blob: 758ea2c1e2fb422712c6697a5fb4bc4feba0a09b [file] [log] [blame]
# Owner(s): ["module: primTorch"]
import itertools
import torch
import os
from enum import Enum
from torch.overrides import resolve_name
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
from torch._subclasses.meta_utils import MetaConverter, assert_metadata_eq
import torch.utils._python_dispatch
from torch._dispatch.python import enable_python_dispatcher
from torch.testing._internal.common_utils import (
TestCase,
skipIfCrossRef,
suppress_warnings,
TEST_WITH_ASAN,
run_tests,
skipIfSlowGradcheckEnv,
dtype_abbrs
)
from torch.testing._internal.common_device_type import (
ops,
instantiate_device_type_tests,
onlyCUDA,
OpDTypes,
)
from torch.testing._internal.common_methods_invocations import op_db
from torchgen.utils import YamlLoader
from torchgen.model import OperatorName
import sys
import yaml
import atexit
import re
from collections import defaultdict
import unittest
import warnings
import weakref
from functools import wraps
bf16 = torch.bfloat16
f64 = torch.float64
f32 = torch.float32
f16 = torch.float16
c32 = torch.complex32
c64 = torch.complex64
c128 = torch.complex128
i8 = torch.int8
i16 = torch.int16
i32 = torch.int32
i64 = torch.int64
b8 = torch.bool
u8 = torch.uint8
@skipIfSlowGradcheckEnv
class TestMetaConverter(TestCase):
def assertSameVersionCounter(self, m1, m2):
# Cannot easily test m1 and m2 have same storage due to
# lack of Storage bindings. Use version counter.
vc = m1._version
self.assertEqual(m2._version, vc)
# Doing it this way ensures that we get VC bump even with leaves
with torch.no_grad():
m1._base.add_(3)
self.assertNotEqual(m1._version, vc)
self.assertEqual(m2._version, m1._version)
def assertMetadataMatches(self, m1, m2):
assert_metadata_eq(self.assertEqual, m1, m2)
def test_view_of_non_leaf(self):
x = torch.randn(4, requires_grad=True)
y = x.neg()
z1 = y[:]
z2 = y[:]
to_meta = MetaConverter()
m1 = to_meta(z1)
m2 = to_meta(z2)
# check the test is actually testing what it claims
self.assertTrue(m1._is_view())
self.assertFalse(m1._base.is_leaf)
self.assertIsNot(m1, m2)
self.assertMetadataMatches(m1, z1)
self.assertMetadataMatches(m2, z2)
self.assertSameVersionCounter(m1, m2)
def test_view_of_leaf(self):
x = torch.randn(4, requires_grad=True)
z1 = x[:]
z2 = x[:]
to_meta = MetaConverter()
m1 = to_meta(z1)
m2 = to_meta(z2)
# check the test is actually testing what it claims
self.assertTrue(m1._is_view())
self.assertTrue(m1._base.is_leaf)
self.assertIsNot(m1, m2)
self.assertMetadataMatches(m1, z1)
self.assertMetadataMatches(m2, z2)
self.assertSameVersionCounter(m1, m2)
def test_view_of_view_of_leaf(self):
x = torch.randn(8)
y = x.view(2, 4)
y.requires_grad = True
z = y.view(2, 2, 2)
to_meta = MetaConverter()
mx = to_meta(x)
mz = to_meta(z)
self.assertFalse(z.is_leaf)
self.assertMetadataMatches(mx, x)
self.assertMetadataMatches(mz, z)
def test_leaf(self):
x = torch.randn(4, requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.is_leaf)
self.assertTrue(m.requires_grad)
self.assertMetadataMatches(m, x)
def test_non_leaf(self):
x = torch.randn(4, requires_grad=True)
y = x.neg()
to_meta = MetaConverter()
m = to_meta(y)
# check the test is actually testing what it claims
self.assertFalse(m.is_leaf)
self.assertTrue(m.requires_grad)
self.assertMetadataMatches(m, y)
def test_requires_grad_false(self):
x = torch.randn(4, requires_grad=False)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertFalse(m.requires_grad)
self.assertMetadataMatches(m, x)
def test_channels_last(self):
x = torch.empty(2, 3, 4, 5, memory_format=torch.channels_last)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
def test_channels_last_leaf(self):
x = torch.empty(2, 3, 4, 5, memory_format=torch.channels_last, requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
def test_channels_last_non_leaf(self):
x = torch.empty(2, 3, 4, 5, memory_format=torch.channels_last, requires_grad=True)
y = x + 2
# sanity
self.assertEqual(x.stride(), y.stride())
self.assertFalse(y.is_leaf)
to_meta = MetaConverter()
m = to_meta(y)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertFalse(m.is_leaf)
self.assertMetadataMatches(m, y)
# Check that we can autograd with m as input without erroring;
# see https://github.com/pytorch/pytorch/issues/87956
loss = m.sum()
torch.autograd.grad(loss, m)
def test_empty_strided_non_dense_leaf(self):
x = torch.empty_strided((2, 2), (4, 2), requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
def test_non_leaf_torture(self):
x = torch.empty(20, requires_grad=True)
with torch.no_grad():
x.set_(x.storage(), 10, (2,), (2,))
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
# NB: complex stuff is not actually exercised right now because
# we have a blanket exclusion for complex conversion
def test_view_as_real(self):
x = torch.randn(4, dtype=torch.complex64)
y = torch.view_as_real(x)
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_complex_noncontiguous_bug(self):
x = torch.randn((2, 2, 4, 9), dtype=torch.complex32)[:, 0, :, :]
m = MetaConverter()(x)
self.assertMetadataMatches(m, x)
def test_view_as_complex(self):
x = torch.randn((4, 2), dtype=torch.float32)
y = torch.view_as_complex(x)
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_view_dtype(self):
x = torch.randn(4, dtype=torch.float32)
y = x.view(dtype=torch.int32)
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_imag(self):
x = torch.randn(4, dtype=torch.complex64)
y = x.imag
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_weakref(self):
x = torch.randn(4, 4, 4)
m = MetaConverter()
y = m(x)
z = m(x)
self.assertIs(y, z)
self.assertEqual(len(m.tensor_memo), 1)
self.assertEqual(len(m.storage_memo), 1)
del x
self.assertEqual(len(m.tensor_memo), 0)
m.check_for_expired_weak_storages()
self.assertEqual(len(m.storage_memo), 0)
li = []
r = []
for i in range(4):
li.append(torch.rand([i]))
r.append(m(li[-1]))
self.assertEqual(len(m.tensor_memo), 4)
del li
self.assertEqual(len(m.tensor_memo), 0)
m.check_for_expired_weak_storages()
self.assertEqual(len(m.storage_memo), 0)
def test_tensor_outlives_converter(self):
m = MetaConverter()
ref = weakref.ref(m)
x = torch.randn([4, 4])
y = m(x)
del m
self.assertIs(ref(), None)
