| # This file is dual licensed under the terms of the Apache License, Version |
| # 2.0, and the BSD License. See the LICENSE file in the root of this repository |
| # for complete details. |
| |
| from __future__ import absolute_import, division, print_function |
| |
| import base64 |
| import calendar |
| import collections |
| import contextlib |
| import itertools |
| from contextlib import contextmanager |
| |
| import asn1crypto.core |
| |
| import six |
| from six.moves import range |
| |
| from cryptography import utils, x509 |
| from cryptography.exceptions import UnsupportedAlgorithm, _Reasons |
| from cryptography.hazmat.backends.interfaces import ( |
| CMACBackend, CipherBackend, DERSerializationBackend, DHBackend, DSABackend, |
| EllipticCurveBackend, HMACBackend, HashBackend, PBKDF2HMACBackend, |
| PEMSerializationBackend, RSABackend, ScryptBackend, X509Backend |
| ) |
| from cryptography.hazmat.backends.openssl import aead |
| from cryptography.hazmat.backends.openssl.ciphers import _CipherContext |
| from cryptography.hazmat.backends.openssl.cmac import _CMACContext |
| from cryptography.hazmat.backends.openssl.decode_asn1 import ( |
| _CRL_ENTRY_REASON_ENUM_TO_CODE, _Integers |
| ) |
| from cryptography.hazmat.backends.openssl.dh import ( |
| _DHParameters, _DHPrivateKey, _DHPublicKey, _dh_params_dup |
| ) |
| from cryptography.hazmat.backends.openssl.dsa import ( |
| _DSAParameters, _DSAPrivateKey, _DSAPublicKey |
| ) |
| from cryptography.hazmat.backends.openssl.ec import ( |
| _EllipticCurvePrivateKey, _EllipticCurvePublicKey |
| ) |
| from cryptography.hazmat.backends.openssl.encode_asn1 import ( |
| _CRL_ENTRY_EXTENSION_ENCODE_HANDLERS, |
| _CRL_EXTENSION_ENCODE_HANDLERS, _EXTENSION_ENCODE_HANDLERS, |
| _OCSP_BASICRESP_EXTENSION_ENCODE_HANDLERS, |
| _OCSP_REQUEST_EXTENSION_ENCODE_HANDLERS, |
| _encode_asn1_int_gc, _encode_asn1_str_gc, _encode_name_gc, _txt2obj_gc, |
| ) |
| from cryptography.hazmat.backends.openssl.hashes import _HashContext |
| from cryptography.hazmat.backends.openssl.hmac import _HMACContext |
| from cryptography.hazmat.backends.openssl.ocsp import ( |
| _OCSPRequest, _OCSPResponse |
| ) |
| from cryptography.hazmat.backends.openssl.rsa import ( |
| _RSAPrivateKey, _RSAPublicKey |
| ) |
| from cryptography.hazmat.backends.openssl.x25519 import ( |
| _X25519PrivateKey, _X25519PublicKey |
| ) |
| from cryptography.hazmat.backends.openssl.x448 import ( |
| _X448PrivateKey, _X448PublicKey |
| ) |
| from cryptography.hazmat.backends.openssl.x509 import ( |
| _Certificate, _CertificateRevocationList, |
| _CertificateSigningRequest, _RevokedCertificate |
| ) |
| from cryptography.hazmat.bindings.openssl import binding |
| from cryptography.hazmat.primitives import hashes, serialization |
| from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa |
| from cryptography.hazmat.primitives.asymmetric.padding import ( |
| MGF1, OAEP, PKCS1v15, PSS |
| ) |
| from cryptography.hazmat.primitives.ciphers.algorithms import ( |
| AES, ARC4, Blowfish, CAST5, Camellia, ChaCha20, IDEA, SEED, TripleDES |
| ) |
| from cryptography.hazmat.primitives.ciphers.modes import ( |
| CBC, CFB, CFB8, CTR, ECB, GCM, OFB, XTS |
| ) |
| from cryptography.hazmat.primitives.kdf import scrypt |
| from cryptography.hazmat.primitives.serialization import ssh |
| from cryptography.x509 import ocsp |
| |
| |
| _MemoryBIO = collections.namedtuple("_MemoryBIO", ["bio", "char_ptr"]) |
| |
| |
| @utils.register_interface(CipherBackend) |
| @utils.register_interface(CMACBackend) |
| @utils.register_interface(DERSerializationBackend) |
| @utils.register_interface(DHBackend) |
| @utils.register_interface(DSABackend) |
| @utils.register_interface(EllipticCurveBackend) |
| @utils.register_interface(HashBackend) |
| @utils.register_interface(HMACBackend) |
| @utils.register_interface(PBKDF2HMACBackend) |
| @utils.register_interface(RSABackend) |
| @utils.register_interface(PEMSerializationBackend) |
| @utils.register_interface(X509Backend) |
| @utils.register_interface_if( |
| binding.Binding().lib.Cryptography_HAS_SCRYPT, ScryptBackend |
| ) |
| class Backend(object): |
| """ |
| OpenSSL API binding interfaces. |
| """ |
| name = "openssl" |
| |
| def __init__(self): |
| self._binding = binding.Binding() |
| self._ffi = self._binding.ffi |
| self._lib = self._binding.lib |
| |
| self._cipher_registry = {} |
| self._register_default_ciphers() |
| self.activate_osrandom_engine() |
| self._dh_types = [self._lib.EVP_PKEY_DH] |
| if self._lib.Cryptography_HAS_EVP_PKEY_DHX: |
| self._dh_types.append(self._lib.EVP_PKEY_DHX) |
| |
| def openssl_assert(self, ok): |
| return binding._openssl_assert(self._lib, ok) |
| |
| def activate_builtin_random(self): |
| # Obtain a new structural reference. |
| e = self._lib.ENGINE_get_default_RAND() |
| if e != self._ffi.NULL: |
| self._lib.ENGINE_unregister_RAND(e) |
| # Reset the RNG to use the new engine. |
| self._lib.RAND_cleanup() |
| # decrement the structural reference from get_default_RAND |
| res = self._lib.ENGINE_finish(e) |
| self.openssl_assert(res == 1) |
| |
| @contextlib.contextmanager |
| def _get_osurandom_engine(self): |
| # Fetches an engine by id and returns it. This creates a structural |
| # reference. |
| e = self._lib.ENGINE_by_id(self._binding._osrandom_engine_id) |
| self.openssl_assert(e != self._ffi.NULL) |
| # Initialize the engine for use. This adds a functional reference. |
| res = self._lib.ENGINE_init(e) |
| self.openssl_assert(res == 1) |
| |
| try: |
| yield e |
| finally: |
| # Decrement the structural ref incremented by ENGINE_by_id. |
| res = self._lib.ENGINE_free(e) |
| self.openssl_assert(res == 1) |
| # Decrement the functional ref incremented by ENGINE_init. |
| res = self._lib.ENGINE_finish(e) |
| self.openssl_assert(res == 1) |
| |
| def activate_osrandom_engine(self): |
| # Unregister and free the current engine. |
| self.activate_builtin_random() |
| with self._get_osurandom_engine() as e: |
| # Set the engine as the default RAND provider. |
| res = self._lib.ENGINE_set_default_RAND(e) |
| self.openssl_assert(res == 1) |
| # Reset the RNG to use the new engine. |
| self._lib.RAND_cleanup() |
| |
| def osrandom_engine_implementation(self): |
| buf = self._ffi.new("char[]", 64) |
| with self._get_osurandom_engine() as e: |
| res = self._lib.ENGINE_ctrl_cmd(e, b"get_implementation", |
| len(buf), buf, |
| self._ffi.NULL, 0) |
| self.openssl_assert(res > 0) |
| return self._ffi.string(buf).decode('ascii') |
| |
| def openssl_version_text(self): |
| """ |
| Friendly string name of the loaded OpenSSL library. This is not |
| necessarily the same version as it was compiled against. |
| |
| Example: OpenSSL 1.0.1e 11 Feb 2013 |
| """ |
| return self._ffi.string( |
| self._lib.OpenSSL_version(self._lib.OPENSSL_VERSION) |
| ).decode("ascii") |
| |
| def openssl_version_number(self): |
| return self._lib.OpenSSL_version_num() |
| |
| def create_hmac_ctx(self, key, algorithm): |
| return _HMACContext(self, key, algorithm) |
| |
| def _evp_md_from_algorithm(self, algorithm): |
| if algorithm.name == "blake2b" or algorithm.name == "blake2s": |
| alg = "{0}{1}".format( |
| algorithm.name, algorithm.digest_size * 8 |
| ).encode("ascii") |
| else: |
| alg = algorithm.name.encode("ascii") |
| |
| evp_md = self._lib.EVP_get_digestbyname(alg) |
| return evp_md |
| |
| def _evp_md_non_null_from_algorithm(self, algorithm): |
| evp_md = self._evp_md_from_algorithm(algorithm) |
| self.openssl_assert(evp_md != self._ffi.NULL) |
| return evp_md |
| |
| def hash_supported(self, algorithm): |
| evp_md = self._evp_md_from_algorithm(algorithm) |
| return evp_md != self._ffi.NULL |
| |
| def hmac_supported(self, algorithm): |
| return self.hash_supported(algorithm) |
| |
| def create_hash_ctx(self, algorithm): |
| return _HashContext(self, algorithm) |
| |
| def cipher_supported(self, cipher, mode): |
| try: |
| adapter = self._cipher_registry[type(cipher), type(mode)] |
| except KeyError: |
| return False |
| evp_cipher = adapter(self, cipher, mode) |
| return self._ffi.NULL != evp_cipher |
| |
| def register_cipher_adapter(self, cipher_cls, mode_cls, adapter): |
| if (cipher_cls, mode_cls) in self._cipher_registry: |
| raise ValueError("Duplicate registration for: {0} {1}.".format( |
| cipher_cls, mode_cls) |
| ) |
| self._cipher_registry[cipher_cls, mode_cls] = adapter |
| |
| def _register_default_ciphers(self): |
| for mode_cls in [CBC, CTR, ECB, OFB, CFB, CFB8, GCM]: |
| self.register_cipher_adapter( |
| AES, |
| mode_cls, |
| GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}") |
| ) |
| for mode_cls in [CBC, CTR, ECB, OFB, CFB]: |
| self.register_cipher_adapter( |
| Camellia, |
| mode_cls, |
| GetCipherByName("{cipher.name}-{cipher.key_size}-{mode.name}") |
| ) |
| for mode_cls in [CBC, CFB, CFB8, OFB]: |
| self.register_cipher_adapter( |
| TripleDES, |
| mode_cls, |
| GetCipherByName("des-ede3-{mode.name}") |
| ) |
| self.register_cipher_adapter( |
| TripleDES, |
| ECB, |
| GetCipherByName("des-ede3") |
| ) |
| for mode_cls in [CBC, CFB, OFB, ECB]: |
| self.register_cipher_adapter( |
| Blowfish, |
| mode_cls, |
| GetCipherByName("bf-{mode.name}") |
| ) |
| for mode_cls in [CBC, CFB, OFB, ECB]: |
| self.register_cipher_adapter( |
| SEED, |
| mode_cls, |
| GetCipherByName("seed-{mode.name}") |
| ) |
| for cipher_cls, mode_cls in itertools.product( |
| [CAST5, IDEA], |
| [CBC, OFB, CFB, ECB], |
| ): |
| self.register_cipher_adapter( |
| cipher_cls, |
| mode_cls, |
| GetCipherByName("{cipher.name}-{mode.name}") |
| ) |
| self.register_cipher_adapter( |
| ARC4, |
| type(None), |
| GetCipherByName("rc4") |
| ) |
| self.register_cipher_adapter( |
| ChaCha20, |
| type(None), |
| GetCipherByName("chacha20") |
| ) |
| self.register_cipher_adapter(AES, XTS, _get_xts_cipher) |
| |
| def create_symmetric_encryption_ctx(self, cipher, mode): |
| return _CipherContext(self, cipher, mode, _CipherContext._ENCRYPT) |
| |
| def create_symmetric_decryption_ctx(self, cipher, mode): |
