blob: 7a6d6affb6eaf9bc0e184f27d7e492bca7a78c09 [file] [log] [blame]
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import binascii
import itertools
import os
from binascii import hexlify
import pytest
from cryptography import exceptions, utils
from cryptography.hazmat.backends.interfaces import (
EllipticCurveBackend, PEMSerializationBackend
)
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric.utils import (
Prehashed, encode_dss_signature
)
from cryptography.utils import CryptographyDeprecationWarning
from .fixtures_ec import EC_KEY_SECP384R1
from ...doubles import DummyKeySerializationEncryption
from ...utils import (
load_fips_ecdsa_key_pair_vectors, load_fips_ecdsa_signing_vectors,
load_kasvs_ecdh_vectors, load_nist_vectors, load_vectors_from_file,
raises_unsupported_algorithm
)
_HASH_TYPES = {
"SHA-1": hashes.SHA1,
"SHA-224": hashes.SHA224,
"SHA-256": hashes.SHA256,
"SHA-384": hashes.SHA384,
"SHA-512": hashes.SHA512,
}
def _skip_ecdsa_vector(backend, curve_type, hash_type):
if not backend.elliptic_curve_signature_algorithm_supported(
ec.ECDSA(hash_type()),
curve_type()
):
pytest.skip(
"ECDSA not supported with this hash {0} and curve {1}".format(
hash_type().name, curve_type().name
)
)
def _skip_curve_unsupported(backend, curve):
if not backend.elliptic_curve_supported(curve):
pytest.skip(
"Curve {0} is not supported by this backend {1}".format(
curve.name, backend
)
)
def _skip_exchange_algorithm_unsupported(backend, algorithm, curve):
if not backend.elliptic_curve_exchange_algorithm_supported(
algorithm, curve
):
pytest.skip(
"Exchange with {0} curve is not supported by {1}".format(
curve.name, backend
)
)
@utils.register_interface(ec.EllipticCurve)
class DummyCurve(object):
name = "dummy-curve"
key_size = 1
@utils.register_interface(ec.EllipticCurveSignatureAlgorithm)
class DummySignatureAlgorithm(object):
algorithm = None
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
def test_skip_curve_unsupported(backend):
with pytest.raises(pytest.skip.Exception):
_skip_curve_unsupported(backend, DummyCurve())
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
def test_skip_exchange_algorithm_unsupported(backend):
with pytest.raises(pytest.skip.Exception):
_skip_exchange_algorithm_unsupported(backend, ec.ECDH(), DummyCurve())
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
def test_skip_ecdsa_vector(backend):
with pytest.raises(pytest.skip.Exception):
_skip_ecdsa_vector(backend, DummyCurve, hashes.SHA256)
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
def test_derive_private_key_success(backend):
curve = ec.SECP256K1()
_skip_curve_unsupported(backend, curve)
private_numbers = ec.generate_private_key(curve, backend).private_numbers()
derived_key = ec.derive_private_key(
private_numbers.private_value, curve, backend
)
assert private_numbers == derived_key.private_numbers()
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
def test_derive_private_key_errors(backend):
curve = ec.SECP256K1()
_skip_curve_unsupported(backend, curve)
with pytest.raises(TypeError):
ec.derive_private_key('one', curve, backend)
with pytest.raises(TypeError):
ec.derive_private_key(10, 'five', backend)
with pytest.raises(ValueError):
ec.derive_private_key(-7, curve, backend)
def test_ec_numbers():
numbers = ec.EllipticCurvePrivateNumbers(
1,
ec.EllipticCurvePublicNumbers(
2, 3, DummyCurve()
)
)
assert numbers.private_value == 1
assert numbers.public_numbers.x == 2
assert numbers.public_numbers.y == 3
assert isinstance(numbers.public_numbers.curve, DummyCurve)
@pytest.mark.parametrize(
("private_value", "x", "y", "curve"),
[
(None, 2, 3, DummyCurve()),
(1, None, 3, DummyCurve()),
(1, 2, None, DummyCurve()),
(1, 2, 3, None),
]
)
def test_invalid_ec_numbers_args(private_value, x, y, curve):
with pytest.raises(TypeError):
ec.EllipticCurvePrivateNumbers(
private_value, ec.EllipticCurvePublicNumbers(x, y, curve)
)
def test_invalid_private_numbers_public_numbers():
with pytest.raises(TypeError):
ec.EllipticCurvePrivateNumbers(1, None)
def test_encode_point():
# secp256r1 point
x = int(
'233ea3b0027127084cd2cd336a13aeef69c598d8af61369a36454a17c6c22aec',
16
)
y = int(
'3ea2c10a84153862be4ec82940f0543f9ba866af9751a6ee79d38460b35f442e',
16
)
pn = ec.EllipticCurvePublicNumbers(x, y, ec.SECP256R1())
with pytest.warns(utils.DeprecatedIn25):
