| /* |
| * This file compiles an abstract syntax tree (AST) into Python bytecode. |
| * |
| * The primary entry point is _PyAST_Compile(), which returns a |
| * PyCodeObject. The compiler makes several passes to build the code |
| * object: |
| * 1. Checks for future statements. See future.c |
| * 2. Builds a symbol table. See symtable.c. |
| * 3. Generate code for basic blocks. See compiler_mod() in this file. |
| * 4. Assemble the basic blocks into final code. See assemble() in |
| * this file. |
| * 5. Optimize the byte code (peephole optimizations). |
| * |
| * Note that compiler_mod() suggests module, but the module ast type |
| * (mod_ty) has cases for expressions and interactive statements. |
| * |
| * CAUTION: The VISIT_* macros abort the current function when they |
| * encounter a problem. So don't invoke them when there is memory |
| * which needs to be released. Code blocks are OK, as the compiler |
| * structure takes care of releasing those. Use the arena to manage |
| * objects. |
| */ |
| |
| #include <stdbool.h> |
| |
| // Need _PyOpcode_RelativeJump of pycore_opcode.h |
| #define NEED_OPCODE_TABLES |
| |
| #include "Python.h" |
| #include "pycore_ast.h" // _PyAST_GetDocString() |
| #include "pycore_code.h" // _PyCode_New() |
| #include "pycore_compile.h" // _PyFuture_FromAST() |
| #include "pycore_long.h" // _PyLong_GetZero() |
| #include "pycore_opcode.h" // _PyOpcode_Caches |
| #include "pycore_pymem.h" // _PyMem_IsPtrFreed() |
| #include "pycore_symtable.h" // PySTEntryObject |
| |
| |
| #define DEFAULT_BLOCK_SIZE 16 |
| #define DEFAULT_CODE_SIZE 128 |
| #define DEFAULT_LNOTAB_SIZE 16 |
| #define DEFAULT_CNOTAB_SIZE 32 |
| |
| #define COMP_GENEXP 0 |
| #define COMP_LISTCOMP 1 |
| #define COMP_SETCOMP 2 |
| #define COMP_DICTCOMP 3 |
| |
| /* A soft limit for stack use, to avoid excessive |
| * memory use for large constants, etc. |
| * |
| * The value 30 is plucked out of thin air. |
| * Code that could use more stack than this is |
| * rare, so the exact value is unimportant. |
| */ |
| #define STACK_USE_GUIDELINE 30 |
| |
| /* If we exceed this limit, it should |
| * be considered a compiler bug. |
| * Currently it should be impossible |
| * to exceed STACK_USE_GUIDELINE * 100, |
| * as 100 is the maximum parse depth. |
| * For performance reasons we will |
| * want to reduce this to a |
| * few hundred in the future. |
| * |
| * NOTE: Whatever MAX_ALLOWED_STACK_USE is |
| * set to, it should never restrict what Python |
| * we can write, just how we compile it. |
| */ |
| #define MAX_ALLOWED_STACK_USE (STACK_USE_GUIDELINE * 100) |
| |
| |
| /* Pseudo-instructions used in the compiler, |
| * but turned into NOPs or other instructions |
| * by the assembler. */ |
| #define SETUP_FINALLY -1 |
| #define SETUP_CLEANUP -2 |
| #define SETUP_WITH -3 |
| #define POP_BLOCK -4 |
| #define JUMP -5 |
| #define JUMP_NO_INTERRUPT -6 |
| #define POP_JUMP_IF_FALSE -7 |
| #define POP_JUMP_IF_TRUE -8 |
| #define POP_JUMP_IF_NONE -9 |
| #define POP_JUMP_IF_NOT_NONE -10 |
| |
| #define MIN_VIRTUAL_OPCODE -10 |
| #define MAX_ALLOWED_OPCODE 254 |
| |
| #define IS_WITHIN_OPCODE_RANGE(opcode) \ |
| ((opcode) >= MIN_VIRTUAL_OPCODE && (opcode) <= MAX_ALLOWED_OPCODE) |
| |
| #define IS_VIRTUAL_OPCODE(opcode) ((opcode) < 0) |
| |
| #define IS_VIRTUAL_JUMP_OPCODE(opcode) \ |
| ((opcode) == JUMP || \ |
| (opcode) == JUMP_NO_INTERRUPT || \ |
| (opcode) == POP_JUMP_IF_NONE || \ |
| (opcode) == POP_JUMP_IF_NOT_NONE || \ |
| (opcode) == POP_JUMP_IF_FALSE || \ |
| (opcode) == POP_JUMP_IF_TRUE) |
| |
| /* opcodes which are not emitted in codegen stage, only by the assembler */ |
| #define IS_ASSEMBLER_OPCODE(opcode) \ |
| ((opcode) == JUMP_FORWARD || \ |
| (opcode) == JUMP_BACKWARD || \ |
| (opcode) == JUMP_BACKWARD_NO_INTERRUPT || \ |
| (opcode) == POP_JUMP_FORWARD_IF_NONE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_NONE || \ |
| (opcode) == POP_JUMP_FORWARD_IF_NOT_NONE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_NOT_NONE || \ |
| (opcode) == POP_JUMP_FORWARD_IF_TRUE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_TRUE || \ |
| (opcode) == POP_JUMP_FORWARD_IF_FALSE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_FALSE) |
| |
| |
| #define IS_BACKWARDS_JUMP_OPCODE(opcode) \ |
| ((opcode) == JUMP_BACKWARD || \ |
| (opcode) == JUMP_BACKWARD_NO_INTERRUPT || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_NONE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_NOT_NONE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_TRUE || \ |
| (opcode) == POP_JUMP_BACKWARD_IF_FALSE) |
| |
| |
| #define IS_TOP_LEVEL_AWAIT(c) ( \ |
| (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \ |
| && (c->u->u_ste->ste_type == ModuleBlock)) |
| |
| struct instr { |
| int i_opcode; |
| int i_oparg; |
| /* target block (if jump instruction) */ |
| struct basicblock_ *i_target; |
| /* target block when exception is raised, should not be set by front-end. */ |
| struct basicblock_ *i_except; |
| int i_lineno; |
| int i_end_lineno; |
| int i_col_offset; |
| int i_end_col_offset; |
| }; |
| |
| typedef struct excepthandler { |
| struct instr *setup; |
| int offset; |
| } ExceptHandler; |
| |
| typedef struct exceptstack { |
| struct basicblock_ *handlers[CO_MAXBLOCKS+1]; |
| int depth; |
| } ExceptStack; |
| |
| #define LOG_BITS_PER_INT 5 |
| #define MASK_LOW_LOG_BITS 31 |
| |
| static inline int |
| is_bit_set_in_table(const uint32_t *table, int bitindex) { |
| /* Is the relevant bit set in the relevant word? */ |
| /* 256 bits fit into 8 32-bits words. |
| * Word is indexed by (bitindex>>ln(size of int in bits)). |
| * Bit within word is the low bits of bitindex. |
| */ |
| if (bitindex >= 0 && bitindex < 256) { |
| uint32_t word = table[bitindex >> LOG_BITS_PER_INT]; |
| return (word >> (bitindex & MASK_LOW_LOG_BITS)) & 1; |
| } |
| else { |
| return 0; |
| } |
| } |
| |
| static inline int |
| is_relative_jump(struct instr *i) |
| { |
| return is_bit_set_in_table(_PyOpcode_RelativeJump, i->i_opcode); |
| } |
| |
| static inline int |
| is_block_push(struct instr *instr) |
| { |
| int opcode = instr->i_opcode; |
| return opcode == SETUP_FINALLY || opcode == SETUP_WITH || opcode == SETUP_CLEANUP; |
| } |
| |
| static inline int |
| is_jump(struct instr *i) |
| { |
| return IS_VIRTUAL_JUMP_OPCODE(i->i_opcode) || |
| is_bit_set_in_table(_PyOpcode_Jump, i->i_opcode); |
| } |
| |
| static int |
| instr_size(struct instr *instruction) |
| { |
| int opcode = instruction->i_opcode; |
| assert(!IS_VIRTUAL_OPCODE(opcode)); |
| int oparg = HAS_ARG(opcode) ? instruction->i_oparg : 0; |
| int extended_args = (0xFFFFFF < oparg) + (0xFFFF < oparg) + (0xFF < oparg); |
| int caches = _PyOpcode_Caches[opcode]; |
| return extended_args + 1 + caches; |
| } |
| |
| static void |
| write_instr(_Py_CODEUNIT *codestr, struct instr *instruction, int ilen) |
| { |
| int opcode = instruction->i_opcode; |
| assert(!IS_VIRTUAL_OPCODE(opcode)); |
| int oparg = HAS_ARG(opcode) ? instruction->i_oparg : 0; |
| int caches = _PyOpcode_Caches[opcode]; |
| switch (ilen - caches) { |
| case 4: |
| *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 24) & 0xFF); |
| /* fall through */ |
| case 3: |
| *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 16) & 0xFF); |
| /* fall through */ |
| case 2: |
| *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 8) & 0xFF); |
| /* fall through */ |
| case 1: |
| *codestr++ = _Py_MAKECODEUNIT(opcode, oparg & 0xFF); |
| break; |
| default: |
| Py_UNREACHABLE(); |
| } |
| while (caches--) { |
| *codestr++ = _Py_MAKECODEUNIT(CACHE, 0); |
| } |
| } |
| |
| typedef struct basicblock_ { |
| /* Each basicblock in a compilation unit is linked via b_list in the |
| reverse order that the block are allocated. b_list points to the next |
| block, not to be confused with b_next, which is next by control flow. */ |
| struct basicblock_ *b_list; |
| /* Exception stack at start of block, used by assembler to create the exception handling table */ |
| ExceptStack *b_exceptstack; |
| /* pointer to an array of instructions, initially NULL */ |
| struct instr *b_instr; |
| /* If b_next is non-NULL, it is a pointer to the next |
| block reached by normal control flow. */ |
| struct basicblock_ *b_next; |
| /* number of instructions used */ |
| int b_iused; |
| /* length of instruction array (b_instr) */ |
| int b_ialloc; |
| /* Number of predecssors that a block has. */ |
| int b_predecessors; |
| /* depth of stack upon entry of block, computed by stackdepth() */ |
| int b_startdepth; |
| /* instruction offset for block, computed by assemble_jump_offsets() */ |
| int b_offset; |
| /* Basic block has no fall through (it ends with a return, raise or jump) */ |
| unsigned b_nofallthrough : 1; |
| /* Basic block is an exception handler that preserves lasti */ |
| unsigned b_preserve_lasti : 1; |
| /* Used by compiler passes to mark whether they have visited a basic block. */ |
| unsigned b_visited : 1; |
| /* Basic block exits scope (it ends with a return or raise) */ |
| unsigned b_exit : 1; |
| /* b_return is true if a RETURN_VALUE opcode is inserted. */ |
| unsigned b_return : 1; |
| } basicblock; |
| |
| /* fblockinfo tracks the current frame block. |
| |
| A frame block is used to handle loops, try/except, and try/finally. |
| It's called a frame block to distinguish it from a basic block in the |
| compiler IR. |
| */ |
| |
| enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END, |
| WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER, |
| EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR }; |
| |
| struct fblockinfo { |
| enum fblocktype fb_type; |
| basicblock *fb_block; |
| /* (optional) type-specific exit or cleanup block */ |
| basicblock *fb_exit; |
| /* (optional) additional information required for unwinding */ |
| void *fb_datum; |
| }; |
| |
| enum { |
| COMPILER_SCOPE_MODULE, |
| COMPILER_SCOPE_CLASS, |
| COMPILER_SCOPE_FUNCTION, |
| COMPILER_SCOPE_ASYNC_FUNCTION, |
| COMPILER_SCOPE_LAMBDA, |
| COMPILER_SCOPE_COMPREHENSION, |
| }; |
| |
| /* The following items change on entry and exit of code blocks. |
| They must be saved and restored when returning to a block. |
| */ |
| struct compiler_unit { |
| PySTEntryObject *u_ste; |
| |
| PyObject *u_name; |
| PyObject *u_qualname; /* dot-separated qualified name (lazy) */ |
| int u_scope_type; |
| |
| /* The following fields are dicts that map objects to |
| the index of them in co_XXX. The index is used as |
| the argument for opcodes that refer to those collections. |
| */ |
| PyObject *u_consts; /* all constants */ |
| PyObject *u_names; /* all names */ |
| PyObject *u_varnames; /* local variables */ |
| PyObject *u_cellvars; /* cell variables */ |
| PyObject *u_freevars; /* free variables */ |
| |
| PyObject *u_private; /* for private name mangling */ |
| |
| Py_ssize_t u_argcount; /* number of arguments for block */ |
| Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */ |
| Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */ |
| /* Pointer to the most recently allocated block. By following b_list |
| members, you can reach all early allocated blocks. */ |
| basicblock *u_blocks; |
| basicblock *u_curblock; /* pointer to current block */ |
| |
| int u_nfblocks; |
| struct fblockinfo u_fblock[CO_MAXBLOCKS]; |
| |
| int u_firstlineno; /* the first lineno of the block */ |
| int u_lineno; /* the lineno for the current stmt */ |
| int u_col_offset; /* the offset of the current stmt */ |
| int u_end_lineno; /* the end line of the current stmt */ |
| int u_end_col_offset; /* the end offset of the current stmt */ |
| |
| /* true if we need to create an implicit basicblock before the next instr */ |
| int u_need_new_implicit_block; |
| }; |
| |
| /* This struct captures the global state of a compilation. |
| |
| The u pointer points to the current compilation unit, while units |
| for enclosing blocks are stored in c_stack. The u and c_stack are |
| managed by compiler_enter_scope() and compiler_exit_scope(). |
| |
| Note that we don't track recursion levels during compilation - the |
| task of detecting and rejecting excessive levels of nesting is |
| handled by the symbol analysis pass. |
| |
| */ |
| |
| struct compiler { |
| PyObject *c_filename; |
| struct symtable *c_st; |
| PyFutureFeatures *c_future; /* pointer to module's __future__ */ |
| PyCompilerFlags *c_flags; |
| |
| int c_optimize; /* optimization level */ |
| int c_interactive; /* true if in interactive mode */ |
| int c_nestlevel; |
| PyObject *c_const_cache; /* Python dict holding all constants, |
| including names tuple */ |
| struct compiler_unit *u; /* compiler state for current block */ |
| PyObject *c_stack; /* Python list holding compiler_unit ptrs */ |
| PyArena *c_arena; /* pointer to memory allocation arena */ |
| }; |
| |
| typedef struct { |
| // A list of strings corresponding to name captures. It is used to track: |
| // - Repeated name assignments in the same pattern. |
| // - Different name assignments in alternatives. |
| // - The order of name assignments in alternatives. |
| PyObject *stores; |
| // If 0, any name captures against our subject will raise. |
| int allow_irrefutable; |
| // An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop |
| // i items off of the stack. The end result looks like this (with each block |
| // falling through to the next): |
| // fail_pop[4]: POP_TOP |
| // fail_pop[3]: POP_TOP |
| // fail_pop[2]: POP_TOP |
| // fail_pop[1]: POP_TOP |
| // fail_pop[0]: NOP |
| basicblock **fail_pop; |
| // The current length of fail_pop. |
| Py_ssize_t fail_pop_size; |
| // The number of items on top of the stack that need to *stay* on top of the |
| // stack. Variable captures go beneath these. All of them will be popped on |
| // failure. |
| Py_ssize_t on_top; |
| } pattern_context; |
| |
| static int compiler_enter_scope(struct compiler *, identifier, int, void *, int); |
| static void compiler_free(struct compiler *); |
| static basicblock *compiler_new_block(struct compiler *); |
| static int compiler_next_instr(basicblock *); |
| static int compiler_addop(struct compiler *, int); |
| static int compiler_addop_i(struct compiler *, int, Py_ssize_t); |
| static int compiler_addop_j(struct compiler *, int, basicblock *); |
| static int compiler_addop_j_noline(struct compiler *, int, basicblock *); |
| static int compiler_error(struct compiler *, const char *, ...); |
| static int compiler_warn(struct compiler *, const char *, ...); |
| static int compiler_nameop(struct compiler *, identifier, expr_context_ty); |
| |
| static PyCodeObject *compiler_mod(struct compiler *, mod_ty); |
| static int compiler_visit_stmt(struct compiler *, stmt_ty); |
| static int compiler_visit_keyword(struct compiler *, keyword_ty); |
| static int compiler_visit_expr(struct compiler *, expr_ty); |
| static int compiler_augassign(struct compiler *, stmt_ty); |
| static int compiler_annassign(struct compiler *, stmt_ty); |
| static int compiler_subscript(struct compiler *, expr_ty); |
| static int compiler_slice(struct compiler *, expr_ty); |
| |
| static int are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t); |
| |
| |
| static int compiler_with(struct compiler *, stmt_ty, int); |
| static int compiler_async_with(struct compiler *, stmt_ty, int); |
| static int compiler_async_for(struct compiler *, stmt_ty); |
| static int validate_keywords(struct compiler *c, asdl_keyword_seq *keywords); |
| static int compiler_call_simple_kw_helper(struct compiler *c, |
| asdl_keyword_seq *keywords, |
| Py_ssize_t nkwelts); |
| static int compiler_call_helper(struct compiler *c, int n, |
| asdl_expr_seq *args, |
| asdl_keyword_seq *keywords); |
| static int compiler_try_except(struct compiler *, stmt_ty); |
| static int compiler_try_star_except(struct compiler *, stmt_ty); |
| static int compiler_set_qualname(struct compiler *); |
| |
| static int compiler_sync_comprehension_generator( |
| struct compiler *c, |
| asdl_comprehension_seq *generators, int gen_index, |
| int depth, |
| expr_ty elt, expr_ty val, int type); |
| |
| static int compiler_async_comprehension_generator( |
| struct compiler *c, |
| asdl_comprehension_seq *generators, int gen_index, |
| int depth, |
| expr_ty elt, expr_ty val, int type); |
| |
| static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *); |
| static int compiler_match(struct compiler *, stmt_ty); |
| static int compiler_pattern_subpattern(struct compiler *, pattern_ty, |
| pattern_context *); |
| |
| static void clean_basic_block(basicblock *bb); |
| |
| static PyCodeObject *assemble(struct compiler *, int addNone); |
| |
| #define CAPSULE_NAME "compile.c compiler unit" |
| |
| PyObject * |
| _Py_Mangle(PyObject *privateobj, PyObject *ident) |
| { |
| /* Name mangling: __private becomes _classname__private. |
| This is independent from how the name is used. */ |
| PyObject *result; |
| size_t nlen, plen, ipriv; |
| Py_UCS4 maxchar; |
| if (privateobj == NULL || !PyUnicode_Check(privateobj) || |
| PyUnicode_READ_CHAR(ident, 0) != '_' || |
| PyUnicode_READ_CHAR(ident, 1) != '_') { |
| Py_INCREF(ident); |
| return ident; |
| } |
| nlen = PyUnicode_GET_LENGTH(ident); |
| plen = PyUnicode_GET_LENGTH(privateobj); |
| /* Don't mangle __id__ or names with dots. |
| |
| The only time a name with a dot can occur is when |
| we are compiling an import statement that has a |
| package name. |
| |
| TODO(jhylton): Decide whether we want to support |
| mangling of the module name, e.g. __M.X. |
| */ |
| if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' && |
| PyUnicode_READ_CHAR(ident, nlen-2) == '_') || |
| PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) { |
| Py_INCREF(ident); |
| return ident; /* Don't mangle __whatever__ */ |
| } |
| /* Strip leading underscores from class name */ |
| ipriv = 0; |
| while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_') |
| ipriv++; |
| if (ipriv == plen) { |
| Py_INCREF(ident); |
| return ident; /* Don't mangle if class is just underscores */ |
| } |
| plen -= ipriv; |
| |
| if (plen + nlen >= PY_SSIZE_T_MAX - 1) { |
| PyErr_SetString(PyExc_OverflowError, |
| "private identifier too large to be mangled"); |
| return NULL; |
| } |
| |
| maxchar = PyUnicode_MAX_CHAR_VALUE(ident); |
| if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar) |
| maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj); |
| |
| result = PyUnicode_New(1 + nlen + plen, maxchar); |
| if (!result) |
| return 0; |
| /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */ |
| PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_'); |
| if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| assert(_PyUnicode_CheckConsistency(result, 1)); |
| return result; |
| } |
| |
| static int |
| compiler_init(struct compiler *c) |
| { |
| memset(c, 0, sizeof(struct compiler)); |
| |
| c->c_const_cache = PyDict_New(); |
| if (!c->c_const_cache) { |
| return 0; |
| } |
| |
| c->c_stack = PyList_New(0); |
| if (!c->c_stack) { |
| Py_CLEAR(c->c_const_cache); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| PyCodeObject * |
| _PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *flags, |
| int optimize, PyArena *arena) |
| { |
| struct compiler c; |
| PyCodeObject *co = NULL; |
| PyCompilerFlags local_flags = _PyCompilerFlags_INIT; |
| int merged; |
| if (!compiler_init(&c)) |
| return NULL; |
| Py_INCREF(filename); |
| c.c_filename = filename; |
| c.c_arena = arena; |
| c.c_future = _PyFuture_FromAST(mod, filename); |
| if (c.c_future == NULL) |
| goto finally; |
| if (!flags) { |
| flags = &local_flags; |
| } |
| merged = c.c_future->ff_features | flags->cf_flags; |
| c.c_future->ff_features = merged; |
| flags->cf_flags = merged; |
| c.c_flags = flags; |
| c.c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize; |
| c.c_nestlevel = 0; |
| |
| _PyASTOptimizeState state; |
| state.optimize = c.c_optimize; |
| state.ff_features = merged; |
| |
| if (!_PyAST_Optimize(mod, arena, &state)) { |
| goto finally; |
| } |
| |
| c.c_st = _PySymtable_Build(mod, filename, c.c_future); |
| if (c.c_st == NULL) { |
| if (!PyErr_Occurred()) |
| PyErr_SetString(PyExc_SystemError, "no symtable"); |
| goto finally; |
| } |
| |
| co = compiler_mod(&c, mod); |
| |
| finally: |
| compiler_free(&c); |
| assert(co || PyErr_Occurred()); |
| return co; |
| } |
| |
| static void |
| compiler_free(struct compiler *c) |
| { |
| if (c->c_st) |
| _PySymtable_Free(c->c_st); |
| if (c->c_future) |
| PyObject_Free(c->c_future); |
| Py_XDECREF(c->c_filename); |
| Py_DECREF(c->c_const_cache); |
| Py_DECREF(c->c_stack); |
| } |
| |
| static PyObject * |
| list2dict(PyObject *list) |
| { |
| Py_ssize_t i, n; |
| PyObject *v, *k; |
| PyObject *dict = PyDict_New(); |
| if (!dict) return NULL; |
| |
| n = PyList_Size(list); |
| for (i = 0; i < n; i++) { |
| v = PyLong_FromSsize_t(i); |
| if (!v) { |
| Py_DECREF(dict); |
| return NULL; |
| } |
| k = PyList_GET_ITEM(list, i); |
| if (PyDict_SetItem(dict, k, v) < 0) { |
| Py_DECREF(v); |
| Py_DECREF(dict); |
| return NULL; |
| } |
| Py_DECREF(v); |
| } |
| return dict; |
| } |
| |
| /* Return new dict containing names from src that match scope(s). |
| |
| src is a symbol table dictionary. If the scope of a name matches |
| either scope_type or flag is set, insert it into the new dict. The |
| values are integers, starting at offset and increasing by one for |
| each key. |
| */ |
| |
| static PyObject * |
| dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset) |
| { |
| Py_ssize_t i = offset, scope, num_keys, key_i; |
| PyObject *k, *v, *dest = PyDict_New(); |
| PyObject *sorted_keys; |
| |
| assert(offset >= 0); |
| if (dest == NULL) |
| return NULL; |
| |
| /* Sort the keys so that we have a deterministic order on the indexes |
| saved in the returned dictionary. These indexes are used as indexes |
| into the free and cell var storage. Therefore if they aren't |
| deterministic, then the generated bytecode is not deterministic. |
| */ |
| sorted_keys = PyDict_Keys(src); |
| if (sorted_keys == NULL) |
| return NULL; |
| if (PyList_Sort(sorted_keys) != 0) { |
| Py_DECREF(sorted_keys); |
| return NULL; |
| } |
| num_keys = PyList_GET_SIZE(sorted_keys); |
| |
| for (key_i = 0; key_i < num_keys; key_i++) { |
| /* XXX this should probably be a macro in symtable.h */ |
| long vi; |
| k = PyList_GET_ITEM(sorted_keys, key_i); |
| v = PyDict_GetItemWithError(src, k); |
| assert(v && PyLong_Check(v)); |
| vi = PyLong_AS_LONG(v); |
| scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK; |
| |
| if (scope == scope_type || vi & flag) { |
| PyObject *item = PyLong_FromSsize_t(i); |
| if (item == NULL) { |
| Py_DECREF(sorted_keys); |
| Py_DECREF(dest); |
| return NULL; |
| } |
| i++; |
| if (PyDict_SetItem(dest, k, item) < 0) { |
| Py_DECREF(sorted_keys); |
| Py_DECREF(item); |
| Py_DECREF(dest); |
| return NULL; |
| } |
| Py_DECREF(item); |
| } |
| } |
| Py_DECREF(sorted_keys); |
| return dest; |
| } |
| |
| static void |
| compiler_unit_check(struct compiler_unit *u) |
| { |
| basicblock *block; |
| for (block = u->u_blocks; block != NULL; block = block->b_list) { |
| assert(!_PyMem_IsPtrFreed(block)); |
| if (block->b_instr != NULL) { |
| assert(block->b_ialloc > 0); |
| assert(block->b_iused >= 0); |
| assert(block->b_ialloc >= block->b_iused); |
| } |
| else { |
| assert (block->b_iused == 0); |
| assert (block->b_ialloc == 0); |
| } |
| } |
| } |
| |
| static void |
| compiler_unit_free(struct compiler_unit *u) |
| { |
| basicblock *b, *next; |
| |
| compiler_unit_check(u); |
| b = u->u_blocks; |
| while (b != NULL) { |
| if (b->b_instr) |
| PyObject_Free((void *)b->b_instr); |
| next = b->b_list; |
| PyObject_Free((void *)b); |
| b = next; |
| } |
| Py_CLEAR(u->u_ste); |
| Py_CLEAR(u->u_name); |
| Py_CLEAR(u->u_qualname); |
| Py_CLEAR(u->u_consts); |
| Py_CLEAR(u->u_names); |
| Py_CLEAR(u->u_varnames); |
| Py_CLEAR(u->u_freevars); |
| Py_CLEAR(u->u_cellvars); |
| Py_CLEAR(u->u_private); |
| PyObject_Free(u); |
| } |
| |
| static int |
| compiler_set_qualname(struct compiler *c) |
| { |
| Py_ssize_t stack_size; |
| struct compiler_unit *u = c->u; |
| PyObject *name, *base; |
| |
| base = NULL; |
| stack_size = PyList_GET_SIZE(c->c_stack); |
| assert(stack_size >= 1); |
| if (stack_size > 1) { |
| int scope, force_global = 0; |
| struct compiler_unit *parent; |
| PyObject *mangled, *capsule; |
| |
| capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1); |
| parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); |
| assert(parent); |
| |
| if (u->u_scope_type == COMPILER_SCOPE_FUNCTION |
| || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION |
| || u->u_scope_type == COMPILER_SCOPE_CLASS) { |
| assert(u->u_name); |
| mangled = _Py_Mangle(parent->u_private, u->u_name); |
| if (!mangled) |
| return 0; |
| scope = _PyST_GetScope(parent->u_ste, mangled); |
| Py_DECREF(mangled); |
| assert(scope != GLOBAL_IMPLICIT); |
| if (scope == GLOBAL_EXPLICIT) |
| force_global = 1; |
| } |
| |
| if (!force_global) { |
| if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION |
| || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION |
| || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) |
| { |
| _Py_DECLARE_STR(dot_locals, ".<locals>"); |
| base = PyUnicode_Concat(parent->u_qualname, |
| &_Py_STR(dot_locals)); |
| if (base == NULL) |
| return 0; |
| } |
| else { |
| Py_INCREF(parent->u_qualname); |
| base = parent->u_qualname; |
| } |
| } |
| } |
| |
| if (base != NULL) { |
| _Py_DECLARE_STR(dot, "."); |
| name = PyUnicode_Concat(base, &_Py_STR(dot)); |
| Py_DECREF(base); |
| if (name == NULL) |
| return 0; |
| PyUnicode_Append(&name, u->u_name); |
| if (name == NULL) |
| return 0; |
| } |
| else { |
| Py_INCREF(u->u_name); |
| name = u->u_name; |
| } |
| u->u_qualname = name; |
| |
| return 1; |
| } |
| |
| |
| /* Allocate a new block and return a pointer to it. |
| Returns NULL on error. |
| */ |
| |
| static basicblock * |
| compiler_new_block(struct compiler *c) |
| { |
| basicblock *b; |
| struct compiler_unit *u; |
| |
| u = c->u; |
| b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock)); |
| if (b == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| /* Extend the singly linked list of blocks with new block. */ |
| b->b_list = u->u_blocks; |
| u->u_blocks = b; |
| return b; |
| } |
| |
| static basicblock * |
| compiler_use_next_block(struct compiler *c, basicblock *block) |
| { |
| assert(block != NULL); |
| c->u->u_curblock->b_next = block; |
| c->u->u_curblock = block; |
| c->u->u_need_new_implicit_block = 0; |
| return block; |
| } |
| |
| static basicblock * |
| compiler_copy_block(struct compiler *c, basicblock *block) |
| { |
| /* Cannot copy a block if it has a fallthrough, since |
| * a block can only have one fallthrough predecessor. |
| */ |
| assert(block->b_nofallthrough); |
| basicblock *result = compiler_new_block(c); |
| if (result == NULL) { |
| return NULL; |
| } |
| for (int i = 0; i < block->b_iused; i++) { |
| int n = compiler_next_instr(result); |
| if (n < 0) { |
| return NULL; |
| } |
| result->b_instr[n] = block->b_instr[i]; |
| } |
| result->b_exit = block->b_exit; |
| result->b_nofallthrough = 1; |
| return result; |
| } |
| |
| /* Returns the offset of the next instruction in the current block's |
| b_instr array. Resizes the b_instr as necessary. |
| Returns -1 on failure. |
| */ |
| |
| static int |
| compiler_next_instr(basicblock *b) |
| { |
| assert(b != NULL); |
| if (b->b_instr == NULL) { |
| b->b_instr = (struct instr *)PyObject_Calloc( |
| DEFAULT_BLOCK_SIZE, sizeof(struct instr)); |
| if (b->b_instr == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| b->b_ialloc = DEFAULT_BLOCK_SIZE; |
| } |
| else if (b->b_iused == b->b_ialloc) { |
| struct instr *tmp; |
| size_t oldsize, newsize; |
| oldsize = b->b_ialloc * sizeof(struct instr); |
| newsize = oldsize << 1; |
| |
| if (oldsize > (SIZE_MAX >> 1)) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| |
| if (newsize == 0) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| b->b_ialloc <<= 1; |
| tmp = (struct instr *)PyObject_Realloc( |
| (void *)b->b_instr, newsize); |
| if (tmp == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| b->b_instr = tmp; |
| memset((char *)b->b_instr + oldsize, 0, newsize - oldsize); |
| } |
| return b->b_iused++; |
| } |
| |
| /* Set the line number and column offset for the following instructions. |
| |
| The line number is reset in the following cases: |
| - when entering a new scope |
| - on each statement |
| - on each expression and sub-expression |
| - before the "except" and "finally" clauses |
| */ |
| |
| #define SET_LOC(c, x) \ |
| (c)->u->u_lineno = (x)->lineno; \ |
| (c)->u->u_col_offset = (x)->col_offset; \ |
| (c)->u->u_end_lineno = (x)->end_lineno; \ |
| (c)->u->u_end_col_offset = (x)->end_col_offset; |
| |
| // Artificial instructions |
| #define UNSET_LOC(c) \ |
| (c)->u->u_lineno = -1; \ |
| (c)->u->u_col_offset = -1; \ |
| (c)->u->u_end_lineno = -1; \ |
| (c)->u->u_end_col_offset = -1; |
| |
| #define COPY_INSTR_LOC(old, new) \ |
| (new).i_lineno = (old).i_lineno; \ |
| (new).i_col_offset = (old).i_col_offset; \ |
| (new).i_end_lineno = (old).i_end_lineno; \ |
| (new).i_end_col_offset = (old).i_end_col_offset; |
| |
| /* Return the stack effect of opcode with argument oparg. |
| |
| Some opcodes have different stack effect when jump to the target and |
| when not jump. The 'jump' parameter specifies the case: |
| |
| * 0 -- when not jump |
| * 1 -- when jump |
| * -1 -- maximal |
| */ |
| static int |
| stack_effect(int opcode, int oparg, int jump) |
| { |
| switch (opcode) { |
| case NOP: |
| case EXTENDED_ARG: |
| case RESUME: |
| case CACHE: |
| return 0; |
| |
| /* Stack manipulation */ |
| case POP_TOP: |
| return -1; |
| case SWAP: |
| return 0; |
| |
| /* Unary operators */ |
| case UNARY_POSITIVE: |
| case UNARY_NEGATIVE: |
| case UNARY_NOT: |
| case UNARY_INVERT: |
| return 0; |
| |
| case SET_ADD: |
| case LIST_APPEND: |
| return -1; |
| case MAP_ADD: |
| return -2; |
| |
| case BINARY_SUBSCR: |
| return -1; |
| case STORE_SUBSCR: |
| return -3; |
| case DELETE_SUBSCR: |
| return -2; |
| |
| case GET_ITER: |
| return 0; |
| |
| case PRINT_EXPR: |
| return -1; |
| case LOAD_BUILD_CLASS: |
| return 1; |
| |
| case RETURN_VALUE: |
| return -1; |
| case IMPORT_STAR: |
| return -1; |
| case SETUP_ANNOTATIONS: |
| return 0; |
| case ASYNC_GEN_WRAP: |
| case YIELD_VALUE: |
| return 0; |
| case POP_BLOCK: |
| return 0; |
| case POP_EXCEPT: |
| return -1; |
| |
| case STORE_NAME: |
| return -1; |
| case DELETE_NAME: |
| return 0; |
| case UNPACK_SEQUENCE: |
| return oparg-1; |
| case UNPACK_EX: |
| return (oparg&0xFF) + (oparg>>8); |
| case FOR_ITER: |
| /* -1 at end of iterator, 1 if continue iterating. */ |
| return jump > 0 ? -1 : 1; |
| case SEND: |
| return jump > 0 ? -1 : 0; |
| case STORE_ATTR: |
| return -2; |
| case DELETE_ATTR: |
| return -1; |
| case STORE_GLOBAL: |
| return -1; |
| case DELETE_GLOBAL: |
| return 0; |
| case LOAD_CONST: |
| return 1; |
| case LOAD_NAME: |
| return 1; |
| case BUILD_TUPLE: |
| case BUILD_LIST: |
| case BUILD_SET: |
| case BUILD_STRING: |
| return 1-oparg; |
| case BUILD_MAP: |
| return 1 - 2*oparg; |
| case BUILD_CONST_KEY_MAP: |
| return -oparg; |
| case LOAD_ATTR: |
| return 0; |
| case COMPARE_OP: |
| case IS_OP: |
| case CONTAINS_OP: |
| return -1; |
| case CHECK_EXC_MATCH: |
| return 0; |
| case CHECK_EG_MATCH: |
| return 0; |
| case IMPORT_NAME: |
| return -1; |
| case IMPORT_FROM: |
| return 1; |
| |
| /* Jumps */ |
| case JUMP_FORWARD: |
| case JUMP_BACKWARD: |
| case JUMP: |
| case JUMP_BACKWARD_NO_INTERRUPT: |
| case JUMP_NO_INTERRUPT: |
| return 0; |
| |
| case JUMP_IF_TRUE_OR_POP: |
| case JUMP_IF_FALSE_OR_POP: |
| return jump ? 0 : -1; |
| |
| case POP_JUMP_BACKWARD_IF_NONE: |
| case POP_JUMP_FORWARD_IF_NONE: |
| case POP_JUMP_IF_NONE: |
| case POP_JUMP_BACKWARD_IF_NOT_NONE: |
| case POP_JUMP_FORWARD_IF_NOT_NONE: |
| case POP_JUMP_IF_NOT_NONE: |
| case POP_JUMP_FORWARD_IF_FALSE: |
| case POP_JUMP_BACKWARD_IF_FALSE: |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_FORWARD_IF_TRUE: |
| case POP_JUMP_BACKWARD_IF_TRUE: |
| case POP_JUMP_IF_TRUE: |
| return -1; |
| |
| case LOAD_GLOBAL: |
| return (oparg & 1) + 1; |
| |
| /* Exception handling pseudo-instructions */ |
| case SETUP_FINALLY: |
| /* 0 in the normal flow. |
| * Restore the stack position and push 1 value before jumping to |
| * the handler if an exception be raised. */ |
| return jump ? 1 : 0; |
| case SETUP_CLEANUP: |
| /* As SETUP_FINALLY, but pushes lasti as well */ |
| return jump ? 2 : 0; |
| case SETUP_WITH: |
| /* 0 in the normal flow. |
| * Restore the stack position to the position before the result |
| * of __(a)enter__ and push 2 values before jumping to the handler |
| * if an exception be raised. */ |
| return jump ? 1 : 0; |
| |