| return _CipherContext(self, cipher, mode, _CipherContext._DECRYPT) |
| |
| def pbkdf2_hmac_supported(self, algorithm): |
| return self.hmac_supported(algorithm) |
| |
| def derive_pbkdf2_hmac(self, algorithm, length, salt, iterations, |
| key_material): |
| buf = self._ffi.new("unsigned char[]", length) |
| evp_md = self._evp_md_non_null_from_algorithm(algorithm) |
| key_material_ptr = self._ffi.from_buffer(key_material) |
| res = self._lib.PKCS5_PBKDF2_HMAC( |
| key_material_ptr, |
| len(key_material), |
| salt, |
| len(salt), |
| iterations, |
| evp_md, |
| length, |
| buf |
| ) |
| self.openssl_assert(res == 1) |
| return self._ffi.buffer(buf)[:] |
| |
| def _consume_errors(self): |
| return binding._consume_errors(self._lib) |
| |
| def _bn_to_int(self, bn): |
| assert bn != self._ffi.NULL |
| |
| if not six.PY2: |
| # Python 3 has constant time from_bytes, so use that. |
| bn_num_bytes = self._lib.BN_num_bytes(bn) |
| bin_ptr = self._ffi.new("unsigned char[]", bn_num_bytes) |
| bin_len = self._lib.BN_bn2bin(bn, bin_ptr) |
| # A zero length means the BN has value 0 |
| self.openssl_assert(bin_len >= 0) |
| return int.from_bytes(self._ffi.buffer(bin_ptr)[:bin_len], "big") |
| else: |
| # Under Python 2 the best we can do is hex() |
| hex_cdata = self._lib.BN_bn2hex(bn) |
| self.openssl_assert(hex_cdata != self._ffi.NULL) |
| hex_str = self._ffi.string(hex_cdata) |
| self._lib.OPENSSL_free(hex_cdata) |
| return int(hex_str, 16) |
| |
| def _int_to_bn(self, num, bn=None): |
| """ |
| Converts a python integer to a BIGNUM. The returned BIGNUM will not |
| be garbage collected (to support adding them to structs that take |
| ownership of the object). Be sure to register it for GC if it will |
| be discarded after use. |
| """ |
| assert bn is None or bn != self._ffi.NULL |
| |
| if bn is None: |
| bn = self._ffi.NULL |
| |
| if not six.PY2: |
| # Python 3 has constant time to_bytes, so use that. |
| |
| binary = num.to_bytes(int(num.bit_length() / 8.0 + 1), "big") |
| bn_ptr = self._lib.BN_bin2bn(binary, len(binary), bn) |
| self.openssl_assert(bn_ptr != self._ffi.NULL) |
| return bn_ptr |
| |
| else: |
| # Under Python 2 the best we can do is hex(), [2:] removes the 0x |
| # prefix. |
| hex_num = hex(num).rstrip("L")[2:].encode("ascii") |
| bn_ptr = self._ffi.new("BIGNUM **") |
| bn_ptr[0] = bn |
| res = self._lib.BN_hex2bn(bn_ptr, hex_num) |
| self.openssl_assert(res != 0) |
| self.openssl_assert(bn_ptr[0] != self._ffi.NULL) |
| return bn_ptr[0] |
| |
| def generate_rsa_private_key(self, public_exponent, key_size): |
| rsa._verify_rsa_parameters(public_exponent, key_size) |
| |
| rsa_cdata = self._lib.RSA_new() |
| self.openssl_assert(rsa_cdata != self._ffi.NULL) |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| |
| bn = self._int_to_bn(public_exponent) |
| bn = self._ffi.gc(bn, self._lib.BN_free) |
| |
| res = self._lib.RSA_generate_key_ex( |
| rsa_cdata, key_size, bn, self._ffi.NULL |
| ) |
| self.openssl_assert(res == 1) |
| evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata) |
| |
| return _RSAPrivateKey(self, rsa_cdata, evp_pkey) |
| |
| def generate_rsa_parameters_supported(self, public_exponent, key_size): |
| return (public_exponent >= 3 and public_exponent & 1 != 0 and |
| key_size >= 512) |
| |
| def load_rsa_private_numbers(self, numbers): |
| rsa._check_private_key_components( |
| numbers.p, |
| numbers.q, |
| numbers.d, |
| numbers.dmp1, |
| numbers.dmq1, |
| numbers.iqmp, |
| numbers.public_numbers.e, |
| numbers.public_numbers.n |
| ) |
| rsa_cdata = self._lib.RSA_new() |
| self.openssl_assert(rsa_cdata != self._ffi.NULL) |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| p = self._int_to_bn(numbers.p) |
| q = self._int_to_bn(numbers.q) |
| d = self._int_to_bn(numbers.d) |
| dmp1 = self._int_to_bn(numbers.dmp1) |
| dmq1 = self._int_to_bn(numbers.dmq1) |
| iqmp = self._int_to_bn(numbers.iqmp) |
| e = self._int_to_bn(numbers.public_numbers.e) |
| n = self._int_to_bn(numbers.public_numbers.n) |
| res = self._lib.RSA_set0_factors(rsa_cdata, p, q) |
| self.openssl_assert(res == 1) |
| res = self._lib.RSA_set0_key(rsa_cdata, n, e, d) |
| self.openssl_assert(res == 1) |
| res = self._lib.RSA_set0_crt_params(rsa_cdata, dmp1, dmq1, iqmp) |
| self.openssl_assert(res == 1) |
| res = self._lib.RSA_blinding_on(rsa_cdata, self._ffi.NULL) |
| self.openssl_assert(res == 1) |
| evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata) |
| |
| return _RSAPrivateKey(self, rsa_cdata, evp_pkey) |
| |
| def load_rsa_public_numbers(self, numbers): |
| rsa._check_public_key_components(numbers.e, numbers.n) |
| rsa_cdata = self._lib.RSA_new() |
| self.openssl_assert(rsa_cdata != self._ffi.NULL) |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| e = self._int_to_bn(numbers.e) |
| n = self._int_to_bn(numbers.n) |
| res = self._lib.RSA_set0_key(rsa_cdata, n, e, self._ffi.NULL) |
| self.openssl_assert(res == 1) |
| evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata) |
| |
| return _RSAPublicKey(self, rsa_cdata, evp_pkey) |
| |
| def _create_evp_pkey_gc(self): |
| evp_pkey = self._lib.EVP_PKEY_new() |
| self.openssl_assert(evp_pkey != self._ffi.NULL) |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| return evp_pkey |
| |
| def _rsa_cdata_to_evp_pkey(self, rsa_cdata): |
| evp_pkey = self._create_evp_pkey_gc() |
| res = self._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata) |
| self.openssl_assert(res == 1) |
| return evp_pkey |
| |
| def _bytes_to_bio(self, data): |
| """ |
| Return a _MemoryBIO namedtuple of (BIO, char*). |
| |
| The char* is the storage for the BIO and it must stay alive until the |
| BIO is finished with. |
| """ |
| data_ptr = self._ffi.from_buffer(data) |
| bio = self._lib.BIO_new_mem_buf( |
| data_ptr, len(data) |
| ) |
| self.openssl_assert(bio != self._ffi.NULL) |
| |
| return _MemoryBIO(self._ffi.gc(bio, self._lib.BIO_free), data_ptr) |
| |
| def _create_mem_bio_gc(self): |
| """ |
| Creates an empty memory BIO. |
| """ |
| bio_method = self._lib.BIO_s_mem() |
| self.openssl_assert(bio_method != self._ffi.NULL) |
| bio = self._lib.BIO_new(bio_method) |
| self.openssl_assert(bio != self._ffi.NULL) |
| bio = self._ffi.gc(bio, self._lib.BIO_free) |
| return bio |
| |
| def _read_mem_bio(self, bio): |
| """ |
| Reads a memory BIO. This only works on memory BIOs. |
| """ |
| buf = self._ffi.new("char **") |
| buf_len = self._lib.BIO_get_mem_data(bio, buf) |
| self.openssl_assert(buf_len > 0) |
| self.openssl_assert(buf[0] != self._ffi.NULL) |
| bio_data = self._ffi.buffer(buf[0], buf_len)[:] |
| return bio_data |
| |
| def _evp_pkey_to_private_key(self, evp_pkey): |
| """ |
| Return the appropriate type of PrivateKey given an evp_pkey cdata |
| pointer. |
| """ |
| |
| key_type = self._lib.EVP_PKEY_id(evp_pkey) |
| |
| if key_type == self._lib.EVP_PKEY_RSA: |
| rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey) |
| self.openssl_assert(rsa_cdata != self._ffi.NULL) |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| return _RSAPrivateKey(self, rsa_cdata, evp_pkey) |
| elif key_type == self._lib.EVP_PKEY_DSA: |
| dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey) |
| self.openssl_assert(dsa_cdata != self._ffi.NULL) |
| dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free) |
| return _DSAPrivateKey(self, dsa_cdata, evp_pkey) |
| elif key_type == self._lib.EVP_PKEY_EC: |
| ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey) |
| self.openssl_assert(ec_cdata != self._ffi.NULL) |
| ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free) |
| return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey) |
| elif key_type in self._dh_types: |
| dh_cdata = self._lib.EVP_PKEY_get1_DH(evp_pkey) |
| self.openssl_assert(dh_cdata != self._ffi.NULL) |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| return _DHPrivateKey(self, dh_cdata, evp_pkey) |
| elif key_type == getattr(self._lib, "EVP_PKEY_X448", None): |
| # EVP_PKEY_X448 is not present in OpenSSL < 1.1.1 |
| return _X448PrivateKey(self, evp_pkey) |
| elif key_type == getattr(self._lib, "EVP_PKEY_X25519", None): |
| # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.0 |
| return _X25519PrivateKey(self, evp_pkey) |
| else: |
| raise UnsupportedAlgorithm("Unsupported key type.") |
| |
| def _evp_pkey_to_public_key(self, evp_pkey): |
| """ |
| Return the appropriate type of PublicKey given an evp_pkey cdata |
| pointer. |
| """ |
| |
| key_type = self._lib.EVP_PKEY_id(evp_pkey) |
| |
| if key_type == self._lib.EVP_PKEY_RSA: |
| rsa_cdata = self._lib.EVP_PKEY_get1_RSA(evp_pkey) |
| self.openssl_assert(rsa_cdata != self._ffi.NULL) |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| return _RSAPublicKey(self, rsa_cdata, evp_pkey) |
| elif key_type == self._lib.EVP_PKEY_DSA: |
| dsa_cdata = self._lib.EVP_PKEY_get1_DSA(evp_pkey) |
| self.openssl_assert(dsa_cdata != self._ffi.NULL) |
| dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free) |
| return _DSAPublicKey(self, dsa_cdata, evp_pkey) |
| elif key_type == self._lib.EVP_PKEY_EC: |
| ec_cdata = self._lib.EVP_PKEY_get1_EC_KEY(evp_pkey) |
| self.openssl_assert(ec_cdata != self._ffi.NULL) |
| ec_cdata = self._ffi.gc(ec_cdata, self._lib.EC_KEY_free) |
| return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey) |
| elif key_type in self._dh_types: |
| dh_cdata = self._lib.EVP_PKEY_get1_DH(evp_pkey) |
| self.openssl_assert(dh_cdata != self._ffi.NULL) |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| return _DHPublicKey(self, dh_cdata, evp_pkey) |
| elif key_type == getattr(self._lib, "EVP_PKEY_X448", None): |
| # EVP_PKEY_X448 is not present in OpenSSL < 1.1.1 |
| return _X448PublicKey(self, evp_pkey) |
| elif key_type == getattr(self._lib, "EVP_PKEY_X25519", None): |
| # EVP_PKEY_X25519 is not present in OpenSSL < 1.1.0 |
| return _X25519PublicKey(self, evp_pkey) |
| else: |
| raise UnsupportedAlgorithm("Unsupported key type.") |
| |
| def _oaep_hash_supported(self, algorithm): |
| if self._lib.Cryptography_HAS_RSA_OAEP_MD: |
| return isinstance( |
| algorithm, ( |