aten = torch.ops.aten
CHECK_STRIDES = {
torch.Tensor.__getitem__,
}
CHECK_STRIDES_SKIPS = {
aten._conj_physical.default,
aten._fft_c2c.default,
aten._fft_c2r.default,
aten._fft_r2c.default,
aten._linalg_svd.default,
aten._scaled_dot_product_attention_forward.default,
aten.add.Tensor,
aten.atan2.default,
aten.binary_cross_entropy.default,
aten.bitwise_and.Tensor,
aten.bitwise_left_shift.Tensor,
aten.bitwise_or.Tensor,
aten.bitwise_right_shift.Tensor,
aten.bitwise_xor.Tensor,
aten.clamp_max.Tensor,
aten.clamp_min.Tensor,
aten.complex.default,
aten.copysign.Tensor,
aten.div.Tensor_mode,
aten.div.Tensor,
aten.eq.Tensor,
aten.floor_divide.default,
aten.fmax.default,
aten.fmin.default,
aten.fmod.Tensor,
aten.gcd.default,
aten.ge.Tensor,
aten.gt.Tensor,
aten.heaviside.default,
aten.hypot.default,
aten.igamma.default,
aten.igammac.default,
aten.lcm.default,
aten.le.Tensor,
aten.lerp.Scalar,
aten.lerp.Tensor,
aten.logical_and.default,
aten.logical_or.default,
aten.logical_xor.default,
aten.lt.Tensor,
aten.maximum.default,
aten.minimum.default,
aten.mul.Tensor,
aten.ne.Tensor,
aten.nextafter.default,
aten.pow.Scalar,
aten.pow.Tensor_Scalar,
aten.pow.Tensor_Tensor,
aten.prelu.default,
aten.remainder.Tensor,
aten.rsub.Tensor,
aten.special_xlog1py.default,
aten.special_zeta.default,
aten.sub.Tensor,
aten.where.self,
aten.xlogy.Tensor,
# channel_last and channel_last_3d related failures
aten.convolution.default,
aten.upsample_bilinear2d.vec,
# following ops fails if include_storage_offset = True, but these are a bit edge casey
# we should still fix them, leaving them here for tracking.
# aten._reshape_alias.default, # repro with test_dispatch_symbolic_meta_outplace_all_strides_matmul_cuda_float32
# aten.view.default, # repro with test_dispatch_symbolic_meta_outplace_all_strides_unflatten_cuda_float32
}
def should_check_strides(func):
if func in CHECK_STRIDES:
return True
if func in CHECK_STRIDES_SKIPS:
return False
if not isinstance(func, torch._ops.OpOverload):
return False
# Prims are expected to model strides correctly
if func.namespace == "prims":
return True
# Check if it's a view, by testing if any of the returns have
# a non-empty alias set
if any(r.alias_info.before_set for r in func._schema.returns if r.alias_info):
return True
# TODO: check for TensorIterator
return True
def assert_ref_meta_equal(test_case, func, meta_rs, rs, msg_callable):
flat_meta_rs, _ = tree_flatten(meta_rs)
flat_rs, _ = tree_flatten(rs)
test_case.assertEqual(len(flat_meta_rs), len(flat_rs))
for i, meta_r, r in zip(range(len(flat_rs)), flat_meta_rs, flat_rs):
def test_assert(cond, msg):
if not cond:
raise RuntimeError(f"output {i}: {msg_callable(msg)}")
if not isinstance(r, torch.Tensor):
continue
test_assert(isinstance(meta_r, torch.Tensor), f"but real {i}th result is Tensor")
test_assert(meta_r.dtype == r.dtype, f"but real dtype was {r.dtype}")
test_assert(meta_r.shape == r.shape, f"but real shape was {r.shape}")
# See https://github.com/pytorch/pytorch/issues/78050
if should_check_strides(func):
same_strides, _ = torch._prims_common.check_significant_strides(meta_r, r)
test_assert(same_strides, f"but real stride was {r.stride()}")