data = pn.encode_point()
assert data == binascii.unhexlify(
"04233ea3b0027127084cd2cd336a13aeef69c598d8af61369a36454a17c6c22ae"
"c3ea2c10a84153862be4ec82940f0543f9ba866af9751a6ee79d38460b35f442e"
)
def test_from_encoded_point():
# secp256r1 point
data = binascii.unhexlify(
"04233ea3b0027127084cd2cd336a13aeef69c598d8af61369a36454a17c6c22ae"
"c3ea2c10a84153862be4ec82940f0543f9ba866af9751a6ee79d38460b35f442e"
)
with pytest.warns(CryptographyDeprecationWarning):
pn = ec.EllipticCurvePublicNumbers.from_encoded_point(
ec.SECP256R1(), data
)
assert pn.x == int(
'233ea3b0027127084cd2cd336a13aeef69c598d8af61369a36454a17c6c22aec',
16
)
assert pn.y == int(
'3ea2c10a84153862be4ec82940f0543f9ba866af9751a6ee79d38460b35f442e',
16
)
def test_from_encoded_point_invalid_length():
bad_data = binascii.unhexlify(
"04233ea3b0027127084cd2cd336a13aeef69c598d8af61369a36454a17c6c22ae"
"c3ea2c10a84153862be4ec82940f0543f9ba866af9751a6ee79d38460"
)
with pytest.raises(ValueError):
with pytest.warns(CryptographyDeprecationWarning):
ec.EllipticCurvePublicNumbers.from_encoded_point(
ec.SECP384R1(), bad_data
)
def test_from_encoded_point_unsupported_point_no_backend():
# set to point type 2.
unsupported_type = binascii.unhexlify(
"02233ea3b0027127084cd2cd336a13aeef69c598d8af61369a36454a17c6c22a"
)
with pytest.raises(ValueError):
with pytest.warns(CryptographyDeprecationWarning):
ec.EllipticCurvePublicNumbers.from_encoded_point(
ec.SECP256R1(), unsupported_type
)
def test_from_encoded_point_not_a_curve():
with pytest.raises(TypeError):
with pytest.warns(CryptographyDeprecationWarning):
ec.EllipticCurvePublicNumbers.from_encoded_point(
"notacurve", b"\x04data"
)
def test_ec_public_numbers_repr():
pn = ec.EllipticCurvePublicNumbers(2, 3, ec.SECP256R1())
assert repr(pn) == "<EllipticCurvePublicNumbers(curve=secp256r1, x=2, y=3>"
def test_ec_public_numbers_hash():
pn1 = ec.EllipticCurvePublicNumbers(2, 3, ec.SECP256R1())
pn2 = ec.EllipticCurvePublicNumbers(2, 3, ec.SECP256R1())
pn3 = ec.EllipticCurvePublicNumbers(1, 3, ec.SECP256R1())
assert hash(pn1) == hash(pn2)
assert hash(pn1) != hash(pn3)
def test_ec_private_numbers_hash():
numbers1 = ec.EllipticCurvePrivateNumbers(
1, ec.EllipticCurvePublicNumbers(2, 3, DummyCurve())
)
numbers2 = ec.EllipticCurvePrivateNumbers(
1, ec.EllipticCurvePublicNumbers(2, 3, DummyCurve())
)
numbers3 = ec.EllipticCurvePrivateNumbers(
2, ec.EllipticCurvePublicNumbers(2, 3, DummyCurve())
)
assert hash(numbers1) == hash(numbers2)
assert hash(numbers1) != hash(numbers3)
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
def test_ec_key_key_size(backend):
curve = ec.SECP256R1()
_skip_curve_unsupported(backend, curve)
key = ec.generate_private_key(curve, backend)
assert key.key_size == 256
assert key.public_key().key_size == 256
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
class TestECWithNumbers(object):
@pytest.mark.parametrize(
("vector", "hash_type"),
list(itertools.product(
load_vectors_from_file(
os.path.join(
"asymmetric", "ECDSA", "FIPS_186-3", "KeyPair.rsp"),
load_fips_ecdsa_key_pair_vectors
),
_HASH_TYPES.values()
))
)
def test_with_numbers(self, backend, vector, hash_type):
curve_type = ec._CURVE_TYPES[vector['curve']]
_skip_ecdsa_vector(backend, curve_type, hash_type)
key = ec.EllipticCurvePrivateNumbers(
vector['d'],
ec.EllipticCurvePublicNumbers(
vector['x'],
vector['y'],
curve_type()
)
).private_key(backend)
assert key
priv_num = key.private_numbers()
assert priv_num.private_value == vector['d']
assert priv_num.public_numbers.x == vector['x']
assert priv_num.public_numbers.y == vector['y']
assert curve_type().name == priv_num.public_numbers.curve.name
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
class TestECDSAVectors(object):
@pytest.mark.parametrize(
("vector", "hash_type"),
list(itertools.product(
load_vectors_from_file(
os.path.join(
"asymmetric", "ECDSA", "FIPS_186-3", "KeyPair.rsp"),
load_fips_ecdsa_key_pair_vectors
),
_HASH_TYPES.values()
))
)
def test_signing_with_example_keys(self, backend, vector, hash_type):
curve_type = ec._CURVE_TYPES[vector['curve']]
_skip_ecdsa_vector(backend, curve_type, hash_type)
key = ec.EllipticCurvePrivateNumbers(
vector['d'],
ec.EllipticCurvePublicNumbers(
vector['x'],
vector['y'],
curve_type()
)
).private_key(backend)
assert key
pkey = key.public_key()