| hashes.SHA1, |
| hashes.SHA224, |
| hashes.SHA256, |
| hashes.SHA384, |
| hashes.SHA512, |
| ) |
| ) |
| else: |
| return isinstance(algorithm, hashes.SHA1) |
| |
| def rsa_padding_supported(self, padding): |
| if isinstance(padding, PKCS1v15): |
| return True |
| elif isinstance(padding, PSS) and isinstance(padding._mgf, MGF1): |
| return self.hash_supported(padding._mgf._algorithm) |
| elif isinstance(padding, OAEP) and isinstance(padding._mgf, MGF1): |
| return ( |
| self._oaep_hash_supported(padding._mgf._algorithm) and |
| self._oaep_hash_supported(padding._algorithm) and |
| ( |
| (padding._label is None or len(padding._label) == 0) or |
| self._lib.Cryptography_HAS_RSA_OAEP_LABEL == 1 |
| ) |
| ) |
| else: |
| return False |
| |
| def generate_dsa_parameters(self, key_size): |
| if key_size not in (1024, 2048, 3072): |
| raise ValueError("Key size must be 1024 or 2048 or 3072 bits.") |
| |
| ctx = self._lib.DSA_new() |
| self.openssl_assert(ctx != self._ffi.NULL) |
| ctx = self._ffi.gc(ctx, self._lib.DSA_free) |
| |
| res = self._lib.DSA_generate_parameters_ex( |
| ctx, key_size, self._ffi.NULL, 0, |
| self._ffi.NULL, self._ffi.NULL, self._ffi.NULL |
| ) |
| |
| self.openssl_assert(res == 1) |
| |
| return _DSAParameters(self, ctx) |
| |
| def generate_dsa_private_key(self, parameters): |
| ctx = self._lib.DSAparams_dup(parameters._dsa_cdata) |
| self.openssl_assert(ctx != self._ffi.NULL) |
| ctx = self._ffi.gc(ctx, self._lib.DSA_free) |
| self._lib.DSA_generate_key(ctx) |
| evp_pkey = self._dsa_cdata_to_evp_pkey(ctx) |
| |
| return _DSAPrivateKey(self, ctx, evp_pkey) |
| |
| def generate_dsa_private_key_and_parameters(self, key_size): |
| parameters = self.generate_dsa_parameters(key_size) |
| return self.generate_dsa_private_key(parameters) |
| |
| def _dsa_cdata_set_values(self, dsa_cdata, p, q, g, pub_key, priv_key): |
| res = self._lib.DSA_set0_pqg(dsa_cdata, p, q, g) |
| self.openssl_assert(res == 1) |
| res = self._lib.DSA_set0_key(dsa_cdata, pub_key, priv_key) |
| self.openssl_assert(res == 1) |
| |
| def load_dsa_private_numbers(self, numbers): |
| dsa._check_dsa_private_numbers(numbers) |
| parameter_numbers = numbers.public_numbers.parameter_numbers |
| |
| dsa_cdata = self._lib.DSA_new() |
| self.openssl_assert(dsa_cdata != self._ffi.NULL) |
| dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free) |
| |
| p = self._int_to_bn(parameter_numbers.p) |
| q = self._int_to_bn(parameter_numbers.q) |
| g = self._int_to_bn(parameter_numbers.g) |
| pub_key = self._int_to_bn(numbers.public_numbers.y) |
| priv_key = self._int_to_bn(numbers.x) |
| self._dsa_cdata_set_values(dsa_cdata, p, q, g, pub_key, priv_key) |
| |
| evp_pkey = self._dsa_cdata_to_evp_pkey(dsa_cdata) |
| |
| return _DSAPrivateKey(self, dsa_cdata, evp_pkey) |
| |
| def load_dsa_public_numbers(self, numbers): |
| dsa._check_dsa_parameters(numbers.parameter_numbers) |
| dsa_cdata = self._lib.DSA_new() |
| self.openssl_assert(dsa_cdata != self._ffi.NULL) |
| dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free) |
| |
| p = self._int_to_bn(numbers.parameter_numbers.p) |
| q = self._int_to_bn(numbers.parameter_numbers.q) |
| g = self._int_to_bn(numbers.parameter_numbers.g) |
| pub_key = self._int_to_bn(numbers.y) |
| priv_key = self._ffi.NULL |
| self._dsa_cdata_set_values(dsa_cdata, p, q, g, pub_key, priv_key) |
| |
| evp_pkey = self._dsa_cdata_to_evp_pkey(dsa_cdata) |
| |
| return _DSAPublicKey(self, dsa_cdata, evp_pkey) |
| |
| def load_dsa_parameter_numbers(self, numbers): |
| dsa._check_dsa_parameters(numbers) |
| dsa_cdata = self._lib.DSA_new() |
| self.openssl_assert(dsa_cdata != self._ffi.NULL) |
| dsa_cdata = self._ffi.gc(dsa_cdata, self._lib.DSA_free) |
| |
| p = self._int_to_bn(numbers.p) |
| q = self._int_to_bn(numbers.q) |
| g = self._int_to_bn(numbers.g) |
| res = self._lib.DSA_set0_pqg(dsa_cdata, p, q, g) |
| self.openssl_assert(res == 1) |
| |
| return _DSAParameters(self, dsa_cdata) |
| |
| def _dsa_cdata_to_evp_pkey(self, dsa_cdata): |
| evp_pkey = self._create_evp_pkey_gc() |
| res = self._lib.EVP_PKEY_set1_DSA(evp_pkey, dsa_cdata) |
| self.openssl_assert(res == 1) |
| return evp_pkey |
| |
| def dsa_hash_supported(self, algorithm): |
| return self.hash_supported(algorithm) |
| |
| def dsa_parameters_supported(self, p, q, g): |
| return True |
| |
| def cmac_algorithm_supported(self, algorithm): |
| return self.cipher_supported( |
| algorithm, CBC(b"\x00" * algorithm.block_size) |
| ) |
| |
| def create_cmac_ctx(self, algorithm): |
| return _CMACContext(self, algorithm) |
| |
| def create_x509_csr(self, builder, private_key, algorithm): |
| if not isinstance(algorithm, hashes.HashAlgorithm): |
| raise TypeError('Algorithm must be a registered hash algorithm.') |
| |
| if ( |
| isinstance(algorithm, hashes.MD5) and not |
| isinstance(private_key, rsa.RSAPrivateKey) |
| ): |
| raise ValueError( |
| "MD5 is not a supported hash algorithm for EC/DSA CSRs" |
| ) |
| |
| # Resolve the signature algorithm. |
| evp_md = self._evp_md_non_null_from_algorithm(algorithm) |
| |
| # Create an empty request. |
| x509_req = self._lib.X509_REQ_new() |
| self.openssl_assert(x509_req != self._ffi.NULL) |
| x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free) |
| |
| # Set x509 version. |
| res = self._lib.X509_REQ_set_version(x509_req, x509.Version.v1.value) |
| self.openssl_assert(res == 1) |
| |
| # Set subject name. |
| res = self._lib.X509_REQ_set_subject_name( |
| x509_req, _encode_name_gc(self, builder._subject_name) |
| ) |
| self.openssl_assert(res == 1) |
| |
| # Set subject public key. |
| public_key = private_key.public_key() |
| res = self._lib.X509_REQ_set_pubkey( |
| x509_req, public_key._evp_pkey |
| ) |
| self.openssl_assert(res == 1) |
| |
| # Add extensions. |
| sk_extension = self._lib.sk_X509_EXTENSION_new_null() |
| self.openssl_assert(sk_extension != self._ffi.NULL) |
| sk_extension = self._ffi.gc( |
| sk_extension, |
| lambda x: self._lib.sk_X509_EXTENSION_pop_free( |
| x, self._ffi.addressof( |
| self._lib._original_lib, "X509_EXTENSION_free" |
| ) |
| ) |
| ) |
| # Don't GC individual extensions because the memory is owned by |
| # sk_extensions and will be freed along with it. |
| self._create_x509_extensions( |
| extensions=builder._extensions, |
| handlers=_EXTENSION_ENCODE_HANDLERS, |
| x509_obj=sk_extension, |
| add_func=self._lib.sk_X509_EXTENSION_insert, |
| gc=False |
| ) |
| res = self._lib.X509_REQ_add_extensions(x509_req, sk_extension) |
| self.openssl_assert(res == 1) |
| |
| # Sign the request using the requester's private key. |
| res = self._lib.X509_REQ_sign( |
| x509_req, private_key._evp_pkey, evp_md |
| ) |
| if res == 0: |
| errors = self._consume_errors() |
| self.openssl_assert( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_RSA, |
| self._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY |
| ) |
| ) |
| |
| raise ValueError("Digest too big for RSA key") |
| |
| return _CertificateSigningRequest(self, x509_req) |
| |
| def create_x509_certificate(self, builder, private_key, algorithm): |
| if not isinstance(builder, x509.CertificateBuilder): |
| raise TypeError('Builder type mismatch.') |
| if not isinstance(algorithm, hashes.HashAlgorithm): |
| raise TypeError('Algorithm must be a registered hash algorithm.') |
| |
| if ( |
| isinstance(algorithm, hashes.MD5) and not |
| isinstance(private_key, rsa.RSAPrivateKey) |
| ): |
| raise ValueError( |
| "MD5 is not a supported hash algorithm for EC/DSA certificates" |
| ) |
| |
| # Resolve the signature algorithm. |
| evp_md = self._evp_md_non_null_from_algorithm(algorithm) |
| |
| # Create an empty certificate. |
| x509_cert = self._lib.X509_new() |
| x509_cert = self._ffi.gc(x509_cert, backend._lib.X509_free) |
| |
| # Set the x509 version. |
| res = self._lib.X509_set_version(x509_cert, builder._version.value) |
| self.openssl_assert(res == 1) |
| |
| # Set the subject's name. |
| res = self._lib.X509_set_subject_name( |
| x509_cert, _encode_name_gc(self, builder._subject_name) |
| ) |
| self.openssl_assert(res == 1) |
| |
| # Set the subject's public key. |
| res = self._lib.X509_set_pubkey( |
| x509_cert, builder._public_key._evp_pkey |
| ) |
| self.openssl_assert(res == 1) |
| |
| # Set the certificate serial number. |
| serial_number = _encode_asn1_int_gc(self, builder._serial_number) |
| res = self._lib.X509_set_serialNumber(x509_cert, serial_number) |
| self.openssl_assert(res == 1) |
| |
| # Set the "not before" time. |
| self._set_asn1_time( |
| self._lib.X509_get_notBefore(x509_cert), builder._not_valid_before |
| ) |
| |
| # Set the "not after" time. |
| self._set_asn1_time( |
| self._lib.X509_get_notAfter(x509_cert), builder._not_valid_after |
| ) |
| |
| # Add extensions. |
| self._create_x509_extensions( |
| extensions=builder._extensions, |
| handlers=_EXTENSION_ENCODE_HANDLERS, |
| x509_obj=x509_cert, |
| add_func=self._lib.X509_add_ext, |
| gc=True |
| ) |
| |
| # Set the issuer name. |
| res = self._lib.X509_set_issuer_name( |
| x509_cert, _encode_name_gc(self, builder._issuer_name) |
| ) |
| self.openssl_assert(res == 1) |
| |
| # Sign the certificate with the issuer's private key. |
| res = self._lib.X509_sign( |
| x509_cert, private_key._evp_pkey, evp_md |
| ) |
| if res == 0: |
| errors = self._consume_errors() |
| self.openssl_assert( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_RSA, |
| self._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY |
| ) |
| ) |
| raise ValueError("Digest too big for RSA key") |
| |
| return _Certificate(self, x509_cert) |
| |
| def _set_asn1_time(self, asn1_time, time): |
| timestamp = calendar.timegm(time.timetuple()) |
| res = self._lib.ASN1_TIME_set(asn1_time, timestamp) |
| if res == self._ffi.NULL: |
| errors = self._consume_errors() |
| self.openssl_assert( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_ASN1, |
| self._lib.ASN1_R_ERROR_GETTING_TIME |
| ) |
| ) |
| raise ValueError( |
| "Invalid time. This error can occur if you set a time too far " |
| "in the future on Windows." |