| case PREP_RERAISE_STAR: |
| return -1; |
| case RERAISE: |
| return -1; |
| case PUSH_EXC_INFO: |
| return 1; |
| |
| case WITH_EXCEPT_START: |
| return 1; |
| |
| case LOAD_FAST: |
| return 1; |
| case STORE_FAST: |
| return -1; |
| case DELETE_FAST: |
| return 0; |
| |
| case RETURN_GENERATOR: |
| return 0; |
| |
| case RAISE_VARARGS: |
| return -oparg; |
| |
| /* Functions and calls */ |
| case PRECALL: |
| return -oparg; |
| case KW_NAMES: |
| return 0; |
| case CALL: |
| return -1; |
| |
| case CALL_FUNCTION_EX: |
| return -2 - ((oparg & 0x01) != 0); |
| case MAKE_FUNCTION: |
| return 0 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) - |
| ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0); |
| case BUILD_SLICE: |
| if (oparg == 3) |
| return -2; |
| else |
| return -1; |
| |
| /* Closures */ |
| case MAKE_CELL: |
| case COPY_FREE_VARS: |
| return 0; |
| case LOAD_CLOSURE: |
| return 1; |
| case LOAD_DEREF: |
| case LOAD_CLASSDEREF: |
| return 1; |
| case STORE_DEREF: |
| return -1; |
| case DELETE_DEREF: |
| return 0; |
| |
| /* Iterators and generators */ |
| case GET_AWAITABLE: |
| return 0; |
| |
| case BEFORE_ASYNC_WITH: |
| case BEFORE_WITH: |
| return 1; |
| case GET_AITER: |
| return 0; |
| case GET_ANEXT: |
| return 1; |
| case GET_YIELD_FROM_ITER: |
| return 0; |
| case END_ASYNC_FOR: |
| return -2; |
| case FORMAT_VALUE: |
| /* If there's a fmt_spec on the stack, we go from 2->1, |
| else 1->1. */ |
| return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0; |
| case LOAD_METHOD: |
| return 1; |
| case LOAD_ASSERTION_ERROR: |
| return 1; |
| case LIST_TO_TUPLE: |
| return 0; |
| case LIST_EXTEND: |
| case SET_UPDATE: |
| case DICT_MERGE: |
| case DICT_UPDATE: |
| return -1; |
| case MATCH_CLASS: |
| return -2; |
| case GET_LEN: |
| case MATCH_MAPPING: |
| case MATCH_SEQUENCE: |
| case MATCH_KEYS: |
| return 1; |
| case COPY: |
| case PUSH_NULL: |
| return 1; |
| case BINARY_OP: |
| return -1; |
| default: |
| return PY_INVALID_STACK_EFFECT; |
| } |
| return PY_INVALID_STACK_EFFECT; /* not reachable */ |
| } |
| |
| int |
| PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump) |
| { |
| return stack_effect(opcode, oparg, jump); |
| } |
| |
| int |
| PyCompile_OpcodeStackEffect(int opcode, int oparg) |
| { |
| return stack_effect(opcode, oparg, -1); |
| } |
| |
| static int is_end_of_basic_block(struct instr *instr) |
| { |
| int opcode = instr->i_opcode; |
| |
| return is_jump(instr) || |
| opcode == RETURN_VALUE || |
| opcode == RAISE_VARARGS || |
| opcode == RERAISE; |
| } |
| |
| static int |
| compiler_use_new_implicit_block_if_needed(struct compiler *c) |
| { |
| if (c->u->u_need_new_implicit_block) { |
| basicblock *b = compiler_new_block(c); |
| if (b == NULL) { |
| return -1; |
| } |
| compiler_use_next_block(c, b); |
| } |
| return 0; |
| } |
| |
| static void |
| compiler_check_if_end_of_block(struct compiler *c, struct instr *instr) |
| { |
| if (is_end_of_basic_block(instr)) { |
| c->u->u_need_new_implicit_block = 1; |
| } |
| } |
| |
| /* Add an opcode with no argument. |
| Returns 0 on failure, 1 on success. |
| */ |
| |
| static int |
| compiler_addop_line(struct compiler *c, int opcode, int line, |
| int end_line, int col_offset, int end_col_offset) |
| { |
| assert(IS_WITHIN_OPCODE_RANGE(opcode)); |
| assert(!IS_ASSEMBLER_OPCODE(opcode)); |
| assert(!HAS_ARG(opcode) || IS_ARTIFICIAL(opcode)); |
| |
| if (compiler_use_new_implicit_block_if_needed(c) < 0) { |
| return -1; |
| } |
| |
| basicblock *b = c->u->u_curblock; |
| int off = compiler_next_instr(b); |
| if (off < 0) { |
| return 0; |
| } |
| struct instr *i = &b->b_instr[off]; |
| i->i_opcode = opcode; |
| i->i_oparg = 0; |
| if (opcode == RETURN_VALUE) { |
| b->b_return = 1; |
| } |
| i->i_lineno = line; |
| i->i_end_lineno = end_line; |
| i->i_col_offset = col_offset; |
| i->i_end_col_offset = end_col_offset; |
| |
| compiler_check_if_end_of_block(c, i); |
| return 1; |
| } |
| |
| static int |
| compiler_addop(struct compiler *c, int opcode) |
| { |
| return compiler_addop_line(c, opcode, c->u->u_lineno, c->u->u_end_lineno, |
| c->u->u_col_offset, c->u->u_end_col_offset); |
| } |
| |
| static int |
| compiler_addop_noline(struct compiler *c, int opcode) |
| { |
| return compiler_addop_line(c, opcode, -1, 0, 0, 0); |
| } |
| |
| |
| static Py_ssize_t |
| compiler_add_o(PyObject *dict, PyObject *o) |
| { |
| PyObject *v; |
| Py_ssize_t arg; |
| |
| v = PyDict_GetItemWithError(dict, o); |
| if (!v) { |
| if (PyErr_Occurred()) { |
| return -1; |
| } |
| arg = PyDict_GET_SIZE(dict); |
| v = PyLong_FromSsize_t(arg); |
| if (!v) { |
| return -1; |
| } |
| if (PyDict_SetItem(dict, o, v) < 0) { |
| Py_DECREF(v); |
| return -1; |
| } |
| Py_DECREF(v); |
| } |
| else |
| arg = PyLong_AsLong(v); |
| return arg; |
| } |
| |
| // Merge const *o* recursively and return constant key object. |
| static PyObject* |
| merge_consts_recursive(struct compiler *c, PyObject *o) |
| { |
| // None and Ellipsis are singleton, and key is the singleton. |
| // No need to merge object and key. |
| if (o == Py_None || o == Py_Ellipsis) { |
| Py_INCREF(o); |
| return o; |
| } |
| |
| PyObject *key = _PyCode_ConstantKey(o); |
| if (key == NULL) { |
| return NULL; |
| } |
| |
| // t is borrowed reference |
| PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key); |
| if (t != key) { |
| // o is registered in c_const_cache. Just use it. |
| Py_XINCREF(t); |
| Py_DECREF(key); |
| return t; |
| } |
| |
| // We registered o in c_const_cache. |
| // When o is a tuple or frozenset, we want to merge its |
| // items too. |
| if (PyTuple_CheckExact(o)) { |
| Py_ssize_t len = PyTuple_GET_SIZE(o); |
| for (Py_ssize_t i = 0; i < len; i++) { |
| PyObject *item = PyTuple_GET_ITEM(o, i); |
| PyObject *u = merge_consts_recursive(c, item); |
| if (u == NULL) { |
| Py_DECREF(key); |
| return NULL; |
| } |
| |
| // See _PyCode_ConstantKey() |
| PyObject *v; // borrowed |
| if (PyTuple_CheckExact(u)) { |
| v = PyTuple_GET_ITEM(u, 1); |
| } |
| else { |
| v = u; |
| } |
| if (v != item) { |
| Py_INCREF(v); |
| PyTuple_SET_ITEM(o, i, v); |
| Py_DECREF(item); |
| } |
| |
| Py_DECREF(u); |
| } |
| } |
| else if (PyFrozenSet_CheckExact(o)) { |
| // *key* is tuple. And its first item is frozenset of |
| // constant keys. |
| // See _PyCode_ConstantKey() for detail. |
| assert(PyTuple_CheckExact(key)); |
| assert(PyTuple_GET_SIZE(key) == 2); |
| |
| Py_ssize_t len = PySet_GET_SIZE(o); |
| if (len == 0) { // empty frozenset should not be re-created. |
| return key; |
| } |
| PyObject *tuple = PyTuple_New(len); |
| if (tuple == NULL) { |
| Py_DECREF(key); |
| return NULL; |
| } |
| Py_ssize_t i = 0, pos = 0; |
| PyObject *item; |
| Py_hash_t hash; |
| while (_PySet_NextEntry(o, &pos, &item, &hash)) { |
| PyObject *k = merge_consts_recursive(c, item); |
| if (k == NULL) { |
| Py_DECREF(tuple); |
| Py_DECREF(key); |
| return NULL; |
| } |
| PyObject *u; |
| if (PyTuple_CheckExact(k)) { |
| u = PyTuple_GET_ITEM(k, 1); |
| Py_INCREF(u); |
| Py_DECREF(k); |
| } |
| else { |
| u = k; |
| } |
| PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u. |
| i++; |
| } |
| |
| // Instead of rewriting o, we create new frozenset and embed in the |
| // key tuple. Caller should get merged frozenset from the key tuple. |
| PyObject *new = PyFrozenSet_New(tuple); |
| Py_DECREF(tuple); |
| if (new == NULL) { |
| Py_DECREF(key); |
| return NULL; |
| } |
| assert(PyTuple_GET_ITEM(key, 1) == o); |
| Py_DECREF(o); |
| PyTuple_SET_ITEM(key, 1, new); |
| } |
| |
| return key; |
| } |
| |
| static Py_ssize_t |
| compiler_add_const(struct compiler *c, PyObject *o) |
| { |
| PyObject *key = merge_consts_recursive(c, o); |
| if (key == NULL) { |
| return -1; |
| } |
| |
| Py_ssize_t arg = compiler_add_o(c->u->u_consts, key); |
| Py_DECREF(key); |
| return arg; |
| } |
| |
| static int |
| compiler_addop_load_const(struct compiler *c, PyObject *o) |
| { |
| Py_ssize_t arg = compiler_add_const(c, o); |
| if (arg < 0) |
| return 0; |
| return compiler_addop_i(c, LOAD_CONST, arg); |
| } |
| |
| static int |
| compiler_addop_o(struct compiler *c, int opcode, PyObject *dict, |
| PyObject *o) |
| { |
| Py_ssize_t arg = compiler_add_o(dict, o); |
| if (arg < 0) |
| return 0; |
| return compiler_addop_i(c, opcode, arg); |
| } |
| |
| static int |
| compiler_addop_name(struct compiler *c, int opcode, PyObject *dict, |
| PyObject *o) |
| { |
| Py_ssize_t arg; |
| |
| PyObject *mangled = _Py_Mangle(c->u->u_private, o); |
| if (!mangled) |
| return 0; |
| arg = compiler_add_o(dict, mangled); |
| Py_DECREF(mangled); |
| if (arg < 0) |
| return 0; |
| return compiler_addop_i(c, opcode, arg); |
| } |
| |
| /* Add an opcode with an integer argument. |
| Returns 0 on failure, 1 on success. |
| */ |
| |
| static int |
| compiler_addop_i_line(struct compiler *c, int opcode, Py_ssize_t oparg, |
| int lineno, int end_lineno, |
| int col_offset, int end_col_offset) |
| { |
| /* oparg value is unsigned, but a signed C int is usually used to store |
| it in the C code (like Python/ceval.c). |
| |
| Limit to 32-bit signed C int (rather than INT_MAX) for portability. |
| |
| The argument of a concrete bytecode instruction is limited to 8-bit. |
| EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */ |
| |
| assert(IS_WITHIN_OPCODE_RANGE(opcode)); |
| assert(!IS_ASSEMBLER_OPCODE(opcode)); |
| assert(HAS_ARG(opcode)); |
| assert(0 <= oparg && oparg <= 2147483647); |
| |
| if (compiler_use_new_implicit_block_if_needed(c) < 0) { |
| return -1; |
| } |
| |
| basicblock *b = c->u->u_curblock; |
| int off = compiler_next_instr(b); |
| if (off < 0) { |
| return 0; |
| } |
| struct instr *i = &b->b_instr[off]; |
| i->i_opcode = opcode; |
| i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int); |
| i->i_lineno = lineno; |
| i->i_end_lineno = end_lineno; |
| i->i_col_offset = col_offset; |
| i->i_end_col_offset = end_col_offset; |
| |
| compiler_check_if_end_of_block(c, i); |
| return 1; |
| } |
| |
| static int |
| compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg) |
| { |
| return compiler_addop_i_line(c, opcode, oparg, |
| c->u->u_lineno, c->u->u_end_lineno, |
| c->u->u_col_offset, c->u->u_end_col_offset); |
| } |
| |
| static int |
| compiler_addop_i_noline(struct compiler *c, int opcode, Py_ssize_t oparg) |
| { |
| return compiler_addop_i_line(c, opcode, oparg, -1, 0, 0, 0); |
| } |
| |
| static int add_jump_to_block(struct compiler *c, int opcode, |
| int lineno, int end_lineno, |
| int col_offset, int end_col_offset, |
| basicblock *target) |
| { |
| assert(IS_WITHIN_OPCODE_RANGE(opcode)); |
| assert(!IS_ASSEMBLER_OPCODE(opcode)); |
| assert(HAS_ARG(opcode) || IS_VIRTUAL_OPCODE(opcode)); |
| assert(target != NULL); |
| |
| if (compiler_use_new_implicit_block_if_needed(c) < 0) { |
| return -1; |
| } |
| |
| basicblock *b = c->u->u_curblock; |
| int off = compiler_next_instr(b); |
| struct instr *i = &b->b_instr[off]; |
| if (off < 0) { |
| return 0; |
| } |
| i->i_opcode = opcode; |
| i->i_target = target; |
| i->i_lineno = lineno; |
| i->i_end_lineno = end_lineno; |
| i->i_col_offset = col_offset; |
| i->i_end_col_offset = end_col_offset; |
| |
| compiler_check_if_end_of_block(c, i); |
| return 1; |
| } |
| |
| static int |
| compiler_addop_j(struct compiler *c, int opcode, basicblock *b) |
| { |
| return add_jump_to_block(c, opcode, c->u->u_lineno, |
| c->u->u_end_lineno, c->u->u_col_offset, |
| c->u->u_end_col_offset, b); |
| } |
| |
| static int |
| compiler_addop_j_noline(struct compiler *c, int opcode, basicblock *b) |
| { |
| return add_jump_to_block(c, opcode, -1, 0, 0, 0, b); |
| } |
| |
| #define ADDOP(C, OP) { \ |
| if (!compiler_addop((C), (OP))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_NOLINE(C, OP) { \ |
| if (!compiler_addop_noline((C), (OP))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_IN_SCOPE(C, OP) { \ |
| if (!compiler_addop((C), (OP))) { \ |
| compiler_exit_scope(c); \ |
| return 0; \ |
| } \ |
| } |
| |
| #define ADDOP_LOAD_CONST(C, O) { \ |
| if (!compiler_addop_load_const((C), (O))) \ |
| return 0; \ |
| } |
| |
| /* Same as ADDOP_LOAD_CONST, but steals a reference. */ |
| #define ADDOP_LOAD_CONST_NEW(C, O) { \ |
| PyObject *__new_const = (O); \ |
| if (__new_const == NULL) { \ |
| return 0; \ |
| } \ |
| if (!compiler_addop_load_const((C), __new_const)) { \ |
| Py_DECREF(__new_const); \ |
| return 0; \ |
| } \ |
| Py_DECREF(__new_const); \ |
| } |
| |
| #define ADDOP_N(C, OP, O, TYPE) { \ |
| assert(!HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \ |
| if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \ |
| Py_DECREF((O)); \ |
| return 0; \ |
| } \ |
| Py_DECREF((O)); \ |
| } |
| |
| #define ADDOP_NAME(C, OP, O, TYPE) { \ |
| if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_I(C, OP, O) { \ |
| if (!compiler_addop_i((C), (OP), (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_I_NOLINE(C, OP, O) { \ |
| if (!compiler_addop_i_noline((C), (OP), (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_JUMP(C, OP, O) { \ |
| if (!compiler_addop_j((C), (OP), (O))) \ |
| return 0; \ |
| } |
| |
| /* Add a jump with no line number. |
| * Used for artificial jumps that have no corresponding |
| * token in the source code. */ |
| #define ADDOP_JUMP_NOLINE(C, OP, O) { \ |
| if (!compiler_addop_j_noline((C), (OP), (O))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_COMPARE(C, CMP) { \ |
| if (!compiler_addcompare((C), (cmpop_ty)(CMP))) \ |
| return 0; \ |
| } |
| |
| #define ADDOP_BINARY(C, BINOP) \ |
| RETURN_IF_FALSE(addop_binary((C), (BINOP), false)) |
| |
| #define ADDOP_INPLACE(C, BINOP) \ |
| RETURN_IF_FALSE(addop_binary((C), (BINOP), true)) |
| |
| /* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use |
| the ASDL name to synthesize the name of the C type and the visit function. |
| */ |
| |
| #define ADD_YIELD_FROM(C, await) \ |
| RETURN_IF_FALSE(compiler_add_yield_from((C), (await))) |
| |
| #define POP_EXCEPT_AND_RERAISE(C) \ |
| RETURN_IF_FALSE(compiler_pop_except_and_reraise((C))) |
| |
| #define ADDOP_YIELD(C) \ |
| RETURN_IF_FALSE(addop_yield(C)) |
| |
| #define VISIT(C, TYPE, V) {\ |
| if (!compiler_visit_ ## TYPE((C), (V))) \ |
| return 0; \ |
| } |
| |
| #define VISIT_IN_SCOPE(C, TYPE, V) {\ |
| if (!compiler_visit_ ## TYPE((C), (V))) { \ |
| compiler_exit_scope(c); \ |
| return 0; \ |
| } \ |
| } |
| |
| #define VISIT_SEQ(C, TYPE, SEQ) { \ |
| int _i; \ |
| asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \ |
| for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ |
| TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ |
| if (!compiler_visit_ ## TYPE((C), elt)) \ |
| return 0; \ |
| } \ |
| } |
| |
| #define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \ |
| int _i; \ |
| asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \ |
| for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ |
| TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ |
| if (!compiler_visit_ ## TYPE((C), elt)) { \ |
| compiler_exit_scope(c); \ |
| return 0; \ |
| } \ |
| } \ |
| } |
| |
| #define RETURN_IF_FALSE(X) \ |
| if (!(X)) { \ |
| return 0; \ |
| } |
| |
| static int |
| compiler_enter_scope(struct compiler *c, identifier name, |
| int scope_type, void *key, int lineno) |
| { |
| struct compiler_unit *u; |
| basicblock *block; |
| |
| u = (struct compiler_unit *)PyObject_Calloc(1, sizeof( |
| struct compiler_unit)); |
| if (!u) { |
| PyErr_NoMemory(); |
| return 0; |
| } |
| u->u_scope_type = scope_type; |
| u->u_argcount = 0; |
| u->u_posonlyargcount = 0; |
| u->u_kwonlyargcount = 0; |
| u->u_ste = PySymtable_Lookup(c->c_st, key); |
| if (!u->u_ste) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| Py_INCREF(name); |
| u->u_name = name; |
| u->u_varnames = list2dict(u->u_ste->ste_varnames); |
| u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0); |
| if (!u->u_varnames || !u->u_cellvars) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| if (u->u_ste->ste_needs_class_closure) { |
| /* Cook up an implicit __class__ cell. */ |
| int res; |
| assert(u->u_scope_type == COMPILER_SCOPE_CLASS); |
| assert(PyDict_GET_SIZE(u->u_cellvars) == 0); |
| res = PyDict_SetItem(u->u_cellvars, &_Py_ID(__class__), |
| _PyLong_GetZero()); |
| if (res < 0) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| } |
| |
| u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS, |
| PyDict_GET_SIZE(u->u_cellvars)); |
| if (!u->u_freevars) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| |
| u->u_blocks = NULL; |
| u->u_nfblocks = 0; |
| u->u_firstlineno = lineno; |
| u->u_lineno = lineno; |
| u->u_col_offset = 0; |
| u->u_end_lineno = lineno; |
| u->u_end_col_offset = 0; |
| u->u_consts = PyDict_New(); |
| if (!u->u_consts) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| u->u_names = PyDict_New(); |
| if (!u->u_names) { |
| compiler_unit_free(u); |
| return 0; |
| } |
| |
| u->u_private = NULL; |
| |
| /* Push the old compiler_unit on the stack. */ |
| if (c->u) { |
| PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL); |
| if (!capsule || PyList_Append(c->c_stack, capsule) < 0) { |
| Py_XDECREF(capsule); |
| compiler_unit_free(u); |
| return 0; |
| } |
| Py_DECREF(capsule); |
| u->u_private = c->u->u_private; |
| Py_XINCREF(u->u_private); |
| } |
| c->u = u; |
| |
| c->c_nestlevel++; |
| |
| block = compiler_new_block(c); |
| if (block == NULL) |
| return 0; |
| c->u->u_curblock = block; |
| |
| if (u->u_scope_type == COMPILER_SCOPE_MODULE) { |
| c->u->u_lineno = 0; |
| } |
| else { |
| if (!compiler_set_qualname(c)) |
| return 0; |
| } |
| ADDOP_I(c, RESUME, 0); |
| |
| if (u->u_scope_type == COMPILER_SCOPE_MODULE) { |
| c->u->u_lineno = -1; |
| } |
| return 1; |
| } |
| |
| static void |
| compiler_exit_scope(struct compiler *c) |
| { |
| // Don't call PySequence_DelItem() with an exception raised |
| PyObject *exc_type, *exc_val, *exc_tb; |
| PyErr_Fetch(&exc_type, &exc_val, &exc_tb); |
| |
| c->c_nestlevel--; |
| compiler_unit_free(c->u); |
| /* Restore c->u to the parent unit. */ |
| Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1; |
| if (n >= 0) { |
| PyObject *capsule = PyList_GET_ITEM(c->c_stack, n); |
| c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); |
| assert(c->u); |
| /* we are deleting from a list so this really shouldn't fail */ |
| if (PySequence_DelItem(c->c_stack, n) < 0) { |
| _PyErr_WriteUnraisableMsg("on removing the last compiler " |
| "stack item", NULL); |
| } |
| compiler_unit_check(c->u); |
| } |
| else { |
| c->u = NULL; |
| } |
| |
| PyErr_Restore(exc_type, exc_val, exc_tb); |
| } |
| |
| /* Search if variable annotations are present statically in a block. */ |
| |
| static int |
| find_ann(asdl_stmt_seq *stmts) |
| { |
| int i, j, res = 0; |
| stmt_ty st; |
| |
| for (i = 0; i < asdl_seq_LEN(stmts); i++) { |
| st = (stmt_ty)asdl_seq_GET(stmts, i); |
| switch (st->kind) { |
| case AnnAssign_kind: |
| return 1; |
| case For_kind: |
| res = find_ann(st->v.For.body) || |
| find_ann(st->v.For.orelse); |
| break; |
| case AsyncFor_kind: |
| res = find_ann(st->v.AsyncFor.body) || |
| find_ann(st->v.AsyncFor.orelse); |
| break; |
| case While_kind: |
| res = find_ann(st->v.While.body) || |
| find_ann(st->v.While.orelse); |
| break; |
| case If_kind: |
| res = find_ann(st->v.If.body) || |
| find_ann(st->v.If.orelse); |
| break; |
| case With_kind: |
| res = find_ann(st->v.With.body); |
| break; |
| case AsyncWith_kind: |
| res = find_ann(st->v.AsyncWith.body); |
| break; |
| case Try_kind: |
| for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) { |
| excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( |
| st->v.Try.handlers, j); |
| if (find_ann(handler->v.ExceptHandler.body)) { |
| return 1; |
| } |
| } |
| res = find_ann(st->v.Try.body) || |
| find_ann(st->v.Try.finalbody) || |
| find_ann(st->v.Try.orelse); |
| break; |
| case TryStar_kind: |
| for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) { |
| excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( |
| st->v.TryStar.handlers, j); |
| if (find_ann(handler->v.ExceptHandler.body)) { |
| return 1; |
| } |
| } |
| res = find_ann(st->v.TryStar.body) || |
| find_ann(st->v.TryStar.finalbody) || |
| find_ann(st->v.TryStar.orelse); |
| break; |
| case Match_kind: |
| for (j = 0; j < asdl_seq_LEN(st->v.Match.cases); j++) { |
| match_case_ty match_case = (match_case_ty)asdl_seq_GET( |
| st->v.Match.cases, j); |
| if (find_ann(match_case->body)) { |
| return true; |
| } |
| } |
| break; |
| default: |
| res = 0; |
| } |
| if (res) { |
| break; |
| } |
| } |
| return res; |
| } |
| |
| /* |
| * Frame block handling functions |
| */ |
| |
| static int |
| compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b, |
| basicblock *exit, void *datum) |
| { |
| struct fblockinfo *f; |
| if (c->u->u_nfblocks >= CO_MAXBLOCKS) { |
| return compiler_error(c, "too many statically nested blocks"); |
| } |
| f = &c->u->u_fblock[c->u->u_nfblocks++]; |
| f->fb_type = t; |
| f->fb_block = b; |
| f->fb_exit = exit; |
| f->fb_datum = datum; |
| return 1; |
| } |
| |
| static void |
| compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b) |
| { |
| struct compiler_unit *u = c->u; |
| assert(u->u_nfblocks > 0); |
| u->u_nfblocks--; |
| assert(u->u_fblock[u->u_nfblocks].fb_type == t); |
| assert(u->u_fblock[u->u_nfblocks].fb_block == b); |
| } |
| |
| static int |
| compiler_call_exit_with_nones(struct compiler *c) { |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP_I(c, PRECALL, 2); |
| ADDOP_I(c, CALL, 2); |
| return 1; |
| } |
| |
| static int |
| compiler_add_yield_from(struct compiler *c, int await) |
| { |
| basicblock *start, *resume, *exit; |
| start = compiler_new_block(c); |
| resume = compiler_new_block(c); |
| exit = compiler_new_block(c); |
| if (start == NULL || resume == NULL || exit == NULL) { |
| return 0; |
| } |
| compiler_use_next_block(c, start); |
| ADDOP_JUMP(c, SEND, exit); |
| compiler_use_next_block(c, resume); |
| ADDOP(c, YIELD_VALUE); |
| ADDOP_I(c, RESUME, await ? 3 : 2); |
| ADDOP_JUMP(c, JUMP_NO_INTERRUPT, start); |
| compiler_use_next_block(c, exit); |
| return 1; |
| } |
| |
| static int |
| compiler_pop_except_and_reraise(struct compiler *c) |
| { |
| /* Stack contents |
| * [exc_info, lasti, exc] COPY 3 |
| * [exc_info, lasti, exc, exc_info] POP_EXCEPT |
| * [exc_info, lasti, exc] RERAISE 1 |
| * (exception_unwind clears the stack) |
| */ |
| |
| ADDOP_I(c, COPY, 3); |
| ADDOP(c, POP_EXCEPT); |
| ADDOP_I(c, RERAISE, 1); |
| return 1; |
| } |
| |
| /* Unwind a frame block. If preserve_tos is true, the TOS before |
| * popping the blocks will be restored afterwards, unless another |
| * return, break or continue is found. In which case, the TOS will |
| * be popped. |
| */ |
| static int |
| compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info, |
| int preserve_tos) |
| { |
| switch (info->fb_type) { |
| case WHILE_LOOP: |
| case EXCEPTION_HANDLER: |
| case EXCEPTION_GROUP_HANDLER: |
| case ASYNC_COMPREHENSION_GENERATOR: |
| return 1; |
| |
| case FOR_LOOP: |
| /* Pop the iterator */ |
| if (preserve_tos) { |
| ADDOP_I(c, SWAP, 2); |
| } |
| ADDOP(c, POP_TOP); |
| return 1; |
| |
| case TRY_EXCEPT: |
| ADDOP(c, POP_BLOCK); |
| return 1; |
| |
| case FINALLY_TRY: |
| /* This POP_BLOCK gets the line number of the unwinding statement */ |
| ADDOP(c, POP_BLOCK); |
| if (preserve_tos) { |
| if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) { |
| return 0; |
| } |
| } |
| /* Emit the finally block */ |
| VISIT_SEQ(c, stmt, info->fb_datum); |
| if (preserve_tos) { |
| compiler_pop_fblock(c, POP_VALUE, NULL); |
| } |
| /* The finally block should appear to execute after the |
| * statement causing the unwinding, so make the unwinding |
| * instruction artificial */ |
| UNSET_LOC(c); |
| return 1; |
| |
| case FINALLY_END: |
| if (preserve_tos) { |
| ADDOP_I(c, SWAP, 2); |
| } |
| ADDOP(c, POP_TOP); /* exc_value */ |
| if (preserve_tos) { |
| ADDOP_I(c, SWAP, 2); |
| } |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_EXCEPT); |
| return 1; |
| |
| case WITH: |
| case ASYNC_WITH: |
| SET_LOC(c, (stmt_ty)info->fb_datum); |
| ADDOP(c, POP_BLOCK); |
| if (preserve_tos) { |
| ADDOP_I(c, SWAP, 2); |
| } |
| if(!compiler_call_exit_with_nones(c)) { |
| return 0; |
| } |
| if (info->fb_type == ASYNC_WITH) { |
| ADDOP_I(c, GET_AWAITABLE, 2); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| } |
| ADDOP(c, POP_TOP); |
| /* The exit block should appear to execute after the |
| * statement causing the unwinding, so make the unwinding |
| * instruction artificial */ |
| UNSET_LOC(c); |
| return 1; |
| |
| case HANDLER_CLEANUP: |
| if (info->fb_datum) { |
| ADDOP(c, POP_BLOCK); |
| } |
| if (preserve_tos) { |
| ADDOP_I(c, SWAP, 2); |
| } |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_EXCEPT); |
| if (info->fb_datum) { |
| ADDOP_LOAD_CONST(c, Py_None); |
| compiler_nameop(c, info->fb_datum, Store); |
| compiler_nameop(c, info->fb_datum, Del); |
| } |
| return 1; |
| |
| case POP_VALUE: |
| if (preserve_tos) { |
| ADDOP_I(c, SWAP, 2); |
| } |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| Py_UNREACHABLE(); |
| } |
| |
| /** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */ |
| static int |
| compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) { |
| if (c->u->u_nfblocks == 0) { |
| return 1; |
| } |
| struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1]; |
| if (top->fb_type == EXCEPTION_GROUP_HANDLER) { |
| return compiler_error( |
| c, "'break', 'continue' and 'return' cannot appear in an except* block"); |
| } |
| if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) { |
| *loop = top; |
| return 1; |
| } |
| struct fblockinfo copy = *top; |
| c->u->u_nfblocks--; |
| if (!compiler_unwind_fblock(c, ©, preserve_tos)) { |
| return 0; |
| } |
| if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) { |
| return 0; |
| } |
| c->u->u_fblock[c->u->u_nfblocks] = copy; |
| c->u->u_nfblocks++; |
| return 1; |
| } |
| |
| /* Compile a sequence of statements, checking for a docstring |
| and for annotations. */ |
| |
| static int |
| compiler_body(struct compiler *c, asdl_stmt_seq *stmts) |
| { |
| int i = 0; |
| stmt_ty st; |
| PyObject *docstring; |
| |
| /* Set current line number to the line number of first statement. |
| This way line number for SETUP_ANNOTATIONS will always |
| coincide with the line number of first "real" statement in module. |
| If body is empty, then lineno will be set later in assemble. */ |
| if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) { |
| st = (stmt_ty)asdl_seq_GET(stmts, 0); |
| SET_LOC(c, st); |
| } |
| /* Every annotated class and module should have __annotations__. */ |
| if (find_ann(stmts)) { |
| ADDOP(c, SETUP_ANNOTATIONS); |
| } |
| if (!asdl_seq_LEN(stmts)) |
| return 1; |
| /* if not -OO mode, set docstring */ |
| if (c->c_optimize < 2) { |
| docstring = _PyAST_GetDocString(stmts); |
| if (docstring) { |
| i = 1; |
| st = (stmt_ty)asdl_seq_GET(stmts, 0); |
| assert(st->kind == Expr_kind); |
| VISIT(c, expr, st->v.Expr.value); |
| UNSET_LOC(c); |
| if (!compiler_nameop(c, &_Py_ID(__doc__), Store)) |
| return 0; |
| } |
| } |
| for (; i < asdl_seq_LEN(stmts); i++) |
| VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i)); |
| return 1; |
| } |
| |
| static PyCodeObject * |
| compiler_mod(struct compiler *c, mod_ty mod) |
| { |
| PyCodeObject *co; |
| int addNone = 1; |
| _Py_DECLARE_STR(anon_module, "<module>"); |
| if (!compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE, |
| mod, 1)) { |
| return NULL; |
| } |
| c->u->u_lineno = 1; |
| switch (mod->kind) { |
| case Module_kind: |
| if (!compiler_body(c, mod->v.Module.body)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| break; |
| case Interactive_kind: |
| if (find_ann(mod->v.Interactive.body)) { |
| ADDOP(c, SETUP_ANNOTATIONS); |
| } |
| c->c_interactive = 1; |
| VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body); |
| break; |
| case Expression_kind: |
| VISIT_IN_SCOPE(c, expr, mod->v.Expression.body); |
| addNone = 0; |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "module kind %d should not be possible", |
| mod->kind); |
| return 0; |
| } |
| co = assemble(c, addNone); |
| compiler_exit_scope(c); |
| return co; |
| } |
| |
| /* The test for LOCAL must come before the test for FREE in order to |
| handle classes where name is both local and free. The local var is |
| a method and the free var is a free var referenced within a method. |
| */ |
| |
| static int |
| get_ref_type(struct compiler *c, PyObject *name) |
| { |
| int scope; |
| if (c->u->u_scope_type == COMPILER_SCOPE_CLASS && |
| _PyUnicode_EqualToASCIIString(name, "__class__")) |
| return CELL; |
| scope = _PyST_GetScope(c->u->u_ste, name); |
| if (scope == 0) { |
| PyErr_Format(PyExc_SystemError, |
| "_PyST_GetScope(name=%R) failed: " |
| "unknown scope in unit %S (%R); " |
| "symbols: %R; locals: %R; globals: %R", |
| name, |
| c->u->u_name, c->u->u_ste->ste_id, |
| c->u->u_ste->ste_symbols, c->u->u_varnames, c->u->u_names); |
| return -1; |
| } |
| return scope; |
| } |
| |
| static int |
| compiler_lookup_arg(PyObject *dict, PyObject *name) |
| { |
| PyObject *v; |
| v = PyDict_GetItemWithError(dict, name); |
| if (v == NULL) |
| return -1; |
| return PyLong_AS_LONG(v); |
| } |
| |
| static int |
| compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags, |
| PyObject *qualname) |
| { |
| if (qualname == NULL) |
| qualname = co->co_name; |
| |
| if (co->co_nfreevars) { |
| int i = co->co_nlocals + co->co_nplaincellvars; |
| for (; i < co->co_nlocalsplus; ++i) { |
| /* Bypass com_addop_varname because it will generate |
| LOAD_DEREF but LOAD_CLOSURE is needed. |
| */ |
| PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i); |
| |
| /* Special case: If a class contains a method with a |
| free variable that has the same name as a method, |
| the name will be considered free *and* local in the |
| class. It should be handled by the closure, as |
| well as by the normal name lookup logic. |
| */ |
| int reftype = get_ref_type(c, name); |
| if (reftype == -1) { |
| return 0; |
| } |
| int arg; |
| if (reftype == CELL) { |
| arg = compiler_lookup_arg(c->u->u_cellvars, name); |
| } |
| else { |
| arg = compiler_lookup_arg(c->u->u_freevars, name); |
| } |
| if (arg == -1) { |
| PyObject *freevars = _PyCode_GetFreevars(co); |
| if (freevars == NULL) { |
| PyErr_Clear(); |
| } |
| PyErr_Format(PyExc_SystemError, |
| "compiler_lookup_arg(name=%R) with reftype=%d failed in %S; " |
| "freevars of code %S: %R", |
| name, |
| reftype, |
| c->u->u_name, |
| co->co_name, |
| freevars); |
| Py_DECREF(freevars); |
| return 0; |
| } |
| ADDOP_I(c, LOAD_CLOSURE, arg); |
| } |
| flags |= 0x08; |
| ADDOP_I(c, BUILD_TUPLE, co->co_nfreevars); |
| } |
| ADDOP_LOAD_CONST(c, (PyObject*)co); |
| ADDOP_I(c, MAKE_FUNCTION, flags); |
| return 1; |
| } |
| |
| static int |
| compiler_decorators(struct compiler *c, asdl_expr_seq* decos) |
| { |
| int i; |
| |
| if (!decos) |
| return 1; |
| |
| for (i = 0; i < asdl_seq_LEN(decos); i++) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i)); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos) |
| { |
| if (!decos) |
| return 1; |
| |
| int old_lineno = c->u->u_lineno; |
| int old_end_lineno = c->u->u_end_lineno; |
| int old_col_offset = c->u->u_col_offset; |
| int old_end_col_offset = c->u->u_end_col_offset; |
| for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) { |
| SET_LOC(c, (expr_ty)asdl_seq_GET(decos, i)); |
| ADDOP_I(c, PRECALL, 0); |
| ADDOP_I(c, CALL, 0); |
| } |
| c->u->u_lineno = old_lineno; |
| c->u->u_end_lineno = old_end_lineno; |
| c->u->u_col_offset = old_col_offset; |
| c->u->u_end_col_offset = old_end_col_offset; |
| return 1; |
| } |
| |
| static int |
| compiler_visit_kwonlydefaults(struct compiler *c, asdl_arg_seq *kwonlyargs, |
| asdl_expr_seq *kw_defaults) |
| { |
| /* Push a dict of keyword-only default values. |
| |
| Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed. |
| */ |
| int i; |
| PyObject *keys = NULL; |
| |
| for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) { |
| arg_ty arg = asdl_seq_GET(kwonlyargs, i); |
| expr_ty default_ = asdl_seq_GET(kw_defaults, i); |
| if (default_) { |
| PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg); |
| if (!mangled) { |
| goto error; |
| } |
| if (keys == NULL) { |
| keys = PyList_New(1); |
| if (keys == NULL) { |
| Py_DECREF(mangled); |
| return 0; |
| } |
| PyList_SET_ITEM(keys, 0, mangled); |
| } |
| else { |
| int res = PyList_Append(keys, mangled); |
| Py_DECREF(mangled); |
| if (res == -1) { |
| goto error; |
| } |
| } |
| if (!compiler_visit_expr(c, default_)) { |
| goto error; |
| } |
| } |
| } |
| if (keys != NULL) { |
| Py_ssize_t default_count = PyList_GET_SIZE(keys); |
| PyObject *keys_tuple = PyList_AsTuple(keys); |
| Py_DECREF(keys); |
| ADDOP_LOAD_CONST_NEW(c, keys_tuple); |
| ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count); |
| assert(default_count > 0); |
| return 1; |
| } |
| else { |
| return -1; |
| } |
| |
| error: |
| Py_XDECREF(keys); |
| return 0; |
| } |
| |
| static int |
| compiler_visit_annexpr(struct compiler *c, expr_ty annotation) |
| { |
| ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation)); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_argannotation(struct compiler *c, identifier id, |
| expr_ty annotation, Py_ssize_t *annotations_len) |
| { |
| if (!annotation) { |
| return 1; |
| } |
| |
| PyObject *mangled = _Py_Mangle(c->u->u_private, id); |
| if (!mangled) { |
| return 0; |
| } |
| ADDOP_LOAD_CONST(c, mangled); |
| Py_DECREF(mangled); |
| |
| if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { |
| VISIT(c, annexpr, annotation); |
| } |
| else { |
| if (annotation->kind == Starred_kind) { |
| // *args: *Ts (where Ts is a TypeVarTuple). |
| // Do [annotation_value] = [*Ts]. |
| // (Note that in theory we could end up here even for an argument |
| // other than *args, but in practice the grammar doesn't allow it.) |
| VISIT(c, expr, annotation->v.Starred.value); |
| ADDOP_I(c, UNPACK_SEQUENCE, (Py_ssize_t) 1); |
| } |
| else { |
| VISIT(c, expr, annotation); |
| } |
| } |
| *annotations_len += 2; |
| return 1; |
| } |
| |
| static int |
| compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args, |
| Py_ssize_t *annotations_len) |
| { |
| int i; |
| for (i = 0; i < asdl_seq_LEN(args); i++) { |
| arg_ty arg = (arg_ty)asdl_seq_GET(args, i); |
| if (!compiler_visit_argannotation( |
| c, |
| arg->arg, |
| arg->annotation, |
| annotations_len)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_visit_annotations(struct compiler *c, arguments_ty args, |
| expr_ty returns) |
| { |
| /* Push arg annotation names and values. |
| The expressions are evaluated out-of-order wrt the source code. |
| |
| Return 0 on error, -1 if no annotations pushed, 1 if a annotations is pushed. |
| */ |
| Py_ssize_t annotations_len = 0; |
| |
| if (!compiler_visit_argannotations(c, args->args, &annotations_len)) |
| return 0; |
| if (!compiler_visit_argannotations(c, args->posonlyargs, &annotations_len)) |
| return 0; |
| if (args->vararg && args->vararg->annotation && |
| !compiler_visit_argannotation(c, args->vararg->arg, |
| args->vararg->annotation, &annotations_len)) |
| return 0; |
| if (!compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len)) |
| return 0; |
| if (args->kwarg && args->kwarg->annotation && |
| !compiler_visit_argannotation(c, args->kwarg->arg, |
| args->kwarg->annotation, &annotations_len)) |
| return 0; |
| |
| if (!compiler_visit_argannotation(c, &_Py_ID(return), returns, |
| &annotations_len)) { |
| return 0; |
| } |
| |
| if (annotations_len) { |
| ADDOP_I(c, BUILD_TUPLE, annotations_len); |
| return 1; |
| } |
| |
| return -1; |
| } |
| |
| static int |
| compiler_visit_defaults(struct compiler *c, arguments_ty args) |
| { |
| VISIT_SEQ(c, expr, args->defaults); |
| ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults)); |
| return 1; |
| } |
| |
| static Py_ssize_t |
| compiler_default_arguments(struct compiler *c, arguments_ty args) |
| { |
| Py_ssize_t funcflags = 0; |
| if (args->defaults && asdl_seq_LEN(args->defaults) > 0) { |
| if (!compiler_visit_defaults(c, args)) |
| return -1; |
| funcflags |= 0x01; |
| } |
| if (args->kwonlyargs) { |
| int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs, |
| args->kw_defaults); |
| if (res == 0) { |
| return -1; |
| } |
| else if (res > 0) { |
| funcflags |= 0x02; |
| } |
| } |
| return funcflags; |
| } |
| |
| static int |
| forbidden_name(struct compiler *c, identifier name, expr_context_ty ctx) |
| { |
| |
| if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) { |
| compiler_error(c, "cannot assign to __debug__"); |
| return 1; |
| } |
| if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) { |
| compiler_error(c, "cannot delete __debug__"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int |
| compiler_check_debug_one_arg(struct compiler *c, arg_ty arg) |
| { |
| if (arg != NULL) { |
| if (forbidden_name(c, arg->arg, Store)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args) |
| { |
| if (args != NULL) { |
| for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) { |
| if (!compiler_check_debug_one_arg(c, asdl_seq_GET(args, i))) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_check_debug_args(struct compiler *c, arguments_ty args) |
| { |
| if (!compiler_check_debug_args_seq(c, args->posonlyargs)) |
| return 0; |
| if (!compiler_check_debug_args_seq(c, args->args)) |
| return 0; |
| if (!compiler_check_debug_one_arg(c, args->vararg)) |
| return 0; |
| if (!compiler_check_debug_args_seq(c, args->kwonlyargs)) |
| return 0; |
| if (!compiler_check_debug_one_arg(c, args->kwarg)) |
| return 0; |
| return 1; |
| } |
| |
| static int |
| compiler_function(struct compiler *c, stmt_ty s, int is_async) |
| { |
| PyCodeObject *co; |
| PyObject *qualname, *docstring = NULL; |
| arguments_ty args; |
| expr_ty returns; |
| identifier name; |
| asdl_expr_seq* decos; |
| asdl_stmt_seq *body; |
| Py_ssize_t i, funcflags; |
| int annotations; |
| int scope_type; |
| int firstlineno; |
| |
| if (is_async) { |
| assert(s->kind == AsyncFunctionDef_kind); |
| |
| args = s->v.AsyncFunctionDef.args; |
| returns = s->v.AsyncFunctionDef.returns; |
| decos = s->v.AsyncFunctionDef.decorator_list; |
| name = s->v.AsyncFunctionDef.name; |
| body = s->v.AsyncFunctionDef.body; |
| |
| scope_type = COMPILER_SCOPE_ASYNC_FUNCTION; |
| } else { |
| assert(s->kind == FunctionDef_kind); |
| |
| args = s->v.FunctionDef.args; |
| returns = s->v.FunctionDef.returns; |
| decos = s->v.FunctionDef.decorator_list; |
| name = s->v.FunctionDef.name; |
| body = s->v.FunctionDef.body; |
| |
| scope_type = COMPILER_SCOPE_FUNCTION; |
| } |
| |
| if (!compiler_check_debug_args(c, args)) |
| return 0; |
| |
| if (!compiler_decorators(c, decos)) |
| return 0; |
| |
| firstlineno = s->lineno; |
| if (asdl_seq_LEN(decos)) { |
| firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; |
| } |
| |
| funcflags = compiler_default_arguments(c, args); |
| if (funcflags == -1) { |
| return 0; |
| } |
| |
| annotations = compiler_visit_annotations(c, args, returns); |
| if (annotations == 0) { |
| return 0; |
| } |
| else if (annotations > 0) { |
| funcflags |= 0x04; |
| } |
| |
| if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) { |
| return 0; |
| } |
| |
| /* if not -OO mode, add docstring */ |
| if (c->c_optimize < 2) { |
| docstring = _PyAST_GetDocString(body); |
| } |
| if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| |
| c->u->u_argcount = asdl_seq_LEN(args->args); |
| c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); |
| c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); |
| for (i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) { |
| VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i)); |
| } |
| co = assemble(c, 1); |
| qualname = c->u->u_qualname; |
| Py_INCREF(qualname); |
| compiler_exit_scope(c); |
| if (co == NULL) { |
| Py_XDECREF(qualname); |
| Py_XDECREF(co); |
| return 0; |
| } |
| |
| if (!compiler_make_closure(c, co, funcflags, qualname)) { |
| Py_DECREF(qualname); |
| Py_DECREF(co); |
| return 0; |
| } |
| Py_DECREF(qualname); |
| Py_DECREF(co); |
| |
| if (!compiler_apply_decorators(c, decos)) |
| return 0; |
| return compiler_nameop(c, name, Store); |
| } |
| |
| static int |
| compiler_class(struct compiler *c, stmt_ty s) |
| { |
| PyCodeObject *co; |
| int i, firstlineno; |
| asdl_expr_seq *decos = s->v.ClassDef.decorator_list; |
| |
| if (!compiler_decorators(c, decos)) |
| return 0; |
| |
| firstlineno = s->lineno; |
| if (asdl_seq_LEN(decos)) { |
| firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; |
| } |
| |
| /* ultimately generate code for: |
| <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>) |
| where: |
| <func> is a zero arg function/closure created from the class body. |
| It mutates its locals to build the class namespace. |
| <name> is the class name |
| <bases> is the positional arguments and *varargs argument |
| <keywords> is the keyword arguments and **kwds argument |
| This borrows from compiler_call. |
| */ |
| |
| /* 1. compile the class body into a code object */ |
| if (!compiler_enter_scope(c, s->v.ClassDef.name, |
| COMPILER_SCOPE_CLASS, (void *)s, firstlineno)) { |
| return 0; |
| } |
| /* this block represents what we do in the new scope */ |
| { |
| /* use the class name for name mangling */ |
| Py_INCREF(s->v.ClassDef.name); |
| Py_XSETREF(c->u->u_private, s->v.ClassDef.name); |
| /* load (global) __name__ ... */ |
| if (!compiler_nameop(c, &_Py_ID(__name__), Load)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| /* ... and store it as __module__ */ |
| if (!compiler_nameop(c, &_Py_ID(__module__), Store)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| assert(c->u->u_qualname); |
| ADDOP_LOAD_CONST(c, c->u->u_qualname); |
| if (!compiler_nameop(c, &_Py_ID(__qualname__), Store)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| /* compile the body proper */ |
| if (!compiler_body(c, s->v.ClassDef.body)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| /* The following code is artificial */ |
| UNSET_LOC(c); |
| /* Return __classcell__ if it is referenced, otherwise return None */ |
| if (c->u->u_ste->ste_needs_class_closure) { |
| /* Store __classcell__ into class namespace & return it */ |
| i = compiler_lookup_arg(c->u->u_cellvars, &_Py_ID(__class__)); |
| if (i < 0) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| assert(i == 0); |
| |
| ADDOP_I(c, LOAD_CLOSURE, i); |
| ADDOP_I(c, COPY, 1); |
| if (!compiler_nameop(c, &_Py_ID(__classcell__), Store)) { |
| compiler_exit_scope(c); |
| return 0; |
| } |
| } |
| else { |
| /* No methods referenced __class__, so just return None */ |
| assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0); |
| ADDOP_LOAD_CONST(c, Py_None); |
| } |
| ADDOP_IN_SCOPE(c, RETURN_VALUE); |
| /* create the code object */ |
| co = assemble(c, 1); |
| } |
| /* leave the new scope */ |
| compiler_exit_scope(c); |
| if (co == NULL) |
| return 0; |
| |
| /* 2. load the 'build_class' function */ |
| ADDOP(c, PUSH_NULL); |
| ADDOP(c, LOAD_BUILD_CLASS); |
| |
| /* 3. load a function (or closure) made from the code object */ |
| if (!compiler_make_closure(c, co, 0, NULL)) { |
| Py_DECREF(co); |
| return 0; |
| } |
| Py_DECREF(co); |
| |
| /* 4. load class name */ |
| ADDOP_LOAD_CONST(c, s->v.ClassDef.name); |
| |
| /* 5. generate the rest of the code for the call */ |
| if (!compiler_call_helper(c, 2, s->v.ClassDef.bases, s->v.ClassDef.keywords)) |
| return 0; |
| /* 6. apply decorators */ |
| if (!compiler_apply_decorators(c, decos)) |
| return 0; |
| |
| /* 7. store into <name> */ |
| if (!compiler_nameop(c, s->v.ClassDef.name, Store)) |
| return 0; |
| return 1; |
| } |
| |
| /* Return 0 if the expression is a constant value except named singletons. |
| Return 1 otherwise. */ |
| static int |
| check_is_arg(expr_ty e) |
| { |
| if (e->kind != Constant_kind) { |
| return 1; |
| } |
| PyObject *value = e->v.Constant.value; |
| return (value == Py_None |
| || value == Py_False |
| || value == Py_True |
| || value == Py_Ellipsis); |
| } |
| |
| /* Check operands of identity chacks ("is" and "is not"). |
| Emit a warning if any operand is a constant except named singletons. |
| Return 0 on error. |
| */ |
| static int |
| check_compare(struct compiler *c, expr_ty e) |
| { |
| Py_ssize_t i, n; |
| int left = check_is_arg(e->v.Compare.left); |
| n = asdl_seq_LEN(e->v.Compare.ops); |
| for (i = 0; i < n; i++) { |
| cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i); |
| int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); |
| if (op == Is || op == IsNot) { |
| if (!right || !left) { |
| const char *msg = (op == Is) |
| ? "\"is\" with a literal. Did you mean \"==\"?" |
| : "\"is not\" with a literal. Did you mean \"!=\"?"; |
| return compiler_warn(c, msg); |
| } |
| } |
| left = right; |
| } |
| return 1; |
| } |
| |
| static int compiler_addcompare(struct compiler *c, cmpop_ty op) |
| { |
| int cmp; |
| switch (op) { |
| case Eq: |
| cmp = Py_EQ; |
| break; |
| case NotEq: |
| cmp = Py_NE; |
| break; |
| case Lt: |
| cmp = Py_LT; |
| break; |
| case LtE: |
| cmp = Py_LE; |
| break; |
| case Gt: |
| cmp = Py_GT; |
| break; |
| case GtE: |
| cmp = Py_GE; |
| break; |
| case Is: |
| ADDOP_I(c, IS_OP, 0); |
| return 1; |
| case IsNot: |
| ADDOP_I(c, IS_OP, 1); |
| return 1; |
| case In: |
| ADDOP_I(c, CONTAINS_OP, 0); |
| return 1; |
| case NotIn: |
| ADDOP_I(c, CONTAINS_OP, 1); |
| return 1; |
| default: |
| Py_UNREACHABLE(); |
| } |
| ADDOP_I(c, COMPARE_OP, cmp); |
| return 1; |
| } |
| |
| |
| |
| static int |
| compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond) |
| { |
| switch (e->kind) { |
| case UnaryOp_kind: |
| if (e->v.UnaryOp.op == Not) |
| return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond); |
| /* fallback to general implementation */ |
| break; |
| case BoolOp_kind: { |
| asdl_expr_seq *s = e->v.BoolOp.values; |
| Py_ssize_t i, n = asdl_seq_LEN(s) - 1; |
| assert(n >= 0); |
| int cond2 = e->v.BoolOp.op == Or; |
| basicblock *next2 = next; |
| if (!cond2 != !cond) { |
| next2 = compiler_new_block(c); |
| if (next2 == NULL) |
| return 0; |
| } |
| for (i = 0; i < n; ++i) { |
| if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2)) |
| return 0; |
| } |
| if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond)) |
| return 0; |
| if (next2 != next) |
| compiler_use_next_block(c, next2); |
| return 1; |
| } |
| case IfExp_kind: { |
| basicblock *end, *next2; |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| next2 = compiler_new_block(c); |
| if (next2 == NULL) |
| return 0; |
| if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0)) |
| return 0; |
| if (!compiler_jump_if(c, e->v.IfExp.body, next, cond)) |
| return 0; |
| ADDOP_JUMP_NOLINE(c, JUMP, end); |
| compiler_use_next_block(c, next2); |
| if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond)) |
| return 0; |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| case Compare_kind: { |
| SET_LOC(c, e); |
| Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1; |
| if (n > 0) { |
| if (!check_compare(c, e)) { |
| return 0; |
| } |
| basicblock *cleanup = compiler_new_block(c); |
| if (cleanup == NULL) |
| return 0; |
| VISIT(c, expr, e->v.Compare.left); |
| for (i = 0; i < n; i++) { |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); |
| ADDOP_I(c, SWAP, 2); |
| ADDOP_I(c, COPY, 2); |
| ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i)); |
| ADDOP_JUMP(c, POP_JUMP_IF_FALSE, cleanup); |
| } |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); |
| ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n)); |
| ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); |
| basicblock *end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| ADDOP_JUMP_NOLINE(c, JUMP, end); |
| compiler_use_next_block(c, cleanup); |
| ADDOP(c, POP_TOP); |
| if (!cond) { |
| ADDOP_JUMP_NOLINE(c, JUMP, next); |
| } |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| /* fallback to general implementation */ |
| break; |
| } |
| default: |
| /* fallback to general implementation */ |
| break; |
| } |
| |
| /* general implementation */ |
| VISIT(c, expr, e); |
| ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); |
| return 1; |
| } |
| |
| static int |
| compiler_ifexp(struct compiler *c, expr_ty e) |
| { |
| basicblock *end, *next; |
| |
| assert(e->kind == IfExp_kind); |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| next = compiler_new_block(c); |
| if (next == NULL) |
| return 0; |
| if (!compiler_jump_if(c, e->v.IfExp.test, next, 0)) |
| return 0; |
| VISIT(c, expr, e->v.IfExp.body); |
| ADDOP_JUMP_NOLINE(c, JUMP, end); |
| compiler_use_next_block(c, next); |
| VISIT(c, expr, e->v.IfExp.orelse); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_lambda(struct compiler *c, expr_ty e) |
| { |
| PyCodeObject *co; |
| PyObject *qualname; |
| Py_ssize_t funcflags; |
| arguments_ty args = e->v.Lambda.args; |
| assert(e->kind == Lambda_kind); |
| |
| if (!compiler_check_debug_args(c, args)) |
| return 0; |
| |
| funcflags = compiler_default_arguments(c, args); |
| if (funcflags == -1) { |
| return 0; |
| } |
| |
| _Py_DECLARE_STR(anon_lambda, "<lambda>"); |
| if (!compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA, |
| (void *)e, e->lineno)) { |
| return 0; |
| } |
| /* Make None the first constant, so the lambda can't have a |
| docstring. */ |
| if (compiler_add_const(c, Py_None) < 0) |
| return 0; |
| |
| c->u->u_argcount = asdl_seq_LEN(args->args); |
| c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); |
| c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); |
| VISIT_IN_SCOPE(c, expr, e->v.Lambda.body); |
| if (c->u->u_ste->ste_generator) { |
| co = assemble(c, 0); |
| } |
| else { |
| ADDOP_IN_SCOPE(c, RETURN_VALUE); |
| co = assemble(c, 1); |
| } |
| qualname = c->u->u_qualname; |
| Py_INCREF(qualname); |
| compiler_exit_scope(c); |
| if (co == NULL) { |
| Py_DECREF(qualname); |
| return 0; |
| } |
| |
| if (!compiler_make_closure(c, co, funcflags, qualname)) { |
| Py_DECREF(qualname); |
| Py_DECREF(co); |
| return 0; |
| } |
| Py_DECREF(qualname); |
| Py_DECREF(co); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_if(struct compiler *c, stmt_ty s) |
| { |
| basicblock *end, *next; |
| assert(s->kind == If_kind); |
| end = compiler_new_block(c); |
| if (end == NULL) { |
| return 0; |
| } |
| if (asdl_seq_LEN(s->v.If.orelse)) { |
| next = compiler_new_block(c); |
| if (next == NULL) { |
| return 0; |
| } |
| } |
| else { |
| next = end; |
| } |
| if (!compiler_jump_if(c, s->v.If.test, next, 0)) { |
| return 0; |
| } |
| VISIT_SEQ(c, stmt, s->v.If.body); |
| if (asdl_seq_LEN(s->v.If.orelse)) { |
| ADDOP_JUMP_NOLINE(c, JUMP, end); |
| compiler_use_next_block(c, next); |
| VISIT_SEQ(c, stmt, s->v.If.orelse); |
| } |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_for(struct compiler *c, stmt_ty s) |
| { |
| basicblock *start, *body, *cleanup, *end; |
| |
| start = compiler_new_block(c); |
| body = compiler_new_block(c); |
| cleanup = compiler_new_block(c); |
| end = compiler_new_block(c); |
| if (start == NULL || body == NULL || end == NULL || cleanup == NULL) { |
| return 0; |
| } |
| if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) { |
| return 0; |
| } |
| VISIT(c, expr, s->v.For.iter); |
| ADDOP(c, GET_ITER); |
| compiler_use_next_block(c, start); |
| ADDOP_JUMP(c, FOR_ITER, cleanup); |
| compiler_use_next_block(c, body); |
| VISIT(c, expr, s->v.For.target); |
| VISIT_SEQ(c, stmt, s->v.For.body); |
| /* Mark jump as artificial */ |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, JUMP, start); |
| compiler_use_next_block(c, cleanup); |
| |
| compiler_pop_fblock(c, FOR_LOOP, start); |
| |
| VISIT_SEQ(c, stmt, s->v.For.orelse); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| |
| static int |
| compiler_async_for(struct compiler *c, stmt_ty s) |
| { |
| basicblock *start, *except, *end; |
| if (IS_TOP_LEVEL_AWAIT(c)){ |
| c->u->u_ste->ste_coroutine = 1; |
| } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) { |
| return compiler_error(c, "'async for' outside async function"); |
| } |
| |
| start = compiler_new_block(c); |
| except = compiler_new_block(c); |
| end = compiler_new_block(c); |
| |
| if (start == NULL || except == NULL || end == NULL) { |
| return 0; |
| } |
| VISIT(c, expr, s->v.AsyncFor.iter); |
| ADDOP(c, GET_AITER); |
| |
| compiler_use_next_block(c, start); |
| if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) { |
| return 0; |
| } |
| /* SETUP_FINALLY to guard the __anext__ call */ |
| ADDOP_JUMP(c, SETUP_FINALLY, except); |
| ADDOP(c, GET_ANEXT); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| ADDOP(c, POP_BLOCK); /* for SETUP_FINALLY */ |
| |
| /* Success block for __anext__ */ |
| VISIT(c, expr, s->v.AsyncFor.target); |
| VISIT_SEQ(c, stmt, s->v.AsyncFor.body); |
| /* Mark jump as artificial */ |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, JUMP, start); |
| |
| compiler_pop_fblock(c, FOR_LOOP, start); |
| |
| /* Except block for __anext__ */ |
| compiler_use_next_block(c, except); |
| |
| /* Use same line number as the iterator, |
| * as the END_ASYNC_FOR succeeds the `for`, not the body. */ |
| SET_LOC(c, s->v.AsyncFor.iter); |
| ADDOP(c, END_ASYNC_FOR); |
| |
| /* `else` block */ |
| VISIT_SEQ(c, stmt, s->v.For.orelse); |
| |
| compiler_use_next_block(c, end); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_while(struct compiler *c, stmt_ty s) |
| { |
| basicblock *loop, *body, *end, *anchor = NULL; |
| loop = compiler_new_block(c); |
| body = compiler_new_block(c); |
| anchor = compiler_new_block(c); |
| end = compiler_new_block(c); |
| if (loop == NULL || body == NULL || anchor == NULL || end == NULL) { |
| return 0; |
| } |
| compiler_use_next_block(c, loop); |
| if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL)) { |
| return 0; |
| } |
| if (!compiler_jump_if(c, s->v.While.test, anchor, 0)) { |
| return 0; |
| } |
| |
| compiler_use_next_block(c, body); |
| VISIT_SEQ(c, stmt, s->v.While.body); |
| SET_LOC(c, s); |
| if (!compiler_jump_if(c, s->v.While.test, body, 1)) { |
| return 0; |
| } |
| |
| compiler_pop_fblock(c, WHILE_LOOP, loop); |
| |
| compiler_use_next_block(c, anchor); |
| if (s->v.While.orelse) { |
| VISIT_SEQ(c, stmt, s->v.While.orelse); |
| } |
| compiler_use_next_block(c, end); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_return(struct compiler *c, stmt_ty s) |
| { |
| int preserve_tos = ((s->v.Return.value != NULL) && |
| (s->v.Return.value->kind != Constant_kind)); |
| if (c->u->u_ste->ste_type != FunctionBlock) |
| return compiler_error(c, "'return' outside function"); |
| if (s->v.Return.value != NULL && |
| c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator) |
| { |
| return compiler_error( |
| c, "'return' with value in async generator"); |
| } |
| if (preserve_tos) { |
| VISIT(c, expr, s->v.Return.value); |
| } else { |
| /* Emit instruction with line number for return value */ |
| if (s->v.Return.value != NULL) { |
| SET_LOC(c, s->v.Return.value); |
| ADDOP(c, NOP); |
| } |
| } |
| if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) { |
| SET_LOC(c, s); |
| ADDOP(c, NOP); |
| } |
| |
| if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL)) |
| return 0; |
| if (s->v.Return.value == NULL) { |
| ADDOP_LOAD_CONST(c, Py_None); |
| } |
| else if (!preserve_tos) { |
| ADDOP_LOAD_CONST(c, s->v.Return.value->v.Constant.value); |
| } |
| ADDOP(c, RETURN_VALUE); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_break(struct compiler *c) |
| { |
| struct fblockinfo *loop = NULL; |
| int u_lineno = c->u->u_lineno; |
| int u_col_offset = c->u->u_col_offset; |
| int u_end_lineno = c->u->u_end_lineno; |
| int u_end_col_offset = c->u->u_end_col_offset; |
| /* Emit instruction with line number */ |
| ADDOP(c, NOP); |
| if (!compiler_unwind_fblock_stack(c, 0, &loop)) { |
| return 0; |
| } |
| if (loop == NULL) { |
| c->u->u_lineno = u_lineno; |
| c->u->u_col_offset = u_col_offset; |
| c->u->u_end_lineno = u_end_lineno; |
| c->u->u_end_col_offset = u_end_col_offset; |
| return compiler_error(c, "'break' outside loop"); |
| } |
| if (!compiler_unwind_fblock(c, loop, 0)) { |
| return 0; |
| } |
| ADDOP_JUMP(c, JUMP, loop->fb_exit); |
| return 1; |
| } |
| |
| static int |
| compiler_continue(struct compiler *c) |
| { |
| struct fblockinfo *loop = NULL; |
| int u_lineno = c->u->u_lineno; |
| int u_col_offset = c->u->u_col_offset; |
| int u_end_lineno = c->u->u_end_lineno; |
| int u_end_col_offset = c->u->u_end_col_offset; |
| /* Emit instruction with line number */ |
| ADDOP(c, NOP); |
| if (!compiler_unwind_fblock_stack(c, 0, &loop)) { |
| return 0; |
| } |
| if (loop == NULL) { |
| c->u->u_lineno = u_lineno; |
| c->u->u_col_offset = u_col_offset; |
| c->u->u_end_lineno = u_end_lineno; |
| c->u->u_end_col_offset = u_end_col_offset; |
| return compiler_error(c, "'continue' not properly in loop"); |
| } |
| ADDOP_JUMP(c, JUMP, loop->fb_block); |
| return 1; |
| } |
| |
| |
| /* Code generated for "try: <body> finally: <finalbody>" is as follows: |
| |
| SETUP_FINALLY L |
| <code for body> |
| POP_BLOCK |
| <code for finalbody> |
| JUMP E |
| L: |
| <code for finalbody> |
| E: |
| |
| The special instructions use the block stack. Each block |
| stack entry contains the instruction that created it (here |
| SETUP_FINALLY), the level of the value stack at the time the |
| block stack entry was created, and a label (here L). |
| |
| SETUP_FINALLY: |
| Pushes the current value stack level and the label |
| onto the block stack. |
| POP_BLOCK: |
| Pops en entry from the block stack. |
| |
| The block stack is unwound when an exception is raised: |
| when a SETUP_FINALLY entry is found, the raised and the caught |
| exceptions are pushed onto the value stack (and the exception |
| condition is cleared), and the interpreter jumps to the label |
| gotten from the block stack. |
| */ |
| |
| static int |
| compiler_try_finally(struct compiler *c, stmt_ty s) |
| { |
| basicblock *body, *end, *exit, *cleanup; |
| |
| body = compiler_new_block(c); |
| end = compiler_new_block(c); |
| exit = compiler_new_block(c); |
| cleanup = compiler_new_block(c); |
| if (body == NULL || end == NULL || exit == NULL || cleanup == NULL) { |
| return 0; |
| } |
| /* `try` block */ |
| ADDOP_JUMP(c, SETUP_FINALLY, end); |
| compiler_use_next_block(c, body); |
| if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody)) |
| return 0; |
| if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) { |
| if (!compiler_try_except(c, s)) |
| return 0; |
| } |
| else { |
| VISIT_SEQ(c, stmt, s->v.Try.body); |
| } |
| ADDOP_NOLINE(c, POP_BLOCK); |
| compiler_pop_fblock(c, FINALLY_TRY, body); |
| VISIT_SEQ(c, stmt, s->v.Try.finalbody); |
| ADDOP_JUMP_NOLINE(c, JUMP, exit); |
| /* `finally` block */ |
| compiler_use_next_block(c, end); |
| |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); |
| ADDOP(c, PUSH_EXC_INFO); |
| if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL)) |
| return 0; |
| VISIT_SEQ(c, stmt, s->v.Try.finalbody); |
| compiler_pop_fblock(c, FINALLY_END, end); |
| ADDOP_I(c, RERAISE, 0); |
| compiler_use_next_block(c, cleanup); |
| POP_EXCEPT_AND_RERAISE(c); |
| compiler_use_next_block(c, exit); |
| return 1; |
| } |
| |
| static int |
| compiler_try_star_finally(struct compiler *c, stmt_ty s) |
| { |
| basicblock *body = compiler_new_block(c); |
| if (body == NULL) { |
| return 0; |
| } |
| basicblock *end = compiler_new_block(c); |
| if (!end) { |
| return 0; |
| } |
| basicblock *exit = compiler_new_block(c); |
| if (!exit) { |
| return 0; |
| } |
| basicblock *cleanup = compiler_new_block(c); |
| if (!cleanup) { |
| return 0; |
| } |
| /* `try` block */ |
| ADDOP_JUMP(c, SETUP_FINALLY, end); |
| compiler_use_next_block(c, body); |
| if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.TryStar.finalbody)) { |
| return 0; |
| } |
| if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) { |
| if (!compiler_try_star_except(c, s)) { |
| return 0; |
| } |
| } |
| else { |
| VISIT_SEQ(c, stmt, s->v.TryStar.body); |
| } |
| ADDOP_NOLINE(c, POP_BLOCK); |
| compiler_pop_fblock(c, FINALLY_TRY, body); |
| VISIT_SEQ(c, stmt, s->v.TryStar.finalbody); |
| ADDOP_JUMP_NOLINE(c, JUMP, exit); |
| /* `finally` block */ |
| compiler_use_next_block(c, end); |
| |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); |
| ADDOP(c, PUSH_EXC_INFO); |
| if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL)) { |
| return 0; |
| } |
| VISIT_SEQ(c, stmt, s->v.TryStar.finalbody); |
| compiler_pop_fblock(c, FINALLY_END, end); |
| ADDOP_I(c, RERAISE, 0); |
| compiler_use_next_block(c, cleanup); |
| POP_EXCEPT_AND_RERAISE(c); |
| compiler_use_next_block(c, exit); |
| return 1; |
| } |
| |
| |
| /* |
| Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...": |
| (The contents of the value stack is shown in [], with the top |
| at the right; 'tb' is trace-back info, 'val' the exception's |
| associated value, and 'exc' the exception.) |
| |
| Value stack Label Instruction Argument |
| [] SETUP_FINALLY L1 |
| [] <code for S> |
| [] POP_BLOCK |
| [] JUMP L0 |
| |
| [exc] L1: <evaluate E1> ) |
| [exc, E1] CHECK_EXC_MATCH ) |
| [exc, bool] POP_JUMP_IF_FALSE L2 ) only if E1 |
| [exc] <assign to V1> (or POP if no V1) |
| [] <code for S1> |
| JUMP L0 |
| |
| [exc] L2: <evaluate E2> |
| .............................etc....................... |
| |
| [exc] Ln+1: RERAISE # re-raise exception |
| |
| [] L0: <next statement> |
| |
| Of course, parts are not generated if Vi or Ei is not present. |
| */ |
| static int |
| compiler_try_except(struct compiler *c, stmt_ty s) |
| { |
| basicblock *body, *except, *end, *cleanup; |
| Py_ssize_t i, n; |
| |
| body = compiler_new_block(c); |
| except = compiler_new_block(c); |
| end = compiler_new_block(c); |
| cleanup = compiler_new_block(c); |
| if (body == NULL || except == NULL || end == NULL || cleanup == NULL) |
| return 0; |
| ADDOP_JUMP(c, SETUP_FINALLY, except); |
| compiler_use_next_block(c, body); |
| if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL)) |
| return 0; |
| VISIT_SEQ(c, stmt, s->v.Try.body); |
| compiler_pop_fblock(c, TRY_EXCEPT, body); |
| ADDOP_NOLINE(c, POP_BLOCK); |
| if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) { |
| VISIT_SEQ(c, stmt, s->v.Try.orelse); |
| } |
| ADDOP_JUMP_NOLINE(c, JUMP, end); |
| n = asdl_seq_LEN(s->v.Try.handlers); |
| compiler_use_next_block(c, except); |
| |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); |
| ADDOP(c, PUSH_EXC_INFO); |
| /* Runtime will push a block here, so we need to account for that */ |
| if (!compiler_push_fblock(c, EXCEPTION_HANDLER, NULL, NULL, NULL)) |
| return 0; |
| for (i = 0; i < n; i++) { |
| excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( |
| s->v.Try.handlers, i); |
| SET_LOC(c, handler); |
| if (!handler->v.ExceptHandler.type && i < n-1) { |
| return compiler_error(c, "default 'except:' must be last"); |
| } |
| except = compiler_new_block(c); |
| if (except == NULL) |
| return 0; |
| if (handler->v.ExceptHandler.type) { |
| VISIT(c, expr, handler->v.ExceptHandler.type); |
| ADDOP(c, CHECK_EXC_MATCH); |
| ADDOP_JUMP(c, POP_JUMP_IF_FALSE, except); |
| } |
| if (handler->v.ExceptHandler.name) { |
| basicblock *cleanup_end, *cleanup_body; |
| |
| cleanup_end = compiler_new_block(c); |
| cleanup_body = compiler_new_block(c); |
| if (cleanup_end == NULL || cleanup_body == NULL) { |
| return 0; |
| } |
| |
| compiler_nameop(c, handler->v.ExceptHandler.name, Store); |
| |
| /* |
| try: |
| # body |
| except type as name: |
| try: |
| # body |
| finally: |
| name = None # in case body contains "del name" |
| del name |
| */ |
| |
| /* second try: */ |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup_end); |
| compiler_use_next_block(c, cleanup_body); |
| if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name)) |
| return 0; |
| |
| /* second # body */ |
| VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); |
| compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); |
| /* name = None; del name; # Mark as artificial */ |
| UNSET_LOC(c); |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_EXCEPT); |
| ADDOP_LOAD_CONST(c, Py_None); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Store); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Del); |
| ADDOP_JUMP(c, JUMP, end); |
| |
| /* except: */ |
| compiler_use_next_block(c, cleanup_end); |
| |
| /* name = None; del name; # Mark as artificial */ |
| UNSET_LOC(c); |
| |
| ADDOP_LOAD_CONST(c, Py_None); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Store); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Del); |
| |
| ADDOP_I(c, RERAISE, 1); |
| } |
| else { |
| basicblock *cleanup_body; |
| |
| cleanup_body = compiler_new_block(c); |
| if (!cleanup_body) |
| return 0; |
| |
| ADDOP(c, POP_TOP); /* exc_value */ |
| compiler_use_next_block(c, cleanup_body); |
| if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL)) |
| return 0; |
| VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); |
| compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); |
| UNSET_LOC(c); |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_EXCEPT); |
| ADDOP_JUMP(c, JUMP, end); |
| } |
| compiler_use_next_block(c, except); |
| } |
| /* Mark as artificial */ |
| UNSET_LOC(c); |
| compiler_pop_fblock(c, EXCEPTION_HANDLER, NULL); |
| ADDOP_I(c, RERAISE, 0); |
| compiler_use_next_block(c, cleanup); |
| POP_EXCEPT_AND_RERAISE(c); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| /* |
| Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...": |