assert pkey
with pytest.warns(CryptographyDeprecationWarning):
signer = key.signer(ec.ECDSA(hash_type()))
signer.update(b"YELLOW SUBMARINE")
signature = signer.finalize()
with pytest.warns(CryptographyDeprecationWarning):
verifier = pkey.verifier(signature, ec.ECDSA(hash_type()))
verifier.update(b"YELLOW SUBMARINE")
verifier.verify()
@pytest.mark.parametrize(
"curve", ec._CURVE_TYPES.values()
)
def test_generate_vector_curves(self, backend, curve):
_skip_curve_unsupported(backend, curve())
key = ec.generate_private_key(curve(), backend)
assert key
assert isinstance(key.curve, curve)
assert key.curve.key_size
pkey = key.public_key()
assert pkey
assert isinstance(pkey.curve, curve)
assert key.curve.key_size == pkey.curve.key_size
def test_generate_unknown_curve(self, backend):
with raises_unsupported_algorithm(
exceptions._Reasons.UNSUPPORTED_ELLIPTIC_CURVE
):
ec.generate_private_key(DummyCurve(), backend)
assert backend.elliptic_curve_signature_algorithm_supported(
ec.ECDSA(hashes.SHA256()),
DummyCurve()
) is False
def test_unknown_signature_algoritm(self, backend):
_skip_curve_unsupported(backend, ec.SECP192R1())
key = ec.generate_private_key(ec.SECP192R1(), backend)
with raises_unsupported_algorithm(
exceptions._Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
), pytest.warns(CryptographyDeprecationWarning):
key.signer(DummySignatureAlgorithm())
with raises_unsupported_algorithm(
exceptions._Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
):
key.sign(b"somedata", DummySignatureAlgorithm())
with raises_unsupported_algorithm(
exceptions._Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
), pytest.warns(CryptographyDeprecationWarning):
key.public_key().verifier(b"", DummySignatureAlgorithm())
with raises_unsupported_algorithm(
exceptions._Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM
):
key.public_key().verify(
b"signature", b"data", DummySignatureAlgorithm()
)
assert backend.elliptic_curve_signature_algorithm_supported(
DummySignatureAlgorithm(),
ec.SECP192R1()
) is False
def test_load_invalid_ec_key_from_numbers(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
numbers = ec.EllipticCurvePrivateNumbers(
357646505660320080863666618182642070958081774038609089496899025506,
ec.EllipticCurvePublicNumbers(
47250808410327023131573602008345894927686381772325561185532964,
1120253292479243545483756778742719537373113335231773536789915,
ec.SECP256R1(),
)
)
with pytest.raises(ValueError):
numbers.private_key(backend)
numbers = ec.EllipticCurvePrivateNumbers(
357646505660320080863666618182642070958081774038609089496899025506,
ec.EllipticCurvePublicNumbers(
-4725080841032702313157360200834589492768638177232556118553296,
1120253292479243545483756778742719537373113335231773536789915,
ec.SECP256R1(),
)
)
with pytest.raises(ValueError):
numbers.private_key(backend)
numbers = ec.EllipticCurvePrivateNumbers(
357646505660320080863666618182642070958081774038609089496899025506,
ec.EllipticCurvePublicNumbers(
47250808410327023131573602008345894927686381772325561185532964,
-1120253292479243545483756778742719537373113335231773536789915,
ec.SECP256R1(),
)
)
with pytest.raises(ValueError):
numbers.private_key(backend)
def test_load_invalid_public_ec_key_from_numbers(self, backend):
_skip_curve_unsupported(backend, ec.SECP521R1())
# Bad X coordinate
numbers = ec.EllipticCurvePublicNumbers(
int("000003647356b91f8ace114c7247ecf4f4a622553fc025e04a178f179ef27"
"9090c184af678a4c78f635483bdd8aa544851c6ef291c1f0d6a241ebfd145"
"77d1d30d9903ce", 16),
int("000001499bc7e079322ea0fcfbd6b40103fa6a1536c2257b182db0df4b369"
"6ec643adf100eb4f2025d1b873f82e5a475d6e4400ba777090eeb4563a115"
"09e4c87319dc26", 16),
ec.SECP521R1()
)
with pytest.raises(ValueError):
numbers.public_key(backend)
# Bad Y coordinate
numbers = ec.EllipticCurvePublicNumbers(
int("0000019aadc221cc0525118ab6d5aa1f64720603de0be128cbfea0b381ad8"
"02a2facc6370bb58cf88b3f0c692bc654ee19d6cad198f10d4b681b396f20"
"d2e40603fa945b", 16),
int("0000025da392803a320717a08d4cb3dea932039badff363b71bdb8064e726"
"6c7f4f4b748d4d425347fc33e3885d34b750fa7fcd5691f4d90c89522ce33"
"feff5db10088a5", 16),
ec.SECP521R1()
)
with pytest.raises(ValueError):
numbers.public_key(backend)
@pytest.mark.parametrize(
"vector",
itertools.chain(
load_vectors_from_file(
os.path.join(
"asymmetric", "ECDSA", "FIPS_186-3", "SigGen.txt"),