| ) |
| |
| def _create_asn1_time(self, time): |
| asn1_time = self._lib.ASN1_TIME_new() |
| self.openssl_assert(asn1_time != self._ffi.NULL) |
| asn1_time = self._ffi.gc(asn1_time, self._lib.ASN1_TIME_free) |
| self._set_asn1_time(asn1_time, time) |
| return asn1_time |
| |
| def create_x509_crl(self, builder, private_key, algorithm): |
| if not isinstance(builder, x509.CertificateRevocationListBuilder): |
| raise TypeError('Builder type mismatch.') |
| if not isinstance(algorithm, hashes.HashAlgorithm): |
| raise TypeError('Algorithm must be a registered hash algorithm.') |
| |
| if ( |
| isinstance(algorithm, hashes.MD5) and not |
| isinstance(private_key, rsa.RSAPrivateKey) |
| ): |
| raise ValueError( |
| "MD5 is not a supported hash algorithm for EC/DSA CRLs" |
| ) |
| |
| evp_md = self._evp_md_non_null_from_algorithm(algorithm) |
| |
| # Create an empty CRL. |
| x509_crl = self._lib.X509_CRL_new() |
| x509_crl = self._ffi.gc(x509_crl, backend._lib.X509_CRL_free) |
| |
| # Set the x509 CRL version. We only support v2 (integer value 1). |
| res = self._lib.X509_CRL_set_version(x509_crl, 1) |
| self.openssl_assert(res == 1) |
| |
| # Set the issuer name. |
| res = self._lib.X509_CRL_set_issuer_name( |
| x509_crl, _encode_name_gc(self, builder._issuer_name) |
| ) |
| self.openssl_assert(res == 1) |
| |
| # Set the last update time. |
| last_update = self._create_asn1_time(builder._last_update) |
| res = self._lib.X509_CRL_set_lastUpdate(x509_crl, last_update) |
| self.openssl_assert(res == 1) |
| |
| # Set the next update time. |
| next_update = self._create_asn1_time(builder._next_update) |
| res = self._lib.X509_CRL_set_nextUpdate(x509_crl, next_update) |
| self.openssl_assert(res == 1) |
| |
| # Add extensions. |
| self._create_x509_extensions( |
| extensions=builder._extensions, |
| handlers=_CRL_EXTENSION_ENCODE_HANDLERS, |
| x509_obj=x509_crl, |
| add_func=self._lib.X509_CRL_add_ext, |
| gc=True |
| ) |
| |
| # add revoked certificates |
| for revoked_cert in builder._revoked_certificates: |
| # Duplicating because the X509_CRL takes ownership and will free |
| # this memory when X509_CRL_free is called. |
| revoked = self._lib.Cryptography_X509_REVOKED_dup( |
| revoked_cert._x509_revoked |
| ) |
| self.openssl_assert(revoked != self._ffi.NULL) |
| res = self._lib.X509_CRL_add0_revoked(x509_crl, revoked) |
| self.openssl_assert(res == 1) |
| |
| res = self._lib.X509_CRL_sign( |
| x509_crl, private_key._evp_pkey, evp_md |
| ) |
| if res == 0: |
| errors = self._consume_errors() |
| self.openssl_assert( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_RSA, |
| self._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY |
| ) |
| ) |
| raise ValueError("Digest too big for RSA key") |
| |
| return _CertificateRevocationList(self, x509_crl) |
| |
| def _create_x509_extensions(self, extensions, handlers, x509_obj, |
| add_func, gc): |
| for i, extension in enumerate(extensions): |
| x509_extension = self._create_x509_extension( |
| handlers, extension |
| ) |
| self.openssl_assert(x509_extension != self._ffi.NULL) |
| |
| if gc: |
| x509_extension = self._ffi.gc( |
| x509_extension, self._lib.X509_EXTENSION_free |
| ) |
| res = add_func(x509_obj, x509_extension, i) |
| self.openssl_assert(res >= 1) |
| |
| def _create_raw_x509_extension(self, extension, value): |
| obj = _txt2obj_gc(self, extension.oid.dotted_string) |
| return self._lib.X509_EXTENSION_create_by_OBJ( |
| self._ffi.NULL, obj, 1 if extension.critical else 0, value |
| ) |
| |
| def _create_x509_extension(self, handlers, extension): |
| if isinstance(extension.value, x509.UnrecognizedExtension): |
| value = _encode_asn1_str_gc(self, extension.value.value) |
| return self._create_raw_x509_extension(extension, value) |
| elif isinstance(extension.value, x509.TLSFeature): |
| asn1 = _Integers([x.value for x in extension.value]).dump() |
| value = _encode_asn1_str_gc(self, asn1) |
| return self._create_raw_x509_extension(extension, value) |
| elif isinstance(extension.value, x509.PrecertPoison): |
| asn1 = asn1crypto.core.Null().dump() |
| value = _encode_asn1_str_gc(self, asn1) |
| return self._create_raw_x509_extension(extension, value) |
| else: |
| try: |
| encode = handlers[extension.oid] |
| except KeyError: |
| raise NotImplementedError( |
| 'Extension not supported: {0}'.format(extension.oid) |
| ) |
| |
| ext_struct = encode(self, extension.value) |
| nid = self._lib.OBJ_txt2nid( |
| extension.oid.dotted_string.encode("ascii") |
| ) |
| backend.openssl_assert(nid != self._lib.NID_undef) |
| return self._lib.X509V3_EXT_i2d( |
| nid, 1 if extension.critical else 0, ext_struct |
| ) |
| |
| def create_x509_revoked_certificate(self, builder): |
| if not isinstance(builder, x509.RevokedCertificateBuilder): |
| raise TypeError('Builder type mismatch.') |
| |
| x509_revoked = self._lib.X509_REVOKED_new() |
| self.openssl_assert(x509_revoked != self._ffi.NULL) |
| x509_revoked = self._ffi.gc(x509_revoked, self._lib.X509_REVOKED_free) |
| serial_number = _encode_asn1_int_gc(self, builder._serial_number) |
| res = self._lib.X509_REVOKED_set_serialNumber( |
| x509_revoked, serial_number |
| ) |
| self.openssl_assert(res == 1) |
| rev_date = self._create_asn1_time(builder._revocation_date) |
| res = self._lib.X509_REVOKED_set_revocationDate(x509_revoked, rev_date) |
| self.openssl_assert(res == 1) |
| # add CRL entry extensions |
| self._create_x509_extensions( |
| extensions=builder._extensions, |
| handlers=_CRL_ENTRY_EXTENSION_ENCODE_HANDLERS, |
| x509_obj=x509_revoked, |
| add_func=self._lib.X509_REVOKED_add_ext, |
| gc=True |
| ) |
| return _RevokedCertificate(self, None, x509_revoked) |
| |
| def load_pem_private_key(self, data, password): |
| return self._load_key( |
| self._lib.PEM_read_bio_PrivateKey, |
| self._evp_pkey_to_private_key, |
| data, |
| password, |
| ) |
| |
| def load_pem_public_key(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| evp_pkey = self._lib.PEM_read_bio_PUBKEY( |
| mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL |
| ) |
| if evp_pkey != self._ffi.NULL: |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| return self._evp_pkey_to_public_key(evp_pkey) |
| else: |
| # It's not a (RSA/DSA/ECDSA) subjectPublicKeyInfo, but we still |
| # need to check to see if it is a pure PKCS1 RSA public key (not |
| # embedded in a subjectPublicKeyInfo) |
| self._consume_errors() |
| res = self._lib.BIO_reset(mem_bio.bio) |
| self.openssl_assert(res == 1) |
| rsa_cdata = self._lib.PEM_read_bio_RSAPublicKey( |
| mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL |
| ) |
| if rsa_cdata != self._ffi.NULL: |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata) |
| return _RSAPublicKey(self, rsa_cdata, evp_pkey) |
| else: |
| self._handle_key_loading_error() |
| |
| def load_pem_parameters(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| # only DH is supported currently |
| dh_cdata = self._lib.PEM_read_bio_DHparams( |
| mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL) |
| if dh_cdata != self._ffi.NULL: |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| return _DHParameters(self, dh_cdata) |
| else: |
| self._handle_key_loading_error() |
| |
| def load_der_private_key(self, data, password): |
| # OpenSSL has a function called d2i_AutoPrivateKey that in theory |
| # handles this automatically, however it doesn't handle encrypted |
| # private keys. Instead we try to load the key two different ways. |
| # First we'll try to load it as a traditional key. |
| bio_data = self._bytes_to_bio(data) |
| key = self._evp_pkey_from_der_traditional_key(bio_data, password) |
| if key: |
| return self._evp_pkey_to_private_key(key) |
| else: |
| # Finally we try to load it with the method that handles encrypted |
| # PKCS8 properly. |
| return self._load_key( |
| self._lib.d2i_PKCS8PrivateKey_bio, |
| self._evp_pkey_to_private_key, |
| data, |
| password, |
| ) |
| |
| def _evp_pkey_from_der_traditional_key(self, bio_data, password): |
| key = self._lib.d2i_PrivateKey_bio(bio_data.bio, self._ffi.NULL) |
| if key != self._ffi.NULL: |
| key = self._ffi.gc(key, self._lib.EVP_PKEY_free) |
| if password is not None: |
| raise TypeError( |
| "Password was given but private key is not encrypted." |
| ) |
| |
| return key |
| else: |
| self._consume_errors() |
| return None |
| |
| def load_der_public_key(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| evp_pkey = self._lib.d2i_PUBKEY_bio(mem_bio.bio, self._ffi.NULL) |
| if evp_pkey != self._ffi.NULL: |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| return self._evp_pkey_to_public_key(evp_pkey) |
| else: |
| # It's not a (RSA/DSA/ECDSA) subjectPublicKeyInfo, but we still |
| # need to check to see if it is a pure PKCS1 RSA public key (not |
| # embedded in a subjectPublicKeyInfo) |
| self._consume_errors() |
| res = self._lib.BIO_reset(mem_bio.bio) |
| self.openssl_assert(res == 1) |
| rsa_cdata = self._lib.d2i_RSAPublicKey_bio( |
| mem_bio.bio, self._ffi.NULL |
| ) |
| if rsa_cdata != self._ffi.NULL: |
| rsa_cdata = self._ffi.gc(rsa_cdata, self._lib.RSA_free) |
| evp_pkey = self._rsa_cdata_to_evp_pkey(rsa_cdata) |
| return _RSAPublicKey(self, rsa_cdata, evp_pkey) |
| else: |
| self._handle_key_loading_error() |
| |
| def load_der_parameters(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| dh_cdata = self._lib.d2i_DHparams_bio( |
| mem_bio.bio, self._ffi.NULL |
| ) |
| if dh_cdata != self._ffi.NULL: |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| return _DHParameters(self, dh_cdata) |
| elif self._lib.Cryptography_HAS_EVP_PKEY_DHX: |
| # We check to see if the is dhx. |
| self._consume_errors() |
| res = self._lib.BIO_reset(mem_bio.bio) |
| self.openssl_assert(res == 1) |
| dh_cdata = self._lib.Cryptography_d2i_DHxparams_bio( |
| mem_bio.bio, self._ffi.NULL |
| ) |
| if dh_cdata != self._ffi.NULL: |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| return _DHParameters(self, dh_cdata) |
| |
| self._handle_key_loading_error() |
| |
