending_handling_thread(pending); |
| /* There might not be more calls to make, but we play it safe. */ |
| signal_pending_calls(tstate, interp); |
| return -1; |
| } |
| if (npending > 0) { |
| /* We hit pending_main->maxloop. */ |
| signal_pending_calls(tstate, interp); |
| } |
| } |
| |
| clear_pending_handling_thread(pending); |
| return 0; |
| } |
| |
| |
| void |
| _Py_set_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| |
| HEAD_LOCK(runtime); |
| for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) { |
| _Py_set_eval_breaker_bit(tstate, bit); |
| } |
| HEAD_UNLOCK(runtime); |
| } |
| |
| void |
| _Py_unset_eval_breaker_bit_all(PyInterpreterState *interp, uintptr_t bit) |
| { |
| _PyRuntimeState *runtime = &_PyRuntime; |
| |
| HEAD_LOCK(runtime); |
| for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) { |
| _Py_unset_eval_breaker_bit(tstate, bit); |
| } |
| HEAD_UNLOCK(runtime); |
| } |
| |
| void |
| _Py_FinishPendingCalls(PyThreadState *tstate) |
| { |
| assert(PyGILState_Check()); |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| struct _pending_calls *pending = &tstate->interp->ceval.pending; |
| struct _pending_calls *pending_main = |
| _Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp) |
| ? &_PyRuntime.ceval.pending_mainthread |
| : NULL; |
| /* make_pending_calls() may return early without making all pending |
| calls, so we keep trying until we're actually done. */ |
| int32_t npending; |
| #ifndef NDEBUG |
| int32_t npending_prev = INT32_MAX; |
| #endif |
| do { |
| if (make_pending_calls(tstate) < 0) { |
| PyObject *exc = _PyErr_GetRaisedException(tstate); |
| PyErr_BadInternalCall(); |
| _PyErr_ChainExceptions1(exc); |
| _PyErr_Print(tstate); |
| } |
| |
| npending = _Py_atomic_load_int32_relaxed(&pending->npending); |
| if (pending_main != NULL) { |
| npending += _Py_atomic_load_int32_relaxed(&pending_main->npending); |
| } |
| #ifndef NDEBUG |
| assert(npending_prev > npending); |
| npending_prev = npending; |
| #endif |
| } while (npending > 0); |
| } |
| |
| int |
| _PyEval_MakePendingCalls(PyThreadState *tstate) |
| { |
| int res; |
| |
| if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) { |
| /* Python signal handler doesn't really queue a callback: |
| it only signals that a signal was received, |
| see _PyEval_SignalReceived(). */ |
| res = handle_signals(tstate); |
| if (res != 0) { |
| return res; |
| } |
| } |
| |
| res = make_pending_calls(tstate); |
| if (res != 0) { |
| return res; |
| } |
| |
| return 0; |
| } |
| |
| /* Py_MakePendingCalls() is a simple wrapper for the sake |
| of backward-compatibility. */ |
| int |
| Py_MakePendingCalls(void) |
| { |
| assert(PyGILState_Check()); |
| |
| PyThreadState *tstate = _PyThreadState_GET(); |
| assert(_PyThreadState_CheckConsistency(tstate)); |
| |
| /* Only execute pending calls on the main thread. */ |
| if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) { |
| return 0; |
| } |
| return _PyEval_MakePendingCalls(tstate); |
| } |
| |
| void |
| _PyEval_InitState(PyInterpreterState *interp) |
| { |
| _gil_initialize(&interp->_gil); |
| } |
| |
| #ifdef Py_GIL_DISABLED |
| int |
| _PyEval_EnableGILTransient(PyThreadState *tstate) |
| { |
| const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp); |
| if (config->enable_gil != _PyConfig_GIL_DEFAULT) { |
| return 0; |
| } |
| struct _gil_runtime_state *gil = tstate->interp->ceval.gil; |
| |
| int enabled = _Py_atomic_load_int_relaxed(&gil->enabled); |
| if (enabled == INT_MAX) { |
| // The GIL is already enabled permanently. |
| return 0; |
| } |
| if (enabled == INT_MAX - 1) { |
| Py_FatalError("Too many transient requests to enable the GIL"); |
| } |
| if (enabled > 0) { |
| // If enabled is nonzero, we know we hold the GIL. This means that no |
| // other threads are attached, and nobody else can be concurrently |
| // mutating it. |