load_fips_ecdsa_signing_vectors
),
load_vectors_from_file(
os.path.join(
"asymmetric", "ECDSA", "SECP256K1", "SigGen.txt"),
load_fips_ecdsa_signing_vectors
),
)
)
def test_signatures(self, backend, vector):
hash_type = _HASH_TYPES[vector['digest_algorithm']]
curve_type = ec._CURVE_TYPES[vector['curve']]
_skip_ecdsa_vector(backend, curve_type, hash_type)
key = ec.EllipticCurvePublicNumbers(
vector['x'],
vector['y'],
curve_type()
).public_key(backend)
signature = encode_dss_signature(vector['r'], vector['s'])
key.verify(
signature,
vector['message'],
ec.ECDSA(hash_type())
)
@pytest.mark.parametrize(
"vector",
load_vectors_from_file(
os.path.join(
"asymmetric", "ECDSA", "FIPS_186-3", "SigVer.rsp"),
load_fips_ecdsa_signing_vectors
)
)
def test_signature_failures(self, backend, vector):
hash_type = _HASH_TYPES[vector['digest_algorithm']]
curve_type = ec._CURVE_TYPES[vector['curve']]
_skip_ecdsa_vector(backend, curve_type, hash_type)
key = ec.EllipticCurvePublicNumbers(
vector['x'],
vector['y'],
curve_type()
).public_key(backend)
signature = encode_dss_signature(vector['r'], vector['s'])
if vector["fail"] is True:
with pytest.raises(exceptions.InvalidSignature):
key.verify(
signature,
vector['message'],
ec.ECDSA(hash_type())
)
else:
key.verify(
signature,
vector['message'],
ec.ECDSA(hash_type())
)
def test_sign(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
message = b"one little message"
algorithm = ec.ECDSA(hashes.SHA1())
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
signature = private_key.sign(message, algorithm)
public_key = private_key.public_key()
public_key.verify(signature, message, algorithm)
def test_sign_prehashed(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
message = b"one little message"
h = hashes.Hash(hashes.SHA1(), backend)
h.update(message)
data = h.finalize()
algorithm = ec.ECDSA(Prehashed(hashes.SHA1()))
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
signature = private_key.sign(data, algorithm)
public_key = private_key.public_key()
public_key.verify(signature, message, ec.ECDSA(hashes.SHA1()))
def test_sign_prehashed_digest_mismatch(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
message = b"one little message"
h = hashes.Hash(hashes.SHA1(), backend)
h.update(message)
data = h.finalize()
algorithm = ec.ECDSA(Prehashed(hashes.SHA256()))
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
with pytest.raises(ValueError):
private_key.sign(data, algorithm)
def test_verify(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
message = b"one little message"
algorithm = ec.ECDSA(hashes.SHA1())
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
signature = private_key.sign(message, algorithm)
public_key = private_key.public_key()
public_key.verify(signature, message, algorithm)
def test_verify_prehashed(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
message = b"one little message"
algorithm = ec.ECDSA(hashes.SHA1())
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
signature = private_key.sign(message, algorithm)
h = hashes.Hash(hashes.SHA1(), backend)
h.update(message)
data = h.finalize()
public_key = private_key.public_key()
public_key.verify(
signature, data, ec.ECDSA(Prehashed(hashes.SHA1()))
)
def test_verify_prehashed_digest_mismatch(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
message = b"one little message"
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
h = hashes.Hash(hashes.SHA1(), backend)
h.update(message)
data = h.finalize()
public_key = private_key.public_key()
with pytest.raises(ValueError):
public_key.verify(
b"\x00" * 32, data, ec.ECDSA(Prehashed(hashes.SHA256()))
)
def test_prehashed_unsupported_in_signer_ctx(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
with pytest.raises(TypeError), \
pytest.warns(CryptographyDeprecationWarning):
private_key.signer(ec.ECDSA(Prehashed(hashes.SHA1())))
def test_prehashed_unsupported_in_verifier_ctx(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
private_key = ec.generate_private_key(ec.SECP256R1(), backend)
public_key = private_key.public_key()
with pytest.raises(TypeError), \
pytest.warns(CryptographyDeprecationWarning):
public_key.verifier(
b"0" * 64,
ec.ECDSA(Prehashed(hashes.SHA1()))
)
class TestECNumbersEquality(object):
def test_public_numbers_eq(self):