| def load_pem_x509_certificate(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| x509 = self._lib.PEM_read_bio_X509( |
| mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL |
| ) |
| if x509 == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError( |
| "Unable to load certificate. See https://cryptography.io/en/la" |
| "test/faq/#why-can-t-i-import-my-pem-file for more details." |
| ) |
| |
| x509 = self._ffi.gc(x509, self._lib.X509_free) |
| return _Certificate(self, x509) |
| |
| def load_der_x509_certificate(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| x509 = self._lib.d2i_X509_bio(mem_bio.bio, self._ffi.NULL) |
| if x509 == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError("Unable to load certificate") |
| |
| x509 = self._ffi.gc(x509, self._lib.X509_free) |
| return _Certificate(self, x509) |
| |
| def load_pem_x509_crl(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| x509_crl = self._lib.PEM_read_bio_X509_CRL( |
| mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL |
| ) |
| if x509_crl == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError( |
| "Unable to load CRL. See https://cryptography.io/en/la" |
| "test/faq/#why-can-t-i-import-my-pem-file for more details." |
| ) |
| |
| x509_crl = self._ffi.gc(x509_crl, self._lib.X509_CRL_free) |
| return _CertificateRevocationList(self, x509_crl) |
| |
| def load_der_x509_crl(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| x509_crl = self._lib.d2i_X509_CRL_bio(mem_bio.bio, self._ffi.NULL) |
| if x509_crl == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError("Unable to load CRL") |
| |
| x509_crl = self._ffi.gc(x509_crl, self._lib.X509_CRL_free) |
| return _CertificateRevocationList(self, x509_crl) |
| |
| def load_pem_x509_csr(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| x509_req = self._lib.PEM_read_bio_X509_REQ( |
| mem_bio.bio, self._ffi.NULL, self._ffi.NULL, self._ffi.NULL |
| ) |
| if x509_req == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError( |
| "Unable to load request. See https://cryptography.io/en/la" |
| "test/faq/#why-can-t-i-import-my-pem-file for more details." |
| ) |
| |
| x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free) |
| return _CertificateSigningRequest(self, x509_req) |
| |
| def load_der_x509_csr(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| x509_req = self._lib.d2i_X509_REQ_bio(mem_bio.bio, self._ffi.NULL) |
| if x509_req == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError("Unable to load request") |
| |
| x509_req = self._ffi.gc(x509_req, self._lib.X509_REQ_free) |
| return _CertificateSigningRequest(self, x509_req) |
| |
| def _load_key(self, openssl_read_func, convert_func, data, password): |
| mem_bio = self._bytes_to_bio(data) |
| |
| userdata = self._ffi.new("CRYPTOGRAPHY_PASSWORD_DATA *") |
| if password is not None: |
| utils._check_byteslike("password", password) |
| password_ptr = self._ffi.from_buffer(password) |
| userdata.password = password_ptr |
| userdata.length = len(password) |
| |
| evp_pkey = openssl_read_func( |
| mem_bio.bio, |
| self._ffi.NULL, |
| self._ffi.addressof( |
| self._lib._original_lib, "Cryptography_pem_password_cb" |
| ), |
| userdata, |
| ) |
| |
| if evp_pkey == self._ffi.NULL: |
| if userdata.error != 0: |
| errors = self._consume_errors() |
| self.openssl_assert(errors) |
| if userdata.error == -1: |
| raise TypeError( |
| "Password was not given but private key is encrypted" |
| ) |
| else: |
| assert userdata.error == -2 |
| raise ValueError( |
| "Passwords longer than {0} bytes are not supported " |
| "by this backend.".format(userdata.maxsize - 1) |
| ) |
| else: |
| self._handle_key_loading_error() |
| |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| |
| if password is not None and userdata.called == 0: |
| raise TypeError( |
| "Password was given but private key is not encrypted.") |
| |
| assert ( |
| (password is not None and userdata.called == 1) or |
| password is None |
| ) |
| |
| return convert_func(evp_pkey) |
| |
| def _handle_key_loading_error(self): |
| errors = self._consume_errors() |
| |
| if not errors: |
| raise ValueError("Could not deserialize key data.") |
| |
| elif ( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_EVP, self._lib.EVP_R_BAD_DECRYPT |
| ) or errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_PKCS12, |
| self._lib.PKCS12_R_PKCS12_CIPHERFINAL_ERROR |
| ) |
| ): |
| raise ValueError("Bad decrypt. Incorrect password?") |
| |
| elif ( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_EVP, self._lib.EVP_R_UNKNOWN_PBE_ALGORITHM |
| ) or errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_PEM, self._lib.PEM_R_UNSUPPORTED_ENCRYPTION |
| ) |
| ): |
| raise UnsupportedAlgorithm( |
| "PEM data is encrypted with an unsupported cipher", |
| _Reasons.UNSUPPORTED_CIPHER |
| ) |
| |
| elif any( |
| error._lib_reason_match( |
| self._lib.ERR_LIB_EVP, |
| self._lib.EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM |
| ) |
| for error in errors |
| ): |
| raise ValueError("Unsupported public key algorithm.") |
| |
| else: |
| assert errors[0].lib in ( |
| self._lib.ERR_LIB_EVP, |
| self._lib.ERR_LIB_PEM, |
| self._lib.ERR_LIB_ASN1, |
| ) |
| raise ValueError("Could not deserialize key data.") |
| |
| def elliptic_curve_supported(self, curve): |
| try: |
| curve_nid = self._elliptic_curve_to_nid(curve) |
| except UnsupportedAlgorithm: |
| curve_nid = self._lib.NID_undef |
| |
| group = self._lib.EC_GROUP_new_by_curve_name(curve_nid) |
| |
| if group == self._ffi.NULL: |
| errors = self._consume_errors() |
| self.openssl_assert( |
| curve_nid == self._lib.NID_undef or |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_EC, |
| self._lib.EC_R_UNKNOWN_GROUP |
| ) |
| ) |
| return False |
| else: |
| self.openssl_assert(curve_nid != self._lib.NID_undef) |
| self._lib.EC_GROUP_free(group) |
| return True |
| |
| def elliptic_curve_signature_algorithm_supported( |
| self, signature_algorithm, curve |
| ): |
| # We only support ECDSA right now. |
| if not isinstance(signature_algorithm, ec.ECDSA): |
| return False |
| |
| return self.elliptic_curve_supported(curve) |
| |
| def generate_elliptic_curve_private_key(self, curve): |
| """ |
| Generate a new private key on the named curve. |
| """ |
| |
| if self.elliptic_curve_supported(curve): |
| ec_cdata = self._ec_key_new_by_curve(curve) |
| |
| res = self._lib.EC_KEY_generate_key(ec_cdata) |
| self.openssl_assert(res == 1) |
| |
| evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata) |
| |
| return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey) |
| else: |
| raise UnsupportedAlgorithm( |
| "Backend object does not support {0}.".format(curve.name), |
| _Reasons.UNSUPPORTED_ELLIPTIC_CURVE |
| ) |
| |
| def load_elliptic_curve_private_numbers(self, numbers): |
| public = numbers.public_numbers |
| |
| ec_cdata = self._ec_key_new_by_curve(public.curve) |
| |
| private_value = self._ffi.gc( |
| self._int_to_bn(numbers.private_value), self._lib.BN_clear_free |
| ) |
| res = self._lib.EC_KEY_set_private_key(ec_cdata, private_value) |
| self.openssl_assert(res == 1) |
| |
| ec_cdata = self._ec_key_set_public_key_affine_coordinates( |
| ec_cdata, public.x, public.y) |
| |
| evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata) |
| |
| return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey) |
| |
| def load_elliptic_curve_public_numbers(self, numbers): |
| ec_cdata = self._ec_key_new_by_curve(numbers.curve) |
| ec_cdata = self._ec_key_set_public_key_affine_coordinates( |
| ec_cdata, numbers.x, numbers.y) |
| evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata) |
| |
| return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey) |
| |
| def load_elliptic_curve_public_bytes(self, curve, point_bytes): |
| ec_cdata = self._ec_key_new_by_curve(curve) |
| group = self._lib.EC_KEY_get0_group(ec_cdata) |
| self.openssl_assert(group != self._ffi.NULL) |
| point = self._lib.EC_POINT_new(group) |
| self.openssl_assert(point != self._ffi.NULL) |
| point = self._ffi.gc(point, self._lib.EC_POINT_free) |
| with self._tmp_bn_ctx() as bn_ctx: |
| res = self._lib.EC_POINT_oct2point( |
| group, point, point_bytes, len(point_bytes), bn_ctx |
| ) |
| if res != 1: |
| self._consume_errors() |
| raise ValueError("Invalid public bytes for the given curve") |
| |
| res = self._lib.EC_KEY_set_public_key(ec_cdata, point) |
| self.openssl_assert(res == 1) |
| evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata) |
| return _EllipticCurvePublicKey(self, ec_cdata, evp_pkey) |
| |
| def derive_elliptic_curve_private_key(self, private_value, curve): |
| ec_cdata = self._ec_key_new_by_curve(curve) |
| |
| get_func, group = self._ec_key_determine_group_get_func(ec_cdata) |
| |
| point = self._lib.EC_POINT_new(group) |
| self.openssl_assert(point != self._ffi.NULL) |
| point = self._ffi.gc(point, self._lib.EC_POINT_free) |
| |
| value = self._int_to_bn(private_value) |
| value = self._ffi.gc(value, self._lib.BN_clear_free) |
| |
| with self._tmp_bn_ctx() as bn_ctx: |
| res = self._lib.EC_POINT_mul(group, point, value, self._ffi.NULL, |
| self._ffi.NULL, bn_ctx) |
| self.openssl_assert(res == 1) |
| |
| bn_x = self._lib.BN_CTX_get(bn_ctx) |
| bn_y = self._lib.BN_CTX_get(bn_ctx) |
| |
| res = get_func(group, point, bn_x, bn_y, bn_ctx) |
| self.openssl_assert(res == 1) |
| |
| res = self._lib.EC_KEY_set_public_key(ec_cdata, point) |
| self.openssl_assert(res == 1) |
| private = self._int_to_bn(private_value) |
| private = self._ffi.gc(private, self._lib.BN_clear_free) |
| res = self._lib.EC_KEY_set_private_key(ec_cdata, private) |
| self.openssl_assert(res == 1) |
| |
| evp_pkey = self._ec_cdata_to_evp_pkey(ec_cdata) |
| |
| return _EllipticCurvePrivateKey(self, ec_cdata, evp_pkey) |
| |
| def _ec_key_new_by_curve(self, curve): |
| curve_nid = self._elliptic_curve_to_nid(curve) |
| ec_cdata = self._lib.EC_KEY_new_by_curve_name(curve_nid) |
| self.openssl_assert(ec_cdata != self._ffi.NULL) |
| return self._ffi.gc(ec_cdata, self._lib.EC_KEY_free) |