| _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1); |
| return 0; |
| } |
| |
| // Enabling the GIL changes what it means to be an "attached" thread. To |
| // safely make this transition, we: |
| // 1. Detach the current thread. |
| // 2. Stop the world to detach (and suspend) all other threads. |
| // 3. Enable the GIL, if nobody else did between our check above and when |
| // our stop-the-world begins. |
| // 4. Start the world. |
| // 5. Attach the current thread. Other threads may attach and hold the GIL |
| // before this thread, which is harmless. |
| _PyThreadState_Detach(tstate); |
| |
| // This could be an interpreter-local stop-the-world in situations where we |
| // know that this interpreter's GIL is not shared, and that it won't become |
| // shared before the stop-the-world begins. For now, we always stop all |
| // interpreters for simplicity. |
| _PyEval_StopTheWorldAll(&_PyRuntime); |
| |
| enabled = _Py_atomic_load_int_relaxed(&gil->enabled); |
| int this_thread_enabled = enabled == 0; |
| _Py_atomic_store_int_relaxed(&gil->enabled, enabled + 1); |
| |
| _PyEval_StartTheWorldAll(&_PyRuntime); |
| _PyThreadState_Attach(tstate); |
| |
| return this_thread_enabled; |
| } |
| |
| int |
| _PyEval_EnableGILPermanent(PyThreadState *tstate) |
| { |
| const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp); |
| if (config->enable_gil != _PyConfig_GIL_DEFAULT) { |
| return 0; |
| } |
| |
| struct _gil_runtime_state *gil = tstate->interp->ceval.gil; |
| assert(current_thread_holds_gil(gil, tstate)); |
| |
| int enabled = _Py_atomic_load_int_relaxed(&gil->enabled); |
| if (enabled == INT_MAX) { |
| return 0; |
| } |
| |
| _Py_atomic_store_int_relaxed(&gil->enabled, INT_MAX); |
| return 1; |
| } |
| |
| int |
| _PyEval_DisableGIL(PyThreadState *tstate) |
| { |
| const PyConfig *config = _PyInterpreterState_GetConfig(tstate->interp); |
| if (config->enable_gil != _PyConfig_GIL_DEFAULT) { |
| return 0; |
| } |
| |
| struct _gil_runtime_state *gil = tstate->interp->ceval.gil; |
| assert(current_thread_holds_gil(gil, tstate)); |
| |
| int enabled = _Py_atomic_load_int_relaxed(&gil->enabled); |
| if (enabled == INT_MAX) { |
| return 0; |
| } |
| |
| assert(enabled >= 1); |
| enabled--; |
| |
| // Disabling the GIL is much simpler than enabling it, since we know we are |
| // the only attached thread. Other threads may start free-threading as soon |
| // as this store is complete, if it sets gil->enabled to 0. |
| _Py_atomic_store_int_relaxed(&gil->enabled, enabled); |
| |
| if (enabled == 0) { |
| // We're attached, so we know the GIL will remain disabled until at |
| // least the next time we detach, which must be after this function |
| // returns. |
| // |
| // Drop the GIL, which will wake up any threads waiting in take_gil() |
| // and let them resume execution without the GIL. |
| drop_gil_impl(tstate, gil); |
| |
| // If another thread asked us to drop the GIL, they should be |
| // free-threading by now. Remove any such request so we have a clean |
| // slate if/when the GIL is enabled again. |
| _Py_unset_eval_breaker_bit(tstate, _PY_GIL_DROP_REQUEST_BIT); |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| |
| /* Do periodic things, like check for signals and async I/0. |
| * We need to do reasonably frequently, but not too frequently. |
| * All loops should include a check of the eval breaker. |
| * We also check on return from any builtin function. |
| * |
| * ## More Details ### |
| * |
| * The eval loop (this function) normally executes the instructions |
| * of a code object sequentially. However, the runtime supports a |
| * number of out-of-band execution scenarios that may pause that |
| * sequential execution long enough to do that out-of-band work |
| * in the current thread using the current PyThreadState. |
| * |
| * The scenarios include: |
| * |