pub = ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
assert pub == ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
def test_public_numbers_ne(self):
pub = ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
assert pub != ec.EllipticCurvePublicNumbers(1, 2, ec.SECP384R1())
assert pub != ec.EllipticCurvePublicNumbers(1, 3, ec.SECP192R1())
assert pub != ec.EllipticCurvePublicNumbers(2, 2, ec.SECP192R1())
assert pub != object()
def test_private_numbers_eq(self):
pub = ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
priv = ec.EllipticCurvePrivateNumbers(1, pub)
assert priv == ec.EllipticCurvePrivateNumbers(
1, ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
)
def test_private_numbers_ne(self):
pub = ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
priv = ec.EllipticCurvePrivateNumbers(1, pub)
assert priv != ec.EllipticCurvePrivateNumbers(
2, ec.EllipticCurvePublicNumbers(1, 2, ec.SECP192R1())
)
assert priv != ec.EllipticCurvePrivateNumbers(
1, ec.EllipticCurvePublicNumbers(2, 2, ec.SECP192R1())
)
assert priv != ec.EllipticCurvePrivateNumbers(
1, ec.EllipticCurvePublicNumbers(1, 3, ec.SECP192R1())
)
assert priv != ec.EllipticCurvePrivateNumbers(
1, ec.EllipticCurvePublicNumbers(1, 2, ec.SECP521R1())
)
assert priv != object()
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
@pytest.mark.requires_backend_interface(interface=PEMSerializationBackend)
class TestECSerialization(object):
@pytest.mark.parametrize(
("fmt", "password"),
itertools.product(
[
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.PrivateFormat.PKCS8
],
[
b"s",
b"longerpassword",
b"!*$&(@#$*&($T@%_somesymbols",
b"\x01" * 1000,
]
)
)
def test_private_bytes_encrypted_pem(self, backend, fmt, password):
_skip_curve_unsupported(backend, ec.SECP256R1())
key_bytes = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: pemfile.read().encode()
)
key = serialization.load_pem_private_key(key_bytes, None, backend)
serialized = key.private_bytes(
serialization.Encoding.PEM,
fmt,
serialization.BestAvailableEncryption(password)
)
loaded_key = serialization.load_pem_private_key(
serialized, password, backend
)
loaded_priv_num = loaded_key.private_numbers()
priv_num = key.private_numbers()
assert loaded_priv_num == priv_num
@pytest.mark.parametrize(
("encoding", "fmt"),
[
(serialization.Encoding.Raw, serialization.PrivateFormat.PKCS8),
(serialization.Encoding.DER, serialization.PrivateFormat.Raw),
(serialization.Encoding.Raw, serialization.PrivateFormat.Raw),
(serialization.Encoding.X962, serialization.PrivateFormat.PKCS8),
]
)
def test_private_bytes_rejects_invalid(self, encoding, fmt, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = ec.generate_private_key(ec.SECP256R1(), backend)
with pytest.raises(ValueError):
key.private_bytes(encoding, fmt, serialization.NoEncryption())
@pytest.mark.parametrize(
("fmt", "password"),
[
[serialization.PrivateFormat.PKCS8, b"s"],
[serialization.PrivateFormat.PKCS8, b"longerpassword"],
[serialization.PrivateFormat.PKCS8, b"!*$&(@#$*&($T@%_somesymbol"],
[serialization.PrivateFormat.PKCS8, b"\x01" * 1000]
]
)
def test_private_bytes_encrypted_der(self, backend, fmt, password):
_skip_curve_unsupported(backend, ec.SECP256R1())
key_bytes = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: pemfile.read().encode()
)
key = serialization.load_pem_private_key(key_bytes, None, backend)
serialized = key.private_bytes(
serialization.Encoding.DER,
fmt,
serialization.BestAvailableEncryption(password)
)
loaded_key = serialization.load_der_private_key(
serialized, password, backend
)
loaded_priv_num = loaded_key.private_numbers()
priv_num = key.private_numbers()
assert loaded_priv_num == priv_num
@pytest.mark.parametrize(
("encoding", "fmt", "loader_func"),
[
[
serialization.Encoding.PEM,
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.load_pem_private_key
],
[
serialization.Encoding.DER,
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.load_der_private_key
],
[
serialization.Encoding.PEM,
serialization.PrivateFormat.PKCS8,
serialization.load_pem_private_key
],
[
serialization.Encoding.DER,
serialization.PrivateFormat.PKCS8,
serialization.load_der_private_key
],
]
)
def test_private_bytes_unencrypted(self, backend, encoding, fmt,
loader_func):
_skip_curve_unsupported(backend, ec.SECP256R1())