| (The contents of the value stack is shown in [], with the top |
| at the right; 'tb' is trace-back info, 'val' the exception instance, |
| and 'typ' the exception's type.) |
| |
| Value stack Label Instruction Argument |
| [] SETUP_FINALLY L1 |
| [] <code for S> |
| [] POP_BLOCK |
| [] JUMP L0 |
| |
| [exc] L1: COPY 1 ) save copy of the original exception |
| [orig, exc] BUILD_LIST ) list for raised/reraised excs ("result") |
| [orig, exc, res] SWAP 2 |
| |
| [orig, res, exc] <evaluate E1> |
| [orig, res, exc, E1] CHECK_EG_MATCH |
| [orig, res, rest/exc, match?] COPY 1 |
| [orig, res, rest/exc, match?, match?] POP_JUMP_IF_NONE C1 |
| |
| [orig, res, rest, match] <assign to V1> (or POP if no V1) |
| |
| [orig, res, rest] SETUP_FINALLY R1 |
| [orig, res, rest] <code for S1> |
| [orig, res, rest] JUMP L2 |
| |
| [orig, res, rest, i, v] R1: LIST_APPEND 3 ) exc raised in except* body - add to res |
| [orig, res, rest, i] POP |
| [orig, res, rest] JUMP LE2 |
| |
| [orig, res, rest] L2: NOP ) for lineno |
| [orig, res, rest] JUMP LE2 |
| |
| [orig, res, rest/exc, None] C1: POP |
| |
| [orig, res, rest] LE2: <evaluate E2> |
| .............................etc....................... |
| |
| [orig, res, rest] Ln+1: LIST_APPEND 1 ) add unhandled exc to res (could be None) |
| |
| [orig, res] PREP_RERAISE_STAR |
| [exc] COPY 1 |
| [exc, exc] POP_JUMP_IF_NOT_NONE RER |
| [exc] POP_TOP |
| [] JUMP L0 |
| |
| [exc] RER: SWAP 2 |
| [exc, prev_exc_info] POP_EXCEPT |
| [exc] RERAISE 0 |
| |
| [] L0: <next statement> |
| */ |
| static int |
| compiler_try_star_except(struct compiler *c, stmt_ty s) |
| { |
| basicblock *body = compiler_new_block(c); |
| if (body == NULL) { |
| return 0; |
| } |
| basicblock *except = compiler_new_block(c); |
| if (except == NULL) { |
| return 0; |
| } |
| basicblock *orelse = compiler_new_block(c); |
| if (orelse == NULL) { |
| return 0; |
| } |
| basicblock *end = compiler_new_block(c); |
| if (end == NULL) { |
| return 0; |
| } |
| basicblock *cleanup = compiler_new_block(c); |
| if (cleanup == NULL) { |
| return 0; |
| } |
| basicblock *reraise_star = compiler_new_block(c); |
| if (reraise_star == NULL) { |
| return 0; |
| } |
| |
| ADDOP_JUMP(c, SETUP_FINALLY, except); |
| compiler_use_next_block(c, body); |
| if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL)) { |
| return 0; |
| } |
| VISIT_SEQ(c, stmt, s->v.TryStar.body); |
| compiler_pop_fblock(c, TRY_EXCEPT, body); |
| ADDOP_NOLINE(c, POP_BLOCK); |
| ADDOP_JUMP_NOLINE(c, JUMP, orelse); |
| Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers); |
| compiler_use_next_block(c, except); |
| |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); |
| ADDOP(c, PUSH_EXC_INFO); |
| /* Runtime will push a block here, so we need to account for that */ |
| if (!compiler_push_fblock(c, EXCEPTION_GROUP_HANDLER, |
| NULL, NULL, "except handler")) { |
| return 0; |
| } |
| for (Py_ssize_t i = 0; i < n; i++) { |
| excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( |
| s->v.TryStar.handlers, i); |
| SET_LOC(c, handler); |
| except = compiler_new_block(c); |
| if (except == NULL) { |
| return 0; |
| } |
| basicblock *except_with_error = compiler_new_block(c); |
| if (except_with_error == NULL) { |
| return 0; |
| } |
| basicblock *no_match = compiler_new_block(c); |
| if (no_match == NULL) { |
| return 0; |
| } |
| if (i == 0) { |
| /* Push the original EG into the stack */ |
| /* |
| [exc] COPY 1 |
| [orig, exc] |
| */ |
| ADDOP_I(c, COPY, 1); |
| |
| /* create empty list for exceptions raised/reraise in the except* blocks */ |
| /* |
| [orig, exc] BUILD_LIST |
| [orig, exc, []] SWAP 2 |
| [orig, [], exc] |
| */ |
| ADDOP_I(c, BUILD_LIST, 0); |
| ADDOP_I(c, SWAP, 2); |
| } |
| if (handler->v.ExceptHandler.type) { |
| VISIT(c, expr, handler->v.ExceptHandler.type); |
| ADDOP(c, CHECK_EG_MATCH); |
| ADDOP_I(c, COPY, 1); |
| ADDOP_JUMP(c, POP_JUMP_IF_NONE, no_match); |
| } |
| |
| basicblock *cleanup_end = compiler_new_block(c); |
| if (cleanup_end == NULL) { |
| return 0; |
| } |
| basicblock *cleanup_body = compiler_new_block(c); |
| if (cleanup_body == NULL) { |
| return 0; |
| } |
| |
| if (handler->v.ExceptHandler.name) { |
| compiler_nameop(c, handler->v.ExceptHandler.name, Store); |
| } |
| else { |
| ADDOP(c, POP_TOP); // match |
| } |
| |
| /* |
| try: |
| # body |
| except type as name: |
| try: |
| # body |
| finally: |
| name = None # in case body contains "del name" |
| del name |
| */ |
| /* second try: */ |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup_end); |
| compiler_use_next_block(c, cleanup_body); |
| if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name)) |
| return 0; |
| |
| /* second # body */ |
| VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); |
| compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); |
| /* name = None; del name; # Mark as artificial */ |
| UNSET_LOC(c); |
| ADDOP(c, POP_BLOCK); |
| if (handler->v.ExceptHandler.name) { |
| ADDOP_LOAD_CONST(c, Py_None); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Store); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Del); |
| } |
| ADDOP_JUMP(c, JUMP, except); |
| |
| /* except: */ |
| compiler_use_next_block(c, cleanup_end); |
| |
| /* name = None; del name; # Mark as artificial */ |
| UNSET_LOC(c); |
| |
| if (handler->v.ExceptHandler.name) { |
| ADDOP_LOAD_CONST(c, Py_None); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Store); |
| compiler_nameop(c, handler->v.ExceptHandler.name, Del); |
| } |
| |
| /* add exception raised to the res list */ |
| ADDOP_I(c, LIST_APPEND, 3); // exc |
| ADDOP(c, POP_TOP); // lasti |
| |
| ADDOP_JUMP(c, JUMP, except_with_error); |
| compiler_use_next_block(c, except); |
| ADDOP(c, NOP); // to hold a propagated location info |
| ADDOP_JUMP(c, JUMP, except_with_error); |
| compiler_use_next_block(c, no_match); |
| ADDOP(c, POP_TOP); // match (None) |
| |
| compiler_use_next_block(c, except_with_error); |
| |
| if (i == n - 1) { |
| /* Add exc to the list (if not None it's the unhandled part of the EG) */ |
| ADDOP_I(c, LIST_APPEND, 1); |
| ADDOP_JUMP(c, JUMP, reraise_star); |
| } |
| } |
| /* Mark as artificial */ |
| UNSET_LOC(c); |
| compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NULL); |
| basicblock *reraise = compiler_new_block(c); |
| if (!reraise) { |
| return 0; |
| } |
| |
| compiler_use_next_block(c, reraise_star); |
| ADDOP(c, PREP_RERAISE_STAR); |
| ADDOP_I(c, COPY, 1); |
| ADDOP_JUMP(c, POP_JUMP_IF_NOT_NONE, reraise); |
| |
| /* Nothing to reraise */ |
| ADDOP(c, POP_TOP); |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_EXCEPT); |
| ADDOP_JUMP(c, JUMP, end); |
| compiler_use_next_block(c, reraise); |
| ADDOP(c, POP_BLOCK); |
| ADDOP_I(c, SWAP, 2); |
| ADDOP(c, POP_EXCEPT); |
| ADDOP_I(c, RERAISE, 0); |
| compiler_use_next_block(c, cleanup); |
| POP_EXCEPT_AND_RERAISE(c); |
| compiler_use_next_block(c, orelse); |
| VISIT_SEQ(c, stmt, s->v.TryStar.orelse); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_try(struct compiler *c, stmt_ty s) { |
| if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody)) |
| return compiler_try_finally(c, s); |
| else |
| return compiler_try_except(c, s); |
| } |
| |
| static int |
| compiler_try_star(struct compiler *c, stmt_ty s) |
| { |
| if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) { |
| return compiler_try_star_finally(c, s); |
| } |
| else { |
| return compiler_try_star_except(c, s); |
| } |
| } |
| |
| static int |
| compiler_import_as(struct compiler *c, identifier name, identifier asname) |
| { |
| /* The IMPORT_NAME opcode was already generated. This function |
| merely needs to bind the result to a name. |
| |
| If there is a dot in name, we need to split it and emit a |
| IMPORT_FROM for each name. |
| */ |
| Py_ssize_t len = PyUnicode_GET_LENGTH(name); |
| Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1); |
| if (dot == -2) |
| return 0; |
| if (dot != -1) { |
| /* Consume the base module name to get the first attribute */ |
| while (1) { |
| Py_ssize_t pos = dot + 1; |
| PyObject *attr; |
| dot = PyUnicode_FindChar(name, '.', pos, len, 1); |
| if (dot == -2) |
| return 0; |
| attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len); |
| if (!attr) |
| return 0; |
| ADDOP_N(c, IMPORT_FROM, attr, names); |
| if (dot == -1) { |
| break; |
| } |
| ADDOP_I(c, SWAP, 2); |
| ADDOP(c, POP_TOP); |
| } |
| if (!compiler_nameop(c, asname, Store)) { |
| return 0; |
| } |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| return compiler_nameop(c, asname, Store); |
| } |
| |
| static int |
| compiler_import(struct compiler *c, stmt_ty s) |
| { |
| /* The Import node stores a module name like a.b.c as a single |
| string. This is convenient for all cases except |
| import a.b.c as d |
| where we need to parse that string to extract the individual |
| module names. |
| XXX Perhaps change the representation to make this case simpler? |
| */ |
| Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names); |
| |
| PyObject *zero = _PyLong_GetZero(); // borrowed reference |
| for (i = 0; i < n; i++) { |
| alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i); |
| int r; |
| |
| ADDOP_LOAD_CONST(c, zero); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP_NAME(c, IMPORT_NAME, alias->name, names); |
| |
| if (alias->asname) { |
| r = compiler_import_as(c, alias->name, alias->asname); |
| if (!r) |
| return r; |
| } |
| else { |
| identifier tmp = alias->name; |
| Py_ssize_t dot = PyUnicode_FindChar( |
| alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1); |
| if (dot != -1) { |
| tmp = PyUnicode_Substring(alias->name, 0, dot); |
| if (tmp == NULL) |
| return 0; |
| } |
| r = compiler_nameop(c, tmp, Store); |
| if (dot != -1) { |
| Py_DECREF(tmp); |
| } |
| if (!r) |
| return r; |
| } |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_from_import(struct compiler *c, stmt_ty s) |
| { |
| Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names); |
| PyObject *names; |
| |
| ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level)); |
| |
| names = PyTuple_New(n); |
| if (!names) |
| return 0; |
| |
| /* build up the names */ |
| for (i = 0; i < n; i++) { |
| alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); |
| Py_INCREF(alias->name); |
| PyTuple_SET_ITEM(names, i, alias->name); |
| } |
| |
| if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module && |
| _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) { |
| Py_DECREF(names); |
| return compiler_error(c, "from __future__ imports must occur " |
| "at the beginning of the file"); |
| } |
| ADDOP_LOAD_CONST_NEW(c, names); |
| |
| if (s->v.ImportFrom.module) { |
| ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names); |
| } |
| else { |
| _Py_DECLARE_STR(empty, ""); |
| ADDOP_NAME(c, IMPORT_NAME, &_Py_STR(empty), names); |
| } |
| for (i = 0; i < n; i++) { |
| alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); |
| identifier store_name; |
| |
| if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') { |
| assert(n == 1); |
| ADDOP(c, IMPORT_STAR); |
| return 1; |
| } |
| |
| ADDOP_NAME(c, IMPORT_FROM, alias->name, names); |
| store_name = alias->name; |
| if (alias->asname) |
| store_name = alias->asname; |
| |
| if (!compiler_nameop(c, store_name, Store)) { |
| return 0; |
| } |
| } |
| /* remove imported module */ |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| static int |
| compiler_assert(struct compiler *c, stmt_ty s) |
| { |
| basicblock *end; |
| |
| /* Always emit a warning if the test is a non-zero length tuple */ |
| if ((s->v.Assert.test->kind == Tuple_kind && |
| asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) || |
| (s->v.Assert.test->kind == Constant_kind && |
| PyTuple_Check(s->v.Assert.test->v.Constant.value) && |
| PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0)) |
| { |
| if (!compiler_warn(c, "assertion is always true, " |
| "perhaps remove parentheses?")) |
| { |
| return 0; |
| } |
| } |
| if (c->c_optimize) |
| return 1; |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| if (!compiler_jump_if(c, s->v.Assert.test, end, 1)) |
| return 0; |
| ADDOP(c, LOAD_ASSERTION_ERROR); |
| if (s->v.Assert.msg) { |
| VISIT(c, expr, s->v.Assert.msg); |
| ADDOP_I(c, PRECALL, 0); |
| ADDOP_I(c, CALL, 0); |
| } |
| ADDOP_I(c, RAISE_VARARGS, 1); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_stmt_expr(struct compiler *c, expr_ty value) |
| { |
| if (c->c_interactive && c->c_nestlevel <= 1) { |
| VISIT(c, expr, value); |
| ADDOP(c, PRINT_EXPR); |
| return 1; |
| } |
| |
| if (value->kind == Constant_kind) { |
| /* ignore constant statement */ |
| ADDOP(c, NOP); |
| return 1; |
| } |
| |
| VISIT(c, expr, value); |
| /* Mark POP_TOP as artificial */ |
| UNSET_LOC(c); |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_stmt(struct compiler *c, stmt_ty s) |
| { |
| Py_ssize_t i, n; |
| |
| /* Always assign a lineno to the next instruction for a stmt. */ |
| SET_LOC(c, s); |
| |
| switch (s->kind) { |
| case FunctionDef_kind: |
| return compiler_function(c, s, 0); |
| case ClassDef_kind: |
| return compiler_class(c, s); |
| case Return_kind: |
| return compiler_return(c, s); |
| case Delete_kind: |
| VISIT_SEQ(c, expr, s->v.Delete.targets) |
| break; |
| case Assign_kind: |
| n = asdl_seq_LEN(s->v.Assign.targets); |
| VISIT(c, expr, s->v.Assign.value); |
| for (i = 0; i < n; i++) { |
| if (i < n - 1) { |
| ADDOP_I(c, COPY, 1); |
| } |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(s->v.Assign.targets, i)); |
| } |
| break; |
| case AugAssign_kind: |
| return compiler_augassign(c, s); |
| case AnnAssign_kind: |
| return compiler_annassign(c, s); |
| case For_kind: |
| return compiler_for(c, s); |
| case While_kind: |
| return compiler_while(c, s); |
| case If_kind: |
| return compiler_if(c, s); |
| case Match_kind: |
| return compiler_match(c, s); |
| case Raise_kind: |
| n = 0; |
| if (s->v.Raise.exc) { |
| VISIT(c, expr, s->v.Raise.exc); |
| n++; |
| if (s->v.Raise.cause) { |
| VISIT(c, expr, s->v.Raise.cause); |
| n++; |
| } |
| } |
| ADDOP_I(c, RAISE_VARARGS, (int)n); |
| break; |
| case Try_kind: |
| return compiler_try(c, s); |
| case TryStar_kind: |
| return compiler_try_star(c, s); |
| case Assert_kind: |
| return compiler_assert(c, s); |
| case Import_kind: |
| return compiler_import(c, s); |
| case ImportFrom_kind: |
| return compiler_from_import(c, s); |
| case Global_kind: |
| case Nonlocal_kind: |
| break; |
| case Expr_kind: |
| return compiler_visit_stmt_expr(c, s->v.Expr.value); |
| case Pass_kind: |
| ADDOP(c, NOP); |
| break; |
| case Break_kind: |
| return compiler_break(c); |
| case Continue_kind: |
| return compiler_continue(c); |
| case With_kind: |
| return compiler_with(c, s, 0); |
| case AsyncFunctionDef_kind: |
| return compiler_function(c, s, 1); |
| case AsyncWith_kind: |
| return compiler_async_with(c, s, 0); |
| case AsyncFor_kind: |
| return compiler_async_for(c, s); |
| } |
| |
| return 1; |
| } |
| |
| static int |
| unaryop(unaryop_ty op) |
| { |
| switch (op) { |
| case Invert: |
| return UNARY_INVERT; |
| case Not: |
| return UNARY_NOT; |
| case UAdd: |
| return UNARY_POSITIVE; |
| case USub: |
| return UNARY_NEGATIVE; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unary op %d should not be possible", op); |
| return 0; |
| } |
| } |
| |
| static int |
| addop_binary(struct compiler *c, operator_ty binop, bool inplace) |
| { |
| int oparg; |
| switch (binop) { |
| case Add: |
| oparg = inplace ? NB_INPLACE_ADD : NB_ADD; |
| break; |
| case Sub: |
| oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT; |
| break; |
| case Mult: |
| oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY; |
| break; |
| case MatMult: |
| oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY; |
| break; |
| case Div: |
| oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE; |
| break; |
| case Mod: |
| oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER; |
| break; |
| case Pow: |
| oparg = inplace ? NB_INPLACE_POWER : NB_POWER; |
| break; |
| case LShift: |
| oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT; |
| break; |
| case RShift: |
| oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT; |
| break; |
| case BitOr: |
| oparg = inplace ? NB_INPLACE_OR : NB_OR; |
| break; |
| case BitXor: |
| oparg = inplace ? NB_INPLACE_XOR : NB_XOR; |
| break; |
| case BitAnd: |
| oparg = inplace ? NB_INPLACE_AND : NB_AND; |
| break; |
| case FloorDiv: |
| oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE; |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, "%s op %d should not be possible", |
| inplace ? "inplace" : "binary", binop); |
| return 0; |
| } |
| ADDOP_I(c, BINARY_OP, oparg); |
| return 1; |
| } |
| |
| |
| static int |
| addop_yield(struct compiler *c) { |
| if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) { |
| ADDOP(c, ASYNC_GEN_WRAP); |
| } |
| ADDOP(c, YIELD_VALUE); |
| ADDOP_I(c, RESUME, 1); |
| return 1; |
| } |
| |
| static int |
| compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx) |
| { |
| int op, scope; |
| Py_ssize_t arg; |
| enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype; |
| |
| PyObject *dict = c->u->u_names; |
| PyObject *mangled; |
| |
| assert(!_PyUnicode_EqualToASCIIString(name, "None") && |
| !_PyUnicode_EqualToASCIIString(name, "True") && |
| !_PyUnicode_EqualToASCIIString(name, "False")); |
| |
| if (forbidden_name(c, name, ctx)) |
| return 0; |
| |
| mangled = _Py_Mangle(c->u->u_private, name); |
| if (!mangled) |
| return 0; |
| |
| op = 0; |
| optype = OP_NAME; |
| scope = _PyST_GetScope(c->u->u_ste, mangled); |
| switch (scope) { |
| case FREE: |
| dict = c->u->u_freevars; |
| optype = OP_DEREF; |
| break; |
| case CELL: |
| dict = c->u->u_cellvars; |
| optype = OP_DEREF; |
| break; |
| case LOCAL: |
| if (c->u->u_ste->ste_type == FunctionBlock) |
| optype = OP_FAST; |
| break; |
| case GLOBAL_IMPLICIT: |
| if (c->u->u_ste->ste_type == FunctionBlock) |
| optype = OP_GLOBAL; |
| break; |
| case GLOBAL_EXPLICIT: |
| optype = OP_GLOBAL; |
| break; |
| default: |
| /* scope can be 0 */ |
| break; |
| } |
| |
| /* XXX Leave assert here, but handle __doc__ and the like better */ |
| assert(scope || PyUnicode_READ_CHAR(name, 0) == '_'); |
| |
| switch (optype) { |
| case OP_DEREF: |
| switch (ctx) { |
| case Load: |
| op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF; |
| break; |
| case Store: op = STORE_DEREF; break; |
| case Del: op = DELETE_DEREF; break; |
| } |
| break; |
| case OP_FAST: |
| switch (ctx) { |
| case Load: op = LOAD_FAST; break; |
| case Store: op = STORE_FAST; break; |
| case Del: op = DELETE_FAST; break; |
| } |
| ADDOP_N(c, op, mangled, varnames); |
| return 1; |
| case OP_GLOBAL: |
| switch (ctx) { |
| case Load: op = LOAD_GLOBAL; break; |
| case Store: op = STORE_GLOBAL; break; |
| case Del: op = DELETE_GLOBAL; break; |
| } |
| break; |
| case OP_NAME: |
| switch (ctx) { |
| case Load: op = LOAD_NAME; break; |
| case Store: op = STORE_NAME; break; |
| case Del: op = DELETE_NAME; break; |
| } |
| break; |
| } |
| |
| assert(op); |
| arg = compiler_add_o(dict, mangled); |
| Py_DECREF(mangled); |
| if (arg < 0) { |
| return 0; |
| } |
| if (op == LOAD_GLOBAL) { |
| arg <<= 1; |
| } |
| return compiler_addop_i(c, op, arg); |
| } |
| |
| static int |
| compiler_boolop(struct compiler *c, expr_ty e) |
| { |
| basicblock *end; |
| int jumpi; |
| Py_ssize_t i, n; |
| asdl_expr_seq *s; |
| |
| assert(e->kind == BoolOp_kind); |
| if (e->v.BoolOp.op == And) |
| jumpi = JUMP_IF_FALSE_OR_POP; |
| else |
| jumpi = JUMP_IF_TRUE_OR_POP; |
| end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| s = e->v.BoolOp.values; |
| n = asdl_seq_LEN(s) - 1; |
| assert(n >= 0); |
| for (i = 0; i < n; ++i) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i)); |
| ADDOP_JUMP(c, jumpi, end); |
| basicblock *next = compiler_new_block(c); |
| if (next == NULL) { |
| return 0; |
| } |
| compiler_use_next_block(c, next); |
| } |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n)); |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| starunpack_helper(struct compiler *c, asdl_expr_seq *elts, int pushed, |
| int build, int add, int extend, int tuple) |
| { |
| Py_ssize_t n = asdl_seq_LEN(elts); |
| if (n > 2 && are_all_items_const(elts, 0, n)) { |
| PyObject *folded = PyTuple_New(n); |
| if (folded == NULL) { |
| return 0; |
| } |
| PyObject *val; |
| for (Py_ssize_t i = 0; i < n; i++) { |
| val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value; |
| Py_INCREF(val); |
| PyTuple_SET_ITEM(folded, i, val); |
| } |
| if (tuple && !pushed) { |
| ADDOP_LOAD_CONST_NEW(c, folded); |
| } else { |
| if (add == SET_ADD) { |
| Py_SETREF(folded, PyFrozenSet_New(folded)); |
| if (folded == NULL) { |
| return 0; |
| } |
| } |
| ADDOP_I(c, build, pushed); |
| ADDOP_LOAD_CONST_NEW(c, folded); |
| ADDOP_I(c, extend, 1); |
| if (tuple) { |
| ADDOP(c, LIST_TO_TUPLE); |
| } |
| } |
| return 1; |
| } |
| |
| int big = n+pushed > STACK_USE_GUIDELINE; |
| int seen_star = 0; |
| for (Py_ssize_t i = 0; i < n; i++) { |
| expr_ty elt = asdl_seq_GET(elts, i); |
| if (elt->kind == Starred_kind) { |
| seen_star = 1; |
| } |
| } |
| if (!seen_star && !big) { |
| for (Py_ssize_t i = 0; i < n; i++) { |
| expr_ty elt = asdl_seq_GET(elts, i); |
| VISIT(c, expr, elt); |
| } |
| if (tuple) { |
| ADDOP_I(c, BUILD_TUPLE, n+pushed); |
| } else { |
| ADDOP_I(c, build, n+pushed); |
| } |
| return 1; |
| } |
| int sequence_built = 0; |
| if (big) { |
| ADDOP_I(c, build, pushed); |
| sequence_built = 1; |
| } |
| for (Py_ssize_t i = 0; i < n; i++) { |
| expr_ty elt = asdl_seq_GET(elts, i); |
| if (elt->kind == Starred_kind) { |
| if (sequence_built == 0) { |
| ADDOP_I(c, build, i+pushed); |
| sequence_built = 1; |
| } |
| VISIT(c, expr, elt->v.Starred.value); |
| ADDOP_I(c, extend, 1); |
| } |
| else { |
| VISIT(c, expr, elt); |
| if (sequence_built) { |
| ADDOP_I(c, add, 1); |
| } |
| } |
| } |
| assert(sequence_built); |
| if (tuple) { |
| ADDOP(c, LIST_TO_TUPLE); |
| } |
| return 1; |
| } |
| |
| static int |
| unpack_helper(struct compiler *c, asdl_expr_seq *elts) |
| { |
| Py_ssize_t n = asdl_seq_LEN(elts); |
| int seen_star = 0; |
| for (Py_ssize_t i = 0; i < n; i++) { |
| expr_ty elt = asdl_seq_GET(elts, i); |
| if (elt->kind == Starred_kind && !seen_star) { |
| if ((i >= (1 << 8)) || |
| (n-i-1 >= (INT_MAX >> 8))) |
| return compiler_error(c, |
| "too many expressions in " |
| "star-unpacking assignment"); |
| ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8))); |
| seen_star = 1; |
| } |
| else if (elt->kind == Starred_kind) { |
| return compiler_error(c, |
| "multiple starred expressions in assignment"); |
| } |
| } |
| if (!seen_star) { |
| ADDOP_I(c, UNPACK_SEQUENCE, n); |
| } |
| return 1; |
| } |
| |
| static int |
| assignment_helper(struct compiler *c, asdl_expr_seq *elts) |
| { |
| Py_ssize_t n = asdl_seq_LEN(elts); |
| RETURN_IF_FALSE(unpack_helper(c, elts)); |
| for (Py_ssize_t i = 0; i < n; i++) { |
| expr_ty elt = asdl_seq_GET(elts, i); |
| VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_list(struct compiler *c, expr_ty e) |
| { |
| asdl_expr_seq *elts = e->v.List.elts; |
| if (e->v.List.ctx == Store) { |
| return assignment_helper(c, elts); |
| } |
| else if (e->v.List.ctx == Load) { |
| return starunpack_helper(c, elts, 0, BUILD_LIST, |
| LIST_APPEND, LIST_EXTEND, 0); |
| } |
| else |
| VISIT_SEQ(c, expr, elts); |
| return 1; |
| } |
| |
| static int |
| compiler_tuple(struct compiler *c, expr_ty e) |
| { |
| asdl_expr_seq *elts = e->v.Tuple.elts; |
| if (e->v.Tuple.ctx == Store) { |
| return assignment_helper(c, elts); |
| } |
| else if (e->v.Tuple.ctx == Load) { |
| return starunpack_helper(c, elts, 0, BUILD_LIST, |
| LIST_APPEND, LIST_EXTEND, 1); |
| } |
| else |
| VISIT_SEQ(c, expr, elts); |
| return 1; |
| } |
| |
| static int |
| compiler_set(struct compiler *c, expr_ty e) |
| { |
| return starunpack_helper(c, e->v.Set.elts, 0, BUILD_SET, |
| SET_ADD, SET_UPDATE, 0); |
| } |
| |
| static int |
| are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end) |
| { |
| Py_ssize_t i; |
| for (i = begin; i < end; i++) { |
| expr_ty key = (expr_ty)asdl_seq_GET(seq, i); |
| if (key == NULL || key->kind != Constant_kind) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end) |
| { |
| Py_ssize_t i, n = end - begin; |
| PyObject *keys, *key; |
| int big = n*2 > STACK_USE_GUIDELINE; |
| if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) { |
| for (i = begin; i < end; i++) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); |
| } |
| keys = PyTuple_New(n); |
| if (keys == NULL) { |
| return 0; |
| } |
| for (i = begin; i < end; i++) { |
| key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value; |
| Py_INCREF(key); |
| PyTuple_SET_ITEM(keys, i - begin, key); |
| } |
| ADDOP_LOAD_CONST_NEW(c, keys); |
| ADDOP_I(c, BUILD_CONST_KEY_MAP, n); |
| return 1; |
| } |
| if (big) { |
| ADDOP_I(c, BUILD_MAP, 0); |
| } |
| for (i = begin; i < end; i++) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i)); |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); |
| if (big) { |
| ADDOP_I(c, MAP_ADD, 1); |
| } |
| } |
| if (!big) { |
| ADDOP_I(c, BUILD_MAP, n); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_dict(struct compiler *c, expr_ty e) |
| { |
| Py_ssize_t i, n, elements; |
| int have_dict; |
| int is_unpacking = 0; |
| n = asdl_seq_LEN(e->v.Dict.values); |
| have_dict = 0; |
| elements = 0; |
| for (i = 0; i < n; i++) { |
| is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL; |
| if (is_unpacking) { |
| if (elements) { |
| if (!compiler_subdict(c, e, i - elements, i)) { |
| return 0; |
| } |
| if (have_dict) { |
| ADDOP_I(c, DICT_UPDATE, 1); |
| } |
| have_dict = 1; |
| elements = 0; |
| } |
| if (have_dict == 0) { |
| ADDOP_I(c, BUILD_MAP, 0); |
| have_dict = 1; |
| } |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); |
| ADDOP_I(c, DICT_UPDATE, 1); |
| } |
| else { |
| if (elements*2 > STACK_USE_GUIDELINE) { |
| if (!compiler_subdict(c, e, i - elements, i + 1)) { |
| return 0; |
| } |
| if (have_dict) { |
| ADDOP_I(c, DICT_UPDATE, 1); |
| } |
| have_dict = 1; |
| elements = 0; |
| } |
| else { |
| elements++; |
| } |
| } |
| } |
| if (elements) { |
| if (!compiler_subdict(c, e, n - elements, n)) { |
| return 0; |
| } |
| if (have_dict) { |
| ADDOP_I(c, DICT_UPDATE, 1); |
| } |
| have_dict = 1; |
| } |
| if (!have_dict) { |
| ADDOP_I(c, BUILD_MAP, 0); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_compare(struct compiler *c, expr_ty e) |
| { |
| Py_ssize_t i, n; |
| |
| if (!check_compare(c, e)) { |
| return 0; |
| } |
| VISIT(c, expr, e->v.Compare.left); |
| assert(asdl_seq_LEN(e->v.Compare.ops) > 0); |
| n = asdl_seq_LEN(e->v.Compare.ops) - 1; |
| if (n == 0) { |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0)); |
| ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, 0)); |
| } |
| else { |
| basicblock *cleanup = compiler_new_block(c); |
| if (cleanup == NULL) |
| return 0; |
| for (i = 0; i < n; i++) { |
| VISIT(c, expr, |
| (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); |
| ADDOP_I(c, SWAP, 2); |
| ADDOP_I(c, COPY, 2); |
| ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i)); |
| ADDOP_JUMP(c, JUMP_IF_FALSE_OR_POP, cleanup); |
| } |
| VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); |
| ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n)); |
| basicblock *end = compiler_new_block(c); |
| if (end == NULL) |
| return 0; |
| ADDOP_JUMP_NOLINE(c, JUMP, end); |
| compiler_use_next_block(c, cleanup); |
| ADDOP_I(c, SWAP, 2); |
| ADDOP(c, POP_TOP); |
| compiler_use_next_block(c, end); |
| } |
| return 1; |
| } |
| |
| static PyTypeObject * |
| infer_type(expr_ty e) |
| { |
| switch (e->kind) { |
| case Tuple_kind: |
| return &PyTuple_Type; |
| case List_kind: |
| case ListComp_kind: |
| return &PyList_Type; |
| case Dict_kind: |
| case DictComp_kind: |
| return &PyDict_Type; |
| case Set_kind: |
| case SetComp_kind: |
| return &PySet_Type; |
| case GeneratorExp_kind: |
| return &PyGen_Type; |
| case Lambda_kind: |
| return &PyFunction_Type; |
| case JoinedStr_kind: |
| case FormattedValue_kind: |
| return &PyUnicode_Type; |
| case Constant_kind: |
| return Py_TYPE(e->v.Constant.value); |
| default: |
| return NULL; |
| } |
| } |
| |
| static int |
| check_caller(struct compiler *c, expr_ty e) |
| { |
| switch (e->kind) { |
| case Constant_kind: |
| case Tuple_kind: |
| case List_kind: |
| case ListComp_kind: |
| case Dict_kind: |
| case DictComp_kind: |
| case Set_kind: |
| case SetComp_kind: |
| case GeneratorExp_kind: |
| case JoinedStr_kind: |
| case FormattedValue_kind: |
| return compiler_warn(c, "'%.200s' object is not callable; " |
| "perhaps you missed a comma?", |
| infer_type(e)->tp_name); |
| default: |
| return 1; |
| } |
| } |
| |
| static int |
| check_subscripter(struct compiler *c, expr_ty e) |
| { |
| PyObject *v; |
| |
| switch (e->kind) { |
| case Constant_kind: |
| v = e->v.Constant.value; |
| if (!(v == Py_None || v == Py_Ellipsis || |
| PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) || |
| PyAnySet_Check(v))) |
| { |
| return 1; |
| } |
| /* fall through */ |
| case Set_kind: |
| case SetComp_kind: |
| case GeneratorExp_kind: |
| case Lambda_kind: |
| return compiler_warn(c, "'%.200s' object is not subscriptable; " |
| "perhaps you missed a comma?", |
| infer_type(e)->tp_name); |
| default: |
| return 1; |
| } |
| } |
| |
| static int |
| check_index(struct compiler *c, expr_ty e, expr_ty s) |
| { |
| PyObject *v; |
| |
| PyTypeObject *index_type = infer_type(s); |
| if (index_type == NULL |
| || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS) |
| || index_type == &PySlice_Type) { |
| return 1; |
| } |
| |
| switch (e->kind) { |
| case Constant_kind: |
| v = e->v.Constant.value; |
| if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) { |
| return 1; |
| } |
| /* fall through */ |
| case Tuple_kind: |
| case List_kind: |
| case ListComp_kind: |
| case JoinedStr_kind: |
| case FormattedValue_kind: |
| return compiler_warn(c, "%.200s indices must be integers or slices, " |
| "not %.200s; " |
| "perhaps you missed a comma?", |
| infer_type(e)->tp_name, |
| index_type->tp_name); |
| default: |
| return 1; |
| } |
| } |
| |
| static int |
| is_import_originated(struct compiler *c, expr_ty e) |
| { |
| /* Check whether the global scope has an import named |
| e, if it is a Name object. For not traversing all the |
| scope stack every time this function is called, it will |
| only check the global scope to determine whether something |
| is imported or not. */ |
| |
| if (e->kind != Name_kind) { |
| return 0; |
| } |
| |
| long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id); |
| return flags & DEF_IMPORT; |
| } |
| |
| // If an attribute access spans multiple lines, update the current start |
| // location to point to the attribute name. |
| static void |
| update_start_location_to_match_attr(struct compiler *c, expr_ty attr) |
| { |
| assert(attr->kind == Attribute_kind); |
| if (c->u->u_lineno != attr->end_lineno) { |
| c->u->u_lineno = attr->end_lineno; |
| int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr); |
| if (len <= attr->end_col_offset) { |
| c->u->u_col_offset = attr->end_col_offset - len; |
| } |
| else { |
| // GH-94694: Somebody's compiling weird ASTs. Just drop the columns: |
| c->u->u_col_offset = -1; |
| c->u->u_end_col_offset = -1; |
| } |
| // Make sure the end position still follows the start position, even for |
| // weird ASTs: |
| c->u->u_end_lineno = Py_MAX(c->u->u_lineno, c->u->u_end_lineno); |
| if (c->u->u_lineno == c->u->u_end_lineno) { |
| c->u->u_end_col_offset = Py_MAX(c->u->u_col_offset, |
| c->u->u_end_col_offset); |
| } |
| } |
| } |
| |
| // Return 1 if the method call was optimized, -1 if not, and 0 on error. |
| static int |
| maybe_optimize_method_call(struct compiler *c, expr_ty e) |
| { |
| Py_ssize_t argsl, i, kwdsl; |
| expr_ty meth = e->v.Call.func; |
| asdl_expr_seq *args = e->v.Call.args; |
| asdl_keyword_seq *kwds = e->v.Call.keywords; |
| |
| /* Check that the call node is an attribute access */ |
| if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) { |
| return -1; |
| } |
| |
| /* Check that the base object is not something that is imported */ |
| if (is_import_originated(c, meth->v.Attribute.value)) { |
| return -1; |
| } |
| |
| /* Check that there aren't too many arguments */ |
| argsl = asdl_seq_LEN(args); |
| kwdsl = asdl_seq_LEN(kwds); |
| if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) { |
| return -1; |
| } |
| /* Check that there are no *varargs types of arguments. */ |
| for (i = 0; i < argsl; i++) { |
| expr_ty elt = asdl_seq_GET(args, i); |
| if (elt->kind == Starred_kind) { |
| return -1; |
| } |
| } |
| |
| for (i = 0; i < kwdsl; i++) { |
| keyword_ty kw = asdl_seq_GET(kwds, i); |
| if (kw->arg == NULL) { |
| return -1; |
