| import collections |
| import dataclasses |
| import functools |
| import inspect |
| from typing import Dict, List |
| |
| from .. import variables |
| from ..bytecode_transformation import create_call_function, create_instruction |
| from ..eval_frame import skip_code |
| from ..exc import unimplemented |
| from ..source import AttrSource, GlobalWeakRefSource |
| from ..utils import global_key_name, istensor |
| from .base import MutableLocal, VariableTracker |
| from .constant import ConstantVariable |
| from .tensor import TensorVariable |
| |
| |
| class ConstDictVariable(VariableTracker): |
| def __init__(self, items, user_cls, recursively_contains=None, **kwargs): |
| super().__init__(recursively_contains=recursively_contains, **kwargs) |
| |
| self.guards.update(VariableTracker.propagate(items.values())["guards"]) |
| self.items = items |
| self.user_cls = user_cls |
| |
| def as_proxy(self): |
| return {k: v.as_proxy() for k, v in self.items.items()} |
| |
| def as_python_constant(self): |
| return {k: v.as_python_constant() for k, v in self.items.items()} |
| |
| def python_type(self): |
| return self.user_cls |
| |
| def reconstruct(self, codegen): |
| # instructions to load collections.OrderedDict if necessary |
| if self.user_cls is collections.OrderedDict: |
| codegen.extend_output( |
| [ |
| codegen.create_load_python_module(collections, True), |
| codegen.create_load_attr("OrderedDict"), |
| ] |
| ) |
| # instructions to build the dict keys and values |
| for key in self.items.keys(): |
| if istensor(key): |
| codegen.append_output( |
| codegen.create_load_global(global_key_name(key), True, add=True) |
| ) |
| codegen.extend_output(create_call_function(0, False)) |
| else: |
| codegen.append_output(codegen.create_load_const(key)) |
| codegen(self.items[key]) |
| # BUILD_MAP and calling collections.OrderedDict if necessary |
| if self.user_cls is collections.OrderedDict: |
| return [ |
| create_instruction("BUILD_MAP", arg=len(self.items)), |
| *create_call_function(1, False), |
| ] |
| # BUILD_MAP only if user_cls is dict |
| else: |
| return [create_instruction("BUILD_MAP", arg=len(self.items))] |
| |
| def getitem_const(self, arg: VariableTracker): |
| return self.items[ConstDictVariable.get_key(arg)].add_options(self, arg) |
| |
| def call_method( |
| self, |
| tx, |
| name, |
| args: "List[VariableTracker]", |
| kwargs: "Dict[str, VariableTracker]", |
| ) -> "VariableTracker": |
| from . import ConstantVariable, TupleVariable |
| |
| options = VariableTracker.propagate(self, args, kwargs.values()) |
| val = self.items |
| |
| if name == "__getitem__": |
| return self.getitem_const(args[0]) |
| |
| elif name == "items": |
| assert not (args or kwargs) |
| return TupleVariable( |
| [ |
| TupleVariable( |
| [ |
| ConstDictVariable._key_to_var( |
| tx, |
| k, |
| **options, |
| ), |
| v, |
| ], |
| **options, |
| ) |
| for k, v in val.items() |
| ], |
| **options, |
| ) |
| elif name == "keys": |
| assert not (args or kwargs) |
| return TupleVariable( |
| [ |
| ConstDictVariable._key_to_var( |
| tx, |
| k, |
| **options, |
| ) |
| for k in val.keys() |
| ], |
| **options, |
| ) |
| |
| elif name == "values": |
| assert not (args or kwargs) |
| return TupleVariable(list(val.values()), **options) |
| elif name == "__len__": |
| assert not (args or kwargs) |
| return ConstantVariable(len(self.items), **options) |
| elif ( |
| name == "__setitem__" |
| and args |
| and ConstDictVariable.is_valid_key(args[0]) |