key_bytes = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: pemfile.read().encode()
)
key = serialization.load_pem_private_key(key_bytes, None, backend)
serialized = key.private_bytes(
encoding, fmt, serialization.NoEncryption()
)
loaded_key = loader_func(serialized, None, backend)
loaded_priv_num = loaded_key.private_numbers()
priv_num = key.private_numbers()
assert loaded_priv_num == priv_num
@pytest.mark.parametrize(
("key_path", "encoding", "loader_func"),
[
[
os.path.join(
"asymmetric", "PEM_Serialization", "ec_private_key.pem"
),
serialization.Encoding.PEM,
serialization.load_pem_private_key
],
[
os.path.join(
"asymmetric", "DER_Serialization", "ec_private_key.der"
),
serialization.Encoding.DER,
serialization.load_der_private_key
],
]
)
def test_private_bytes_traditional_openssl_unencrypted(
self, backend, key_path, encoding, loader_func
):
_skip_curve_unsupported(backend, ec.SECP256R1())
key_bytes = load_vectors_from_file(
key_path, lambda pemfile: pemfile.read(), mode="rb"
)
key = loader_func(key_bytes, None, backend)
serialized = key.private_bytes(
encoding,
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.NoEncryption()
)
assert serialized == key_bytes
def test_private_bytes_traditional_der_encrypted_invalid(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
with pytest.raises(ValueError):
key.private_bytes(
serialization.Encoding.DER,
serialization.PrivateFormat.TraditionalOpenSSL,
serialization.BestAvailableEncryption(b"password")
)
def test_private_bytes_invalid_encoding(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
with pytest.raises(TypeError):
key.private_bytes(
"notencoding",
serialization.PrivateFormat.PKCS8,
serialization.NoEncryption()
)
def test_private_bytes_invalid_format(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
with pytest.raises(TypeError):
key.private_bytes(
serialization.Encoding.PEM,
"invalidformat",
serialization.NoEncryption()
)
def test_private_bytes_invalid_encryption_algorithm(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
with pytest.raises(TypeError):
key.private_bytes(
serialization.Encoding.PEM,
serialization.PrivateFormat.TraditionalOpenSSL,
"notanencalg"
)
def test_private_bytes_unsupported_encryption_type(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
with pytest.raises(ValueError):
key.private_bytes(
serialization.Encoding.PEM,
serialization.PrivateFormat.TraditionalOpenSSL,
DummyKeySerializationEncryption()
)
def test_public_bytes_from_derived_public_key(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
public = key.public_key()
pem = public.public_bytes(
serialization.Encoding.PEM,
serialization.PublicFormat.SubjectPublicKeyInfo
)
parsed_public = serialization.load_pem_public_key(pem, backend)
assert parsed_public
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
@pytest.mark.requires_backend_interface(interface=PEMSerializationBackend)
class TestEllipticCurvePEMPublicKeySerialization(object):
@pytest.mark.parametrize(
("key_path", "loader_func", "encoding"),
[
(
os.path.join(
"asymmetric", "PEM_Serialization", "ec_public_key.pem"
),
serialization.load_pem_public_key,
serialization.Encoding.PEM,
), (
os.path.join(
"asymmetric", "DER_Serialization", "ec_public_key.der"
),
serialization.load_der_public_key,
serialization.Encoding.DER,
)
]
)
def test_public_bytes_match(self, key_path, loader_func, encoding,
backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key_bytes = load_vectors_from_file(
key_path, lambda pemfile: pemfile.read(), mode="rb"
)
key = loader_func(key_bytes, backend)
serialized = key.public_bytes(
encoding, serialization.PublicFormat.SubjectPublicKeyInfo,
)
assert serialized == key_bytes
def test_public_bytes_openssh(self, backend):
_skip_curve_unsupported(backend, ec.SECP192R1())
_skip_curve_unsupported(backend, ec.SECP256R1())
key_bytes = load_vectors_from_file(
os.path.join(
"asymmetric", "PEM_Serialization", "ec_public_key.pem"
),
lambda pemfile: pemfile.read(), mode="rb"
)
key = serialization.load_pem_public_key(key_bytes, backend)
ssh_bytes = key.public_bytes(
serialization.Encoding.OpenSSH, serialization.PublicFormat.OpenSSH
)
assert ssh_bytes == (
b"ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAy"
b"NTYAAABBBCS8827s9rUZyxZTi/um01+oIlWrwLHOjQxRU9CDAndom00zVAw5BRrI"
b"KtHB+SWD4P+sVJTARSq1mHt8kOIWrPc="
)