| } |
| } |
| /* Alright, we can optimize the code. */ |
| VISIT(c, expr, meth->v.Attribute.value); |
| SET_LOC(c, meth); |
| update_start_location_to_match_attr(c, meth); |
| ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names); |
| VISIT_SEQ(c, expr, e->v.Call.args); |
| |
| if (kwdsl) { |
| VISIT_SEQ(c, keyword, kwds); |
| if (!compiler_call_simple_kw_helper(c, kwds, kwdsl)) { |
| return 0; |
| }; |
| } |
| SET_LOC(c, e); |
| update_start_location_to_match_attr(c, meth); |
| ADDOP_I(c, PRECALL, argsl + kwdsl); |
| ADDOP_I(c, CALL, argsl + kwdsl); |
| return 1; |
| } |
| |
| static int |
| validate_keywords(struct compiler *c, asdl_keyword_seq *keywords) |
| { |
| Py_ssize_t nkeywords = asdl_seq_LEN(keywords); |
| for (Py_ssize_t i = 0; i < nkeywords; i++) { |
| keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i)); |
| if (key->arg == NULL) { |
| continue; |
| } |
| if (forbidden_name(c, key->arg, Store)) { |
| return -1; |
| } |
| for (Py_ssize_t j = i + 1; j < nkeywords; j++) { |
| keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j)); |
| if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) { |
| SET_LOC(c, other); |
| compiler_error(c, "keyword argument repeated: %U", key->arg); |
| return -1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| compiler_call(struct compiler *c, expr_ty e) |
| { |
| if (validate_keywords(c, e->v.Call.keywords) == -1) { |
| return 0; |
| } |
| int ret = maybe_optimize_method_call(c, e); |
| if (ret >= 0) { |
| return ret; |
| } |
| if (!check_caller(c, e->v.Call.func)) { |
| return 0; |
| } |
| SET_LOC(c, e->v.Call.func); |
| ADDOP(c, PUSH_NULL); |
| SET_LOC(c, e); |
| VISIT(c, expr, e->v.Call.func); |
| return compiler_call_helper(c, 0, |
| e->v.Call.args, |
| e->v.Call.keywords); |
| } |
| |
| static int |
| compiler_joined_str(struct compiler *c, expr_ty e) |
| { |
| |
| Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values); |
| if (value_count > STACK_USE_GUIDELINE) { |
| _Py_DECLARE_STR(empty, ""); |
| ADDOP_LOAD_CONST_NEW(c, Py_NewRef(&_Py_STR(empty))); |
| ADDOP_NAME(c, LOAD_METHOD, &_Py_ID(join), names); |
| ADDOP_I(c, BUILD_LIST, 0); |
| for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) { |
| VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i)); |
| ADDOP_I(c, LIST_APPEND, 1); |
| } |
| ADDOP_I(c, PRECALL, 1); |
| ADDOP_I(c, CALL, 1); |
| } |
| else { |
| VISIT_SEQ(c, expr, e->v.JoinedStr.values); |
| if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) { |
| ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values)); |
| } |
| } |
| return 1; |
| } |
| |
| /* Used to implement f-strings. Format a single value. */ |
| static int |
| compiler_formatted_value(struct compiler *c, expr_ty e) |
| { |
| /* Our oparg encodes 2 pieces of information: the conversion |
| character, and whether or not a format_spec was provided. |
| |
| Convert the conversion char to 3 bits: |
| : 000 0x0 FVC_NONE The default if nothing specified. |
| !s : 001 0x1 FVC_STR |
| !r : 010 0x2 FVC_REPR |
| !a : 011 0x3 FVC_ASCII |
| |
| next bit is whether or not we have a format spec: |
| yes : 100 0x4 |
| no : 000 0x0 |
| */ |
| |
| int conversion = e->v.FormattedValue.conversion; |
| int oparg; |
| |
| /* The expression to be formatted. */ |
| VISIT(c, expr, e->v.FormattedValue.value); |
| |
| switch (conversion) { |
| case 's': oparg = FVC_STR; break; |
| case 'r': oparg = FVC_REPR; break; |
| case 'a': oparg = FVC_ASCII; break; |
| case -1: oparg = FVC_NONE; break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "Unrecognized conversion character %d", conversion); |
| return 0; |
| } |
| if (e->v.FormattedValue.format_spec) { |
| /* Evaluate the format spec, and update our opcode arg. */ |
| VISIT(c, expr, e->v.FormattedValue.format_spec); |
| oparg |= FVS_HAVE_SPEC; |
| } |
| |
| /* And push our opcode and oparg */ |
| ADDOP_I(c, FORMAT_VALUE, oparg); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_subkwargs(struct compiler *c, asdl_keyword_seq *keywords, Py_ssize_t begin, Py_ssize_t end) |
| { |
| Py_ssize_t i, n = end - begin; |
| keyword_ty kw; |
| PyObject *keys, *key; |
| assert(n > 0); |
| int big = n*2 > STACK_USE_GUIDELINE; |
| if (n > 1 && !big) { |
| for (i = begin; i < end; i++) { |
| kw = asdl_seq_GET(keywords, i); |
| VISIT(c, expr, kw->value); |
| } |
| keys = PyTuple_New(n); |
| if (keys == NULL) { |
| return 0; |
| } |
| for (i = begin; i < end; i++) { |
| key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg; |
| Py_INCREF(key); |
| PyTuple_SET_ITEM(keys, i - begin, key); |
| } |
| ADDOP_LOAD_CONST_NEW(c, keys); |
| ADDOP_I(c, BUILD_CONST_KEY_MAP, n); |
| return 1; |
| } |
| if (big) { |
| ADDOP_I_NOLINE(c, BUILD_MAP, 0); |
| } |
| for (i = begin; i < end; i++) { |
| kw = asdl_seq_GET(keywords, i); |
| ADDOP_LOAD_CONST(c, kw->arg); |
| VISIT(c, expr, kw->value); |
| if (big) { |
| ADDOP_I_NOLINE(c, MAP_ADD, 1); |
| } |
| } |
| if (!big) { |
| ADDOP_I(c, BUILD_MAP, n); |
| } |
| return 1; |
| } |
| |
| /* Used by compiler_call_helper and maybe_optimize_method_call to emit |
| * KW_NAMES before CALL. |
| * Returns 1 on success, 0 on error. |
| */ |
| static int |
| compiler_call_simple_kw_helper(struct compiler *c, |
| asdl_keyword_seq *keywords, |
| Py_ssize_t nkwelts) |
| { |
| PyObject *names; |
| names = PyTuple_New(nkwelts); |
| if (names == NULL) { |
| return 0; |
| } |
| for (int i = 0; i < nkwelts; i++) { |
| keyword_ty kw = asdl_seq_GET(keywords, i); |
| Py_INCREF(kw->arg); |
| PyTuple_SET_ITEM(names, i, kw->arg); |
| } |
| Py_ssize_t arg = compiler_add_const(c, names); |
| if (arg < 0) { |
| return 0; |
| } |
| Py_DECREF(names); |
| ADDOP_I(c, KW_NAMES, arg); |
| return 1; |
| } |
| |
| |
| /* shared code between compiler_call and compiler_class */ |
| static int |
| compiler_call_helper(struct compiler *c, |
| int n, /* Args already pushed */ |
| asdl_expr_seq *args, |
| asdl_keyword_seq *keywords) |
| { |
| Py_ssize_t i, nseen, nelts, nkwelts; |
| |
| if (validate_keywords(c, keywords) == -1) { |
| return 0; |
| } |
| |
| nelts = asdl_seq_LEN(args); |
| nkwelts = asdl_seq_LEN(keywords); |
| |
| if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) { |
| goto ex_call; |
| } |
| for (i = 0; i < nelts; i++) { |
| expr_ty elt = asdl_seq_GET(args, i); |
| if (elt->kind == Starred_kind) { |
| goto ex_call; |
| } |
| } |
| for (i = 0; i < nkwelts; i++) { |
| keyword_ty kw = asdl_seq_GET(keywords, i); |
| if (kw->arg == NULL) { |
| goto ex_call; |
| } |
| } |
| |
| /* No * or ** args, so can use faster calling sequence */ |
| for (i = 0; i < nelts; i++) { |
| expr_ty elt = asdl_seq_GET(args, i); |
| assert(elt->kind != Starred_kind); |
| VISIT(c, expr, elt); |
| } |
| if (nkwelts) { |
| VISIT_SEQ(c, keyword, keywords); |
| if (!compiler_call_simple_kw_helper(c, keywords, nkwelts)) { |
| return 0; |
| }; |
| } |
| ADDOP_I(c, PRECALL, n + nelts + nkwelts); |
| ADDOP_I(c, CALL, n + nelts + nkwelts); |
| return 1; |
| |
| ex_call: |
| |
| /* Do positional arguments. */ |
| if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) { |
| VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value); |
| } |
| else if (starunpack_helper(c, args, n, BUILD_LIST, |
| LIST_APPEND, LIST_EXTEND, 1) == 0) { |
| return 0; |
| } |
| /* Then keyword arguments */ |
| if (nkwelts) { |
| /* Has a new dict been pushed */ |
| int have_dict = 0; |
| |
| nseen = 0; /* the number of keyword arguments on the stack following */ |
| for (i = 0; i < nkwelts; i++) { |
| keyword_ty kw = asdl_seq_GET(keywords, i); |
| if (kw->arg == NULL) { |
| /* A keyword argument unpacking. */ |
| if (nseen) { |
| if (!compiler_subkwargs(c, keywords, i - nseen, i)) { |
| return 0; |
| } |
| if (have_dict) { |
| ADDOP_I(c, DICT_MERGE, 1); |
| } |
| have_dict = 1; |
| nseen = 0; |
| } |
| if (!have_dict) { |
| ADDOP_I(c, BUILD_MAP, 0); |
| have_dict = 1; |
| } |
| VISIT(c, expr, kw->value); |
| ADDOP_I(c, DICT_MERGE, 1); |
| } |
| else { |
| nseen++; |
| } |
| } |
| if (nseen) { |
| /* Pack up any trailing keyword arguments. */ |
| if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts)) { |
| return 0; |
| } |
| if (have_dict) { |
| ADDOP_I(c, DICT_MERGE, 1); |
| } |
| have_dict = 1; |
| } |
| assert(have_dict); |
| } |
| ADDOP_I(c, CALL_FUNCTION_EX, nkwelts > 0); |
| return 1; |
| } |
| |
| |
| /* List and set comprehensions and generator expressions work by creating a |
| nested function to perform the actual iteration. This means that the |
| iteration variables don't leak into the current scope. |
| The defined function is called immediately following its definition, with the |
| result of that call being the result of the expression. |
| The LC/SC version returns the populated container, while the GE version is |
| flagged in symtable.c as a generator, so it returns the generator object |
| when the function is called. |
| |
| Possible cleanups: |
| - iterate over the generator sequence instead of using recursion |
| */ |
| |
| |
| static int |
| compiler_comprehension_generator(struct compiler *c, |
| asdl_comprehension_seq *generators, int gen_index, |
| int depth, |
| expr_ty elt, expr_ty val, int type) |
| { |
| comprehension_ty gen; |
| gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); |
| if (gen->is_async) { |
| return compiler_async_comprehension_generator( |
| c, generators, gen_index, depth, elt, val, type); |
| } else { |
| return compiler_sync_comprehension_generator( |
| c, generators, gen_index, depth, elt, val, type); |
| } |
| } |
| |
| static int |
| compiler_sync_comprehension_generator(struct compiler *c, |
| asdl_comprehension_seq *generators, int gen_index, |
| int depth, |
| expr_ty elt, expr_ty val, int type) |
| { |
| /* generate code for the iterator, then each of the ifs, |
| and then write to the element */ |
| |
| comprehension_ty gen; |
| basicblock *start, *anchor, *if_cleanup; |
| Py_ssize_t i, n; |
| |
| start = compiler_new_block(c); |
| if_cleanup = compiler_new_block(c); |
| anchor = compiler_new_block(c); |
| |
| if (start == NULL || if_cleanup == NULL || anchor == NULL) { |
| return 0; |
| } |
| |
| gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); |
| |
| if (gen_index == 0) { |
| /* Receive outermost iter as an implicit argument */ |
| c->u->u_argcount = 1; |
| ADDOP_I(c, LOAD_FAST, 0); |
| } |
| else { |
| /* Sub-iter - calculate on the fly */ |
| /* Fast path for the temporary variable assignment idiom: |
| for y in [f(x)] |
| */ |
| asdl_expr_seq *elts; |
| switch (gen->iter->kind) { |
| case List_kind: |
| elts = gen->iter->v.List.elts; |
| break; |
| case Tuple_kind: |
| elts = gen->iter->v.Tuple.elts; |
| break; |
| default: |
| elts = NULL; |
| } |
| if (asdl_seq_LEN(elts) == 1) { |
| expr_ty elt = asdl_seq_GET(elts, 0); |
| if (elt->kind != Starred_kind) { |
| VISIT(c, expr, elt); |
| start = NULL; |
| } |
| } |
| if (start) { |
| VISIT(c, expr, gen->iter); |
| ADDOP(c, GET_ITER); |
| } |
| } |
| if (start) { |
| depth++; |
| compiler_use_next_block(c, start); |
| ADDOP_JUMP(c, FOR_ITER, anchor); |
| } |
| VISIT(c, expr, gen->target); |
| |
| /* XXX this needs to be cleaned up...a lot! */ |
| n = asdl_seq_LEN(gen->ifs); |
| for (i = 0; i < n; i++) { |
| expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); |
| if (!compiler_jump_if(c, e, if_cleanup, 0)) |
| return 0; |
| } |
| |
| if (++gen_index < asdl_seq_LEN(generators)) |
| if (!compiler_comprehension_generator(c, |
| generators, gen_index, depth, |
| elt, val, type)) |
| return 0; |
| |
| /* only append after the last for generator */ |
| if (gen_index >= asdl_seq_LEN(generators)) { |
| /* comprehension specific code */ |
| switch (type) { |
| case COMP_GENEXP: |
| VISIT(c, expr, elt); |
| ADDOP_YIELD(c); |
| ADDOP(c, POP_TOP); |
| break; |
| case COMP_LISTCOMP: |
| VISIT(c, expr, elt); |
| ADDOP_I(c, LIST_APPEND, depth + 1); |
| break; |
| case COMP_SETCOMP: |
| VISIT(c, expr, elt); |
| ADDOP_I(c, SET_ADD, depth + 1); |
| break; |
| case COMP_DICTCOMP: |
| /* With '{k: v}', k is evaluated before v, so we do |
| the same. */ |
| VISIT(c, expr, elt); |
| VISIT(c, expr, val); |
| ADDOP_I(c, MAP_ADD, depth + 1); |
| break; |
| default: |
| return 0; |
| } |
| } |
| compiler_use_next_block(c, if_cleanup); |
| if (start) { |
| ADDOP_JUMP(c, JUMP, start); |
| compiler_use_next_block(c, anchor); |
| } |
| |
| return 1; |
| } |
| |
| static int |
| compiler_async_comprehension_generator(struct compiler *c, |
| asdl_comprehension_seq *generators, int gen_index, |
| int depth, |
| expr_ty elt, expr_ty val, int type) |
| { |
| comprehension_ty gen; |
| basicblock *start, *if_cleanup, *except; |
| Py_ssize_t i, n; |
| start = compiler_new_block(c); |
| except = compiler_new_block(c); |
| if_cleanup = compiler_new_block(c); |
| |
| if (start == NULL || if_cleanup == NULL || except == NULL) { |
| return 0; |
| } |
| |
| gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); |
| |
| if (gen_index == 0) { |
| /* Receive outermost iter as an implicit argument */ |
| c->u->u_argcount = 1; |
| ADDOP_I(c, LOAD_FAST, 0); |
| } |
| else { |
| /* Sub-iter - calculate on the fly */ |
| VISIT(c, expr, gen->iter); |
| ADDOP(c, GET_AITER); |
| } |
| |
| compiler_use_next_block(c, start); |
| /* Runtime will push a block here, so we need to account for that */ |
| if (!compiler_push_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start, |
| NULL, NULL)) { |
| return 0; |
| } |
| |
| ADDOP_JUMP(c, SETUP_FINALLY, except); |
| ADDOP(c, GET_ANEXT); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| ADDOP(c, POP_BLOCK); |
| VISIT(c, expr, gen->target); |
| |
| n = asdl_seq_LEN(gen->ifs); |
| for (i = 0; i < n; i++) { |
| expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); |
| if (!compiler_jump_if(c, e, if_cleanup, 0)) |
| return 0; |
| } |
| |
| depth++; |
| if (++gen_index < asdl_seq_LEN(generators)) |
| if (!compiler_comprehension_generator(c, |
| generators, gen_index, depth, |
| elt, val, type)) |
| return 0; |
| |
| /* only append after the last for generator */ |
| if (gen_index >= asdl_seq_LEN(generators)) { |
| /* comprehension specific code */ |
| switch (type) { |
| case COMP_GENEXP: |
| VISIT(c, expr, elt); |
| ADDOP_YIELD(c); |
| ADDOP(c, POP_TOP); |
| break; |
| case COMP_LISTCOMP: |
| VISIT(c, expr, elt); |
| ADDOP_I(c, LIST_APPEND, depth + 1); |
| break; |
| case COMP_SETCOMP: |
| VISIT(c, expr, elt); |
| ADDOP_I(c, SET_ADD, depth + 1); |
| break; |
| case COMP_DICTCOMP: |
| /* With '{k: v}', k is evaluated before v, so we do |
| the same. */ |
| VISIT(c, expr, elt); |
| VISIT(c, expr, val); |
| ADDOP_I(c, MAP_ADD, depth + 1); |
| break; |
| default: |
| return 0; |
| } |
| } |
| compiler_use_next_block(c, if_cleanup); |
| ADDOP_JUMP(c, JUMP, start); |
| |
| compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start); |
| |
| compiler_use_next_block(c, except); |
| //UNSET_LOC(c); |
| |
| ADDOP(c, END_ASYNC_FOR); |
| |
| return 1; |
| } |
| |
| static int |
| compiler_comprehension(struct compiler *c, expr_ty e, int type, |
| identifier name, asdl_comprehension_seq *generators, expr_ty elt, |
| expr_ty val) |
| { |
| PyCodeObject *co = NULL; |
| comprehension_ty outermost; |
| PyObject *qualname = NULL; |
| int scope_type = c->u->u_scope_type; |
| int is_async_generator = 0; |
| int is_top_level_await = IS_TOP_LEVEL_AWAIT(c); |
| |
| outermost = (comprehension_ty) asdl_seq_GET(generators, 0); |
| if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION, |
| (void *)e, e->lineno)) |
| { |
| goto error; |
| } |
| SET_LOC(c, e); |
| |
| is_async_generator = c->u->u_ste->ste_coroutine; |
| |
| if (is_async_generator && type != COMP_GENEXP && |
| scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && |
| scope_type != COMPILER_SCOPE_COMPREHENSION && |
| !is_top_level_await) |
| { |
| compiler_error(c, "asynchronous comprehension outside of " |
| "an asynchronous function"); |
| goto error_in_scope; |
| } |
| |
| if (type != COMP_GENEXP) { |
| int op; |
| switch (type) { |
| case COMP_LISTCOMP: |
| op = BUILD_LIST; |
| break; |
| case COMP_SETCOMP: |
| op = BUILD_SET; |
| break; |
| case COMP_DICTCOMP: |
| op = BUILD_MAP; |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "unknown comprehension type %d", type); |
| goto error_in_scope; |
| } |
| |
| ADDOP_I(c, op, 0); |
| } |
| |
| if (!compiler_comprehension_generator(c, generators, 0, 0, elt, |
| val, type)) |
| goto error_in_scope; |
| |
| if (type != COMP_GENEXP) { |
| ADDOP(c, RETURN_VALUE); |
| } |
| |
| co = assemble(c, 1); |
| qualname = c->u->u_qualname; |
| Py_INCREF(qualname); |
| compiler_exit_scope(c); |
| if (is_top_level_await && is_async_generator){ |
| c->u->u_ste->ste_coroutine = 1; |
| } |
| if (co == NULL) |
| goto error; |
| |
| if (!compiler_make_closure(c, co, 0, qualname)) { |
| goto error; |
| } |
| Py_DECREF(qualname); |
| Py_DECREF(co); |
| |
| VISIT(c, expr, outermost->iter); |
| |
| if (outermost->is_async) { |
| ADDOP(c, GET_AITER); |
| } else { |
| ADDOP(c, GET_ITER); |
| } |
| |
| ADDOP_I(c, PRECALL, 0); |
| ADDOP_I(c, CALL, 0); |
| |
| if (is_async_generator && type != COMP_GENEXP) { |
| ADDOP_I(c, GET_AWAITABLE, 0); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| } |
| |
| return 1; |
| error_in_scope: |
| compiler_exit_scope(c); |
| error: |
| Py_XDECREF(qualname); |
| Py_XDECREF(co); |
| return 0; |
| } |
| |
| static int |
| compiler_genexp(struct compiler *c, expr_ty e) |
| { |
| assert(e->kind == GeneratorExp_kind); |
| _Py_DECLARE_STR(anon_genexpr, "<genexpr>"); |
| return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr), |
| e->v.GeneratorExp.generators, |
| e->v.GeneratorExp.elt, NULL); |
| } |
| |
| static int |
| compiler_listcomp(struct compiler *c, expr_ty e) |
| { |
| assert(e->kind == ListComp_kind); |
| _Py_DECLARE_STR(anon_listcomp, "<listcomp>"); |
| return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp), |
| e->v.ListComp.generators, |
| e->v.ListComp.elt, NULL); |
| } |
| |
| static int |
| compiler_setcomp(struct compiler *c, expr_ty e) |
| { |
| assert(e->kind == SetComp_kind); |
| _Py_DECLARE_STR(anon_setcomp, "<setcomp>"); |
| return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp), |
| e->v.SetComp.generators, |
| e->v.SetComp.elt, NULL); |
| } |
| |
| |
| static int |
| compiler_dictcomp(struct compiler *c, expr_ty e) |
| { |
| assert(e->kind == DictComp_kind); |
| _Py_DECLARE_STR(anon_dictcomp, "<dictcomp>"); |
| return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp), |
| e->v.DictComp.generators, |
| e->v.DictComp.key, e->v.DictComp.value); |
| } |
| |
| |
| static int |
| compiler_visit_keyword(struct compiler *c, keyword_ty k) |
| { |
| VISIT(c, expr, k->value); |
| return 1; |
| } |
| |
| |
| static int |
| compiler_with_except_finish(struct compiler *c, basicblock * cleanup) { |
| UNSET_LOC(c); |
| basicblock *exit; |
| exit = compiler_new_block(c); |
| if (exit == NULL) |
| return 0; |
| ADDOP_JUMP(c, POP_JUMP_IF_TRUE, exit); |
| ADDOP_I(c, RERAISE, 2); |
| compiler_use_next_block(c, cleanup); |
| POP_EXCEPT_AND_RERAISE(c); |
| compiler_use_next_block(c, exit); |
| ADDOP(c, POP_TOP); /* exc_value */ |
| ADDOP(c, POP_BLOCK); |
| ADDOP(c, POP_EXCEPT); |
| ADDOP(c, POP_TOP); |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| /* |
| Implements the async with statement. |
| |
| The semantics outlined in that PEP are as follows: |
| |
| async with EXPR as VAR: |
| BLOCK |
| |
| It is implemented roughly as: |
| |
| context = EXPR |
| exit = context.__aexit__ # not calling it |
| value = await context.__aenter__() |
| try: |
| VAR = value # if VAR present in the syntax |
| BLOCK |
| finally: |
| if an exception was raised: |
| exc = copy of (exception, instance, traceback) |
| else: |
| exc = (None, None, None) |
| if not (await exit(*exc)): |
| raise |
| */ |
| static int |
| compiler_async_with(struct compiler *c, stmt_ty s, int pos) |
| { |
| basicblock *block, *final, *exit, *cleanup; |
| withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos); |
| |
| assert(s->kind == AsyncWith_kind); |
| if (IS_TOP_LEVEL_AWAIT(c)){ |
| c->u->u_ste->ste_coroutine = 1; |
| } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){ |
| return compiler_error(c, "'async with' outside async function"); |
| } |
| |
| block = compiler_new_block(c); |
| final = compiler_new_block(c); |
| exit = compiler_new_block(c); |
| cleanup = compiler_new_block(c); |
| if (!block || !final || !exit || !cleanup) |
| return 0; |
| |
| /* Evaluate EXPR */ |
| VISIT(c, expr, item->context_expr); |
| |
| ADDOP(c, BEFORE_ASYNC_WITH); |
| ADDOP_I(c, GET_AWAITABLE, 1); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| |
| ADDOP_JUMP(c, SETUP_WITH, final); |
| |
| /* SETUP_WITH pushes a finally block. */ |
| compiler_use_next_block(c, block); |
| if (!compiler_push_fblock(c, ASYNC_WITH, block, final, s)) { |
| return 0; |
| } |
| |
| if (item->optional_vars) { |
| VISIT(c, expr, item->optional_vars); |
| } |
| else { |
| /* Discard result from context.__aenter__() */ |
| ADDOP(c, POP_TOP); |
| } |
| |
| pos++; |
| if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) |
| /* BLOCK code */ |
| VISIT_SEQ(c, stmt, s->v.AsyncWith.body) |
| else if (!compiler_async_with(c, s, pos)) |
| return 0; |
| |
| compiler_pop_fblock(c, ASYNC_WITH, block); |
| ADDOP(c, POP_BLOCK); |
| /* End of body; start the cleanup */ |
| |
| /* For successful outcome: |
| * call __exit__(None, None, None) |
| */ |
| SET_LOC(c, s); |
| if(!compiler_call_exit_with_nones(c)) |
| return 0; |
| ADDOP_I(c, GET_AWAITABLE, 2); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| |
| ADDOP(c, POP_TOP); |
| |
| ADDOP_JUMP(c, JUMP, exit); |
| |
| /* For exceptional outcome: */ |
| compiler_use_next_block(c, final); |
| |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); |
| ADDOP(c, PUSH_EXC_INFO); |
| ADDOP(c, WITH_EXCEPT_START); |
| ADDOP_I(c, GET_AWAITABLE, 2); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| compiler_with_except_finish(c, cleanup); |
| |
| compiler_use_next_block(c, exit); |
| return 1; |
| } |
| |
| |
| /* |
| Implements the with statement from PEP 343. |
| with EXPR as VAR: |
| BLOCK |
| is implemented as: |
| <code for EXPR> |
| SETUP_WITH E |
| <code to store to VAR> or POP_TOP |
| <code for BLOCK> |
| LOAD_CONST (None, None, None) |
| CALL_FUNCTION_EX 0 |
| JUMP EXIT |
| E: WITH_EXCEPT_START (calls EXPR.__exit__) |
| POP_JUMP_IF_TRUE T: |
| RERAISE |
| T: POP_TOP (remove exception from stack) |
| POP_EXCEPT |
| POP_TOP |
| EXIT: |
| */ |
| |
| static int |
| compiler_with(struct compiler *c, stmt_ty s, int pos) |
| { |
| basicblock *block, *final, *exit, *cleanup; |
| withitem_ty item = asdl_seq_GET(s->v.With.items, pos); |
| |
| assert(s->kind == With_kind); |
| |
| block = compiler_new_block(c); |
| final = compiler_new_block(c); |
| exit = compiler_new_block(c); |
| cleanup = compiler_new_block(c); |
| if (!block || !final || !exit || !cleanup) |
| return 0; |
| |
| /* Evaluate EXPR */ |
| VISIT(c, expr, item->context_expr); |
| /* Will push bound __exit__ */ |
| ADDOP(c, BEFORE_WITH); |
| ADDOP_JUMP(c, SETUP_WITH, final); |
| |
| /* SETUP_WITH pushes a finally block. */ |
| compiler_use_next_block(c, block); |
| if (!compiler_push_fblock(c, WITH, block, final, s)) { |
| return 0; |
| } |
| |
| if (item->optional_vars) { |
| VISIT(c, expr, item->optional_vars); |
| } |
| else { |
| /* Discard result from context.__enter__() */ |
| ADDOP(c, POP_TOP); |
| } |
| |
| pos++; |
| if (pos == asdl_seq_LEN(s->v.With.items)) |
| /* BLOCK code */ |
| VISIT_SEQ(c, stmt, s->v.With.body) |
| else if (!compiler_with(c, s, pos)) |
| return 0; |
| |
| |
| /* Mark all following code as artificial */ |
| UNSET_LOC(c); |
| ADDOP(c, POP_BLOCK); |
| compiler_pop_fblock(c, WITH, block); |
| |
| /* End of body; start the cleanup. */ |
| |
| /* For successful outcome: |
| * call __exit__(None, None, None) |
| */ |
| SET_LOC(c, s); |
| if (!compiler_call_exit_with_nones(c)) |
| return 0; |
| ADDOP(c, POP_TOP); |
| ADDOP_JUMP(c, JUMP, exit); |
| |
| /* For exceptional outcome: */ |
| compiler_use_next_block(c, final); |
| |
| ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); |
| ADDOP(c, PUSH_EXC_INFO); |
| ADDOP(c, WITH_EXCEPT_START); |
| compiler_with_except_finish(c, cleanup); |
| |
| compiler_use_next_block(c, exit); |
| return 1; |
| } |
| |
| static int |
| compiler_visit_expr1(struct compiler *c, expr_ty e) |
| { |
| switch (e->kind) { |
| case NamedExpr_kind: |
| VISIT(c, expr, e->v.NamedExpr.value); |
| ADDOP_I(c, COPY, 1); |
| VISIT(c, expr, e->v.NamedExpr.target); |
| break; |
| case BoolOp_kind: |
| return compiler_boolop(c, e); |
| case BinOp_kind: |
| VISIT(c, expr, e->v.BinOp.left); |
| VISIT(c, expr, e->v.BinOp.right); |
| ADDOP_BINARY(c, e->v.BinOp.op); |
| break; |
| case UnaryOp_kind: |
| VISIT(c, expr, e->v.UnaryOp.operand); |
| ADDOP(c, unaryop(e->v.UnaryOp.op)); |
| break; |
| case Lambda_kind: |
| return compiler_lambda(c, e); |
| case IfExp_kind: |
| return compiler_ifexp(c, e); |
| case Dict_kind: |
| return compiler_dict(c, e); |
| case Set_kind: |
| return compiler_set(c, e); |
| case GeneratorExp_kind: |
| return compiler_genexp(c, e); |
| case ListComp_kind: |
| return compiler_listcomp(c, e); |
| case SetComp_kind: |
| return compiler_setcomp(c, e); |
| case DictComp_kind: |
| return compiler_dictcomp(c, e); |
| case Yield_kind: |
| if (c->u->u_ste->ste_type != FunctionBlock) |
| return compiler_error(c, "'yield' outside function"); |
| if (e->v.Yield.value) { |
| VISIT(c, expr, e->v.Yield.value); |
| } |
| else { |
| ADDOP_LOAD_CONST(c, Py_None); |
| } |
| ADDOP_YIELD(c); |
| break; |
| case YieldFrom_kind: |
| if (c->u->u_ste->ste_type != FunctionBlock) |
| return compiler_error(c, "'yield' outside function"); |
| |
| if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) |
| return compiler_error(c, "'yield from' inside async function"); |
| |
| VISIT(c, expr, e->v.YieldFrom.value); |
| ADDOP(c, GET_YIELD_FROM_ITER); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 0); |
| break; |
| case Await_kind: |
| if (!IS_TOP_LEVEL_AWAIT(c)){ |
| if (c->u->u_ste->ste_type != FunctionBlock){ |
| return compiler_error(c, "'await' outside function"); |
| } |
| |
| if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && |
| c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){ |
| return compiler_error(c, "'await' outside async function"); |
| } |
| } |
| |
| VISIT(c, expr, e->v.Await.value); |
| ADDOP_I(c, GET_AWAITABLE, 0); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADD_YIELD_FROM(c, 1); |
| break; |
| case Compare_kind: |
| return compiler_compare(c, e); |
| case Call_kind: |
| return compiler_call(c, e); |
| case Constant_kind: |
| ADDOP_LOAD_CONST(c, e->v.Constant.value); |
| break; |
| case JoinedStr_kind: |
| return compiler_joined_str(c, e); |
| case FormattedValue_kind: |
| return compiler_formatted_value(c, e); |
| /* The following exprs can be assignment targets. */ |
| case Attribute_kind: |
| VISIT(c, expr, e->v.Attribute.value); |
| update_start_location_to_match_attr(c, e); |
| switch (e->v.Attribute.ctx) { |
| case Load: |
| { |
| ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); |
| break; |
| } |
| case Store: |
| if (forbidden_name(c, e->v.Attribute.attr, e->v.Attribute.ctx)) { |
| return 0; |
| } |
| ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); |
| break; |
| case Del: |
| ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names); |
| break; |
| } |
| break; |
| case Subscript_kind: |
| return compiler_subscript(c, e); |
| case Starred_kind: |
| switch (e->v.Starred.ctx) { |
| case Store: |
| /* In all legitimate cases, the Starred node was already replaced |
| * by compiler_list/compiler_tuple. XXX: is that okay? */ |
| return compiler_error(c, |
| "starred assignment target must be in a list or tuple"); |
| default: |
| return compiler_error(c, |
| "can't use starred expression here"); |
| } |
| break; |
| case Slice_kind: |
| return compiler_slice(c, e); |
| case Name_kind: |
| return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx); |
| /* child nodes of List and Tuple will have expr_context set */ |
| case List_kind: |
| return compiler_list(c, e); |
| case Tuple_kind: |
| return compiler_tuple(c, e); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_visit_expr(struct compiler *c, expr_ty e) |
| { |
| int old_lineno = c->u->u_lineno; |
| int old_end_lineno = c->u->u_end_lineno; |
| int old_col_offset = c->u->u_col_offset; |
| int old_end_col_offset = c->u->u_end_col_offset; |
| SET_LOC(c, e); |
| int res = compiler_visit_expr1(c, e); |
| c->u->u_lineno = old_lineno; |
| c->u->u_end_lineno = old_end_lineno; |
| c->u->u_col_offset = old_col_offset; |
| c->u->u_end_col_offset = old_end_col_offset; |
| return res; |
| } |
| |
| static int |
| compiler_augassign(struct compiler *c, stmt_ty s) |
| { |
| assert(s->kind == AugAssign_kind); |
| expr_ty e = s->v.AugAssign.target; |
| |
| int old_lineno = c->u->u_lineno; |
| int old_end_lineno = c->u->u_end_lineno; |
| int old_col_offset = c->u->u_col_offset; |
| int old_end_col_offset = c->u->u_end_col_offset; |
| SET_LOC(c, e); |
| |
| switch (e->kind) { |
| case Attribute_kind: |
| VISIT(c, expr, e->v.Attribute.value); |
| ADDOP_I(c, COPY, 1); |
| update_start_location_to_match_attr(c, e); |
| ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); |
| break; |
| case Subscript_kind: |
| VISIT(c, expr, e->v.Subscript.value); |
| VISIT(c, expr, e->v.Subscript.slice); |
| ADDOP_I(c, COPY, 2); |
| ADDOP_I(c, COPY, 2); |
| ADDOP(c, BINARY_SUBSCR); |
| break; |
| case Name_kind: |
| if (!compiler_nameop(c, e->v.Name.id, Load)) |
| return 0; |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "invalid node type (%d) for augmented assignment", |
| e->kind); |
| return 0; |
| } |
| |
| c->u->u_lineno = old_lineno; |
| c->u->u_end_lineno = old_end_lineno; |
| c->u->u_col_offset = old_col_offset; |
| c->u->u_end_col_offset = old_end_col_offset; |
| |
| VISIT(c, expr, s->v.AugAssign.value); |
| ADDOP_INPLACE(c, s->v.AugAssign.op); |
| |
| SET_LOC(c, e); |
| |
| switch (e->kind) { |
| case Attribute_kind: |
| update_start_location_to_match_attr(c, e); |
| ADDOP_I(c, SWAP, 2); |
| ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); |
| break; |
| case Subscript_kind: |
| ADDOP_I(c, SWAP, 3); |
| ADDOP_I(c, SWAP, 2); |
| ADDOP(c, STORE_SUBSCR); |
| break; |
| case Name_kind: |
| return compiler_nameop(c, e->v.Name.id, Store); |
| default: |
| Py_UNREACHABLE(); |
| } |
| return 1; |
| } |
| |
| static int |
| check_ann_expr(struct compiler *c, expr_ty e) |
| { |
| VISIT(c, expr, e); |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| static int |
| check_annotation(struct compiler *c, stmt_ty s) |
| { |
| /* Annotations of complex targets does not produce anything |
| under annotations future */ |
| if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { |
| return 1; |
| } |
| |
| /* Annotations are only evaluated in a module or class. */ |
| if (c->u->u_scope_type == COMPILER_SCOPE_MODULE || |
| c->u->u_scope_type == COMPILER_SCOPE_CLASS) { |
| return check_ann_expr(c, s->v.AnnAssign.annotation); |
| } |
| return 1; |
| } |
| |
| static int |
| check_ann_subscr(struct compiler *c, expr_ty e) |
| { |
| /* We check that everything in a subscript is defined at runtime. */ |
| switch (e->kind) { |
| case Slice_kind: |
| if (e->v.Slice.lower && !check_ann_expr(c, e->v.Slice.lower)) { |
| return 0; |
| } |
| if (e->v.Slice.upper && !check_ann_expr(c, e->v.Slice.upper)) { |
| return 0; |
| } |
| if (e->v.Slice.step && !check_ann_expr(c, e->v.Slice.step)) { |
| return 0; |
| } |
| return 1; |
| case Tuple_kind: { |
| /* extended slice */ |
| asdl_expr_seq *elts = e->v.Tuple.elts; |
| Py_ssize_t i, n = asdl_seq_LEN(elts); |
| for (i = 0; i < n; i++) { |
| if (!check_ann_subscr(c, asdl_seq_GET(elts, i))) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| default: |
| return check_ann_expr(c, e); |
| } |
| } |
| |
| static int |
| compiler_annassign(struct compiler *c, stmt_ty s) |
| { |
| expr_ty targ = s->v.AnnAssign.target; |
| PyObject* mangled; |
| |
| assert(s->kind == AnnAssign_kind); |
| |
| /* We perform the actual assignment first. */ |
| if (s->v.AnnAssign.value) { |
| VISIT(c, expr, s->v.AnnAssign.value); |
| VISIT(c, expr, targ); |
| } |
| switch (targ->kind) { |
| case Name_kind: |
| if (forbidden_name(c, targ->v.Name.id, Store)) |
| return 0; |
| /* If we have a simple name in a module or class, store annotation. */ |
| if (s->v.AnnAssign.simple && |
| (c->u->u_scope_type == COMPILER_SCOPE_MODULE || |
| c->u->u_scope_type == COMPILER_SCOPE_CLASS)) { |
| if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { |
| VISIT(c, annexpr, s->v.AnnAssign.annotation) |
| } |
| else { |
| VISIT(c, expr, s->v.AnnAssign.annotation); |
| } |
| ADDOP_NAME(c, LOAD_NAME, &_Py_ID(__annotations__), names); |
| mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id); |