| and self.mutable_local |
| ): |
| assert not kwargs and len(args) == 2 |
| k = ConstDictVariable.get_key(args[0]) |
| |
| if istensor(k): |
| tx.store_dict_key(global_key_name(k), k) |
| newval = collections.OrderedDict(val) |
| newval[k] = args[1] |
| |
| new_rec_contains = self.recursively_contains.union( |
| args[1].recursively_contains |
| ) |
| if args[1].mutable_local is not None: |
| new_rec_contains.add(args[1].mutable_local) |
| |
| return tx.replace_all( |
| self, |
| self.modifed(newval, new_rec_contains, **options), |
| ) |
| elif ( |
| name in ("pop", "get") |
| and args |
| and ConstDictVariable.is_valid_key(args[0]) |
| and ConstDictVariable.get_key(args[0]) not in self.items |
| and len(args) == 2 |
| ): |
| # missing item, return the default value |
| return args[1].add_options(options) |
| elif ( |
| name == "pop" |
| and args |
| and ConstDictVariable.is_valid_key(args[0]) |
| and self.mutable_local |
| ): |
| newval = collections.OrderedDict(val) |
| result = newval.pop(ConstDictVariable.get_key(args[0])) |
| tx.replace_all(self, self.modifed(newval, None, **options)) |
| return result.add_options(options) |
| elif ( |
| name == "update" |
| and args |
| and isinstance(args[0], ConstDictVariable) |
| and self.mutable_local |
| ): |
| newval = collections.OrderedDict(val) |
| newval.update(args[0].items) |
| new_rec_contains = self.recursively_contains.union( |
| args[0].recursively_contains |
| ) |
| result = self.modifed( |
| newval, recursively_contains=new_rec_contains, **options |
| ) |
| return tx.replace_all(self, result) |
| elif ( |
| name in ("get", "__getattr__") |
| and args |
| and ConstDictVariable.is_valid_key(args[0]) |
| and ConstDictVariable.get_key(args[0]) in self.items |
| ): |
| result = self.items[ConstDictVariable.get_key(args[0])] |
| return result.add_options(options) |
| elif ( |
| name == "__contains__" and args and ConstDictVariable.is_valid_key(args[0]) |
| ): |
| return ConstantVariable( |
| ConstDictVariable.get_key(args[0]) in self.items, **options |
| ) |
| else: |
| return super().call_method(tx, name, args, kwargs) |
| |
| def modifed(self, items, recursively_contains, **options): |
| """a copy of self with different items""" |
| return self.clone( |
| items=items, recursively_contains=recursively_contains, **options |
| ) |
| |
| def unpack_var_sequence(self, tx): |
| options = VariableTracker.propagate([self]) |
| val = self.items |
| result = [ConstDictVariable._key_to_var(tx, k, **options) for k in val.keys()] |
| return result |
| |
| @classmethod |
| def get_key(cls, arg: VariableTracker): |
| if isinstance(arg, TensorVariable) and arg.specialized_value is not None: |
| return arg.specialized_value |
| else: |
| return arg.as_python_constant() |
| |
| @classmethod |
| def is_valid_key(cls, key): |
| return ( |
| key.is_python_constant() |
| or isinstance(key, TensorVariable) |
| and key.specialized_value is not None |
| ) |
| |
| @classmethod |
| def _key_to_var(cls, tx, key, **options): |
| from .builder import VariableBuilder |
| |
| if istensor(key): |
| return VariableBuilder(tx, GlobalWeakRefSource(global_key_name(key)))(key) |
| else: |
| assert ConstantVariable.is_literal(key) |
| return ConstantVariable(key, **options) |
| |
| |
| class DefaultDictVariable(ConstDictVariable): |
| def __init__(self, items, user_cls, default_factory=None, **kwargs): |
| super().__init__(items, user_cls, **kwargs) |
| assert user_cls is collections.defaultdict |
| self.default_factory = default_factory |
