| #include "caffe2/operators/floor_op.h" |
| |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| REGISTER_CPU_OPERATOR(Floor, FloorOp<float, CPUContext>); |
| |
| OPERATOR_SCHEMA(Floor) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .SetDoc(R"DOC( |
| Element-wise application of the floor function ($y=floor(x)$) to the input |
| tensor `X`. Output tensor shape is the same as the input tensor. This |
| operator can be used in an in-place fashion by using the same input blob as the |
| output blob. |
| |
| Github Link: |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/floor_op.cc |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "Floor", |
| ["X"], |
| ["X"], |
| ) |
| |
| workspace.FeedBlob("X", (np.random.uniform(-10, 10, (5,5))).astype(np.float32)) |
| print("X before running op:", workspace.FetchBlob("X")) |
| workspace.RunOperatorOnce(op) |
| print("X after running op:", workspace.FetchBlob("X")) |
| |
| ``` |
| |
| **Result** |
| |
| ``` |
| |
| X before running op: |
| [[ 3.813361 -1.319647 5.2089314 -4.931328 0.6218652 ] |
| [ 7.2757645 5.5552588 5.785643 -2.4790506 -0.41400087] |
| [ 1.1541046 -6.933266 3.3754056 1.6569928 -1.7670316 ] |
| [-3.4932013 4.891472 1.5530115 -3.2443287 -4.605099 ] |
| [-4.574543 -7.360948 5.91305 -8.196495 -5.357458 ]] |
| X after running op: |
| [[ 3. -2. 5. -5. 0.] |
| [ 7. 5. 5. -3. -1.] |
| [ 1. -7. 3. 1. -2.] |
| [-4. 4. 1. -4. -5.] |
| [-5. -8. 5. -9. -6.]] |
| |
| ``` |
| |
| </details> |
| |
| )DOC") |
| .Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.") |
| .Output(0, "Y", "*(type: Tensor`<float>`)* Output tensor."); |
| |
| // TODO: Write gradient for this when needed |
| GRADIENT_NOT_IMPLEMENTED_YET(Floor); |
| |
| } // namespace caffe2 |