| ADDOP_LOAD_CONST_NEW(c, mangled); |
| ADDOP(c, STORE_SUBSCR); |
| } |
| break; |
| case Attribute_kind: |
| if (forbidden_name(c, targ->v.Attribute.attr, Store)) |
| return 0; |
| if (!s->v.AnnAssign.value && |
| !check_ann_expr(c, targ->v.Attribute.value)) { |
| return 0; |
| } |
| break; |
| case Subscript_kind: |
| if (!s->v.AnnAssign.value && |
| (!check_ann_expr(c, targ->v.Subscript.value) || |
| !check_ann_subscr(c, targ->v.Subscript.slice))) { |
| return 0; |
| } |
| break; |
| default: |
| PyErr_Format(PyExc_SystemError, |
| "invalid node type (%d) for annotated assignment", |
| targ->kind); |
| return 0; |
| } |
| /* Annotation is evaluated last. */ |
| if (!s->v.AnnAssign.simple && !check_annotation(c, s)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Raises a SyntaxError and returns 0. |
| If something goes wrong, a different exception may be raised. |
| */ |
| |
| static int |
| compiler_error(struct compiler *c, const char *format, ...) |
| { |
| va_list vargs; |
| #ifdef HAVE_STDARG_PROTOTYPES |
| va_start(vargs, format); |
| #else |
| va_start(vargs); |
| #endif |
| PyObject *msg = PyUnicode_FromFormatV(format, vargs); |
| va_end(vargs); |
| if (msg == NULL) { |
| return 0; |
| } |
| PyObject *loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno); |
| if (loc == NULL) { |
| Py_INCREF(Py_None); |
| loc = Py_None; |
| } |
| PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename, |
| c->u->u_lineno, c->u->u_col_offset + 1, loc, |
| c->u->u_end_lineno, c->u->u_end_col_offset + 1); |
| Py_DECREF(msg); |
| if (args == NULL) { |
| goto exit; |
| } |
| PyErr_SetObject(PyExc_SyntaxError, args); |
| exit: |
| Py_DECREF(loc); |
| Py_XDECREF(args); |
| return 0; |
| } |
| |
| /* Emits a SyntaxWarning and returns 1 on success. |
| If a SyntaxWarning raised as error, replaces it with a SyntaxError |
| and returns 0. |
| */ |
| static int |
| compiler_warn(struct compiler *c, const char *format, ...) |
| { |
| va_list vargs; |
| #ifdef HAVE_STDARG_PROTOTYPES |
| va_start(vargs, format); |
| #else |
| va_start(vargs); |
| #endif |
| PyObject *msg = PyUnicode_FromFormatV(format, vargs); |
| va_end(vargs); |
| if (msg == NULL) { |
| return 0; |
| } |
| if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename, |
| c->u->u_lineno, NULL, NULL) < 0) |
| { |
| if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) { |
| /* Replace the SyntaxWarning exception with a SyntaxError |
| to get a more accurate error report */ |
| PyErr_Clear(); |
| assert(PyUnicode_AsUTF8(msg) != NULL); |
| compiler_error(c, PyUnicode_AsUTF8(msg)); |
| } |
| Py_DECREF(msg); |
| return 0; |
| } |
| Py_DECREF(msg); |
| return 1; |
| } |
| |
| static int |
| compiler_subscript(struct compiler *c, expr_ty e) |
| { |
| expr_context_ty ctx = e->v.Subscript.ctx; |
| int op = 0; |
| |
| if (ctx == Load) { |
| if (!check_subscripter(c, e->v.Subscript.value)) { |
| return 0; |
| } |
| if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) { |
| return 0; |
| } |
| } |
| |
| switch (ctx) { |
| case Load: op = BINARY_SUBSCR; break; |
| case Store: op = STORE_SUBSCR; break; |
| case Del: op = DELETE_SUBSCR; break; |
| } |
| assert(op); |
| VISIT(c, expr, e->v.Subscript.value); |
| VISIT(c, expr, e->v.Subscript.slice); |
| ADDOP(c, op); |
| return 1; |
| } |
| |
| static int |
| compiler_slice(struct compiler *c, expr_ty s) |
| { |
| int n = 2; |
| assert(s->kind == Slice_kind); |
| |
| /* only handles the cases where BUILD_SLICE is emitted */ |
| if (s->v.Slice.lower) { |
| VISIT(c, expr, s->v.Slice.lower); |
| } |
| else { |
| ADDOP_LOAD_CONST(c, Py_None); |
| } |
| |
| if (s->v.Slice.upper) { |
| VISIT(c, expr, s->v.Slice.upper); |
| } |
| else { |
| ADDOP_LOAD_CONST(c, Py_None); |
| } |
| |
| if (s->v.Slice.step) { |
| n++; |
| VISIT(c, expr, s->v.Slice.step); |
| } |
| ADDOP_I(c, BUILD_SLICE, n); |
| return 1; |
| } |
| |
| |
| // PEP 634: Structural Pattern Matching |
| |
| // To keep things simple, all compiler_pattern_* and pattern_helper_* routines |
| // follow the convention of consuming TOS (the subject for the given pattern) |
| // and calling jump_to_fail_pop on failure (no match). |
| |
| // When calling into these routines, it's important that pc->on_top be kept |
| // updated to reflect the current number of items that we are using on the top |
| // of the stack: they will be popped on failure, and any name captures will be |
| // stored *underneath* them on success. This lets us defer all names stores |
| // until the *entire* pattern matches. |
| |
| #define WILDCARD_CHECK(N) \ |
| ((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name) |
| |
| #define WILDCARD_STAR_CHECK(N) \ |
| ((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name) |
| |
| // Limit permitted subexpressions, even if the parser & AST validator let them through |
| #define MATCH_VALUE_EXPR(N) \ |
| ((N)->kind == Constant_kind || (N)->kind == Attribute_kind) |
| |
| // Allocate or resize pc->fail_pop to allow for n items to be popped on failure. |
| static int |
| ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n) |
| { |
| Py_ssize_t size = n + 1; |
| if (size <= pc->fail_pop_size) { |
| return 1; |
| } |
| Py_ssize_t needed = sizeof(basicblock*) * size; |
| basicblock **resized = PyObject_Realloc(pc->fail_pop, needed); |
| if (resized == NULL) { |
| PyErr_NoMemory(); |
| return 0; |
| } |
| pc->fail_pop = resized; |
| while (pc->fail_pop_size < size) { |
| basicblock *new_block; |
| RETURN_IF_FALSE(new_block = compiler_new_block(c)); |
| pc->fail_pop[pc->fail_pop_size++] = new_block; |
| } |
| return 1; |
| } |
| |
| // Use op to jump to the correct fail_pop block. |
| static int |
| jump_to_fail_pop(struct compiler *c, pattern_context *pc, int op) |
| { |
| // Pop any items on the top of the stack, plus any objects we were going to |
| // capture on success: |
| Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores); |
| RETURN_IF_FALSE(ensure_fail_pop(c, pc, pops)); |
| ADDOP_JUMP(c, op, pc->fail_pop[pops]); |
| return 1; |
| } |
| |
| // Build all of the fail_pop blocks and reset fail_pop. |
| static int |
| emit_and_reset_fail_pop(struct compiler *c, pattern_context *pc) |
| { |
| if (!pc->fail_pop_size) { |
| assert(pc->fail_pop == NULL); |
| return 1; |
| } |
| while (--pc->fail_pop_size) { |
| compiler_use_next_block(c, pc->fail_pop[pc->fail_pop_size]); |
| if (!compiler_addop(c, POP_TOP)) { |
| pc->fail_pop_size = 0; |
| PyObject_Free(pc->fail_pop); |
| pc->fail_pop = NULL; |
| return 0; |
| } |
| } |
| compiler_use_next_block(c, pc->fail_pop[0]); |
| PyObject_Free(pc->fail_pop); |
| pc->fail_pop = NULL; |
| return 1; |
| } |
| |
| static int |
| compiler_error_duplicate_store(struct compiler *c, identifier n) |
| { |
| return compiler_error(c, "multiple assignments to name %R in pattern", n); |
| } |
| |
| // Duplicate the effect of 3.10's ROT_* instructions using SWAPs. |
| static int |
| pattern_helper_rotate(struct compiler *c, Py_ssize_t count) |
| { |
| while (1 < count) { |
| ADDOP_I(c, SWAP, count--); |
| } |
| return 1; |
| } |
| |
| static int |
| pattern_helper_store_name(struct compiler *c, identifier n, pattern_context *pc) |
| { |
| if (n == NULL) { |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| if (forbidden_name(c, n, Store)) { |
| return 0; |
| } |
| // Can't assign to the same name twice: |
| int duplicate = PySequence_Contains(pc->stores, n); |
| if (duplicate < 0) { |
| return 0; |
| } |
| if (duplicate) { |
| return compiler_error_duplicate_store(c, n); |
| } |
| // Rotate this object underneath any items we need to preserve: |
| Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1; |
| RETURN_IF_FALSE(pattern_helper_rotate(c, rotations)); |
| return !PyList_Append(pc->stores, n); |
| } |
| |
| |
| static int |
| pattern_unpack_helper(struct compiler *c, asdl_pattern_seq *elts) |
| { |
| Py_ssize_t n = asdl_seq_LEN(elts); |
| int seen_star = 0; |
| for (Py_ssize_t i = 0; i < n; i++) { |
| pattern_ty elt = asdl_seq_GET(elts, i); |
| if (elt->kind == MatchStar_kind && !seen_star) { |
| if ((i >= (1 << 8)) || |
| (n-i-1 >= (INT_MAX >> 8))) |
| return compiler_error(c, |
| "too many expressions in " |
| "star-unpacking sequence pattern"); |
| ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8))); |
| seen_star = 1; |
| } |
| else if (elt->kind == MatchStar_kind) { |
| return compiler_error(c, |
| "multiple starred expressions in sequence pattern"); |
| } |
| } |
| if (!seen_star) { |
| ADDOP_I(c, UNPACK_SEQUENCE, n); |
| } |
| return 1; |
| } |
| |
| static int |
| pattern_helper_sequence_unpack(struct compiler *c, asdl_pattern_seq *patterns, |
| Py_ssize_t star, pattern_context *pc) |
| { |
| RETURN_IF_FALSE(pattern_unpack_helper(c, patterns)); |
| Py_ssize_t size = asdl_seq_LEN(patterns); |
| // We've now got a bunch of new subjects on the stack. They need to remain |
| // there after each subpattern match: |
| pc->on_top += size; |
| for (Py_ssize_t i = 0; i < size; i++) { |
| // One less item to keep track of each time we loop through: |
| pc->on_top--; |
| pattern_ty pattern = asdl_seq_GET(patterns, i); |
| RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); |
| } |
| return 1; |
| } |
| |
| // Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of |
| // UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a |
| // starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc. |
| static int |
| pattern_helper_sequence_subscr(struct compiler *c, asdl_pattern_seq *patterns, |
| Py_ssize_t star, pattern_context *pc) |
| { |
| // We need to keep the subject around for extracting elements: |
| pc->on_top++; |
| Py_ssize_t size = asdl_seq_LEN(patterns); |
| for (Py_ssize_t i = 0; i < size; i++) { |
| pattern_ty pattern = asdl_seq_GET(patterns, i); |
| if (WILDCARD_CHECK(pattern)) { |
| continue; |
| } |
| if (i == star) { |
| assert(WILDCARD_STAR_CHECK(pattern)); |
| continue; |
| } |
| ADDOP_I(c, COPY, 1); |
| if (i < star) { |
| ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(i)); |
| } |
| else { |
| // The subject may not support negative indexing! Compute a |
| // nonnegative index: |
| ADDOP(c, GET_LEN); |
| ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - i)); |
| ADDOP_BINARY(c, Sub); |
| } |
| ADDOP(c, BINARY_SUBSCR); |
| RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); |
| } |
| // Pop the subject, we're done with it: |
| pc->on_top--; |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| |
| // Like compiler_pattern, but turn off checks for irrefutability. |
| static int |
| compiler_pattern_subpattern(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| int allow_irrefutable = pc->allow_irrefutable; |
| pc->allow_irrefutable = 1; |
| RETURN_IF_FALSE(compiler_pattern(c, p, pc)); |
| pc->allow_irrefutable = allow_irrefutable; |
| return 1; |
| } |
| |
| static int |
| compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchAs_kind); |
| if (p->v.MatchAs.pattern == NULL) { |
| // An irrefutable match: |
| if (!pc->allow_irrefutable) { |
| if (p->v.MatchAs.name) { |
| const char *e = "name capture %R makes remaining patterns unreachable"; |
| return compiler_error(c, e, p->v.MatchAs.name); |
| } |
| const char *e = "wildcard makes remaining patterns unreachable"; |
| return compiler_error(c, e); |
| } |
| return pattern_helper_store_name(c, p->v.MatchAs.name, pc); |
| } |
| // Need to make a copy for (possibly) storing later: |
| pc->on_top++; |
| ADDOP_I(c, COPY, 1); |
| RETURN_IF_FALSE(compiler_pattern(c, p->v.MatchAs.pattern, pc)); |
| // Success! Store it: |
| pc->on_top--; |
| RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchAs.name, pc)); |
| return 1; |
| } |
| |
| static int |
| compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchStar_kind); |
| RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchStar.name, pc)); |
| return 1; |
| } |
| |
| static int |
| validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns) |
| { |
| // Any errors will point to the pattern rather than the arg name as the |
| // parser is only supplying identifiers rather than Name or keyword nodes |
| Py_ssize_t nattrs = asdl_seq_LEN(attrs); |
| for (Py_ssize_t i = 0; i < nattrs; i++) { |
| identifier attr = ((identifier)asdl_seq_GET(attrs, i)); |
| SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, i))); |
| if (forbidden_name(c, attr, Store)) { |
| return -1; |
| } |
| for (Py_ssize_t j = i + 1; j < nattrs; j++) { |
| identifier other = ((identifier)asdl_seq_GET(attrs, j)); |
| if (!PyUnicode_Compare(attr, other)) { |
| SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, j))); |
| compiler_error(c, "attribute name repeated in class pattern: %U", attr); |
| return -1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchClass_kind); |
| asdl_pattern_seq *patterns = p->v.MatchClass.patterns; |
| asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs; |
| asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns; |
| Py_ssize_t nargs = asdl_seq_LEN(patterns); |
| Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs); |
| Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns); |
| if (nattrs != nkwd_patterns) { |
| // AST validator shouldn't let this happen, but if it does, |
| // just fail, don't crash out of the interpreter |
| const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern"; |
| return compiler_error(c, e, nattrs, nkwd_patterns); |
| } |
| if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) { |
| const char *e = "too many sub-patterns in class pattern %R"; |
| return compiler_error(c, e, p->v.MatchClass.cls); |
| } |
| if (nattrs) { |
| RETURN_IF_FALSE(!validate_kwd_attrs(c, kwd_attrs, kwd_patterns)); |
| SET_LOC(c, p); |
| } |
| VISIT(c, expr, p->v.MatchClass.cls); |
| PyObject *attr_names; |
| RETURN_IF_FALSE(attr_names = PyTuple_New(nattrs)); |
| Py_ssize_t i; |
| for (i = 0; i < nattrs; i++) { |
| PyObject *name = asdl_seq_GET(kwd_attrs, i); |
| Py_INCREF(name); |
| PyTuple_SET_ITEM(attr_names, i, name); |
| } |
| ADDOP_LOAD_CONST_NEW(c, attr_names); |
| ADDOP_I(c, MATCH_CLASS, nargs); |
| ADDOP_I(c, COPY, 1); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP_I(c, IS_OP, 1); |
| // TOS is now a tuple of (nargs + nattrs) attributes (or None): |
| pc->on_top++; |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| ADDOP_I(c, UNPACK_SEQUENCE, nargs + nattrs); |
| pc->on_top += nargs + nattrs - 1; |
| for (i = 0; i < nargs + nattrs; i++) { |
| pc->on_top--; |
| pattern_ty pattern; |
| if (i < nargs) { |
| // Positional: |
| pattern = asdl_seq_GET(patterns, i); |
| } |
| else { |
| // Keyword: |
| pattern = asdl_seq_GET(kwd_patterns, i - nargs); |
| } |
| if (WILDCARD_CHECK(pattern)) { |
| ADDOP(c, POP_TOP); |
| continue; |
| } |
| RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); |
| } |
| // Success! Pop the tuple of attributes: |
| return 1; |
| } |
| |
| static int |
| compiler_pattern_mapping(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchMapping_kind); |
| asdl_expr_seq *keys = p->v.MatchMapping.keys; |
| asdl_pattern_seq *patterns = p->v.MatchMapping.patterns; |
| Py_ssize_t size = asdl_seq_LEN(keys); |
| Py_ssize_t npatterns = asdl_seq_LEN(patterns); |
| if (size != npatterns) { |
| // AST validator shouldn't let this happen, but if it does, |
| // just fail, don't crash out of the interpreter |
| const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern"; |
| return compiler_error(c, e, size, npatterns); |
| } |
| // We have a double-star target if "rest" is set |
| PyObject *star_target = p->v.MatchMapping.rest; |
| // We need to keep the subject on top during the mapping and length checks: |
| pc->on_top++; |
| ADDOP(c, MATCH_MAPPING); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| if (!size && !star_target) { |
| // If the pattern is just "{}", we're done! Pop the subject: |
| pc->on_top--; |
| ADDOP(c, POP_TOP); |
| return 1; |
| } |
| if (size) { |
| // If the pattern has any keys in it, perform a length check: |
| ADDOP(c, GET_LEN); |
| ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size)); |
| ADDOP_COMPARE(c, GtE); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| } |
| if (INT_MAX < size - 1) { |
| return compiler_error(c, "too many sub-patterns in mapping pattern"); |
| } |
| // Collect all of the keys into a tuple for MATCH_KEYS and |
| // **rest. They can either be dotted names or literals: |
| |
| // Maintaining a set of Constant_kind kind keys allows us to raise a |
| // SyntaxError in the case of duplicates. |
| PyObject *seen = PySet_New(NULL); |
| if (seen == NULL) { |
| return 0; |
| } |
| |
| // NOTE: goto error on failure in the loop below to avoid leaking `seen` |
| for (Py_ssize_t i = 0; i < size; i++) { |
| expr_ty key = asdl_seq_GET(keys, i); |
| if (key == NULL) { |
| const char *e = "can't use NULL keys in MatchMapping " |
| "(set 'rest' parameter instead)"; |
| SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, i))); |
| compiler_error(c, e); |
| goto error; |
| } |
| |
| if (key->kind == Constant_kind) { |
| int in_seen = PySet_Contains(seen, key->v.Constant.value); |
| if (in_seen < 0) { |
| goto error; |
| } |
| if (in_seen) { |
| const char *e = "mapping pattern checks duplicate key (%R)"; |
| compiler_error(c, e, key->v.Constant.value); |
| goto error; |
| } |
| if (PySet_Add(seen, key->v.Constant.value)) { |
| goto error; |
| } |
| } |
| |
| else if (key->kind != Attribute_kind) { |
| const char *e = "mapping pattern keys may only match literals and attribute lookups"; |
| compiler_error(c, e); |
| goto error; |
| } |
| if (!compiler_visit_expr(c, key)) { |
| goto error; |
| } |
| } |
| |
| // all keys have been checked; there are no duplicates |
| Py_DECREF(seen); |
| |
| ADDOP_I(c, BUILD_TUPLE, size); |
| ADDOP(c, MATCH_KEYS); |
| // There's now a tuple of keys and a tuple of values on top of the subject: |
| pc->on_top += 2; |
| ADDOP_I(c, COPY, 1); |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP_I(c, IS_OP, 1); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| // So far so good. Use that tuple of values on the stack to match |
| // sub-patterns against: |
| ADDOP_I(c, UNPACK_SEQUENCE, size); |
| pc->on_top += size - 1; |
| for (Py_ssize_t i = 0; i < size; i++) { |
| pc->on_top--; |
| pattern_ty pattern = asdl_seq_GET(patterns, i); |
| RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); |
| } |
| // If we get this far, it's a match! Whatever happens next should consume |
| // the tuple of keys and the subject: |
| pc->on_top -= 2; |
| if (star_target) { |
| // If we have a starred name, bind a dict of remaining items to it (this may |
| // seem a bit inefficient, but keys is rarely big enough to actually impact |
| // runtime): |
| // rest = dict(TOS1) |
| // for key in TOS: |
| // del rest[key] |
| ADDOP_I(c, BUILD_MAP, 0); // [subject, keys, empty] |
| ADDOP_I(c, SWAP, 3); // [empty, keys, subject] |
| ADDOP_I(c, DICT_UPDATE, 2); // [copy, keys] |
| ADDOP_I(c, UNPACK_SEQUENCE, size); // [copy, keys...] |
| while (size) { |
| ADDOP_I(c, COPY, 1 + size--); // [copy, keys..., copy] |
| ADDOP_I(c, SWAP, 2); // [copy, keys..., copy, key] |
| ADDOP(c, DELETE_SUBSCR); // [copy, keys...] |
| } |
| RETURN_IF_FALSE(pattern_helper_store_name(c, star_target, pc)); |
| } |
| else { |
| ADDOP(c, POP_TOP); // Tuple of keys. |
| ADDOP(c, POP_TOP); // Subject. |
| } |
| return 1; |
| |
| error: |
| Py_DECREF(seen); |
| return 0; |
| } |
| |
| static int |
| compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchOr_kind); |
| basicblock *end; |
| RETURN_IF_FALSE(end = compiler_new_block(c)); |
| Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns); |
| assert(size > 1); |
| // We're going to be messing with pc. Keep the original info handy: |
| pattern_context old_pc = *pc; |
| Py_INCREF(pc->stores); |
| // control is the list of names bound by the first alternative. It is used |
| // for checking different name bindings in alternatives, and for correcting |
| // the order in which extracted elements are placed on the stack. |
| PyObject *control = NULL; |
| // NOTE: We can't use returning macros anymore! goto error on error. |
| for (Py_ssize_t i = 0; i < size; i++) { |
| pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i); |
| SET_LOC(c, alt); |
| PyObject *pc_stores = PyList_New(0); |
| if (pc_stores == NULL) { |
| goto error; |
| } |
| Py_SETREF(pc->stores, pc_stores); |
| // An irrefutable sub-pattern must be last, if it is allowed at all: |
| pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable; |
| pc->fail_pop = NULL; |
| pc->fail_pop_size = 0; |
| pc->on_top = 0; |
| if (!compiler_addop_i(c, COPY, 1) || !compiler_pattern(c, alt, pc)) { |
| goto error; |
| } |
| // Success! |
| Py_ssize_t nstores = PyList_GET_SIZE(pc->stores); |
| if (!i) { |
| // This is the first alternative, so save its stores as a "control" |
| // for the others (they can't bind a different set of names, and |
| // might need to be reordered): |
| assert(control == NULL); |
| control = pc->stores; |
| Py_INCREF(control); |
| } |
| else if (nstores != PyList_GET_SIZE(control)) { |
| goto diff; |
| } |
| else if (nstores) { |
| // There were captures. Check to see if we differ from control: |
| Py_ssize_t icontrol = nstores; |
| while (icontrol--) { |
| PyObject *name = PyList_GET_ITEM(control, icontrol); |
| Py_ssize_t istores = PySequence_Index(pc->stores, name); |
| if (istores < 0) { |
| PyErr_Clear(); |
| goto diff; |
| } |
| if (icontrol != istores) { |
| // Reorder the names on the stack to match the order of the |
| // names in control. There's probably a better way of doing |
| // this; the current solution is potentially very |
| // inefficient when each alternative subpattern binds lots |
| // of names in different orders. It's fine for reasonable |
| // cases, though, and the peephole optimizer will ensure |
| // that the final code is as efficient as possible. |
| assert(istores < icontrol); |
| Py_ssize_t rotations = istores + 1; |
| // Perform the same rotation on pc->stores: |
| PyObject *rotated = PyList_GetSlice(pc->stores, 0, |
| rotations); |
| if (rotated == NULL || |
| PyList_SetSlice(pc->stores, 0, rotations, NULL) || |
| PyList_SetSlice(pc->stores, icontrol - istores, |
| icontrol - istores, rotated)) |
| { |
| Py_XDECREF(rotated); |
| goto error; |
| } |
| Py_DECREF(rotated); |
| // That just did: |
| // rotated = pc_stores[:rotations] |
| // del pc_stores[:rotations] |
| // pc_stores[icontrol-istores:icontrol-istores] = rotated |
| // Do the same thing to the stack, using several |
| // rotations: |
| while (rotations--) { |
| if (!pattern_helper_rotate(c, icontrol + 1)){ |
| goto error; |
| } |
| } |
| } |
| } |
| } |
| assert(control); |
| if (!compiler_addop_j(c, JUMP, end) || |
| !emit_and_reset_fail_pop(c, pc)) |
| { |
| goto error; |
| } |
| } |
| Py_DECREF(pc->stores); |
| *pc = old_pc; |
| Py_INCREF(pc->stores); |
| // Need to NULL this for the PyObject_Free call in the error block. |
| old_pc.fail_pop = NULL; |
| // No match. Pop the remaining copy of the subject and fail: |
| if (!compiler_addop(c, POP_TOP) || !jump_to_fail_pop(c, pc, JUMP)) { |
| goto error; |
| } |
| compiler_use_next_block(c, end); |
| Py_ssize_t nstores = PyList_GET_SIZE(control); |
| // There's a bunch of stuff on the stack between where the new stores |
| // are and where they need to be: |
| // - The other stores. |
| // - A copy of the subject. |
| // - Anything else that may be on top of the stack. |
| // - Any previous stores we've already stashed away on the stack. |
| Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores); |
| for (Py_ssize_t i = 0; i < nstores; i++) { |
| // Rotate this capture to its proper place on the stack: |
| if (!pattern_helper_rotate(c, nrots)) { |
| goto error; |
| } |
| // Update the list of previous stores with this new name, checking for |
| // duplicates: |
| PyObject *name = PyList_GET_ITEM(control, i); |
| int dupe = PySequence_Contains(pc->stores, name); |
| if (dupe < 0) { |
| goto error; |
| } |
| if (dupe) { |
| compiler_error_duplicate_store(c, name); |
| goto error; |
| } |
| if (PyList_Append(pc->stores, name)) { |
| goto error; |
| } |
| } |
| Py_DECREF(old_pc.stores); |
| Py_DECREF(control); |
| // NOTE: Returning macros are safe again. |
| // Pop the copy of the subject: |
| ADDOP(c, POP_TOP); |
| return 1; |
| diff: |
| compiler_error(c, "alternative patterns bind different names"); |
| error: |
| PyObject_Free(old_pc.fail_pop); |
| Py_DECREF(old_pc.stores); |
| Py_XDECREF(control); |
| return 0; |
| } |
| |
| |
| static int |
| compiler_pattern_sequence(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchSequence_kind); |
| asdl_pattern_seq *patterns = p->v.MatchSequence.patterns; |
| Py_ssize_t size = asdl_seq_LEN(patterns); |
| Py_ssize_t star = -1; |
| int only_wildcard = 1; |
| int star_wildcard = 0; |
| // Find a starred name, if it exists. There may be at most one: |
| for (Py_ssize_t i = 0; i < size; i++) { |
| pattern_ty pattern = asdl_seq_GET(patterns, i); |
| if (pattern->kind == MatchStar_kind) { |
| if (star >= 0) { |
| const char *e = "multiple starred names in sequence pattern"; |
| return compiler_error(c, e); |
| } |
| star_wildcard = WILDCARD_STAR_CHECK(pattern); |
| only_wildcard &= star_wildcard; |
| star = i; |
| continue; |
| } |
| only_wildcard &= WILDCARD_CHECK(pattern); |
| } |
| // We need to keep the subject on top during the sequence and length checks: |
| pc->on_top++; |
| ADDOP(c, MATCH_SEQUENCE); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| if (star < 0) { |
| // No star: len(subject) == size |
| ADDOP(c, GET_LEN); |
| ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size)); |
| ADDOP_COMPARE(c, Eq); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| } |
| else if (size > 1) { |
| // Star: len(subject) >= size - 1 |
| ADDOP(c, GET_LEN); |
| ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - 1)); |
| ADDOP_COMPARE(c, GtE); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| } |
| // Whatever comes next should consume the subject: |
| pc->on_top--; |
| if (only_wildcard) { |
| // Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc. |
| ADDOP(c, POP_TOP); |
| } |
| else if (star_wildcard) { |
| RETURN_IF_FALSE(pattern_helper_sequence_subscr(c, patterns, star, pc)); |
| } |
| else { |
| RETURN_IF_FALSE(pattern_helper_sequence_unpack(c, patterns, star, pc)); |
| } |
| return 1; |
| } |
| |
| static int |
| compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchValue_kind); |
| expr_ty value = p->v.MatchValue.value; |
| if (!MATCH_VALUE_EXPR(value)) { |
| const char *e = "patterns may only match literals and attribute lookups"; |
| return compiler_error(c, e); |
| } |
| VISIT(c, expr, value); |
| ADDOP_COMPARE(c, Eq); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| return 1; |
| } |
| |
| static int |
| compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| assert(p->kind == MatchSingleton_kind); |
| ADDOP_LOAD_CONST(c, p->v.MatchSingleton.value); |
| ADDOP_COMPARE(c, Is); |
| RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); |
| return 1; |
| } |
| |
| static int |
| compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc) |
| { |
| SET_LOC(c, p); |
| switch (p->kind) { |
| case MatchValue_kind: |
| return compiler_pattern_value(c, p, pc); |
| case MatchSingleton_kind: |
| return compiler_pattern_singleton(c, p, pc); |
| case MatchSequence_kind: |
| return compiler_pattern_sequence(c, p, pc); |
| case MatchMapping_kind: |
| return compiler_pattern_mapping(c, p, pc); |
| case MatchClass_kind: |
| return compiler_pattern_class(c, p, pc); |
| case MatchStar_kind: |
| return compiler_pattern_star(c, p, pc); |
| case MatchAs_kind: |
| return compiler_pattern_as(c, p, pc); |
| case MatchOr_kind: |
| return compiler_pattern_or(c, p, pc); |
| } |
| // AST validator shouldn't let this happen, but if it does, |
| // just fail, don't crash out of the interpreter |
| const char *e = "invalid match pattern node in AST (kind=%d)"; |
| return compiler_error(c, e, p->kind); |
| } |
| |
| static int |
| compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc) |
| { |
| VISIT(c, expr, s->v.Match.subject); |
| basicblock *end; |
| RETURN_IF_FALSE(end = compiler_new_block(c)); |
| Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases); |
| assert(cases > 0); |
| match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1); |
| int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases; |
| for (Py_ssize_t i = 0; i < cases - has_default; i++) { |
| m = asdl_seq_GET(s->v.Match.cases, i); |
| SET_LOC(c, m->pattern); |
| // Only copy the subject if we're *not* on the last case: |
| if (i != cases - has_default - 1) { |
| ADDOP_I(c, COPY, 1); |
| } |
| RETURN_IF_FALSE(pc->stores = PyList_New(0)); |
| // Irrefutable cases must be either guarded, last, or both: |
| pc->allow_irrefutable = m->guard != NULL || i == cases - 1; |
| pc->fail_pop = NULL; |
| pc->fail_pop_size = 0; |
| pc->on_top = 0; |
| // NOTE: Can't use returning macros here (they'll leak pc->stores)! |
| if (!compiler_pattern(c, m->pattern, pc)) { |
| Py_DECREF(pc->stores); |
| return 0; |
| } |
| assert(!pc->on_top); |
| // It's a match! Store all of the captured names (they're on the stack). |
| Py_ssize_t nstores = PyList_GET_SIZE(pc->stores); |
| for (Py_ssize_t n = 0; n < nstores; n++) { |
| PyObject *name = PyList_GET_ITEM(pc->stores, n); |
| if (!compiler_nameop(c, name, Store)) { |
| Py_DECREF(pc->stores); |
| return 0; |
| } |
| } |
| Py_DECREF(pc->stores); |
| // NOTE: Returning macros are safe again. |
| if (m->guard) { |
| RETURN_IF_FALSE(ensure_fail_pop(c, pc, 0)); |
| RETURN_IF_FALSE(compiler_jump_if(c, m->guard, pc->fail_pop[0], 0)); |
| } |
| // Success! Pop the subject off, we're done with it: |
| if (i != cases - has_default - 1) { |
| ADDOP(c, POP_TOP); |
| } |
| VISIT_SEQ(c, stmt, m->body); |
| UNSET_LOC(c); |
| ADDOP_JUMP(c, JUMP, end); |
| // If the pattern fails to match, we want the line number of the |
| // cleanup to be associated with the failed pattern, not the last line |
| // of the body |
| SET_LOC(c, m->pattern); |
| RETURN_IF_FALSE(emit_and_reset_fail_pop(c, pc)); |
| } |
| if (has_default) { |
| // A trailing "case _" is common, and lets us save a bit of redundant |
| // pushing and popping in the loop above: |
| m = asdl_seq_GET(s->v.Match.cases, cases - 1); |
| SET_LOC(c, m->pattern); |
| if (cases == 1) { |
| // No matches. Done with the subject: |
| ADDOP(c, POP_TOP); |
| } |
| else { |
| // Show line coverage for default case (it doesn't create bytecode) |
| ADDOP(c, NOP); |
| } |
| if (m->guard) { |
| RETURN_IF_FALSE(compiler_jump_if(c, m->guard, end, 0)); |
| } |
| VISIT_SEQ(c, stmt, m->body); |
| UNSET_LOC(c); |
| } |
| compiler_use_next_block(c, end); |
| return 1; |
| } |
| |
| static int |
| compiler_match(struct compiler *c, stmt_ty s) |
| { |
| pattern_context pc; |
| pc.fail_pop = NULL; |
| int result = compiler_match_inner(c, s, &pc); |
| PyObject_Free(pc.fail_pop); |
| return result; |
| } |
| |
| #undef WILDCARD_CHECK |
| #undef WILDCARD_STAR_CHECK |
| |
| /* End of the compiler section, beginning of the assembler section */ |
| |
| /* do depth-first search of basic block graph, starting with block. |
| post records the block indices in post-order. |
| |
| XXX must handle implicit jumps from one block to next |
| */ |
| |
| |
| struct assembler { |
| PyObject *a_bytecode; /* bytes containing bytecode */ |
| PyObject *a_except_table; /* bytes containing exception table */ |
| basicblock *a_entry; |
| int a_offset; /* offset into bytecode */ |
| int a_nblocks; /* number of reachable blocks */ |
| int a_except_table_off; /* offset into exception table */ |
| int a_prevlineno; /* lineno of last emitted line in line table */ |
| int a_prev_end_lineno; /* end_lineno of last emitted line in line table */ |
| int a_lineno; /* lineno of last emitted instruction */ |
| int a_end_lineno; /* end_lineno of last emitted instruction */ |
| int a_lineno_start; /* bytecode start offset of current lineno */ |
| int a_end_lineno_start; /* bytecode start offset of current end_lineno */ |
| /* Location Info */ |
| PyObject* a_linetable; /* bytes containing location info */ |
| int a_location_off; /* offset of last written location info frame */ |
| }; |
| |
| Py_LOCAL_INLINE(void) |
| stackdepth_push(basicblock ***sp, basicblock *b, int depth) |
| { |
| assert(b->b_startdepth < 0 || b->b_startdepth == depth); |
| if (b->b_startdepth < depth && b->b_startdepth < 100) { |
| assert(b->b_startdepth < 0); |
| b->b_startdepth = depth; |
| *(*sp)++ = b; |
| } |
| } |
| |
| /* Find the flow path that needs the largest stack. We assume that |
| * cycles in the flow graph have no net effect on the stack depth. |
| */ |
| static int |
| stackdepth(struct compiler *c) |
| { |
| basicblock *b, *entryblock = NULL; |
| basicblock **stack, **sp; |