| |
| def load_der_ocsp_request(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| request = self._lib.d2i_OCSP_REQUEST_bio(mem_bio.bio, self._ffi.NULL) |
| if request == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError("Unable to load OCSP request") |
| |
| request = self._ffi.gc(request, self._lib.OCSP_REQUEST_free) |
| return _OCSPRequest(self, request) |
| |
| def load_der_ocsp_response(self, data): |
| mem_bio = self._bytes_to_bio(data) |
| response = self._lib.d2i_OCSP_RESPONSE_bio(mem_bio.bio, self._ffi.NULL) |
| if response == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError("Unable to load OCSP response") |
| |
| response = self._ffi.gc(response, self._lib.OCSP_RESPONSE_free) |
| return _OCSPResponse(self, response) |
| |
| def create_ocsp_request(self, builder): |
| ocsp_req = self._lib.OCSP_REQUEST_new() |
| self.openssl_assert(ocsp_req != self._ffi.NULL) |
| ocsp_req = self._ffi.gc(ocsp_req, self._lib.OCSP_REQUEST_free) |
| cert, issuer, algorithm = builder._request |
| evp_md = self._evp_md_non_null_from_algorithm(algorithm) |
| certid = self._lib.OCSP_cert_to_id( |
| evp_md, cert._x509, issuer._x509 |
| ) |
| self.openssl_assert(certid != self._ffi.NULL) |
| onereq = self._lib.OCSP_request_add0_id(ocsp_req, certid) |
| self.openssl_assert(onereq != self._ffi.NULL) |
| self._create_x509_extensions( |
| extensions=builder._extensions, |
| handlers=_OCSP_REQUEST_EXTENSION_ENCODE_HANDLERS, |
| x509_obj=ocsp_req, |
| add_func=self._lib.OCSP_REQUEST_add_ext, |
| gc=True, |
| ) |
| return _OCSPRequest(self, ocsp_req) |
| |
| def _create_ocsp_basic_response(self, builder, private_key, algorithm): |
| basic = self._lib.OCSP_BASICRESP_new() |
| self.openssl_assert(basic != self._ffi.NULL) |
| basic = self._ffi.gc(basic, self._lib.OCSP_BASICRESP_free) |
| evp_md = self._evp_md_non_null_from_algorithm( |
| builder._response._algorithm |
| ) |
| certid = self._lib.OCSP_cert_to_id( |
| evp_md, builder._response._cert._x509, |
| builder._response._issuer._x509 |
| ) |
| self.openssl_assert(certid != self._ffi.NULL) |
| certid = self._ffi.gc(certid, self._lib.OCSP_CERTID_free) |
| if builder._response._revocation_reason is None: |
| reason = -1 |
| else: |
| reason = _CRL_ENTRY_REASON_ENUM_TO_CODE[ |
| builder._response._revocation_reason |
| ] |
| if builder._response._revocation_time is None: |
| rev_time = self._ffi.NULL |
| else: |
| rev_time = self._create_asn1_time( |
| builder._response._revocation_time |
| ) |
| |
| next_update = self._ffi.NULL |
| if builder._response._next_update is not None: |
| next_update = self._create_asn1_time( |
| builder._response._next_update |
| ) |
| |
| this_update = self._create_asn1_time(builder._response._this_update) |
| |
| res = self._lib.OCSP_basic_add1_status( |
| basic, |
| certid, |
| builder._response._cert_status.value, |
| reason, |
| rev_time, |
| this_update, |
| next_update |
| ) |
| self.openssl_assert(res != self._ffi.NULL) |
| # okay, now sign the basic structure |
| evp_md = self._evp_md_non_null_from_algorithm(algorithm) |
| responder_cert, responder_encoding = builder._responder_id |
| flags = self._lib.OCSP_NOCERTS |
| if responder_encoding is ocsp.OCSPResponderEncoding.HASH: |
| flags |= self._lib.OCSP_RESPID_KEY |
| |
| if builder._certs is not None: |
| for cert in builder._certs: |
| res = self._lib.OCSP_basic_add1_cert(basic, cert._x509) |
| self.openssl_assert(res == 1) |
| |
| self._create_x509_extensions( |
| extensions=builder._extensions, |
| handlers=_OCSP_BASICRESP_EXTENSION_ENCODE_HANDLERS, |
| x509_obj=basic, |
| add_func=self._lib.OCSP_BASICRESP_add_ext, |
| gc=True, |
| ) |
| |
| res = self._lib.OCSP_basic_sign( |
| basic, responder_cert._x509, private_key._evp_pkey, |
| evp_md, self._ffi.NULL, flags |
| ) |
| if res != 1: |
| errors = self._consume_errors() |
| self.openssl_assert( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_X509, |
| self._lib.X509_R_KEY_VALUES_MISMATCH |
| ) |
| ) |
| raise ValueError("responder_cert must be signed by private_key") |
| |
| return basic |
| |
| def create_ocsp_response(self, response_status, builder, private_key, |
| algorithm): |
| if response_status is ocsp.OCSPResponseStatus.SUCCESSFUL: |
| basic = self._create_ocsp_basic_response( |
| builder, private_key, algorithm |
| ) |
| else: |
| basic = self._ffi.NULL |
| |
| ocsp_resp = self._lib.OCSP_response_create( |
| response_status.value, basic |
| ) |
| self.openssl_assert(ocsp_resp != self._ffi.NULL) |
| ocsp_resp = self._ffi.gc(ocsp_resp, self._lib.OCSP_RESPONSE_free) |
| return _OCSPResponse(self, ocsp_resp) |
| |
| def elliptic_curve_exchange_algorithm_supported(self, algorithm, curve): |
| return ( |
| self.elliptic_curve_supported(curve) and |
| isinstance(algorithm, ec.ECDH) |
| ) |
| |
| def _ec_cdata_to_evp_pkey(self, ec_cdata): |
| evp_pkey = self._create_evp_pkey_gc() |
| res = self._lib.EVP_PKEY_set1_EC_KEY(evp_pkey, ec_cdata) |
| self.openssl_assert(res == 1) |
| return evp_pkey |
| |
| def _elliptic_curve_to_nid(self, curve): |
| """ |
| Get the NID for a curve name. |
| """ |
| |
| curve_aliases = { |
| "secp192r1": "prime192v1", |
| "secp256r1": "prime256v1" |
| } |
| |
| curve_name = curve_aliases.get(curve.name, curve.name) |
| |
| curve_nid = self._lib.OBJ_sn2nid(curve_name.encode()) |
| if curve_nid == self._lib.NID_undef: |
| raise UnsupportedAlgorithm( |
| "{0} is not a supported elliptic curve".format(curve.name), |
| _Reasons.UNSUPPORTED_ELLIPTIC_CURVE |
| ) |
| return curve_nid |
| |
| @contextmanager |
| def _tmp_bn_ctx(self): |
| bn_ctx = self._lib.BN_CTX_new() |
| self.openssl_assert(bn_ctx != self._ffi.NULL) |
| bn_ctx = self._ffi.gc(bn_ctx, self._lib.BN_CTX_free) |
| self._lib.BN_CTX_start(bn_ctx) |
| try: |
| yield bn_ctx |
| finally: |
| self._lib.BN_CTX_end(bn_ctx) |
| |
| def _ec_key_determine_group_get_func(self, ctx): |
| """ |
| Given an EC_KEY determine the group and what function is required to |
| get point coordinates. |
| """ |
| self.openssl_assert(ctx != self._ffi.NULL) |
| |
| nid_two_field = self._lib.OBJ_sn2nid(b"characteristic-two-field") |
| self.openssl_assert(nid_two_field != self._lib.NID_undef) |
| |
| group = self._lib.EC_KEY_get0_group(ctx) |
| self.openssl_assert(group != self._ffi.NULL) |
| |
| method = self._lib.EC_GROUP_method_of(group) |
| self.openssl_assert(method != self._ffi.NULL) |
| |
| nid = self._lib.EC_METHOD_get_field_type(method) |
| self.openssl_assert(nid != self._lib.NID_undef) |
| |
| if nid == nid_two_field and self._lib.Cryptography_HAS_EC2M: |
| get_func = self._lib.EC_POINT_get_affine_coordinates_GF2m |
| else: |
| get_func = self._lib.EC_POINT_get_affine_coordinates_GFp |
| |
| assert get_func |
| |
| return get_func, group |
| |
| def _ec_key_set_public_key_affine_coordinates(self, ctx, x, y): |
| """ |
| Sets the public key point in the EC_KEY context to the affine x and y |
| values. |
| """ |
| |
| if x < 0 or y < 0: |
| raise ValueError( |
| "Invalid EC key. Both x and y must be non-negative." |
| ) |
| |
| x = self._ffi.gc(self._int_to_bn(x), self._lib.BN_free) |
| y = self._ffi.gc(self._int_to_bn(y), self._lib.BN_free) |
| res = self._lib.EC_KEY_set_public_key_affine_coordinates(ctx, x, y) |
| if res != 1: |
| self._consume_errors() |
| raise ValueError("Invalid EC key.") |
| |
| return ctx |
| |
| def _private_key_bytes(self, encoding, format, encryption_algorithm, |
| evp_pkey, cdata): |
| if not isinstance(format, serialization.PrivateFormat): |
| raise TypeError( |
| "format must be an item from the PrivateFormat enum" |
| ) |
| |
| # X9.62 encoding is only valid for EC public keys |
| if encoding is serialization.Encoding.X962: |
| raise ValueError("X9.62 format is only valid for EC public keys") |
| |
| # Raw format and encoding are only valid for X25519, Ed25519, X448, and |
| # Ed448 keys. We capture those cases before this method is called so if |
| # we see those enum values here it means the caller has passed them to |
| # a key that doesn't support raw type |
| if format is serialization.PrivateFormat.Raw: |
| raise ValueError("raw format is invalid with this key or encoding") |
| |
| if encoding is serialization.Encoding.Raw: |
| raise ValueError("raw encoding is invalid with this key or format") |
| |
| if not isinstance(encryption_algorithm, |
| serialization.KeySerializationEncryption): |
| raise TypeError( |
| "Encryption algorithm must be a KeySerializationEncryption " |
| "instance" |
| ) |
| |
| if isinstance(encryption_algorithm, serialization.NoEncryption): |
| password = b"" |
| passlen = 0 |
| evp_cipher = self._ffi.NULL |
| elif isinstance(encryption_algorithm, |
| serialization.BestAvailableEncryption): |
| # This is a curated value that we will update over time. |
| evp_cipher = self._lib.EVP_get_cipherbyname( |
| b"aes-256-cbc" |
| ) |
| password = encryption_algorithm.password |
| passlen = len(password) |
| if passlen > 1023: |
| raise ValueError( |
| "Passwords longer than 1023 bytes are not supported by " |
| "this backend" |
| ) |
| else: |
| raise ValueError("Unsupported encryption type") |
| |
| key_type = self._lib.EVP_PKEY_id(evp_pkey) |
| if encoding is serialization.Encoding.PEM: |
| if format is serialization.PrivateFormat.PKCS8: |
| write_bio = self._lib.PEM_write_bio_PKCS8PrivateKey |
| key = evp_pkey |
| else: |
| assert format is serialization.PrivateFormat.TraditionalOpenSSL |
| if key_type == self._lib.EVP_PKEY_RSA: |
| write_bio = self._lib.PEM_write_bio_RSAPrivateKey |
| elif key_type == self._lib.EVP_PKEY_DSA: |
| write_bio = self._lib.PEM_write_bio_DSAPrivateKey |
| else: |
| assert key_type == self._lib.EVP_PKEY_EC |
| write_bio = self._lib.PEM_write_bio_ECPrivateKey |
| |
| key = cdata |
| elif encoding is serialization.Encoding.DER: |
| if format is serialization.PrivateFormat.TraditionalOpenSSL: |
| if not isinstance( |
| encryption_algorithm, serialization.NoEncryption |
| ): |
| raise ValueError( |
| "Encryption is not supported for DER encoded " |
| "traditional OpenSSL keys" |
| ) |
| |