| |
| def is_python_constant(self): |
| # Return false for unsupported defaults. This ensures that a bad handler |
| # path is not taken in BuiltinVariable for getitem. |
| if self.default_factory not in [list, tuple, dict] and not self.items: |
| return False |
| return super().is_python_constant() |
| |
| def call_method( |
| self, |
| tx, |
| name, |
| args: "List[VariableTracker]", |
| kwargs: "Dict[str, VariableTracker]", |
| ) -> "VariableTracker": |
| from . import ListVariable, TupleVariable |
| |
| options = VariableTracker.propagate(self, args, kwargs.values()) |
| |
| if name == "__getitem__": |
| k = ConstDictVariable.get_key(args[0]) |
| |
| if k in self.items: |
| return self.getitem_const(args[0]) |
| else: |
| if self.default_factory is None: |
| raise KeyError(f"{k}") |
| else: |
| if istensor(k): |
| tx.store_dict_key(global_key_name(k), k) |
| new_val = collections.OrderedDict(self.items) |
| if self.default_factory is list: |
| default_var = ListVariable([], mutable_local=MutableLocal()) |
| elif self.default_factory is tuple: |
| default_var = TupleVariable([], mutable_local=MutableLocal()) |
| elif self.default_factory is dict: |
| default_var = ConstDictVariable( |
| {}, dict, mutable_local=MutableLocal() |
| ) |
| else: |
| unimplemented( |
| f"defaultdict with default_factory = {self.default_factory}" |
| ) |
| new_val[k] = default_var |
| new_rec_contains = self.recursively_contains.union( |
| default_var.recursively_contains |
| ) |
| if default_var.mutable_local is not None: |
| new_rec_contains.add(default_var.mutable_local) |
| tx.replace_all( |
| self, self.modifed(new_val, new_rec_contains, **options) |
| ) |
| return default_var |
| else: |
| return super().call_method(tx, name, args, kwargs) |
| |
| |
| class DataClassVariable(ConstDictVariable): |
| """ |
| This is a bit of a hack to deal with |
| transformers.file_utils.ModelOutput() from huggingface. |
| |
| ModelOutput causes trouble because it a a mix of a dataclass and a |
| OrderedDict and it calls super() methods implemented in C. |
| """ |
| |
| # ModelOutput() excludes None, though generic datclasses don't |
| include_none = False |
| |
| @staticmethod |
| @functools.lru_cache(None) |
| def _patch_once(): |
| from transformers.file_utils import ModelOutput |
| |
| for obj in ModelOutput.__dict__.values(): |
| if callable(obj): |
| skip_code(obj.__code__) |
| |
| @staticmethod |
| def is_matching_cls(cls): |
| try: |
| from transformers.file_utils import ModelOutput |
| |
| return issubclass(cls, ModelOutput) |
| except ImportError: |
| return False |
| |
| @classmethod |
| def is_matching_object(cls, obj): |
| return cls.is_matching_cls(type(obj)) |
| |
| @classmethod |
| def create(cls, user_cls, args, kwargs, options): |
| DataClassVariable._patch_once() |
| |
| skip_code(user_cls.__init__.__code__) |
| keys = [f.name for f in dataclasses.fields(user_cls)] |
| bound = inspect.signature(user_cls).bind(*args, **kwargs) |
| bound.apply_defaults() |
| assert set(bound.arguments.keys()) == set(keys) |
| items = collections.OrderedDict() |
| for key in keys: |
| val = bound.arguments[key] |
| if isinstance(val, VariableTracker): |
| items[key] = val |
| else: |
| if cls.include_none: |
| assert variables.ConstantVariable.is_literal(val) |
| items[key] = variables.ConstantVariable(val) |
| else: |
| assert val is None, f"unexpected {val}" |
| |
| if len(items) == 1 and not isinstance(items[keys[0]], variables.TensorVariable): |