| * - cyclic garbage collection |
| * - GIL drop requests |
| * - "async" exceptions |
| * - "pending calls" (some only in the main thread) |
| * - signal handling (only in the main thread) |
| * |
| * When the need for one of the above is detected, the eval loop |
| * pauses long enough to handle the detected case. Then, if doing |
| * so didn't trigger an exception, the eval loop resumes executing |
| * the sequential instructions. |
| * |
| * To make this work, the eval loop periodically checks if any |
| * of the above needs to happen. The individual checks can be |
| * expensive if computed each time, so a while back we switched |
| * to using pre-computed, per-interpreter variables for the checks, |
| * and later consolidated that to a single "eval breaker" variable |
| * (now a PyInterpreterState field). |
| * |
| * For the longest time, the eval breaker check would happen |
| * frequently, every 5 or so times through the loop, regardless |
| * of what instruction ran last or what would run next. Then, in |
| * early 2021 (gh-18334, commit 4958f5d), we switched to checking |
| * the eval breaker less frequently, by hard-coding the check to |
| * specific places in the eval loop (e.g. certain instructions). |
| * The intent then was to check after returning from calls |
| * and on the back edges of loops. |
| * |
| * In addition to being more efficient, that approach keeps |
| * the eval loop from running arbitrary code between instructions |
| * that don't handle that well. (See gh-74174.) |
| * |
| * Currently, the eval breaker check happens on back edges in |
| * the control flow graph, which pretty much applies to all loops, |
| * and most calls. |
| * (See bytecodes.c for exact information.) |
| * |
| * One consequence of this approach is that it might not be obvious |
| * how to force any specific thread to pick up the eval breaker, |
| * or for any specific thread to not pick it up. Mostly this |
| * involves judicious uses of locks and careful ordering of code, |
| * while avoiding code that might trigger the eval breaker |
| * until so desired. |
| */ |
| int |
| _Py_HandlePending(PyThreadState *tstate) |
| { |
| uintptr_t breaker = _Py_atomic_load_uintptr_relaxed(&tstate->eval_breaker); |
| |
| /* Stop-the-world */ |
| if ((breaker & _PY_EVAL_PLEASE_STOP_BIT) != 0) { |
| _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_PLEASE_STOP_BIT); |
| _PyThreadState_Suspend(tstate); |
| |
| /* The attach blocks until the stop-the-world event is complete. */ |
| _PyThreadState_Attach(tstate); |
| } |
| |
| /* Pending signals */ |
| if ((breaker & _PY_SIGNALS_PENDING_BIT) != 0) { |
| if (handle_signals(tstate) != 0) { |
| return -1; |
| } |
| } |
| |
| /* Pending calls */ |
| if ((breaker & _PY_CALLS_TO_DO_BIT) != 0) { |
| if (make_pending_calls(tstate) != 0) { |
| return -1; |
| } |
| } |
| |
| #ifdef Py_GIL_DISABLED |
| /* Objects with refcounts to merge */ |
| if ((breaker & _PY_EVAL_EXPLICIT_MERGE_BIT) != 0) { |
| _Py_unset_eval_breaker_bit(tstate, _PY_EVAL_EXPLICIT_MERGE_BIT); |
| _Py_brc_merge_refcounts(tstate); |
| } |
| #endif |
| |
| /* GC scheduled to run */ |
| if ((breaker & _PY_GC_SCHEDULED_BIT) != 0) { |
| _Py_unset_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT); |
| _Py_RunGC(tstate); |
| } |
| |
| /* GIL drop request */ |
| if ((breaker & _PY_GIL_DROP_REQUEST_BIT) != 0) { |
| /* Give another thread a chance */ |
| _PyThreadState_Detach(tstate); |
| |
| /* Other threads may run now */ |
| |
| _PyThreadState_Attach(tstate); |
| } |
| |
| /* Check for asynchronous exception. */ |
| if ((breaker & _PY_ASYNC_EXCEPTION_BIT) != 0) { |
| _Py_unset_eval_breaker_bit(tstate, _PY_ASYNC_EXCEPTION_BIT); |
| PyObject *exc = _Py_atomic_exchange_ptr(&tstate->async_exc, NULL); |
| if (exc != NULL) { |
| _PyErr_SetNone(tstate, exc); |
| Py_DECREF(exc); |
| return -1; |
| } |
| } |
| return 0; |
| } |