| return self._private_key_bytes_traditional_der(key_type, cdata) |
| else: |
| assert format is serialization.PrivateFormat.PKCS8 |
| write_bio = self._lib.i2d_PKCS8PrivateKey_bio |
| key = evp_pkey |
| else: |
| raise TypeError("encoding must be Encoding.PEM or Encoding.DER") |
| |
| bio = self._create_mem_bio_gc() |
| res = write_bio( |
| bio, |
| key, |
| evp_cipher, |
| password, |
| passlen, |
| self._ffi.NULL, |
| self._ffi.NULL |
| ) |
| self.openssl_assert(res == 1) |
| return self._read_mem_bio(bio) |
| |
| def _private_key_bytes_traditional_der(self, key_type, cdata): |
| if key_type == self._lib.EVP_PKEY_RSA: |
| write_bio = self._lib.i2d_RSAPrivateKey_bio |
| elif key_type == self._lib.EVP_PKEY_EC: |
| write_bio = self._lib.i2d_ECPrivateKey_bio |
| else: |
| self.openssl_assert(key_type == self._lib.EVP_PKEY_DSA) |
| write_bio = self._lib.i2d_DSAPrivateKey_bio |
| |
| bio = self._create_mem_bio_gc() |
| res = write_bio(bio, cdata) |
| self.openssl_assert(res == 1) |
| return self._read_mem_bio(bio) |
| |
| def _public_key_bytes(self, encoding, format, key, evp_pkey, cdata): |
| if not isinstance(encoding, serialization.Encoding): |
| raise TypeError("encoding must be an item from the Encoding enum") |
| |
| # Compressed/UncompressedPoint are only valid for EC keys and those |
| # cases are handled by the ECPublicKey public_bytes method before this |
| # method is called |
| if format in (serialization.PublicFormat.UncompressedPoint, |
| serialization.PublicFormat.CompressedPoint): |
| raise ValueError("Point formats are not valid for this key type") |
| |
| # Raw format and encoding are only valid for X25519, Ed25519, X448, and |
| # Ed448 keys. We capture those cases before this method is called so if |
| # we see those enum values here it means the caller has passed them to |
| # a key that doesn't support raw type |
| if format is serialization.PublicFormat.Raw: |
| raise ValueError("raw format is invalid with this key or encoding") |
| |
| if encoding is serialization.Encoding.Raw: |
| raise ValueError("raw encoding is invalid with this key or format") |
| |
| if ( |
| format is serialization.PublicFormat.OpenSSH or |
| encoding is serialization.Encoding.OpenSSH |
| ): |
| if ( |
| format is not serialization.PublicFormat.OpenSSH or |
| encoding is not serialization.Encoding.OpenSSH |
| ): |
| raise ValueError( |
| "OpenSSH format must be used with OpenSSH encoding" |
| ) |
| return self._openssh_public_key_bytes(key) |
| elif format is serialization.PublicFormat.SubjectPublicKeyInfo: |
| if encoding is serialization.Encoding.PEM: |
| write_bio = self._lib.PEM_write_bio_PUBKEY |
| else: |
| assert encoding is serialization.Encoding.DER |
| write_bio = self._lib.i2d_PUBKEY_bio |
| |
| key = evp_pkey |
| elif format is serialization.PublicFormat.PKCS1: |
| # Only RSA is supported here. |
| assert self._lib.EVP_PKEY_id(evp_pkey) == self._lib.EVP_PKEY_RSA |
| if encoding is serialization.Encoding.PEM: |
| write_bio = self._lib.PEM_write_bio_RSAPublicKey |
| else: |
| assert encoding is serialization.Encoding.DER |
| write_bio = self._lib.i2d_RSAPublicKey_bio |
| |
| key = cdata |
| else: |
| raise TypeError( |
| "format must be an item from the PublicFormat enum" |
| ) |
| |
| bio = self._create_mem_bio_gc() |
| res = write_bio(bio, key) |
| self.openssl_assert(res == 1) |
| return self._read_mem_bio(bio) |
| |
| def _openssh_public_key_bytes(self, key): |
| if isinstance(key, rsa.RSAPublicKey): |
| public_numbers = key.public_numbers() |
| return b"ssh-rsa " + base64.b64encode( |
| ssh._ssh_write_string(b"ssh-rsa") + |
| ssh._ssh_write_mpint(public_numbers.e) + |
| ssh._ssh_write_mpint(public_numbers.n) |
| ) |
| elif isinstance(key, dsa.DSAPublicKey): |
| public_numbers = key.public_numbers() |
| parameter_numbers = public_numbers.parameter_numbers |
| return b"ssh-dss " + base64.b64encode( |
| ssh._ssh_write_string(b"ssh-dss") + |
| ssh._ssh_write_mpint(parameter_numbers.p) + |
| ssh._ssh_write_mpint(parameter_numbers.q) + |
| ssh._ssh_write_mpint(parameter_numbers.g) + |
| ssh._ssh_write_mpint(public_numbers.y) |
| ) |
| else: |
| assert isinstance(key, ec.EllipticCurvePublicKey) |
| public_numbers = key.public_numbers() |
| try: |
| curve_name = { |
| ec.SECP256R1: b"nistp256", |
| ec.SECP384R1: b"nistp384", |
| ec.SECP521R1: b"nistp521", |
| }[type(public_numbers.curve)] |
| except KeyError: |
| raise ValueError( |
| "Only SECP256R1, SECP384R1, and SECP521R1 curves are " |
| "supported by the SSH public key format" |
| ) |
| return b"ecdsa-sha2-" + curve_name + b" " + base64.b64encode( |
| ssh._ssh_write_string(b"ecdsa-sha2-" + curve_name) + |
| ssh._ssh_write_string(curve_name) + |
| ssh._ssh_write_string(public_numbers.encode_point()) |
| ) |
| |
| def _parameter_bytes(self, encoding, format, cdata): |
| if encoding is serialization.Encoding.OpenSSH: |
| raise TypeError( |
| "OpenSSH encoding is not supported" |
| ) |
| |
| # Only DH is supported here currently. |
| q = self._ffi.new("BIGNUM **") |
| self._lib.DH_get0_pqg(cdata, |
| self._ffi.NULL, |
| q, |
| self._ffi.NULL) |
| if encoding is serialization.Encoding.PEM: |
| if q[0] != self._ffi.NULL: |
| write_bio = self._lib.PEM_write_bio_DHxparams |
| else: |
| write_bio = self._lib.PEM_write_bio_DHparams |
| elif encoding is serialization.Encoding.DER: |
| if q[0] != self._ffi.NULL: |
| write_bio = self._lib.Cryptography_i2d_DHxparams_bio |
| else: |
| write_bio = self._lib.i2d_DHparams_bio |
| else: |
| raise TypeError("encoding must be an item from the Encoding enum") |
| |
| bio = self._create_mem_bio_gc() |
| res = write_bio(bio, cdata) |
| self.openssl_assert(res == 1) |
| return self._read_mem_bio(bio) |
| |
| def generate_dh_parameters(self, generator, key_size): |
| if key_size < 512: |
| raise ValueError("DH key_size must be at least 512 bits") |
| |
| if generator not in (2, 5): |
| raise ValueError("DH generator must be 2 or 5") |
| |
| dh_param_cdata = self._lib.DH_new() |
| self.openssl_assert(dh_param_cdata != self._ffi.NULL) |
| dh_param_cdata = self._ffi.gc(dh_param_cdata, self._lib.DH_free) |
| |
| res = self._lib.DH_generate_parameters_ex( |
| dh_param_cdata, |
| key_size, |
| generator, |
| self._ffi.NULL |
| ) |
| self.openssl_assert(res == 1) |
| |
| return _DHParameters(self, dh_param_cdata) |
| |
| def _dh_cdata_to_evp_pkey(self, dh_cdata): |
| evp_pkey = self._create_evp_pkey_gc() |
| res = self._lib.EVP_PKEY_set1_DH(evp_pkey, dh_cdata) |
| self.openssl_assert(res == 1) |
| return evp_pkey |
| |
| def generate_dh_private_key(self, parameters): |
| dh_key_cdata = _dh_params_dup(parameters._dh_cdata, self) |
| |
| res = self._lib.DH_generate_key(dh_key_cdata) |
| self.openssl_assert(res == 1) |
| |
| evp_pkey = self._dh_cdata_to_evp_pkey(dh_key_cdata) |
| |
| return _DHPrivateKey(self, dh_key_cdata, evp_pkey) |
| |
| def generate_dh_private_key_and_parameters(self, generator, key_size): |
| return self.generate_dh_private_key( |
| self.generate_dh_parameters(generator, key_size)) |
| |
| def load_dh_private_numbers(self, numbers): |
| parameter_numbers = numbers.public_numbers.parameter_numbers |
| |
| dh_cdata = self._lib.DH_new() |
| self.openssl_assert(dh_cdata != self._ffi.NULL) |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| |
| p = self._int_to_bn(parameter_numbers.p) |
| g = self._int_to_bn(parameter_numbers.g) |
| |
| if parameter_numbers.q is not None: |
| q = self._int_to_bn(parameter_numbers.q) |
| else: |
| q = self._ffi.NULL |
| |
| pub_key = self._int_to_bn(numbers.public_numbers.y) |
| priv_key = self._int_to_bn(numbers.x) |
| |
| res = self._lib.DH_set0_pqg(dh_cdata, p, q, g) |
| self.openssl_assert(res == 1) |
| |
| res = self._lib.DH_set0_key(dh_cdata, pub_key, priv_key) |
| self.openssl_assert(res == 1) |
| |
| codes = self._ffi.new("int[]", 1) |
| res = self._lib.Cryptography_DH_check(dh_cdata, codes) |
| self.openssl_assert(res == 1) |
| |
| # DH_check will return DH_NOT_SUITABLE_GENERATOR if p % 24 does not |
| # equal 11 when the generator is 2 (a quadratic nonresidue). |
| # We want to ignore that error because p % 24 == 23 is also fine. |
| # Specifically, g is then a quadratic residue. Within the context of |
| # Diffie-Hellman this means it can only generate half the possible |
| # values. That sounds bad, but quadratic nonresidues leak a bit of |
| # the key to the attacker in exchange for having the full key space |
| # available. See: https://crypto.stackexchange.com/questions/12961 |
| if codes[0] != 0 and not ( |
| parameter_numbers.g == 2 and |
| codes[0] ^ self._lib.DH_NOT_SUITABLE_GENERATOR == 0 |
| ): |
| raise ValueError( |
| "DH private numbers did not pass safety checks." |
| ) |
| |
| evp_pkey = self._dh_cdata_to_evp_pkey(dh_cdata) |
| |
| return _DHPrivateKey(self, dh_cdata, evp_pkey) |
| |
| def load_dh_public_numbers(self, numbers): |
| dh_cdata = self._lib.DH_new() |
| self.openssl_assert(dh_cdata != self._ffi.NULL) |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| |
| parameter_numbers = numbers.parameter_numbers |
| |
| p = self._int_to_bn(parameter_numbers.p) |
| g = self._int_to_bn(parameter_numbers.g) |
| |
| if parameter_numbers.q is not None: |
| q = self._int_to_bn(parameter_numbers.q) |
| else: |
| q = self._ffi.NULL |
| |
| pub_key = self._int_to_bn(numbers.y) |
| |
| res = self._lib.DH_set0_pqg(dh_cdata, p, q, g) |
| self.openssl_assert(res == 1) |
| |
| res = self._lib.DH_set0_key(dh_cdata, pub_key, self._ffi.NULL) |
| self.openssl_assert(res == 1) |
| |
| evp_pkey = self._dh_cdata_to_evp_pkey(dh_cdata) |
| |
| return _DHPublicKey(self, dh_cdata, evp_pkey) |
| |
| def load_dh_parameter_numbers(self, numbers): |
| dh_cdata = self._lib.DH_new() |
| self.openssl_assert(dh_cdata != self._ffi.NULL) |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| |
| p = self._int_to_bn(numbers.p) |
| g = self._int_to_bn(numbers.g) |
| |
| if numbers.q is not None: |
| q = self._int_to_bn(numbers.q) |
| else: |
| q = self._ffi.NULL |
| |
| res = self._lib.DH_set0_pqg(dh_cdata, p, q, g) |