key = ec.generate_private_key(ec.SECP192R1(), backend).public_key()
with pytest.raises(ValueError):
key.public_bytes(
serialization.Encoding.OpenSSH,
serialization.PublicFormat.OpenSSH
)
def test_public_bytes_invalid_encoding(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PEM_Serialization", "ec_public_key.pem"
),
lambda pemfile: serialization.load_pem_public_key(
pemfile.read().encode(), backend
)
)
with pytest.raises(TypeError):
key.public_bytes(
"notencoding",
serialization.PublicFormat.SubjectPublicKeyInfo
)
@pytest.mark.parametrize(
("encoding", "fmt"),
list(itertools.product(
[
serialization.Encoding.Raw,
serialization.Encoding.X962,
serialization.Encoding.PEM,
serialization.Encoding.DER
],
[
serialization.PublicFormat.Raw,
]
)) + list(itertools.product(
[serialization.Encoding.Raw],
[
serialization.PublicFormat.SubjectPublicKeyInfo,
serialization.PublicFormat.PKCS1,
serialization.PublicFormat.UncompressedPoint,
serialization.PublicFormat.CompressedPoint,
]
))
)
def test_public_bytes_rejects_invalid(self, encoding, fmt, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = ec.generate_private_key(ec.SECP256R1(), backend).public_key()
with pytest.raises(ValueError):
key.public_bytes(encoding, fmt)
def test_public_bytes_invalid_format(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PEM_Serialization", "ec_public_key.pem"
),
lambda pemfile: serialization.load_pem_public_key(
pemfile.read().encode(), backend
)
)
with pytest.raises(TypeError):
key.public_bytes(serialization.Encoding.PEM, "invalidformat")
def test_public_bytes_pkcs1_unsupported(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PEM_Serialization", "ec_public_key.pem"
),
lambda pemfile: serialization.load_pem_public_key(
pemfile.read().encode(), backend
)
)
with pytest.raises(ValueError):
key.public_bytes(
serialization.Encoding.PEM, serialization.PublicFormat.PKCS1
)
@pytest.mark.parametrize(
"vector",
load_vectors_from_file(
os.path.join("asymmetric", "EC", "compressed_points.txt"),
load_nist_vectors
)
)
def test_from_encoded_point_compressed(self, vector):
curve = {
b"SECP256R1": ec.SECP256R1(),
b"SECP256K1": ec.SECP256K1(),
}[vector["curve"]]
point = binascii.unhexlify(vector["point"])
pn = ec.EllipticCurvePublicKey.from_encoded_point(curve, point)
public_num = pn.public_numbers()
assert public_num.x == int(vector["x"], 16)
assert public_num.y == int(vector["y"], 16)
def test_from_encoded_point_notoncurve(self):
uncompressed_point = binascii.unhexlify(
"047399336a9edf2197c2f8eb3d39aed9c34a66e45d918a07dc7684c42c9b37ac"
"686699ececc4f5f0d756d3c450708a0694eb0a07a68b805070b40b058d27271f"
"6e"
)
with pytest.raises(ValueError):
ec.EllipticCurvePublicKey.from_encoded_point(
ec.SECP256R1(), uncompressed_point
)
def test_from_encoded_point_uncompressed(self):
uncompressed_point = binascii.unhexlify(
"047399336a9edf2197c2f8eb3d39aed9c34a66e45d918a07dc7684c42c9b37ac"
"686699ececc4f5f0d756d3c450708a0694eb0a07a68b805070b40b058d27271f"
"6d"
)
pn = ec.EllipticCurvePublicKey.from_encoded_point(
ec.SECP256R1(), uncompressed_point
)
assert pn.public_numbers().x == int(
'7399336a9edf2197c2f8eb3d39aed9c34a66e45d918a07dc7684c42c9b37ac68',
16
)
assert pn.public_numbers().y == int(
'6699ececc4f5f0d756d3c450708a0694eb0a07a68b805070b40b058d27271f6d',
16
)
def test_from_encoded_point_invalid_length(self):
bad_data = binascii.unhexlify(
"047399336a9edf2197c2f8eb3d39aed9c34a66e45d918a07dc7684c42c9b37ac"
"686699ececc4f5f0d756d3c450708a0694eb0a07a68b805070b40b058d27271f"
"6d"
)
with pytest.raises(ValueError):
ec.EllipticCurvePublicKey.from_encoded_point(
ec.SECP384R1(), bad_data
)
def test_from_encoded_point_empty_byte_string(self):
with pytest.raises(ValueError):
ec.EllipticCurvePublicKey.from_encoded_point(
ec.SECP384R1(), b""
)
def test_from_encoded_point_not_a_curve(self):
with pytest.raises(TypeError):
ec.EllipticCurvePublicKey.from_encoded_point(
"notacurve", b"\x04data"
)
def test_from_encoded_point_unsupported_encoding(self):
unsupported_type = binascii.unhexlify(
"057399336a9edf2197c2f8eb3d39aed9c34a66e45d918a07dc7684c42c9b37ac6"
"8"
)
with pytest.raises(ValueError):
ec.EllipticCurvePublicKey.from_encoded_point(
ec.SECP256R1(), unsupported_type
)
@pytest.mark.parametrize(
"vector",
load_vectors_from_file(
os.path.join("asymmetric", "EC", "compressed_points.txt"),