| int nblocks = 0, maxdepth = 0; |
| for (b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| b->b_startdepth = INT_MIN; |
| entryblock = b; |
| nblocks++; |
| } |
| assert(entryblock!= NULL); |
| stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks); |
| if (!stack) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| |
| sp = stack; |
| if (c->u->u_ste->ste_generator || c->u->u_ste->ste_coroutine) { |
| stackdepth_push(&sp, entryblock, 1); |
| } else { |
| stackdepth_push(&sp, entryblock, 0); |
| } |
| while (sp != stack) { |
| b = *--sp; |
| int depth = b->b_startdepth; |
| assert(depth >= 0); |
| basicblock *next = b->b_next; |
| for (int i = 0; i < b->b_iused; i++) { |
| struct instr *instr = &b->b_instr[i]; |
| int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0); |
| if (effect == PY_INVALID_STACK_EFFECT) { |
| PyErr_Format(PyExc_SystemError, |
| "compiler stack_effect(opcode=%d, arg=%i) failed", |
| instr->i_opcode, instr->i_oparg); |
| return -1; |
| } |
| int new_depth = depth + effect; |
| if (new_depth > maxdepth) { |
| maxdepth = new_depth; |
| } |
| assert(depth >= 0); /* invalid code or bug in stackdepth() */ |
| if (is_jump(instr) || is_block_push(instr)) { |
| effect = stack_effect(instr->i_opcode, instr->i_oparg, 1); |
| assert(effect != PY_INVALID_STACK_EFFECT); |
| int target_depth = depth + effect; |
| if (target_depth > maxdepth) { |
| maxdepth = target_depth; |
| } |
| assert(target_depth >= 0); /* invalid code or bug in stackdepth() */ |
| stackdepth_push(&sp, instr->i_target, target_depth); |
| } |
| depth = new_depth; |
| assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode)); |
| if (instr->i_opcode == JUMP_NO_INTERRUPT || |
| instr->i_opcode == JUMP || |
| instr->i_opcode == RETURN_VALUE || |
| instr->i_opcode == RAISE_VARARGS || |
| instr->i_opcode == RERAISE) |
| { |
| /* remaining code is dead */ |
| next = NULL; |
| break; |
| } |
| } |
| if (next != NULL) { |
| assert(b->b_nofallthrough == 0); |
| stackdepth_push(&sp, next, depth); |
| } |
| } |
| PyObject_Free(stack); |
| return maxdepth; |
| } |
| |
| static int |
| assemble_init(struct assembler *a, int nblocks, int firstlineno) |
| { |
| memset(a, 0, sizeof(struct assembler)); |
| a->a_prevlineno = a->a_lineno = firstlineno; |
| a->a_prev_end_lineno = a->a_end_lineno = firstlineno; |
| a->a_linetable = NULL; |
| a->a_location_off = 0; |
| a->a_except_table = NULL; |
| a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE); |
| if (a->a_bytecode == NULL) { |
| goto error; |
| } |
| a->a_linetable = PyBytes_FromStringAndSize(NULL, DEFAULT_CNOTAB_SIZE); |
| if (a->a_linetable == NULL) { |
| goto error; |
| } |
| a->a_except_table = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE); |
| if (a->a_except_table == NULL) { |
| goto error; |
| } |
| if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) { |
| PyErr_NoMemory(); |
| goto error; |
| } |
| return 1; |
| error: |
| Py_XDECREF(a->a_bytecode); |
| Py_XDECREF(a->a_linetable); |
| Py_XDECREF(a->a_except_table); |
| return 0; |
| } |
| |
| static void |
| assemble_free(struct assembler *a) |
| { |
| Py_XDECREF(a->a_bytecode); |
| Py_XDECREF(a->a_linetable); |
| Py_XDECREF(a->a_except_table); |
| } |
| |
| static int |
| blocksize(basicblock *b) |
| { |
| int i; |
| int size = 0; |
| |
| for (i = 0; i < b->b_iused; i++) { |
| size += instr_size(&b->b_instr[i]); |
| } |
| return size; |
| } |
| |
| static basicblock * |
| push_except_block(ExceptStack *stack, struct instr *setup) { |
| assert(is_block_push(setup)); |
| int opcode = setup->i_opcode; |
| basicblock * target = setup->i_target; |
| if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) { |
| target->b_preserve_lasti = 1; |
| } |
| stack->handlers[++stack->depth] = target; |
| return target; |
| } |
| |
| static basicblock * |
| pop_except_block(ExceptStack *stack) { |
| assert(stack->depth > 0); |
| return stack->handlers[--stack->depth]; |
| } |
| |
| static basicblock * |
| except_stack_top(ExceptStack *stack) { |
| return stack->handlers[stack->depth]; |
| } |
| |
| static ExceptStack * |
| make_except_stack(void) { |
| ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack)); |
| if (new == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| new->depth = 0; |
| new->handlers[0] = NULL; |
| return new; |
| } |
| |
| static ExceptStack * |
| copy_except_stack(ExceptStack *stack) { |
| ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack)); |
| if (copy == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| memcpy(copy, stack, sizeof(ExceptStack)); |
| return copy; |
| } |
| |
| static int |
| label_exception_targets(basicblock *entry) { |
| int nblocks = 0; |
| for (basicblock *b = entry; b != NULL; b = b->b_next) { |
| b->b_visited = 0; |
| nblocks++; |
| } |
| basicblock **todo_stack = PyMem_Malloc(sizeof(basicblock *)*nblocks); |
| if (todo_stack == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| ExceptStack *except_stack = make_except_stack(); |
| if (except_stack == NULL) { |
| PyMem_Free(todo_stack); |
| PyErr_NoMemory(); |
| return -1; |
| } |
| except_stack->depth = 0; |
| todo_stack[0] = entry; |
| entry->b_visited = 1; |
| entry->b_exceptstack = except_stack; |
| basicblock **todo = &todo_stack[1]; |
| basicblock *handler = NULL; |
| while (todo > todo_stack) { |
| todo--; |
| basicblock *b = todo[0]; |
| assert(b->b_visited == 1); |
| except_stack = b->b_exceptstack; |
| assert(except_stack != NULL); |
| b->b_exceptstack = NULL; |
| handler = except_stack_top(except_stack); |
| for (int i = 0; i < b->b_iused; i++) { |
| struct instr *instr = &b->b_instr[i]; |
| if (is_block_push(instr)) { |
| if (!instr->i_target->b_visited) { |
| ExceptStack *copy = copy_except_stack(except_stack); |
| if (copy == NULL) { |
| goto error; |
| } |
| instr->i_target->b_exceptstack = copy; |
| todo[0] = instr->i_target; |
| instr->i_target->b_visited = 1; |
| todo++; |
| } |
| handler = push_except_block(except_stack, instr); |
| } |
| else if (instr->i_opcode == POP_BLOCK) { |
| handler = pop_except_block(except_stack); |
| } |
| else if (is_jump(instr)) { |
| instr->i_except = handler; |
| assert(i == b->b_iused -1); |
| if (!instr->i_target->b_visited) { |
| if (b->b_nofallthrough == 0) { |
| ExceptStack *copy = copy_except_stack(except_stack); |
| if (copy == NULL) { |
| goto error; |
| } |
| instr->i_target->b_exceptstack = copy; |
| } |
| else { |
| instr->i_target->b_exceptstack = except_stack; |
| except_stack = NULL; |
| } |
| todo[0] = instr->i_target; |
| instr->i_target->b_visited = 1; |
| todo++; |
| } |
| } |
| else { |
| instr->i_except = handler; |
| } |
| } |
| if (b->b_nofallthrough == 0 && !b->b_next->b_visited) { |
| assert(except_stack != NULL); |
| b->b_next->b_exceptstack = except_stack; |
| todo[0] = b->b_next; |
| b->b_next->b_visited = 1; |
| todo++; |
| } |
| else if (except_stack != NULL) { |
| PyMem_Free(except_stack); |
| } |
| } |
| #ifdef Py_DEBUG |
| for (basicblock *b = entry; b != NULL; b = b->b_next) { |
| assert(b->b_exceptstack == NULL); |
| } |
| #endif |
| PyMem_Free(todo_stack); |
| return 0; |
| error: |
| PyMem_Free(todo_stack); |
| PyMem_Free(except_stack); |
| return -1; |
| } |
| |
| |
| static void |
| convert_exception_handlers_to_nops(basicblock *entry) { |
| for (basicblock *b = entry; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| struct instr *instr = &b->b_instr[i]; |
| if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) { |
| instr->i_opcode = NOP; |
| } |
| } |
| } |
| } |
| |
| static inline void |
| write_except_byte(struct assembler *a, int byte) { |
| unsigned char *p = (unsigned char *) PyBytes_AS_STRING(a->a_except_table); |
| p[a->a_except_table_off++] = byte; |
| } |
| |
| #define CONTINUATION_BIT 64 |
| |
| static void |
| assemble_emit_exception_table_item(struct assembler *a, int value, int msb) |
| { |
| assert ((msb | 128) == 128); |
| assert(value >= 0 && value < (1 << 30)); |
| if (value >= 1 << 24) { |
| write_except_byte(a, (value >> 24) | CONTINUATION_BIT | msb); |
| msb = 0; |
| } |
| if (value >= 1 << 18) { |
| write_except_byte(a, ((value >> 18)&0x3f) | CONTINUATION_BIT | msb); |
| msb = 0; |
| } |
| if (value >= 1 << 12) { |
| write_except_byte(a, ((value >> 12)&0x3f) | CONTINUATION_BIT | msb); |
| msb = 0; |
| } |
| if (value >= 1 << 6) { |
| write_except_byte(a, ((value >> 6)&0x3f) | CONTINUATION_BIT | msb); |
| msb = 0; |
| } |
| write_except_byte(a, (value&0x3f) | msb); |
| } |
| |
| /* See Objects/exception_handling_notes.txt for details of layout */ |
| #define MAX_SIZE_OF_ENTRY 20 |
| |
| static int |
| assemble_emit_exception_table_entry(struct assembler *a, int start, int end, basicblock *handler) |
| { |
| Py_ssize_t len = PyBytes_GET_SIZE(a->a_except_table); |
| if (a->a_except_table_off + MAX_SIZE_OF_ENTRY >= len) { |
| if (_PyBytes_Resize(&a->a_except_table, len * 2) < 0) |
| return 0; |
| } |
| int size = end-start; |
| assert(end > start); |
| int target = handler->b_offset; |
| int depth = handler->b_startdepth - 1; |
| if (handler->b_preserve_lasti) { |
| depth -= 1; |
| } |
| assert(depth >= 0); |
| int depth_lasti = (depth<<1) | handler->b_preserve_lasti; |
| assemble_emit_exception_table_item(a, start, (1<<7)); |
| assemble_emit_exception_table_item(a, size, 0); |
| assemble_emit_exception_table_item(a, target, 0); |
| assemble_emit_exception_table_item(a, depth_lasti, 0); |
| return 1; |
| } |
| |
| static int |
| assemble_exception_table(struct assembler *a) |
| { |
| basicblock *b; |
| int ioffset = 0; |
| basicblock *handler = NULL; |
| int start = -1; |
| for (b = a->a_entry; b != NULL; b = b->b_next) { |
| ioffset = b->b_offset; |
| for (int i = 0; i < b->b_iused; i++) { |
| struct instr *instr = &b->b_instr[i]; |
| if (instr->i_except != handler) { |
| if (handler != NULL) { |
| RETURN_IF_FALSE(assemble_emit_exception_table_entry(a, start, ioffset, handler)); |
| } |
| start = ioffset; |
| handler = instr->i_except; |
| } |
| ioffset += instr_size(instr); |
| } |
| } |
| if (handler != NULL) { |
| RETURN_IF_FALSE(assemble_emit_exception_table_entry(a, start, ioffset, handler)); |
| } |
| return 1; |
| } |
| |
| /* Code location emitting code. See locations.md for a description of the format. */ |
| |
| #define MSB 0x80 |
| |
| static void |
| write_location_byte(struct assembler* a, int val) |
| { |
| PyBytes_AS_STRING(a->a_linetable)[a->a_location_off] = val&255; |
| a->a_location_off++; |
| } |
| |
| |
| static uint8_t * |
| location_pointer(struct assembler* a) |
| { |
| return (uint8_t *)PyBytes_AS_STRING(a->a_linetable) + |
| a->a_location_off; |
| } |
| |
| static void |
| write_location_first_byte(struct assembler* a, int code, int length) |
| { |
| a->a_location_off += write_location_entry_start( |
| location_pointer(a), code, length); |
| } |
| |
| static void |
| write_location_varint(struct assembler* a, unsigned int val) |
| { |
| uint8_t *ptr = location_pointer(a); |
| a->a_location_off += write_varint(ptr, val); |
| } |
| |
| |
| static void |
| write_location_signed_varint(struct assembler* a, int val) |
| { |
| uint8_t *ptr = location_pointer(a); |
| a->a_location_off += write_signed_varint(ptr, val); |
| } |
| |
| static void |
| write_location_info_short_form(struct assembler* a, int length, int column, int end_column) |
| { |
| assert(length > 0 && length <= 8); |
| int column_low_bits = column & 7; |
| int column_group = column >> 3; |
| assert(column < 80); |
| assert(end_column >= column); |
| assert(end_column - column < 16); |
| write_location_first_byte(a, PY_CODE_LOCATION_INFO_SHORT0 + column_group, length); |
| write_location_byte(a, (column_low_bits << 4) | (end_column - column)); |
| } |
| |
| static void |
| write_location_info_oneline_form(struct assembler* a, int length, int line_delta, int column, int end_column) |
| { |
| assert(length > 0 && length <= 8); |
| assert(line_delta >= 0 && line_delta < 3); |
| assert(column < 128); |
| assert(end_column < 128); |
| write_location_first_byte(a, PY_CODE_LOCATION_INFO_ONE_LINE0 + line_delta, length); |
| write_location_byte(a, column); |
| write_location_byte(a, end_column); |
| } |
| |
| static void |
| write_location_info_long_form(struct assembler* a, struct instr* i, int length) |
| { |
| assert(length > 0 && length <= 8); |
| write_location_first_byte(a, PY_CODE_LOCATION_INFO_LONG, length); |
| write_location_signed_varint(a, i->i_lineno - a->a_lineno); |
| assert(i->i_end_lineno >= i->i_lineno); |
| write_location_varint(a, i->i_end_lineno - i->i_lineno); |
| write_location_varint(a, i->i_col_offset+1); |
| write_location_varint(a, i->i_end_col_offset+1); |
| } |
| |
| static void |
| write_location_info_none(struct assembler* a, int length) |
| { |
| write_location_first_byte(a, PY_CODE_LOCATION_INFO_NONE, length); |
| } |
| |
| static void |
| write_location_info_no_column(struct assembler* a, int length, int line_delta) |
| { |
| write_location_first_byte(a, PY_CODE_LOCATION_INFO_NO_COLUMNS, length); |
| write_location_signed_varint(a, line_delta); |
| } |
| |
| #define THEORETICAL_MAX_ENTRY_SIZE 25 /* 1 + 6 + 6 + 6 + 6 */ |
| |
| static int |
| write_location_info_entry(struct assembler* a, struct instr* i, int isize) |
| { |
| Py_ssize_t len = PyBytes_GET_SIZE(a->a_linetable); |
| if (a->a_location_off + THEORETICAL_MAX_ENTRY_SIZE >= len) { |
| assert(len > THEORETICAL_MAX_ENTRY_SIZE); |
| if (_PyBytes_Resize(&a->a_linetable, len*2) < 0) { |
| return 0; |
| } |
| } |
| if (i->i_lineno < 0) { |
| write_location_info_none(a, isize); |
| return 1; |
| } |
| int line_delta = i->i_lineno - a->a_lineno; |
| int column = i->i_col_offset; |
| int end_column = i->i_end_col_offset; |
| assert(column >= -1); |
| assert(end_column >= -1); |
| if (column < 0 || end_column < 0) { |
| if (i->i_end_lineno == i->i_lineno || i->i_end_lineno == -1) { |
| write_location_info_no_column(a, isize, line_delta); |
| a->a_lineno = i->i_lineno; |
| return 1; |
| } |
| } |
| else if (i->i_end_lineno == i->i_lineno) { |
| if (line_delta == 0 && column < 80 && end_column - column < 16 && end_column >= column) { |
| write_location_info_short_form(a, isize, column, end_column); |
| return 1; |
| } |
| if (line_delta >= 0 && line_delta < 3 && column < 128 && end_column < 128) { |
| write_location_info_oneline_form(a, isize, line_delta, column, end_column); |
| a->a_lineno = i->i_lineno; |
| return 1; |
| } |
| } |
| write_location_info_long_form(a, i, isize); |
| a->a_lineno = i->i_lineno; |
| return 1; |
| } |
| |
| static int |
| assemble_emit_location(struct assembler* a, struct instr* i) |
| { |
| int isize = instr_size(i); |
| while (isize > 8) { |
| if (!write_location_info_entry(a, i, 8)) { |
| return 0; |
| } |
| isize -= 8; |
| } |
| return write_location_info_entry(a, i, isize); |
| } |
| |
| /* assemble_emit() |
| Extend the bytecode with a new instruction. |
| Update lnotab if necessary. |
| */ |
| |
| static int |
| assemble_emit(struct assembler *a, struct instr *i) |
| { |
| Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode); |
| _Py_CODEUNIT *code; |
| |
| int size = instr_size(i); |
| if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) { |
| if (len > PY_SSIZE_T_MAX / 2) |
| return 0; |
| if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0) |
| return 0; |
| } |
| code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset; |
| a->a_offset += size; |
| write_instr(code, i, size); |
| return 1; |
| } |
| |
| static void |
| normalize_jumps(struct assembler *a) |
| { |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| b->b_visited = 0; |
| } |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| b->b_visited = 1; |
| if (b->b_iused == 0) { |
| continue; |
| } |
| struct instr *last = &b->b_instr[b->b_iused-1]; |
| assert(!IS_ASSEMBLER_OPCODE(last->i_opcode)); |
| if (is_jump(last)) { |
| bool is_forward = last->i_target->b_visited == 0; |
| switch(last->i_opcode) { |
| case JUMP: |
| last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD; |
| break; |
| case JUMP_NO_INTERRUPT: |
| last->i_opcode = is_forward ? |
| JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT; |
| break; |
| case POP_JUMP_IF_NOT_NONE: |
| last->i_opcode = is_forward ? |
| POP_JUMP_FORWARD_IF_NOT_NONE : POP_JUMP_BACKWARD_IF_NOT_NONE; |
| break; |
| case POP_JUMP_IF_NONE: |
| last->i_opcode = is_forward ? |
| POP_JUMP_FORWARD_IF_NONE : POP_JUMP_BACKWARD_IF_NONE; |
| break; |
| case POP_JUMP_IF_FALSE: |
| last->i_opcode = is_forward ? |
| POP_JUMP_FORWARD_IF_FALSE : POP_JUMP_BACKWARD_IF_FALSE; |
| break; |
| case POP_JUMP_IF_TRUE: |
| last->i_opcode = is_forward ? |
| POP_JUMP_FORWARD_IF_TRUE : POP_JUMP_BACKWARD_IF_TRUE; |
| break; |
| case JUMP_IF_TRUE_OR_POP: |
| case JUMP_IF_FALSE_OR_POP: |
| if (!is_forward) { |
| /* As far as we can tell, the compiler never emits |
| * these jumps with a backwards target. If/when this |
| * exception is raised, we have found a use case for |
| * a backwards version of this jump (or to replace |
| * it with the sequence (COPY 1, POP_JUMP_IF_T/F, POP) |
| */ |
| PyErr_Format(PyExc_SystemError, |
| "unexpected %s jumping backwards", |
| last->i_opcode == JUMP_IF_TRUE_OR_POP ? |
| "JUMP_IF_TRUE_OR_POP" : "JUMP_IF_FALSE_OR_POP"); |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| static void |
| assemble_jump_offsets(struct assembler *a, struct compiler *c) |
| { |
| basicblock *b; |
| int bsize, totsize, extended_arg_recompile; |
| int i; |
| |
| /* Compute the size of each block and fixup jump args. |
| Replace block pointer with position in bytecode. */ |
| do { |
| totsize = 0; |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| bsize = blocksize(b); |
| b->b_offset = totsize; |
| totsize += bsize; |
| } |
| extended_arg_recompile = 0; |
| for (b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| bsize = b->b_offset; |
| for (i = 0; i < b->b_iused; i++) { |
| struct instr *instr = &b->b_instr[i]; |
| int isize = instr_size(instr); |
| /* Relative jumps are computed relative to |
| the instruction pointer after fetching |
| the jump instruction. |
| */ |
| bsize += isize; |
| if (is_jump(instr)) { |
| instr->i_oparg = instr->i_target->b_offset; |
| if (is_relative_jump(instr)) { |
| if (instr->i_oparg < bsize) { |
| assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); |
| instr->i_oparg = bsize - instr->i_oparg; |
| } |
| else { |
| assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); |
| instr->i_oparg -= bsize; |
| } |
| } |
| else { |
| assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); |
| } |
| if (instr_size(instr) != isize) { |
| extended_arg_recompile = 1; |
| } |
| } |
| } |
| } |
| |
| /* XXX: This is an awful hack that could hurt performance, but |
| on the bright side it should work until we come up |
| with a better solution. |
| |
| The issue is that in the first loop blocksize() is called |
| which calls instr_size() which requires i_oparg be set |
| appropriately. There is a bootstrap problem because |
| i_oparg is calculated in the second loop above. |
| |
| So we loop until we stop seeing new EXTENDED_ARGs. |
| The only EXTENDED_ARGs that could be popping up are |
| ones in jump instructions. So this should converge |
| fairly quickly. |
| */ |
| } while (extended_arg_recompile); |
| } |
| |
| static PyObject * |
| dict_keys_inorder(PyObject *dict, Py_ssize_t offset) |
| { |
| PyObject *tuple, *k, *v; |
| Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); |
| |
| tuple = PyTuple_New(size); |
| if (tuple == NULL) |
| return NULL; |
| while (PyDict_Next(dict, &pos, &k, &v)) { |
| i = PyLong_AS_LONG(v); |
| Py_INCREF(k); |
| assert((i - offset) < size); |
| assert((i - offset) >= 0); |
| PyTuple_SET_ITEM(tuple, i - offset, k); |
| } |
| return tuple; |
| } |
| |
| static PyObject * |
| consts_dict_keys_inorder(PyObject *dict) |
| { |
| PyObject *consts, *k, *v; |
| Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); |
| |
| consts = PyList_New(size); /* PyCode_Optimize() requires a list */ |
| if (consts == NULL) |
| return NULL; |
| while (PyDict_Next(dict, &pos, &k, &v)) { |
| i = PyLong_AS_LONG(v); |
| /* The keys of the dictionary can be tuples wrapping a constant. |
| * (see compiler_add_o and _PyCode_ConstantKey). In that case |
| * the object we want is always second. */ |
| if (PyTuple_CheckExact(k)) { |
| k = PyTuple_GET_ITEM(k, 1); |
| } |
| Py_INCREF(k); |
| assert(i < size); |
| assert(i >= 0); |
| PyList_SET_ITEM(consts, i, k); |
| } |
| return consts; |
| } |
| |
| static int |
| compute_code_flags(struct compiler *c) |
| { |
| PySTEntryObject *ste = c->u->u_ste; |
| int flags = 0; |
| if (ste->ste_type == FunctionBlock) { |
| flags |= CO_NEWLOCALS | CO_OPTIMIZED; |
| if (ste->ste_nested) |
| flags |= CO_NESTED; |
| if (ste->ste_generator && !ste->ste_coroutine) |
| flags |= CO_GENERATOR; |
| if (!ste->ste_generator && ste->ste_coroutine) |
| flags |= CO_COROUTINE; |
| if (ste->ste_generator && ste->ste_coroutine) |
| flags |= CO_ASYNC_GENERATOR; |
| if (ste->ste_varargs) |
| flags |= CO_VARARGS; |
| if (ste->ste_varkeywords) |
| flags |= CO_VARKEYWORDS; |
| } |
| |
| /* (Only) inherit compilerflags in PyCF_MASK */ |
| flags |= (c->c_flags->cf_flags & PyCF_MASK); |
| |
| if ((IS_TOP_LEVEL_AWAIT(c)) && |
| ste->ste_coroutine && |
| !ste->ste_generator) { |
| flags |= CO_COROUTINE; |
| } |
| |
| return flags; |
| } |
| |
| // Merge *obj* with constant cache. |
| // Unlike merge_consts_recursive(), this function doesn't work recursively. |
| static int |
| merge_const_one(struct compiler *c, PyObject **obj) |
| { |
| PyObject *key = _PyCode_ConstantKey(*obj); |
| if (key == NULL) { |
| return 0; |
| } |
| |
| // t is borrowed reference |
| PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key); |
| Py_DECREF(key); |
| if (t == NULL) { |
| return 0; |
| } |
| if (t == key) { // obj is new constant. |
| return 1; |
| } |
| |
| if (PyTuple_CheckExact(t)) { |
| // t is still borrowed reference |
| t = PyTuple_GET_ITEM(t, 1); |
| } |
| |
| Py_INCREF(t); |
| Py_DECREF(*obj); |
| *obj = t; |
| return 1; |
| } |
| |
| // This is in codeobject.c. |
| extern void _Py_set_localsplus_info(int, PyObject *, unsigned char, |
| PyObject *, PyObject *); |
| |
| static void |
| compute_localsplus_info(struct compiler *c, int nlocalsplus, |
| PyObject *names, PyObject *kinds) |
| { |
| PyObject *k, *v; |
| Py_ssize_t pos = 0; |
| while (PyDict_Next(c->u->u_varnames, &pos, &k, &v)) { |
| int offset = (int)PyLong_AS_LONG(v); |
| assert(offset >= 0); |
| assert(offset < nlocalsplus); |
| // For now we do not distinguish arg kinds. |
| _PyLocals_Kind kind = CO_FAST_LOCAL; |
| if (PyDict_GetItem(c->u->u_cellvars, k) != NULL) { |
| kind |= CO_FAST_CELL; |
| } |
| _Py_set_localsplus_info(offset, k, kind, names, kinds); |
| } |
| int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); |
| |
| // This counter mirrors the fix done in fix_cell_offsets(). |
| int numdropped = 0; |
| pos = 0; |
| while (PyDict_Next(c->u->u_cellvars, &pos, &k, &v)) { |
| if (PyDict_GetItem(c->u->u_varnames, k) != NULL) { |
| // Skip cells that are already covered by locals. |
| numdropped += 1; |
| continue; |
| } |
| int offset = (int)PyLong_AS_LONG(v); |
| assert(offset >= 0); |
| offset += nlocals - numdropped; |
| assert(offset < nlocalsplus); |
| _Py_set_localsplus_info(offset, k, CO_FAST_CELL, names, kinds); |
| } |
| |
| pos = 0; |
| while (PyDict_Next(c->u->u_freevars, &pos, &k, &v)) { |
| int offset = (int)PyLong_AS_LONG(v); |
| assert(offset >= 0); |
| offset += nlocals - numdropped; |
| assert(offset < nlocalsplus); |
| _Py_set_localsplus_info(offset, k, CO_FAST_FREE, names, kinds); |
| } |
| } |
| |
| static PyCodeObject * |
| makecode(struct compiler *c, struct assembler *a, PyObject *constslist, |
| int maxdepth, int nlocalsplus) |
| { |
| PyCodeObject *co = NULL; |
| PyObject *names = NULL; |
| PyObject *consts = NULL; |
| PyObject *localsplusnames = NULL; |
| PyObject *localspluskinds = NULL; |
| |
| names = dict_keys_inorder(c->u->u_names, 0); |
| if (!names) { |
| goto error; |
| } |
| if (!merge_const_one(c, &names)) { |
| goto error; |
| } |
| |
| int flags = compute_code_flags(c); |
| if (flags < 0) { |
| goto error; |
| } |
| |
| consts = PyList_AsTuple(constslist); /* PyCode_New requires a tuple */ |
| if (consts == NULL) { |
| goto error; |
| } |
| if (!merge_const_one(c, &consts)) { |
| goto error; |
| } |
| |
| assert(c->u->u_posonlyargcount < INT_MAX); |
| assert(c->u->u_argcount < INT_MAX); |
| assert(c->u->u_kwonlyargcount < INT_MAX); |
| int posonlyargcount = (int)c->u->u_posonlyargcount; |
| int posorkwargcount = (int)c->u->u_argcount; |
| assert(INT_MAX - posonlyargcount - posorkwargcount > 0); |
| int kwonlyargcount = (int)c->u->u_kwonlyargcount; |
| |
| localsplusnames = PyTuple_New(nlocalsplus); |
| if (localsplusnames == NULL) { |
| goto error; |
| } |
| localspluskinds = PyBytes_FromStringAndSize(NULL, nlocalsplus); |
| if (localspluskinds == NULL) { |
| goto error; |
| } |
| compute_localsplus_info(c, nlocalsplus, localsplusnames, localspluskinds); |
| |
| struct _PyCodeConstructor con = { |
| .filename = c->c_filename, |
| .name = c->u->u_name, |
| .qualname = c->u->u_qualname ? c->u->u_qualname : c->u->u_name, |
| .flags = flags, |
| |
| .code = a->a_bytecode, |
| .firstlineno = c->u->u_firstlineno, |
| .linetable = a->a_linetable, |
| |
| .consts = consts, |
| .names = names, |
| |
| .localsplusnames = localsplusnames, |
| .localspluskinds = localspluskinds, |
| |
| .argcount = posonlyargcount + posorkwargcount, |
| .posonlyargcount = posonlyargcount, |
| .kwonlyargcount = kwonlyargcount, |
| |
| .stacksize = maxdepth, |
| |
| .exceptiontable = a->a_except_table, |
| }; |
| |
| if (_PyCode_Validate(&con) < 0) { |
| goto error; |
| } |
| |
| if (!merge_const_one(c, &localsplusnames)) { |
| goto error; |
| } |
| con.localsplusnames = localsplusnames; |
| |
| co = _PyCode_New(&con); |
| if (co == NULL) { |
| goto error; |
| } |
| |
| error: |
| Py_XDECREF(names); |
| Py_XDECREF(consts); |
| Py_XDECREF(localsplusnames); |
| Py_XDECREF(localspluskinds); |
| return co; |
| } |
| |
| |
| /* For debugging purposes only */ |
| #if 0 |
| static void |
| dump_instr(struct instr *i) |
| { |
| const char *jrel = (is_relative_jump(i)) ? "jrel " : ""; |
| const char *jabs = (is_jump(i) && !is_relative_jump(i))? "jabs " : ""; |
| |
| char arg[128]; |
| |
| *arg = '\0'; |
| if (HAS_ARG(i->i_opcode)) { |
| sprintf(arg, "arg: %d ", i->i_oparg); |
| } |
| fprintf(stderr, "line: %d, opcode: %d %s%s%s\n", |
| i->i_lineno, i->i_opcode, arg, jabs, jrel); |
| } |
| |
| static void |
| dump_basicblock(const basicblock *b) |
| { |
| const char *b_return = b->b_return ? "return " : ""; |
| fprintf(stderr, "used: %d, depth: %d, offset: %d %s\n", |
| b->b_iused, b->b_startdepth, b->b_offset, b_return); |
| if (b->b_instr) { |
| int i; |
| for (i = 0; i < b->b_iused; i++) { |
| fprintf(stderr, " [%02d] ", i); |
| dump_instr(b->b_instr + i); |
| } |
| } |
| } |
| #endif |
| |
| |
| static int |
| normalize_basic_block(basicblock *bb); |
| |
| static int |
| optimize_cfg(struct compiler *c, struct assembler *a, PyObject *consts); |
| |
| static int |
| trim_unused_consts(struct compiler *c, struct assembler *a, PyObject *consts); |
| |
| /* Duplicates exit BBs, so that line numbers can be propagated to them */ |
| static int |
| duplicate_exits_without_lineno(struct compiler *c); |
| |
| static int |
| extend_block(basicblock *bb); |
| |
| static int * |
| build_cellfixedoffsets(struct compiler *c) |
| { |
| int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); |
| int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); |
| int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars); |
| |
| int noffsets = ncellvars + nfreevars; |
| int *fixed = PyMem_New(int, noffsets); |
| if (fixed == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| for (int i = 0; i < noffsets; i++) { |
| fixed[i] = nlocals + i; |
| } |
| |
| PyObject *varname, *cellindex; |
| Py_ssize_t pos = 0; |
| while (PyDict_Next(c->u->u_cellvars, &pos, &varname, &cellindex)) { |
| PyObject *varindex = PyDict_GetItem(c->u->u_varnames, varname); |
| if (varindex != NULL) { |
| assert(PyLong_AS_LONG(cellindex) < INT_MAX); |
| assert(PyLong_AS_LONG(varindex) < INT_MAX); |
| int oldindex = (int)PyLong_AS_LONG(cellindex); |
| int argoffset = (int)PyLong_AS_LONG(varindex); |
| fixed[oldindex] = argoffset; |
| } |
| } |
| |
| return fixed; |
| } |
| |
| static inline int |
| insert_instruction(basicblock *block, int pos, struct instr *instr) { |
| if (compiler_next_instr(block) < 0) { |
| return -1; |
| } |
| for (int i = block->b_iused-1; i > pos; i--) { |
| block->b_instr[i] = block->b_instr[i-1]; |
| } |
| block->b_instr[pos] = *instr; |
| return 0; |
| } |
| |
| static int |
| insert_prefix_instructions(struct compiler *c, basicblock *entryblock, |
| int *fixed, int nfreevars) |
| { |
| |
| int flags = compute_code_flags(c); |
| if (flags < 0) { |
| return -1; |
| } |
| assert(c->u->u_firstlineno > 0); |
| |
| /* Add the generator prefix instructions. */ |
| if (flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) { |
| struct instr make_gen = { |
| .i_opcode = RETURN_GENERATOR, |
| .i_oparg = 0, |
| .i_lineno = c->u->u_firstlineno, |
| .i_col_offset = -1, |
| .i_end_lineno = c->u->u_firstlineno, |
| .i_end_col_offset = -1, |
| .i_target = NULL, |
| }; |
| if (insert_instruction(entryblock, 0, &make_gen) < 0) { |
| return -1; |
| } |
| struct instr pop_top = { |
| .i_opcode = POP_TOP, |
| .i_oparg = 0, |
| .i_lineno = -1, |
| .i_col_offset = -1, |
| .i_end_lineno = -1, |
| .i_end_col_offset = -1, |
| .i_target = NULL, |
| }; |
| if (insert_instruction(entryblock, 1, &pop_top) < 0) { |
| return -1; |
| } |
| } |
| |
| /* Set up cells for any variable that escapes, to be put in a closure. */ |
| const int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); |
| if (ncellvars) { |
| // c->u->u_cellvars has the cells out of order so we sort them |
| // before adding the MAKE_CELL instructions. Note that we |
| // adjust for arg cells, which come first. |
| const int nvars = ncellvars + (int)PyDict_GET_SIZE(c->u->u_varnames); |
| int *sorted = PyMem_RawCalloc(nvars, sizeof(int)); |
| if (sorted == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| for (int i = 0; i < ncellvars; i++) { |
| sorted[fixed[i]] = i + 1; |
| } |
| for (int i = 0, ncellsused = 0; ncellsused < ncellvars; i++) { |
| int oldindex = sorted[i] - 1; |
| if (oldindex == -1) { |
| continue; |
| } |
| struct instr make_cell = { |
| .i_opcode = MAKE_CELL, |
| // This will get fixed in offset_derefs(). |
| .i_oparg = oldindex, |
| .i_lineno = -1, |
| .i_col_offset = -1, |
| .i_end_lineno = -1, |
| .i_end_col_offset = -1, |
| .i_target = NULL, |
| }; |
| if (insert_instruction(entryblock, ncellsused, &make_cell) < 0) { |
| return -1; |
| } |
| ncellsused += 1; |
| } |
| PyMem_RawFree(sorted); |
| } |
| |
| if (nfreevars) { |
| struct instr copy_frees = { |
| .i_opcode = COPY_FREE_VARS, |
| .i_oparg = nfreevars, |
| .i_lineno = -1, |
| .i_col_offset = -1, |
| .i_end_lineno = -1, |
| .i_end_col_offset = -1, |
| .i_target = NULL, |
| }; |
| if (insert_instruction(entryblock, 0, ©_frees) < 0) { |
| return -1; |
| } |
| |
| } |
| |
| return 0; |
| } |
| |
| /* Make sure that all returns have a line number, even if early passes |
| * have failed to propagate a correct line number. |
| * The resulting line number may not be correct according to PEP 626, |
| * but should be "good enough", and no worse than in older versions. */ |
| static void |
| guarantee_lineno_for_exits(struct assembler *a, int firstlineno) { |
| int lineno = firstlineno; |
| assert(lineno > 0); |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| if (b->b_iused == 0) { |
| continue; |
| } |
| struct instr *last = &b->b_instr[b->b_iused-1]; |
| if (last->i_lineno < 0) { |
| if (last->i_opcode == RETURN_VALUE) { |
| for (int i = 0; i < b->b_iused; i++) { |
| assert(b->b_instr[i].i_lineno < 0); |
| |
| b->b_instr[i].i_lineno = lineno; |
| } |
| } |
| } |
| else { |
| lineno = last->i_lineno; |
| } |
| } |
| } |
| |
| static int |
| fix_cell_offsets(struct compiler *c, basicblock *entryblock, int *fixedmap) |
| { |
| int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); |
| int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); |
| int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars); |
| int noffsets = ncellvars + nfreevars; |
| |
| // First deal with duplicates (arg cells). |
| int numdropped = 0; |
| for (int i = 0; i < noffsets ; i++) { |
| if (fixedmap[i] == i + nlocals) { |
| fixedmap[i] -= numdropped; |
| } |
| else { |
| // It was a duplicate (cell/arg). |
| numdropped += 1; |
| } |
| } |
| |
| // Then update offsets, either relative to locals or by cell2arg. |
| for (basicblock *b = entryblock; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| struct instr *inst = &b->b_instr[i]; |
