| #include "caffe2/operators/hard_sigmoid_op.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <string> |
| |
| #include "caffe2/utils/eigen_utils.h" |
| |
| namespace caffe2 { |
| |
| template <> |
| template <typename T> |
| bool HardSigmoidFunctor<CPUContext>:: |
| operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const { |
| EigenVectorArrayMap<T>(Y, N) = |
| (ConstEigenVectorArrayMap<T>(X, N) * T(alpha) + T(beta)) |
| .cwiseMin(T(1)) |
| .cwiseMax(T(0)); |
| return true; |
| } |
| |
| template <> |
| template <typename T> |
| bool HardSigmoidGradientFunctor<CPUContext>::Forward( |
| const std::vector<int>& Y_dims, |
| const std::vector<int>& /* dY_dims */, |
| const T* Y, |
| const T* dY, |
| T* dX, |
| CPUContext* /* context */) const { |
| const int size = std::accumulate( |
| // NOLINTNEXTLINE(modernize-use-transparent-functors) |
| Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); |
| ConstEigenVectorArrayMap<T> Y_arr(Y, size); |
| EigenVectorArrayMap<T>(dX, size) = |
| (Y_arr > T(0) && Y_arr < T(1)) |
| .select(ConstEigenVectorArrayMap<T>(dY, size) * alpha, T(0)); |
| return true; |
| } |
| |
| namespace { |
| |
| OpSchema::Cost CostInferenceForHardSigmoid( |
| const OperatorDef& def, |
| const vector<TensorShape>& in) { |
| struct OpSchema::Cost cost = PointwiseCostInference<4>(def, in); |
| cost.params_bytes = 0; |
| return cost; |
| } |
| |
| } // namespace |
| |
| REGISTER_CPU_OPERATOR( |
| HardSigmoid, |
| UnaryElementwiseWithArgsOp< |
| TensorTypes<float>, |
| CPUContext, |
| HardSigmoidFunctor<CPUContext>>); |
| REGISTER_CPU_OPERATOR( |
| HardSigmoidGradient, |
| BinaryElementwiseWithArgsOp< |
| TensorTypes<float>, |
| CPUContext, |
| HardSigmoidGradientFunctor<CPUContext>>); |
| |
| // Input: X, output: Y |
| OPERATOR_SCHEMA(HardSigmoid) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .CostInferenceFunction(CostInferenceForHardSigmoid) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Applies hard sigmoid operation to the input data element-wise. |
| The HardSigmoid operation takes one input $X$, produces one output $Y$, and is defined as: |
| |
| $$Y = max(0,min(1,x * alpha + beta))$$ |
| |
| Github Links: |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/hard_sigmoid_op.h |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/hard_sigmoid_op.cc |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "HardSigmoid", |
| ["X"], |
| ["Y"], |
| alpha = 0.2, |
| beta = 0.5, |
| ) |
| |
| workspace.FeedBlob("X", np.random.randn(5).astype(np.float32)) |
| print("input:", workspace.FetchBlob("X")) |
| workspace.RunOperatorOnce(op) |
| print("sigmoid:", workspace.FetchBlob("Y")) |
| |
| ``` |
| |
| **Result** |
| |
| ``` |
| |
| input: [ 1.5744036 0.31632107 1.7842269 1.4450722 -2.1726978 ] |
| hard_sigmoid: [ 0.81488073, 0.56326419, 0.85684538, 0.78901446, 0.06546044] |
| |
| ``` |
| |
| </details> |
| |
| |
| )DOC") |
| .Arg("alpha", "float: the slope of the function. Defaults to 0.2") |
| .Arg("beta", "float: the bias value of the function. Defaults to 0.5") |
| .Input(0, "X", "1D input tensor") |
| .Output(0, "Y", "1D output tensor with same shape as input") |
| .InheritOnnxSchema(); |
| |
| // Input: Y, dY, output: dX |
| OPERATOR_SCHEMA(HardSigmoidGradient) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .AllowInplace({{1, 0}}) |
| .SetDoc(R"DOC( |
| HardSigmoidGradient takes both Y and dY as well as an argument alpha and uses |
| this to update dX according to the chain rule and derivatives of the hard |
| sigmoid function. |
| )DOC"); |
| |
| namespace { |
| |
| class GetHardSigmoidGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| std::vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| def_.type() + "Gradient", |
| "", |
| std::vector<std::string>{O(0), GO(0)}, |
| std::vector<std::string>{GI(0)}); |
| } |
| }; |
| |
| } // namespace |
| |
| REGISTER_GRADIENT(HardSigmoid, GetHardSigmoidGradient); |
| |
| } // namespace caffe2 |