| unimplemented("DataClassVariable iterator constructor") |
| # TODO(jansel): implement unpacking logic in ModelOutput.__post_init__ |
| |
| return cls(items, user_cls, **options) |
| |
| @classmethod |
| def wrap(cls, builder, obj): |
| user_cls = type(obj) |
| keys = [f.name for f in dataclasses.fields(user_cls)] |
| |
| excluded = [] |
| items = collections.OrderedDict() |
| for key in keys: |
| # __init__ function of a dataclass might not have yet defined the key |
| if hasattr(obj, key): |
| val = getattr(obj, key) |
| var = builder.__class__( |
| tx=builder.tx, source=AttrSource(builder.source, key) |
| )(val) |
| if val is not None or cls.include_none: |
| items[key] = var |
| else: |
| excluded.append(var) |
| return cls( |
| items, user_cls, **VariableTracker.propagate(excluded, items.values()) |
| ) |
| |
| def __init__(self, items, user_cls, **options): |
| super().__init__(items, user_cls, **options) |
| assert self.is_matching_cls(user_cls) |
| |
| def as_proxy(self): |
| raise NotImplementedError() |
| |
| def reconstruct(self, codegen): |
| codegen.extend_output([codegen._create_load_const(self.user_cls)]) |
| keys = tuple(self.items.keys()) |
| for key in keys: |
| codegen(self.items[key]) |
| return codegen.create_call_function_kw(len(keys), keys, True) |
| |
| def call_method( |
| self, |
| tx, |
| name, |
| args: "List[VariableTracker]", |
| kwargs: "Dict[str, VariableTracker]", |
| ) -> "VariableTracker": |
| options = VariableTracker.propagate(self, args, kwargs.values()) |
| if name == "__getitem__": |
| assert not kwargs and len(args) == 1 |
| index = args[0].as_python_constant() |
| if isinstance(index, str): |
| return self.items[index].add_options(options) |
| else: |
| return ( |
| self.call_method(tx, "to_tuple", [], {}) |
| .call_method(tx, "__getitem__", args, kwargs) |
| .add_options(options) |
| ) |
| elif name == "to_tuple": |
| assert not (args or kwargs) |
| return variables.TupleVariable(list(self.items.values()), **options) |
| elif name == "__setattr__": |
| name = "__setitem__" |
| return super().call_method(tx, name, args, kwargs) |
| |
| def var_getattr(self, tx, name: str) -> "VariableTracker": |
| if name in self.items: |
| return self.call_method( |
| tx, "__getitem__", [variables.ConstantVariable(name)], {} |
| ) |
| elif not self.include_none: |
| defaults = {f.name: f.default for f in dataclasses.fields(self.user_cls)} |
| if name in defaults: |
| assert variables.ConstantVariable.is_literal(defaults[name]) |
| return variables.ConstantVariable(defaults[name]).add_options(self) |
| super().var_getattr(tx, name) |
| |
| |
| class HFPretrainedConfigVariable(VariableTracker): |
| """ |
| Hack for HuggingFace PretrainedConfig |
| """ |
| |
| @staticmethod |
| def is_matching_cls(cls): |
| try: |
| from transformers.configuration_utils import PretrainedConfig |
| |
| return issubclass(cls, PretrainedConfig) |
| except ImportError: |
| return False |
| |
| @classmethod |
| def is_matching_object(cls, obj): |
| return cls.is_matching_cls(type(obj)) |
| |
| def __init__(self, obj, **kwargs): |
| super().__init__(**kwargs) |
| self.obj = obj |
| assert self.is_matching_cls(type(obj)) |
| |
| def var_getattr(self, tx, name: str) -> "VariableTracker": |
| from . import ConstantVariable |
| |
| return ConstantVariable(getattr(self.obj, name)) |
| |
| def call_hasattr(self, tx, name: str) -> "VariableTracker": |
| return variables.ConstantVariable(hasattr(self.obj, name)).add_options(self) |