load_nist_vectors
)
)
def test_serialize_point(self, vector, backend):
curve = {
b"SECP256R1": ec.SECP256R1(),
b"SECP256K1": ec.SECP256K1(),
}[vector["curve"]]
point = binascii.unhexlify(vector["point"])
key = ec.EllipticCurvePublicKey.from_encoded_point(curve, point)
key2 = ec.EllipticCurvePublicKey.from_encoded_point(
curve,
key.public_bytes(
serialization.Encoding.X962,
serialization.PublicFormat.UncompressedPoint
)
)
assert key.public_bytes(
serialization.Encoding.X962,
serialization.PublicFormat.CompressedPoint
) == point
assert key2.public_bytes(
serialization.Encoding.X962,
serialization.PublicFormat.CompressedPoint
) == point
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
class TestECDSAVerification(object):
def test_signature_not_bytes(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = ec.generate_private_key(ec.SECP256R1(), backend)
public_key = key.public_key()
with pytest.raises(TypeError), \
pytest.warns(CryptographyDeprecationWarning):
public_key.verifier(1234, ec.ECDSA(hashes.SHA256()))
@pytest.mark.requires_backend_interface(interface=EllipticCurveBackend)
class TestECDH(object):
@pytest.mark.parametrize(
"vector",
load_vectors_from_file(
os.path.join(
"asymmetric", "ECDH",
"KASValidityTest_ECCStaticUnified_NOKC_ZZOnly_init.fax"),
load_kasvs_ecdh_vectors
)
)
def test_key_exchange_with_vectors(self, backend, vector):
_skip_exchange_algorithm_unsupported(
backend, ec.ECDH(), ec._CURVE_TYPES[vector['curve']]
)
key_numbers = vector['IUT']
private_numbers = ec.EllipticCurvePrivateNumbers(
key_numbers['d'],
ec.EllipticCurvePublicNumbers(
key_numbers['x'],
key_numbers['y'],
ec._CURVE_TYPES[vector['curve']]()
)
)
# Errno 5-7 indicates a bad public or private key, this doesn't test
# the ECDH code at all
if vector['fail'] and vector['errno'] in [5, 6, 7]:
with pytest.raises(ValueError):
private_numbers.private_key(backend)
return
else:
private_key = private_numbers.private_key(backend)
peer_numbers = vector['CAVS']
public_numbers = ec.EllipticCurvePublicNumbers(
peer_numbers['x'],
peer_numbers['y'],
ec._CURVE_TYPES[vector['curve']]()
)
# Errno 1 and 2 indicates a bad public key, this doesn't test the ECDH
# code at all
if vector['fail'] and vector['errno'] in [1, 2]:
with pytest.raises(ValueError):
public_numbers.public_key(backend)
return
else:
peer_pubkey = public_numbers.public_key(backend)
z = private_key.exchange(ec.ECDH(), peer_pubkey)
z = int(hexlify(z).decode('ascii'), 16)
# At this point fail indicates that one of the underlying keys was
# changed. This results in a non-matching derived key.
if vector['fail']:
# Errno 8 indicates Z should be changed.
assert vector['errno'] == 8
assert z != vector['Z']
else:
assert z == vector['Z']
@pytest.mark.parametrize(
"vector",
load_vectors_from_file(
os.path.join("asymmetric", "ECDH", "brainpool.txt"),
load_nist_vectors
)
)
def test_brainpool_kex(self, backend, vector):
curve = ec._CURVE_TYPES[vector['curve'].decode('ascii')]
_skip_exchange_algorithm_unsupported(backend, ec.ECDH(), curve)
key = ec.EllipticCurvePrivateNumbers(
int(vector['da'], 16),
ec.EllipticCurvePublicNumbers(
int(vector['x_qa'], 16), int(vector['y_qa'], 16), curve()
)
).private_key(backend)
peer = ec.EllipticCurvePrivateNumbers(
int(vector['db'], 16),
ec.EllipticCurvePublicNumbers(
int(vector['x_qb'], 16), int(vector['y_qb'], 16), curve()
)
).private_key(backend)
shared_secret = key.exchange(ec.ECDH(), peer.public_key())
assert shared_secret == binascii.unhexlify(vector["x_z"])
shared_secret_2 = peer.exchange(ec.ECDH(), key.public_key())
assert shared_secret_2 == binascii.unhexlify(vector["x_z"])
def test_exchange_unsupported_algorithm(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
with raises_unsupported_algorithm(
exceptions._Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM
):
key.exchange(None, key.public_key())
def test_exchange_non_matching_curve(self, backend):
_skip_curve_unsupported(backend, ec.SECP256R1())
_skip_curve_unsupported(backend, ec.SECP384R1())
key = load_vectors_from_file(
os.path.join(
"asymmetric", "PKCS8", "ec_private_key.pem"),
lambda pemfile: serialization.load_pem_private_key(
pemfile.read().encode(), None, backend
)
)
public_key = EC_KEY_SECP384R1.public_numbers.public_key(backend)
with pytest.raises(ValueError):
key.exchange(ec.ECDH(), public_key)