| # Copyright 2011 Sybren A. Stüvel <[email protected]> |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| """Tests prime functions.""" |
| |
| import unittest |
| |
| import rsa.prime |
| import rsa.randnum |
| |
| |
| class PrimeTest(unittest.TestCase): |
| def test_is_prime(self): |
| """Test some common primes.""" |
| |
| # Test some trivial numbers |
| self.assertFalse(rsa.prime.is_prime(-1)) |
| self.assertFalse(rsa.prime.is_prime(0)) |
| self.assertFalse(rsa.prime.is_prime(1)) |
| self.assertTrue(rsa.prime.is_prime(2)) |
| self.assertFalse(rsa.prime.is_prime(42)) |
| self.assertTrue(rsa.prime.is_prime(41)) |
| |
| # Test some slightly larger numbers |
| self.assertEqual( |
| [907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997], |
| [x for x in range(901, 1000) if rsa.prime.is_prime(x)] |
| ) |
| |
| # Test around the 50th millionth known prime. |
| self.assertTrue(rsa.prime.is_prime(982451653)) |
| self.assertFalse(rsa.prime.is_prime(982451653 * 961748941)) |
| |
| def test_miller_rabin_primality_testing(self): |
| """Uses monkeypatching to ensure certain random numbers. |
| |
| This allows us to predict/control the code path. |
| """ |
| |
| randints = [] |
| |
| def fake_randint(maxvalue): |
| return randints.pop(0) |
| |
| orig_randint = rsa.randnum.randint |
| rsa.randnum.randint = fake_randint |
| try: |
| # 'n is composite' |
| randints.append(2630484832) # causes the 'n is composite' case with n=3784949785 |
| self.assertEqual(False, rsa.prime.miller_rabin_primality_testing(2787998641, 7)) |
| self.assertEqual([], randints) |
| |
| # 'Exit inner loop and continue with next witness' |
| randints.extend([ |
| 2119139098, # causes 'Exit inner loop and continue with next witness' |
| # the next witnesses for the above case: |
| 3051067716, 3603501763, 3230895847, 3687808133, 3760099987, 4026931495, 3022471882, |
| ]) |
| self.assertEqual(True, rsa.prime.miller_rabin_primality_testing(2211417913, |
| len(randints))) |
| self.assertEqual([], randints) |
| finally: |
| rsa.randnum.randint = orig_randint |
| |
| def test_mersenne_primes(self): |
| """Tests first known Mersenne primes. |
| |
| Mersenne primes are prime numbers that can be written in the form |
| `Mn = 2**n - 1` for some integer `n`. For the list of known Mersenne |
| primes, see: |
| https://en.wikipedia.org/wiki/Mersenne_prime#List_of_known_Mersenne_primes |
| """ |
| |
| # List of known Mersenne exponents. |
| known_mersenne_exponents = [ |
| 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, |
| 2203, 2281, 4423, |
| ] |
| |
| # Test Mersenne primes. |
| for exp in known_mersenne_exponents: |
| self.assertTrue(rsa.prime.is_prime(2**exp - 1)) |
| |
| def test_get_primality_testing_rounds(self): |
| """Test round calculation for primality testing.""" |
| |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 63), 10) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 127), 10) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 255), 10) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 511), 7) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 767), 7) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1023), 4) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1279), 4) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1535), 3) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 2047), 3) |
| self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 4095), 3) |