| // This is called before extended args are generated. |
| assert(inst->i_opcode != EXTENDED_ARG); |
| assert(inst->i_opcode != EXTENDED_ARG_QUICK); |
| int oldoffset = inst->i_oparg; |
| switch(inst->i_opcode) { |
| case MAKE_CELL: |
| case LOAD_CLOSURE: |
| case LOAD_DEREF: |
| case STORE_DEREF: |
| case DELETE_DEREF: |
| case LOAD_CLASSDEREF: |
| assert(oldoffset >= 0); |
| assert(oldoffset < noffsets); |
| assert(fixedmap[oldoffset] >= 0); |
| inst->i_oparg = fixedmap[oldoffset]; |
| } |
| } |
| } |
| |
| return numdropped; |
| } |
| |
| static void |
| propagate_line_numbers(struct assembler *a); |
| |
| static PyCodeObject * |
| assemble(struct compiler *c, int addNone) |
| { |
| basicblock *b, *entryblock; |
| struct assembler a; |
| int j, nblocks; |
| PyCodeObject *co = NULL; |
| PyObject *consts = NULL; |
| memset(&a, 0, sizeof(struct assembler)); |
| |
| /* Make sure every block that falls off the end returns None. */ |
| if (!c->u->u_curblock->b_return) { |
| UNSET_LOC(c); |
| if (addNone) |
| ADDOP_LOAD_CONST(c, Py_None); |
| ADDOP(c, RETURN_VALUE); |
| } |
| |
| for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| if (normalize_basic_block(b)) { |
| return NULL; |
| } |
| } |
| |
| for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| if (extend_block(b)) { |
| return NULL; |
| } |
| } |
| |
| nblocks = 0; |
| entryblock = NULL; |
| for (b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| nblocks++; |
| entryblock = b; |
| } |
| assert(entryblock != NULL); |
| |
| assert(PyDict_GET_SIZE(c->u->u_varnames) < INT_MAX); |
| assert(PyDict_GET_SIZE(c->u->u_cellvars) < INT_MAX); |
| assert(PyDict_GET_SIZE(c->u->u_freevars) < INT_MAX); |
| int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); |
| int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); |
| int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars); |
| assert(INT_MAX - nlocals - ncellvars > 0); |
| assert(INT_MAX - nlocals - ncellvars - nfreevars > 0); |
| int nlocalsplus = nlocals + ncellvars + nfreevars; |
| int *cellfixedoffsets = build_cellfixedoffsets(c); |
| if (cellfixedoffsets == NULL) { |
| goto error; |
| } |
| |
| /* Set firstlineno if it wasn't explicitly set. */ |
| if (!c->u->u_firstlineno) { |
| if (entryblock->b_instr && entryblock->b_instr->i_lineno) { |
| c->u->u_firstlineno = entryblock->b_instr->i_lineno; |
| } |
| else { |
| c->u->u_firstlineno = 1; |
| } |
| } |
| |
| // This must be called before fix_cell_offsets(). |
| if (insert_prefix_instructions(c, entryblock, cellfixedoffsets, nfreevars)) { |
| goto error; |
| } |
| |
| if (!assemble_init(&a, nblocks, c->u->u_firstlineno)) |
| goto error; |
| a.a_entry = entryblock; |
| a.a_nblocks = nblocks; |
| |
| int numdropped = fix_cell_offsets(c, entryblock, cellfixedoffsets); |
| PyMem_Free(cellfixedoffsets); // At this point we're done with it. |
| cellfixedoffsets = NULL; |
| if (numdropped < 0) { |
| goto error; |
| } |
| nlocalsplus -= numdropped; |
| |
| consts = consts_dict_keys_inorder(c->u->u_consts); |
| if (consts == NULL) { |
| goto error; |
| } |
| |
| if (optimize_cfg(c, &a, consts)) { |
| goto error; |
| } |
| if (duplicate_exits_without_lineno(c)) { |
| return NULL; |
| } |
| if (trim_unused_consts(c, &a, consts)) { |
| goto error; |
| } |
| propagate_line_numbers(&a); |
| guarantee_lineno_for_exits(&a, c->u->u_firstlineno); |
| int maxdepth = stackdepth(c); |
| if (maxdepth < 0) { |
| goto error; |
| } |
| /* TO DO -- For 3.12, make sure that `maxdepth <= MAX_ALLOWED_STACK_USE` */ |
| |
| if (label_exception_targets(entryblock)) { |
| goto error; |
| } |
| convert_exception_handlers_to_nops(entryblock); |
| for (basicblock *b = a.a_entry; b != NULL; b = b->b_next) { |
| clean_basic_block(b); |
| } |
| |
| /* Order of basic blocks must have been determined by now */ |
| normalize_jumps(&a); |
| |
| /* Can't modify the bytecode after computing jump offsets. */ |
| assemble_jump_offsets(&a, c); |
| |
| /* Emit code. */ |
| for(b = entryblock; b != NULL; b = b->b_next) { |
| for (j = 0; j < b->b_iused; j++) |
| if (!assemble_emit(&a, &b->b_instr[j])) |
| goto error; |
| } |
| |
| /* Emit location info */ |
| a.a_lineno = c->u->u_firstlineno; |
| for(b = entryblock; b != NULL; b = b->b_next) { |
| for (j = 0; j < b->b_iused; j++) |
| if (!assemble_emit_location(&a, &b->b_instr[j])) |
| goto error; |
| } |
| |
| if (!assemble_exception_table(&a)) { |
| goto error; |
| } |
| if (_PyBytes_Resize(&a.a_except_table, a.a_except_table_off) < 0) { |
| goto error; |
| } |
| if (!merge_const_one(c, &a.a_except_table)) { |
| goto error; |
| } |
| |
| if (_PyBytes_Resize(&a.a_linetable, a.a_location_off) < 0) { |
| goto error; |
| } |
| if (!merge_const_one(c, &a.a_linetable)) { |
| goto error; |
| } |
| |
| if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0) { |
| goto error; |
| } |
| if (!merge_const_one(c, &a.a_bytecode)) { |
| goto error; |
| } |
| |
| co = makecode(c, &a, consts, maxdepth, nlocalsplus); |
| error: |
| Py_XDECREF(consts); |
| assemble_free(&a); |
| if (cellfixedoffsets != NULL) { |
| PyMem_Free(cellfixedoffsets); |
| } |
| return co; |
| } |
| |
| static PyObject* |
| get_const_value(int opcode, int oparg, PyObject *co_consts) |
| { |
| PyObject *constant = NULL; |
| assert(HAS_CONST(opcode)); |
| if (opcode == LOAD_CONST) { |
| constant = PyList_GET_ITEM(co_consts, oparg); |
| } |
| |
| if (constant == NULL) { |
| PyErr_SetString(PyExc_SystemError, |
| "Internal error: failed to get value of a constant"); |
| return NULL; |
| } |
| Py_INCREF(constant); |
| return constant; |
| } |
| |
| /* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n |
| with LOAD_CONST (c1, c2, ... cn). |
| The consts table must still be in list form so that the |
| new constant (c1, c2, ... cn) can be appended. |
| Called with codestr pointing to the first LOAD_CONST. |
| */ |
| static int |
| fold_tuple_on_constants(struct compiler *c, |
| struct instr *inst, |
| int n, PyObject *consts) |
| { |
| /* Pre-conditions */ |
| assert(PyList_CheckExact(consts)); |
| assert(inst[n].i_opcode == BUILD_TUPLE); |
| assert(inst[n].i_oparg == n); |
| |
| for (int i = 0; i < n; i++) { |
| if (!HAS_CONST(inst[i].i_opcode)) { |
| return 0; |
| } |
| } |
| |
| /* Buildup new tuple of constants */ |
| PyObject *newconst = PyTuple_New(n); |
| if (newconst == NULL) { |
| return -1; |
| } |
| for (int i = 0; i < n; i++) { |
| int op = inst[i].i_opcode; |
| int arg = inst[i].i_oparg; |
| PyObject *constant = get_const_value(op, arg, consts); |
| if (constant == NULL) { |
| return -1; |
| } |
| PyTuple_SET_ITEM(newconst, i, constant); |
| } |
| if (merge_const_one(c, &newconst) == 0) { |
| Py_DECREF(newconst); |
| return -1; |
| } |
| |
| Py_ssize_t index; |
| for (index = 0; index < PyList_GET_SIZE(consts); index++) { |
| if (PyList_GET_ITEM(consts, index) == newconst) { |
| break; |
| } |
| } |
| if (index == PyList_GET_SIZE(consts)) { |
| if ((size_t)index >= (size_t)INT_MAX - 1) { |
| Py_DECREF(newconst); |
| PyErr_SetString(PyExc_OverflowError, "too many constants"); |
| return -1; |
| } |
| if (PyList_Append(consts, newconst)) { |
| Py_DECREF(newconst); |
| return -1; |
| } |
| } |
| Py_DECREF(newconst); |
| for (int i = 0; i < n; i++) { |
| inst[i].i_opcode = NOP; |
| } |
| inst[n].i_opcode = LOAD_CONST; |
| inst[n].i_oparg = (int)index; |
| return 0; |
| } |
| |
| #define VISITED (-1) |
| |
| // Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the |
| // same effect. |
| static int |
| swaptimize(basicblock *block, int *ix) |
| { |
| // NOTE: "./python -m test test_patma" serves as a good, quick stress test |
| // for this function. Make sure to blow away cached *.pyc files first! |
| assert(*ix < block->b_iused); |
| struct instr *instructions = &block->b_instr[*ix]; |
| // Find the length of the current sequence of SWAPs and NOPs, and record the |
| // maximum depth of the stack manipulations: |
| assert(instructions[0].i_opcode == SWAP); |
| int depth = instructions[0].i_oparg; |
| int len = 0; |
| int more = false; |
| int limit = block->b_iused - *ix; |
| while (++len < limit) { |
| int opcode = instructions[len].i_opcode; |
| if (opcode == SWAP) { |
| depth = Py_MAX(depth, instructions[len].i_oparg); |
| more = true; |
| } |
| else if (opcode != NOP) { |
| break; |
| } |
| } |
| // It's already optimal if there's only one SWAP: |
| if (!more) { |
| return 0; |
| } |
| // Create an array with elements {0, 1, 2, ..., depth - 1}: |
| int *stack = PyMem_Malloc(depth * sizeof(int)); |
| if (stack == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| for (int i = 0; i < depth; i++) { |
| stack[i] = i; |
| } |
| // Simulate the combined effect of these instructions by "running" them on |
| // our "stack": |
| for (int i = 0; i < len; i++) { |
| if (instructions[i].i_opcode == SWAP) { |
| int oparg = instructions[i].i_oparg; |
| int top = stack[0]; |
| // SWAPs are 1-indexed: |
| stack[0] = stack[oparg - 1]; |
| stack[oparg - 1] = top; |
| } |
| } |
| // Now we can begin! Our approach here is based on a solution to a closely |
| // related problem (https://cs.stackexchange.com/a/13938). It's easiest to |
| // think of this algorithm as determining the steps needed to efficiently |
| // "un-shuffle" our stack. By performing the moves in *reverse* order, |
| // though, we can efficiently *shuffle* it! For this reason, we will be |
| // replacing instructions starting from the *end* of the run. Since the |
| // solution is optimal, we don't need to worry about running out of space: |
| int current = len - 1; |
| for (int i = 0; i < depth; i++) { |
| // Skip items that have already been visited, or just happen to be in |
| // the correct location: |
| if (stack[i] == VISITED || stack[i] == i) { |
| continue; |
| } |
| // Okay, we've found an item that hasn't been visited. It forms a cycle |
| // with other items; traversing the cycle and swapping each item with |
| // the next will put them all in the correct place. The weird |
| // loop-and-a-half is necessary to insert 0 into every cycle, since we |
| // can only swap from that position: |
| int j = i; |
| while (true) { |
| // Skip the actual swap if our item is zero, since swapping the top |
| // item with itself is pointless: |
| if (j) { |
| assert(0 <= current); |
| // SWAPs are 1-indexed: |
| instructions[current].i_opcode = SWAP; |
| instructions[current--].i_oparg = j + 1; |
| } |
| if (stack[j] == VISITED) { |
| // Completed the cycle: |
| assert(j == i); |
| break; |
| } |
| int next_j = stack[j]; |
| stack[j] = VISITED; |
| j = next_j; |
| } |
| } |
| // NOP out any unused instructions: |
| while (0 <= current) { |
| instructions[current--].i_opcode = NOP; |
| } |
| PyMem_Free(stack); |
| *ix += len - 1; |
| return 0; |
| } |
| |
| // This list is pretty small, since it's only okay to reorder opcodes that: |
| // - can't affect control flow (like jumping or raising exceptions) |
| // - can't invoke arbitrary code (besides finalizers) |
| // - only touch the TOS (and pop it when finished) |
| #define SWAPPABLE(opcode) \ |
| ((opcode) == STORE_FAST || (opcode) == POP_TOP) |
| |
| #define STORES_TO(instr) \ |
| (((instr).i_opcode == STORE_FAST) ? (instr).i_oparg : -1) |
| |
| static int |
| next_swappable_instruction(basicblock *block, int i, int lineno) |
| { |
| while (++i < block->b_iused) { |
| struct instr *instruction = &block->b_instr[i]; |
| if (0 <= lineno && instruction->i_lineno != lineno) { |
| // Optimizing across this instruction could cause user-visible |
| // changes in the names bound between line tracing events! |
| return -1; |
| } |
| if (instruction->i_opcode == NOP) { |
| continue; |
| } |
| if (SWAPPABLE(instruction->i_opcode)) { |
| return i; |
| } |
| return -1; |
| } |
| return -1; |
| } |
| |
| // Attempt to apply SWAPs statically by swapping *instructions* rather than |
| // stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42) |
| // with the more efficient NOP, STORE_FAST(42), POP_TOP. |
| static void |
| apply_static_swaps(basicblock *block, int i) |
| { |
| // SWAPs are to our left, and potential swaperands are to our right: |
| for (; 0 <= i; i--) { |
| assert(i < block->b_iused); |
| struct instr *swap = &block->b_instr[i]; |
| if (swap->i_opcode != SWAP) { |
| if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) { |
| // Nope, but we know how to handle these. Keep looking: |
| continue; |
| } |
| // We can't reason about what this instruction does. Bail: |
| return; |
| } |
| int j = next_swappable_instruction(block, i, -1); |
| if (j < 0) { |
| return; |
| } |
| int k = j; |
| int lineno = block->b_instr[j].i_lineno; |
| for (int count = swap->i_oparg - 1; 0 < count; count--) { |
| k = next_swappable_instruction(block, k, lineno); |
| if (k < 0) { |
| return; |
| } |
| } |
| // The reordering is not safe if the two instructions to be swapped |
| // store to the same location, or if any intervening instruction stores |
| // to the same location as either of them. |
| int store_j = STORES_TO(block->b_instr[j]); |
| int store_k = STORES_TO(block->b_instr[k]); |
| if (store_j >= 0 || store_k >= 0) { |
| if (store_j == store_k) { |
| return; |
| } |
| for (int idx = j + 1; idx < k; idx++) { |
| int store_idx = STORES_TO(block->b_instr[idx]); |
| if (store_idx >= 0 && (store_idx == store_j || store_idx == store_k)) { |
| return; |
| } |
| } |
| } |
| |
| // Success! |
| swap->i_opcode = NOP; |
| struct instr temp = block->b_instr[j]; |
| block->b_instr[j] = block->b_instr[k]; |
| block->b_instr[k] = temp; |
| } |
| } |
| |
| // Attempt to eliminate jumps to jumps by updating inst to jump to |
| // target->i_target using the provided opcode. Return whether or not the |
| // optimization was successful. |
| static bool |
| jump_thread(struct instr *inst, struct instr *target, int opcode) |
| { |
| assert(!IS_VIRTUAL_OPCODE(opcode) || IS_VIRTUAL_JUMP_OPCODE(opcode)); |
| assert(is_jump(inst)); |
| assert(is_jump(target)); |
| // bpo-45773: If inst->i_target == target->i_target, then nothing actually |
| // changes (and we fall into an infinite loop): |
| if (inst->i_lineno == target->i_lineno && |
| inst->i_target != target->i_target) |
| { |
| inst->i_target = target->i_target; |
| inst->i_opcode = opcode; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Maximum size of basic block that should be copied in optimizer */ |
| #define MAX_COPY_SIZE 4 |
| |
| /* Optimization */ |
| static int |
| optimize_basic_block(struct compiler *c, basicblock *bb, PyObject *consts) |
| { |
| assert(PyList_CheckExact(consts)); |
| struct instr nop; |
| nop.i_opcode = NOP; |
| struct instr *target; |
| for (int i = 0; i < bb->b_iused; i++) { |
| struct instr *inst = &bb->b_instr[i]; |
| int oparg = inst->i_oparg; |
| int nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0; |
| if (is_jump(inst) || is_block_push(inst)) { |
| /* Skip over empty basic blocks. */ |
| while (inst->i_target->b_iused == 0) { |
| inst->i_target = inst->i_target->b_next; |
| } |
| target = &inst->i_target->b_instr[0]; |
| assert(!IS_ASSEMBLER_OPCODE(target->i_opcode)); |
| } |
| else { |
| target = &nop; |
| } |
| assert(!IS_ASSEMBLER_OPCODE(inst->i_opcode)); |
| switch (inst->i_opcode) { |
| /* Remove LOAD_CONST const; conditional jump */ |
| case LOAD_CONST: |
| { |
| PyObject* cnt; |
| int is_true; |
| int jump_if_true; |
| switch(nextop) { |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_IF_TRUE: |
| cnt = get_const_value(inst->i_opcode, oparg, consts); |
| if (cnt == NULL) { |
| goto error; |
| } |
| is_true = PyObject_IsTrue(cnt); |
| Py_DECREF(cnt); |
| if (is_true == -1) { |
| goto error; |
| } |
| inst->i_opcode = NOP; |
| jump_if_true = nextop == POP_JUMP_IF_TRUE; |
| if (is_true == jump_if_true) { |
| bb->b_instr[i+1].i_opcode = JUMP; |
| bb->b_nofallthrough = 1; |
| } |
| else { |
| bb->b_instr[i+1].i_opcode = NOP; |
| } |
| break; |
| case JUMP_IF_FALSE_OR_POP: |
| case JUMP_IF_TRUE_OR_POP: |
| cnt = get_const_value(inst->i_opcode, oparg, consts); |
| if (cnt == NULL) { |
| goto error; |
| } |
| is_true = PyObject_IsTrue(cnt); |
| Py_DECREF(cnt); |
| if (is_true == -1) { |
| goto error; |
| } |
| jump_if_true = nextop == JUMP_IF_TRUE_OR_POP; |
| if (is_true == jump_if_true) { |
| bb->b_instr[i+1].i_opcode = JUMP; |
| bb->b_nofallthrough = 1; |
| } |
| else { |
| inst->i_opcode = NOP; |
| bb->b_instr[i+1].i_opcode = NOP; |
| } |
| break; |
| case IS_OP: |
| cnt = get_const_value(inst->i_opcode, oparg, consts); |
| if (cnt == NULL) { |
| goto error; |
| } |
| int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0; |
| if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) { |
| unsigned char nextarg = bb->b_instr[i+1].i_oparg; |
| inst->i_opcode = NOP; |
| bb->b_instr[i+1].i_opcode = NOP; |
| bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ? |
| POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE; |
| } |
| Py_DECREF(cnt); |
| break; |
| } |
| break; |
| } |
| |
| /* Try to fold tuples of constants. |
| Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1). |
| Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2). |
| Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */ |
| case BUILD_TUPLE: |
| if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) { |
| switch(oparg) { |
| case 1: |
| inst->i_opcode = NOP; |
| bb->b_instr[i+1].i_opcode = NOP; |
| continue; |
| case 2: |
| case 3: |
| inst->i_opcode = NOP; |
| bb->b_instr[i+1].i_opcode = SWAP; |
| continue; |
| } |
| } |
| if (i >= oparg) { |
| if (fold_tuple_on_constants(c, inst-oparg, oparg, consts)) { |
| goto error; |
| } |
| } |
| break; |
| |
| /* Simplify conditional jump to conditional jump where the |
| result of the first test implies the success of a similar |
| test or the failure of the opposite test. |
| Arises in code like: |
| "a and b or c" |
| "(a and b) and c" |
| "(a or b) or c" |
| "(a or b) and c" |
| x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z |
| --> x:JUMP_IF_FALSE_OR_POP z |
| x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z |
| --> x:POP_JUMP_IF_FALSE y+1 |
| where y+1 is the instruction following the second test. |
| */ |
| case JUMP_IF_FALSE_OR_POP: |
| switch (target->i_opcode) { |
| case POP_JUMP_IF_FALSE: |
| i -= jump_thread(inst, target, POP_JUMP_IF_FALSE); |
| break; |
| case JUMP: |
| case JUMP_IF_FALSE_OR_POP: |
| i -= jump_thread(inst, target, JUMP_IF_FALSE_OR_POP); |
| break; |
| case JUMP_IF_TRUE_OR_POP: |
| case POP_JUMP_IF_TRUE: |
| if (inst->i_lineno == target->i_lineno) { |
| // We don't need to bother checking for loops here, |
| // since a block's b_next cannot point to itself: |
| assert(inst->i_target != inst->i_target->b_next); |
| inst->i_opcode = POP_JUMP_IF_FALSE; |
| inst->i_target = inst->i_target->b_next; |
| --i; |
| } |
| break; |
| } |
| break; |
| case JUMP_IF_TRUE_OR_POP: |
| switch (target->i_opcode) { |
| case POP_JUMP_IF_TRUE: |
| i -= jump_thread(inst, target, POP_JUMP_IF_TRUE); |
| break; |
| case JUMP: |
| case JUMP_IF_TRUE_OR_POP: |
| i -= jump_thread(inst, target, JUMP_IF_TRUE_OR_POP); |
| break; |
| case JUMP_IF_FALSE_OR_POP: |
| case POP_JUMP_IF_FALSE: |
| if (inst->i_lineno == target->i_lineno) { |
| // We don't need to bother checking for loops here, |
| // since a block's b_next cannot point to itself: |
| assert(inst->i_target != inst->i_target->b_next); |
| inst->i_opcode = POP_JUMP_IF_TRUE; |
| inst->i_target = inst->i_target->b_next; |
| --i; |
| } |
| break; |
| } |
| break; |
| case POP_JUMP_IF_NOT_NONE: |
| case POP_JUMP_IF_NONE: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, inst->i_opcode); |
| } |
| break; |
| case POP_JUMP_IF_FALSE: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, POP_JUMP_IF_FALSE); |
| } |
| break; |
| case POP_JUMP_IF_TRUE: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, POP_JUMP_IF_TRUE); |
| } |
| break; |
| case JUMP: |
| switch (target->i_opcode) { |
| case JUMP: |
| i -= jump_thread(inst, target, JUMP); |
| } |
| break; |
| case FOR_ITER: |
| if (target->i_opcode == JUMP) { |
| /* This will not work now because the jump (at target) could |
| * be forward or backward and FOR_ITER only jumps forward. We |
| * can re-enable this if ever we implement a backward version |
| * of FOR_ITER. |
| */ |
| /* |
| i -= jump_thread(inst, target, FOR_ITER); |
| */ |
| } |
| break; |
| case SWAP: |
| if (oparg == 1) { |
| inst->i_opcode = NOP; |
| break; |
| } |
| if (swaptimize(bb, &i)) { |
| goto error; |
| } |
| apply_static_swaps(bb, i); |
| break; |
| case KW_NAMES: |
| break; |
| case PUSH_NULL: |
| if (nextop == LOAD_GLOBAL && (inst[1].i_opcode & 1) == 0) { |
| inst->i_opcode = NOP; |
| inst->i_oparg = 0; |
| inst[1].i_oparg |= 1; |
| } |
| break; |
| default: |
| /* All HAS_CONST opcodes should be handled with LOAD_CONST */ |
| assert (!HAS_CONST(inst->i_opcode)); |
| } |
| } |
| return 0; |
| error: |
| return -1; |
| } |
| |
| static bool |
| basicblock_has_lineno(const basicblock *bb) { |
| for (int i = 0; i < bb->b_iused; i++) { |
| if (bb->b_instr[i].i_lineno > 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* If this block ends with an unconditional jump to an exit block, |
| * then remove the jump and extend this block with the target. |
| */ |
| static int |
| extend_block(basicblock *bb) { |
| if (bb->b_iused == 0) { |
| return 0; |
| } |
| struct instr *last = &bb->b_instr[bb->b_iused-1]; |
| if (last->i_opcode != JUMP && |
| last->i_opcode != JUMP_FORWARD && |
| last->i_opcode != JUMP_BACKWARD) { |
| return 0; |
| } |
| if (last->i_target->b_exit && last->i_target->b_iused <= MAX_COPY_SIZE) { |
| basicblock *to_copy = last->i_target; |
| if (basicblock_has_lineno(to_copy)) { |
| /* copy only blocks without line number (like implicit 'return None's) */ |
| return 0; |
| } |
| last->i_opcode = NOP; |
| for (int i = 0; i < to_copy->b_iused; i++) { |
| int index = compiler_next_instr(bb); |
| if (index < 0) { |
| return -1; |
| } |
| bb->b_instr[index] = to_copy->b_instr[i]; |
| } |
| bb->b_exit = 1; |
| } |
| return 0; |
| } |
| |
| static void |
| clean_basic_block(basicblock *bb) { |
| /* Remove NOPs when legal to do so. */ |
| int dest = 0; |
| int prev_lineno = -1; |
| for (int src = 0; src < bb->b_iused; src++) { |
| int lineno = bb->b_instr[src].i_lineno; |
| if (bb->b_instr[src].i_opcode == NOP) { |
| /* Eliminate no-op if it doesn't have a line number */ |
| if (lineno < 0) { |
| continue; |
| } |
| /* or, if the previous instruction had the same line number. */ |
| if (prev_lineno == lineno) { |
| continue; |
| } |
| /* or, if the next instruction has same line number or no line number */ |
| if (src < bb->b_iused - 1) { |
| int next_lineno = bb->b_instr[src+1].i_lineno; |
| if (next_lineno == lineno) { |
| continue; |
| } |
| if (next_lineno < 0) { |
| COPY_INSTR_LOC(bb->b_instr[src], bb->b_instr[src+1]); |
| continue; |
| } |
| } |
| else { |
| basicblock* next = bb->b_next; |
| while (next && next->b_iused == 0) { |
| next = next->b_next; |
| } |
| /* or if last instruction in BB and next BB has same line number */ |
| if (next) { |
| if (lineno == next->b_instr[0].i_lineno) { |
| continue; |
| } |
| } |
| } |
| |
| } |
| if (dest != src) { |
| bb->b_instr[dest] = bb->b_instr[src]; |
| } |
| dest++; |
| prev_lineno = lineno; |
| } |
| assert(dest <= bb->b_iused); |
| bb->b_iused = dest; |
| } |
| |
| static int |
| normalize_basic_block(basicblock *bb) { |
| /* Mark blocks as exit and/or nofallthrough. |
| Raise SystemError if CFG is malformed. */ |
| for (int i = 0; i < bb->b_iused; i++) { |
| assert(!IS_ASSEMBLER_OPCODE(bb->b_instr[i].i_opcode)); |
| switch(bb->b_instr[i].i_opcode) { |
| case RETURN_VALUE: |
| case RAISE_VARARGS: |
| case RERAISE: |
| bb->b_exit = 1; |
| bb->b_nofallthrough = 1; |
| break; |
| case JUMP: |
| case JUMP_NO_INTERRUPT: |
| bb->b_nofallthrough = 1; |
| /* fall through */ |
| case POP_JUMP_IF_NOT_NONE: |
| case POP_JUMP_IF_NONE: |
| case POP_JUMP_IF_FALSE: |
| case POP_JUMP_IF_TRUE: |
| case JUMP_IF_FALSE_OR_POP: |
| case JUMP_IF_TRUE_OR_POP: |
| case FOR_ITER: |
| if (i != bb->b_iused-1) { |
| PyErr_SetString(PyExc_SystemError, "malformed control flow graph."); |
| return -1; |
| } |
| /* Skip over empty basic blocks. */ |
| while (bb->b_instr[i].i_target->b_iused == 0) { |
| bb->b_instr[i].i_target = bb->b_instr[i].i_target->b_next; |
| } |
| |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| mark_reachable(struct assembler *a) { |
| basicblock **stack, **sp; |
| sp = stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * a->a_nblocks); |
| if (stack == NULL) { |
| return -1; |
| } |
| a->a_entry->b_predecessors = 1; |
| *sp++ = a->a_entry; |
| while (sp > stack) { |
| basicblock *b = *(--sp); |
| if (b->b_next && !b->b_nofallthrough) { |
| if (b->b_next->b_predecessors == 0) { |
| *sp++ = b->b_next; |
| } |
| b->b_next->b_predecessors++; |
| } |
| for (int i = 0; i < b->b_iused; i++) { |
| basicblock *target; |
| struct instr *instr = &b->b_instr[i]; |
| if (is_jump(instr) || is_block_push(instr)) { |
| target = instr->i_target; |
| if (target->b_predecessors == 0) { |
| *sp++ = target; |
| } |
| target->b_predecessors++; |
| } |
| } |
| } |
| PyObject_Free(stack); |
| return 0; |
| } |
| |
| static void |
| eliminate_empty_basic_blocks(basicblock *entry) { |
| /* Eliminate empty blocks */ |
| for (basicblock *b = entry; b != NULL; b = b->b_next) { |
| basicblock *next = b->b_next; |
| if (next) { |
| while (next->b_iused == 0 && next->b_next) { |
| next = next->b_next; |
| } |
| b->b_next = next; |
| } |
| } |
| for (basicblock *b = entry; b != NULL; b = b->b_next) { |
| if (b->b_iused == 0) { |
| continue; |
| } |
| if (is_jump(&b->b_instr[b->b_iused-1])) { |
| basicblock *target = b->b_instr[b->b_iused-1].i_target; |
| while (target->b_iused == 0) { |
| target = target->b_next; |
| } |
| b->b_instr[b->b_iused-1].i_target = target; |
| } |
| } |
| } |
| |
| |
| /* If an instruction has no line number, but it's predecessor in the BB does, |
| * then copy the line number. If a successor block has no line number, and only |
| * one predecessor, then inherit the line number. |
| * This ensures that all exit blocks (with one predecessor) receive a line number. |
| * Also reduces the size of the line number table, |
| * but has no impact on the generated line number events. |
| */ |
| static void |
| propagate_line_numbers(struct assembler *a) { |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| if (b->b_iused == 0) { |
| continue; |
| } |
| |
| // Not a real instruction, only to store positions |
| // from previous instructions and propagate them. |
| struct instr prev_instr = { |
| .i_lineno = -1, |
| .i_col_offset = -1, |
| .i_end_lineno = -1, |
| .i_end_col_offset = -1, |
| }; |
| for (int i = 0; i < b->b_iused; i++) { |
| if (b->b_instr[i].i_lineno < 0) { |
| COPY_INSTR_LOC(prev_instr, b->b_instr[i]); |
| } |
| else { |
| COPY_INSTR_LOC(b->b_instr[i], prev_instr); |
| } |
| } |
| if (!b->b_nofallthrough && b->b_next->b_predecessors == 1) { |
| assert(b->b_next->b_iused); |
| if (b->b_next->b_instr[0].i_lineno < 0) { |
| COPY_INSTR_LOC(prev_instr, b->b_next->b_instr[0]); |
| } |
| } |
| if (is_jump(&b->b_instr[b->b_iused-1])) { |
| basicblock *target = b->b_instr[b->b_iused-1].i_target; |
| if (target->b_predecessors == 1) { |
| if (target->b_instr[0].i_lineno < 0) { |
| COPY_INSTR_LOC(prev_instr, target->b_instr[0]); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Perform optimizations on a control flow graph. |
| The consts object should still be in list form to allow new constants |
| to be appended. |
| |
| All transformations keep the code size the same or smaller. |
| For those that reduce size, the gaps are initially filled with |
| NOPs. Later those NOPs are removed. |
| */ |
| |
| static int |
| optimize_cfg(struct compiler *c, struct assembler *a, PyObject *consts) |
| { |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| if (optimize_basic_block(c, b, consts)) { |
| return -1; |
| } |
| clean_basic_block(b); |
| assert(b->b_predecessors == 0); |
| } |
| for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| if (extend_block(b)) { |
| return -1; |
| } |
| } |
| if (mark_reachable(a)) { |
| return -1; |
| } |
| /* Delete unreachable instructions */ |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| if (b->b_predecessors == 0) { |
| b->b_iused = 0; |
| b->b_nofallthrough = 0; |
| } |
| } |
| eliminate_empty_basic_blocks(a->a_entry); |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| clean_basic_block(b); |
| } |
| /* Delete jump instructions made redundant by previous step. If a non-empty |
| block ends with a jump instruction, check if the next non-empty block |
| reached through normal flow control is the target of that jump. If it |
| is, then the jump instruction is redundant and can be deleted. |
| */ |
| int maybe_empty_blocks = 0; |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| if (b->b_iused > 0) { |
| struct instr *b_last_instr = &b->b_instr[b->b_iused - 1]; |
| assert(!IS_ASSEMBLER_OPCODE(b_last_instr->i_opcode)); |
| if (b_last_instr->i_opcode == JUMP || |
| b_last_instr->i_opcode == JUMP_NO_INTERRUPT) { |
| if (b_last_instr->i_target == b->b_next) { |
| assert(b->b_next->b_iused); |
| b->b_nofallthrough = 0; |
| b_last_instr->i_opcode = NOP; |
| maybe_empty_blocks = 1; |
| } |
| } |
| } |
| } |
| if (maybe_empty_blocks) { |
| eliminate_empty_basic_blocks(a->a_entry); |
| } |
| return 0; |
| } |
| |
| // Remove trailing unused constants. |
| static int |
| trim_unused_consts(struct compiler *c, struct assembler *a, PyObject *consts) |
| { |
| assert(PyList_CheckExact(consts)); |
| |
| // The first constant may be docstring; keep it always. |
| int max_const_index = 0; |
| for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { |
| for (int i = 0; i < b->b_iused; i++) { |
| if ((b->b_instr[i].i_opcode == LOAD_CONST || |
| b->b_instr[i].i_opcode == KW_NAMES) && |
| b->b_instr[i].i_oparg > max_const_index) { |
| max_const_index = b->b_instr[i].i_oparg; |
| } |
| } |
| } |
| if (max_const_index+1 < PyList_GET_SIZE(consts)) { |
| //fprintf(stderr, "removing trailing consts: max=%d, size=%d\n", |
| // max_const_index, (int)PyList_GET_SIZE(consts)); |
| if (PyList_SetSlice(consts, max_const_index+1, |
| PyList_GET_SIZE(consts), NULL) < 0) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static inline int |
| is_exit_without_lineno(basicblock *b) { |
| if (!b->b_exit) { |
| return 0; |
| } |
| for (int i = 0; i < b->b_iused; i++) { |
| if (b->b_instr[i].i_lineno >= 0) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* PEP 626 mandates that the f_lineno of a frame is correct |
| * after a frame terminates. It would be prohibitively expensive |
| * to continuously update the f_lineno field at runtime, |
| * so we make sure that all exiting instruction (raises and returns) |
| * have a valid line number, allowing us to compute f_lineno lazily. |
| * We can do this by duplicating the exit blocks without line number |
| * so that none have more than one predecessor. We can then safely |
| * copy the line number from the sole predecessor block. |
| */ |
| static int |
| duplicate_exits_without_lineno(struct compiler *c) |
| { |
| /* Copy all exit blocks without line number that are targets of a jump. |
| */ |
| for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| if (b->b_iused > 0 && is_jump(&b->b_instr[b->b_iused-1])) { |
| basicblock *target = b->b_instr[b->b_iused-1].i_target; |
| if (is_exit_without_lineno(target) && target->b_predecessors > 1) { |
| basicblock *new_target = compiler_copy_block(c, target); |
| if (new_target == NULL) { |
| return -1; |
| } |
| COPY_INSTR_LOC(b->b_instr[b->b_iused-1], new_target->b_instr[0]); |
| b->b_instr[b->b_iused-1].i_target = new_target; |
| target->b_predecessors--; |
| new_target->b_predecessors = 1; |
| new_target->b_next = target->b_next; |
| target->b_next = new_target; |
| } |
| } |
| } |
| /* Eliminate empty blocks */ |
| for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| while (b->b_next && b->b_next->b_iused == 0) { |
| b->b_next = b->b_next->b_next; |
| } |
| } |
| /* Any remaining reachable exit blocks without line number can only be reached by |
| * fall through, and thus can only have a single predecessor */ |
| for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { |
| if (!b->b_nofallthrough && b->b_next && b->b_iused > 0) { |
| if (is_exit_without_lineno(b->b_next)) { |
| assert(b->b_next->b_iused > 0); |
| COPY_INSTR_LOC(b->b_instr[b->b_iused-1], b->b_next->b_instr[0]); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* Retained for API compatibility. |
| * Optimization is now done in optimize_cfg */ |
| |
| PyObject * |
| PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts), |
| PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj)) |
| { |
| Py_INCREF(code); |
| return code; |
| } |