| self.openssl_assert(res == 1) |
| |
| return _DHParameters(self, dh_cdata) |
| |
| def dh_parameters_supported(self, p, g, q=None): |
| dh_cdata = self._lib.DH_new() |
| self.openssl_assert(dh_cdata != self._ffi.NULL) |
| dh_cdata = self._ffi.gc(dh_cdata, self._lib.DH_free) |
| |
| p = self._int_to_bn(p) |
| g = self._int_to_bn(g) |
| |
| if q is not None: |
| q = self._int_to_bn(q) |
| else: |
| q = self._ffi.NULL |
| |
| res = self._lib.DH_set0_pqg(dh_cdata, p, q, g) |
| self.openssl_assert(res == 1) |
| |
| codes = self._ffi.new("int[]", 1) |
| res = self._lib.Cryptography_DH_check(dh_cdata, codes) |
| self.openssl_assert(res == 1) |
| |
| return codes[0] == 0 |
| |
| def dh_x942_serialization_supported(self): |
| return self._lib.Cryptography_HAS_EVP_PKEY_DHX == 1 |
| |
| def x509_name_bytes(self, name): |
| x509_name = _encode_name_gc(self, name) |
| pp = self._ffi.new("unsigned char **") |
| res = self._lib.i2d_X509_NAME(x509_name, pp) |
| self.openssl_assert(pp[0] != self._ffi.NULL) |
| pp = self._ffi.gc( |
| pp, lambda pointer: self._lib.OPENSSL_free(pointer[0]) |
| ) |
| self.openssl_assert(res > 0) |
| return self._ffi.buffer(pp[0], res)[:] |
| |
| def x25519_load_public_bytes(self, data): |
| # When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can |
| # switch this to EVP_PKEY_new_raw_public_key |
| if len(data) != 32: |
| raise ValueError("An X25519 public key is 32 bytes long") |
| |
| evp_pkey = self._create_evp_pkey_gc() |
| res = self._lib.EVP_PKEY_set_type(evp_pkey, self._lib.NID_X25519) |
| backend.openssl_assert(res == 1) |
| res = self._lib.EVP_PKEY_set1_tls_encodedpoint( |
| evp_pkey, data, len(data) |
| ) |
| backend.openssl_assert(res == 1) |
| return _X25519PublicKey(self, evp_pkey) |
| |
| def x25519_load_private_bytes(self, data): |
| # When we drop support for CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 we can |
| # switch this to EVP_PKEY_new_raw_private_key and drop the |
| # zeroed_bytearray garbage. |
| # OpenSSL only has facilities for loading PKCS8 formatted private |
| # keys using the algorithm identifiers specified in |
| # https://tools.ietf.org/html/draft-ietf-curdle-pkix-09. |
| # This is the standard PKCS8 prefix for a 32 byte X25519 key. |
| # The form is: |
| # 0:d=0 hl=2 l= 46 cons: SEQUENCE |
| # 2:d=1 hl=2 l= 1 prim: INTEGER :00 |
| # 5:d=1 hl=2 l= 5 cons: SEQUENCE |
| # 7:d=2 hl=2 l= 3 prim: OBJECT :1.3.101.110 |
| # 12:d=1 hl=2 l= 34 prim: OCTET STRING (the key) |
| # Of course there's a bit more complexity. In reality OCTET STRING |
| # contains an OCTET STRING of length 32! So the last two bytes here |
| # are \x04\x20, which is an OCTET STRING of length 32. |
| if len(data) != 32: |
| raise ValueError("An X25519 private key is 32 bytes long") |
| |
| pkcs8_prefix = b'0.\x02\x01\x000\x05\x06\x03+en\x04"\x04 ' |
| with self._zeroed_bytearray(48) as ba: |
| ba[0:16] = pkcs8_prefix |
| ba[16:] = data |
| bio = self._bytes_to_bio(ba) |
| evp_pkey = backend._lib.d2i_PrivateKey_bio(bio.bio, self._ffi.NULL) |
| |
| self.openssl_assert(evp_pkey != self._ffi.NULL) |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| self.openssl_assert( |
| self._lib.EVP_PKEY_id(evp_pkey) == self._lib.EVP_PKEY_X25519 |
| ) |
| return _X25519PrivateKey(self, evp_pkey) |
| |
| def _evp_pkey_keygen_gc(self, nid): |
| evp_pkey_ctx = self._lib.EVP_PKEY_CTX_new_id(nid, self._ffi.NULL) |
| self.openssl_assert(evp_pkey_ctx != self._ffi.NULL) |
| evp_pkey_ctx = self._ffi.gc(evp_pkey_ctx, self._lib.EVP_PKEY_CTX_free) |
| res = self._lib.EVP_PKEY_keygen_init(evp_pkey_ctx) |
| self.openssl_assert(res == 1) |
| evp_ppkey = self._ffi.new("EVP_PKEY **") |
| res = self._lib.EVP_PKEY_keygen(evp_pkey_ctx, evp_ppkey) |
| self.openssl_assert(res == 1) |
| self.openssl_assert(evp_ppkey[0] != self._ffi.NULL) |
| evp_pkey = self._ffi.gc(evp_ppkey[0], self._lib.EVP_PKEY_free) |
| return evp_pkey |
| |
| def x25519_generate_key(self): |
| evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_X25519) |
| return _X25519PrivateKey(self, evp_pkey) |
| |
| def x25519_supported(self): |
| return self._lib.CRYPTOGRAPHY_OPENSSL_110_OR_GREATER |
| |
| def x448_load_public_bytes(self, data): |
| if len(data) != 56: |
| raise ValueError("An X448 public key is 56 bytes long") |
| |
| evp_pkey = self._lib.EVP_PKEY_new_raw_public_key( |
| self._lib.NID_X448, self._ffi.NULL, data, len(data) |
| ) |
| self.openssl_assert(evp_pkey != self._ffi.NULL) |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| return _X448PublicKey(self, evp_pkey) |
| |
| def x448_load_private_bytes(self, data): |
| if len(data) != 56: |
| raise ValueError("An X448 private key is 56 bytes long") |
| |
| data_ptr = self._ffi.from_buffer(data) |
| evp_pkey = self._lib.EVP_PKEY_new_raw_private_key( |
| self._lib.NID_X448, self._ffi.NULL, data_ptr, len(data) |
| ) |
| self.openssl_assert(evp_pkey != self._ffi.NULL) |
| evp_pkey = self._ffi.gc(evp_pkey, self._lib.EVP_PKEY_free) |
| return _X448PrivateKey(self, evp_pkey) |
| |
| def x448_generate_key(self): |
| evp_pkey = self._evp_pkey_keygen_gc(self._lib.NID_X448) |
| return _X448PrivateKey(self, evp_pkey) |
| |
| def x448_supported(self): |
| return not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111 |
| |
| def derive_scrypt(self, key_material, salt, length, n, r, p): |
| buf = self._ffi.new("unsigned char[]", length) |
| key_material_ptr = self._ffi.from_buffer(key_material) |
| res = self._lib.EVP_PBE_scrypt( |
| key_material_ptr, len(key_material), salt, len(salt), n, r, p, |
| scrypt._MEM_LIMIT, buf, length |
| ) |
| if res != 1: |
| errors = self._consume_errors() |
| if not self._lib.CRYPTOGRAPHY_OPENSSL_LESS_THAN_111: |
| # This error is only added to the stack in 1.1.1+ |
| self.openssl_assert( |
| errors[0]._lib_reason_match( |
| self._lib.ERR_LIB_EVP, |
| self._lib.ERR_R_MALLOC_FAILURE |
| ) |
| ) |
| |
| # memory required formula explained here: |
| # https://blog.filippo.io/the-scrypt-parameters/ |
| min_memory = 128 * n * r // (1024**2) |
| raise MemoryError( |
| "Not enough memory to derive key. These parameters require" |
| " {} MB of memory.".format(min_memory) |
| ) |
| return self._ffi.buffer(buf)[:] |
| |
| def aead_cipher_supported(self, cipher): |
| cipher_name = aead._aead_cipher_name(cipher) |
| return ( |
| self._lib.EVP_get_cipherbyname(cipher_name) != self._ffi.NULL |
| ) |
| |
| @contextlib.contextmanager |
| def _zeroed_bytearray(self, length): |
| """ |
| This method creates a bytearray, which we copy data into (hopefully |
| also from a mutable buffer that can be dynamically erased!), and then |
| zero when we're done. |
| """ |
| ba = bytearray(length) |
| try: |
| yield ba |
| finally: |
| self._zero_data(ba, length) |
| |
| def _zero_data(self, data, length): |
| # We clear things this way because at the moment we're not |
| # sure of a better way that can guarantee it overwrites the |
| # memory of a bytearray and doesn't just replace the underlying char *. |
| for i in range(length): |
| data[i] = 0 |
| |
| @contextlib.contextmanager |
| def _zeroed_null_terminated_buf(self, data): |
| """ |
| This method takes bytes, which can be a bytestring or a mutable |
| buffer like a bytearray, and yields a null-terminated version of that |
| data. This is required because PKCS12_parse doesn't take a length with |
| its password char * and ffi.from_buffer doesn't provide null |
| termination. So, to support zeroing the data via bytearray we |
| need to build this ridiculous construct that copies the memory, but |
| zeroes it after use. |
| """ |
| if data is None: |
| yield self._ffi.NULL |
| else: |
| data_len = len(data) |
| buf = self._ffi.new("char[]", data_len + 1) |
| self._ffi.memmove(buf, data, data_len) |
| try: |
| yield buf |
| finally: |
| # Cast to a uint8_t * so we can assign by integer |
| self._zero_data(self._ffi.cast("uint8_t *", buf), data_len) |
| |
| def load_key_and_certificates_from_pkcs12(self, data, password): |
| if password is not None: |
| utils._check_byteslike("password", password) |
| |
| bio = self._bytes_to_bio(data) |
| p12 = self._lib.d2i_PKCS12_bio(bio.bio, self._ffi.NULL) |
| if p12 == self._ffi.NULL: |
| self._consume_errors() |
| raise ValueError("Could not deserialize PKCS12 data") |
| |
| p12 = self._ffi.gc(p12, self._lib.PKCS12_free) |
| evp_pkey_ptr = self._ffi.new("EVP_PKEY **") |
| x509_ptr = self._ffi.new("X509 **") |
| sk_x509_ptr = self._ffi.new("Cryptography_STACK_OF_X509 **") |
| with self._zeroed_null_terminated_buf(password) as password_buf: |
| res = self._lib.PKCS12_parse( |
| p12, password_buf, evp_pkey_ptr, x509_ptr, sk_x509_ptr |
| ) |
| |
| if res == 0: |
| self._consume_errors() |
| raise ValueError("Invalid password or PKCS12 data") |
| |
| cert = None |
| key = None |
| additional_certificates = [] |
| |
| if evp_pkey_ptr[0] != self._ffi.NULL: |
| evp_pkey = self._ffi.gc(evp_pkey_ptr[0], self._lib.EVP_PKEY_free) |
| key = self._evp_pkey_to_private_key(evp_pkey) |
| |
| if x509_ptr[0] != self._ffi.NULL: |
| x509 = self._ffi.gc(x509_ptr[0], self._lib.X509_free) |
| cert = _Certificate(self, x509) |
| |
| if sk_x509_ptr[0] != self._ffi.NULL: |
| sk_x509 = self._ffi.gc(sk_x509_ptr[0], self._lib.sk_X509_free) |
| num = self._lib.sk_X509_num(sk_x509_ptr[0]) |
| for i in range(num): |
| x509 = self._lib.sk_X509_value(sk_x509, i) |
| x509 = self._ffi.gc(x509, self._lib.X509_free) |
| self.openssl_assert(x509 != self._ffi.NULL) |
| additional_certificates.append(_Certificate(self, x509)) |
| |
| return (key, cert, additional_certificates) |
| |
| |
| class GetCipherByName(object): |
| def __init__(self, fmt): |
| self._fmt = fmt |
| |
| def __call__(self, backend, cipher, mode): |
| cipher_name = self._fmt.format(cipher=cipher, mode=mode).lower() |
| return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii")) |
| |
| |
| def _get_xts_cipher(backend, cipher, mode): |
| cipher_name = "aes-{0}-xts".format(cipher.key_size // 2) |
| return backend._lib.EVP_get_cipherbyname(cipher_name.encode("ascii")) |
| |
| |
| backend = Backend() |