test_assert(
meta_r.storage_offset() == r.storage_offset(),
f"but real storage_offset was {r.storage_offset()}")
test_assert(meta_r.requires_grad == r.requires_grad, f"but real requires_grad was {r.requires_grad}")
test_assert(meta_r.is_conj() == r.is_conj(), f"but real is_conj was {r.is_conj()}")
test_assert(meta_r.is_neg() == r.is_neg(), f"but real is_neg was {r.is_neg()}")
# This environment variable controls whether or not we print expected failure
# lists at the end of a test suite run. The intended usage looks like this:
#
# 1. Run `PYTORCH_COLLECT_EXPECT=1 python test/test_meta.py` on a CUDA build
# of PyTorch that has LAPACK/MAGMA installed. You can filter `-k test_meta`
# or `-k test_dispatch_meta` to only focus on one or another list
# 2. Given the printed skip/xfail list, add them to the corresponding lists;
# torch.* entries go in meta_function and aten.* entries go in meta_dispatch.
# If there are preexisting entries, you need to merge in the entries.
#
# This is somewhat manual but typically you shouldn't need to do this, unless
# you've made a major change (e.g., added a new dtype to PyTorch) and need to
# refresh the lists. If you want to do it from scratch, just clear out the
# preexisting lists before running.
#
# WARNING: Python dict literals will silently ignore duplicate keys
COLLECT_EXPECT = os.getenv('PYTORCH_COLLECT_EXPECT', '0') == '1'
seen_succeeded = {}
seen_failed = {}
failed_reasons = defaultdict(set)
def print_seen():
expected_failures = []
skips = []
def fmt_dtypes(dtypes):
r = ', '.join(sorted(dtype_abbrs[d] for d in dtypes))
return '{' + r + '}'
for op, failed_dtypes in seen_failed.items():
ops = resolve_name(op)
succeeded_dtypes = seen_succeeded.get(op, set())
expected_failures_dtypes = failed_dtypes - succeeded_dtypes
skips_dtypes = failed_dtypes & succeeded_dtypes
reasons = ""
if failed_reasons[op]:
reasons = " # " + ", ".join(sorted(failed_reasons[op]))
if expected_failures_dtypes:
expected_failures.append(f" {ops}: {fmt_dtypes(expected_failures_dtypes)},{reasons}")
if skips_dtypes:
skips.append(f" {ops}: {fmt_dtypes(skips_dtypes)},")
expected_failures.sort()
skips.sort()
nl = '\n'
print(f"""\
expected_failures = {{
{nl.join(expected_failures)}
}}
skips = {{
{nl.join(skips)}
}}
""")
if COLLECT_EXPECT:
atexit.register(print_seen)
# Success forces pass; failure forces fail; skip unconditionally skips testing
TestExpect = Enum("TestExpect", ("SUCCESS", "XFAILURE", "SKIP"))
# unlike print produce strides
def verbose_print(e):
class Lit:
def __init__(self, s):
self.s = s
def __repr__(self):
return self.s
def go(t):
if isinstance(t, torch.Tensor):
return Lit(f"{t} stride={t.stride()}")
else:
return t
return repr(tree_map(go, e))
def run_meta_crossref(
test_case,
test_expect,
func,
args,
kwargs,
*,
dtype,
device_type,
run_symbolic_meta: bool
):
to_meta = MetaConverter()
do_meta = test_expect is not TestExpect.SKIP
if do_meta:
try:
meta_args = tree_map(to_meta, args)
meta_kwargs = tree_map(to_meta, kwargs)
except Exception as e:
raise RuntimeError(
f"failed to convert args to meta; "
f"originally (*{args}, **{kwargs})") from e
try:
rs = func(*args, **kwargs)
except Exception as e:
# A lot of OpInfo for inplace are actually broken because
# they're not tested outside of gradcheck which only checks
# torch.float64 and torch.complex128 (which this second one
# often skipped as well).
raise unittest.SkipTest("Original OpInfo is broken")
# TODO: also handle cases where func raise an exception
# For now, only attempt if we managed to convert all tensor types
# (if any of them failed, we're in a mixed device situation and
# this isn't well supported)
if do_meta and to_meta.successful():
# Special cases
if func is torch.tensor_split:
# Use original indices_or_sections, this argument is data dependent
meta_args = (meta_args[0], args[1]) + meta_args[2:]
elif func is torch.Tensor.__getitem__:
# Ensure boolean tensors use original
assert len(args) == 2
flat_args, _ = tree_flatten(args[1])
flat_meta_args, spec = tree_flatten(meta_args[1])
flat_new_args = []
for a, ma in zip(flat_args, flat_meta_args):
flat_new_args.append(a if isinstance(a, torch.Tensor) and a.dtype in [torch.int8, torch.bool] else ma)
meta_args = (meta_args[0], tree_unflatten(flat_new_args, spec))
elif func is torch.ops.aten.repeat_interleave.Tensor:
if kwargs.get("output_size", None) is None:
meta_args = args
elif func is torch.ops.aten.index.Tensor:
# Don't convert boolean tensors to meta as they will have nonzero
# called on them
indices = []
for meta_index, real_index in zip(meta_args[1], args[1]):
if meta_index is not None and meta_index.dtype in [torch.int8, torch.bool]:
indices.append(real_index)
else:
indices.append(meta_index)
meta_args = (meta_args[0], indices)
if kwargs.get("device", None) is not None:
meta_kwargs["device"] = "meta"
try:
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if run_symbolic_meta:
# Run the decomps and meta kernels registered
# to the python dispatcher instead of the regular dispatcher.
# This should be the same set of kernels
# that fake tensor runs in dynamic shapes mode.
with enable_python_dispatcher():
meta_rs = func(*meta_args, **meta_kwargs)
else:
meta_rs = func(*meta_args, **meta_kwargs)
except Exception as e:
if test_expect is TestExpect.XFAILURE:
return rs
seen_failed.setdefault(func, set()).add(dtype)
if isinstance(e, NotImplementedError):
m = RE_NOT_IMPLEMENTED_MSG.search(e.args[0])
if m:
failed_reasons[func].add(m.group(1))
if COLLECT_EXPECT:
return rs
raise RuntimeError(f"""\
failed to run: {resolve_name(func)}(
*{verbose_print(meta_args)},
**{verbose_print(meta_kwargs)}
)""") from e
else:
try:
delim = ',\n '
assert_ref_meta_equal(test_case, func, meta_rs, rs, lambda msg: f"""\
meta disagrees with real impl:
{resolve_name(func)}(
{delim.join(map(verbose_print, meta_args))},
{delim.join(k + ": " + verbose_print(v) for k, v in meta_kwargs.items())}
) = (
{verbose_print(meta_rs)}
)
{msg}
""")
except Exception:
if test_expect is TestExpect.XFAILURE:
return rs
seen_failed.setdefault(func, set()).add(dtype)
if COLLECT_EXPECT:
return rs
raise
else:
seen_succeeded.setdefault(func, set()).add(dtype)
if test_expect is TestExpect.XFAILURE and not COLLECT_EXPECT:
raise RuntimeError(f"unexpected success {resolve_name(func)}")
return rs
RE_NOT_IMPLEMENTED_MSG = re.compile(r"Could not run '([^']+)' with arguments ")
meta_function_expected_failures = {
torch.Tensor.to_sparse : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.allclose : {f64, f16, c128, c64, bf16, f32},
torch.argwhere : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.combinations : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.corrcoef : {f64, i32, c128, i64, i16, u8, c64, bf16, i8, f32},
torch.count_nonzero : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.cov : {f64, i32, c128, i64, i16, u8, c64, bf16, i8, f32},
torch.functional.istft : {f64, c64, c128, f32},
torch.geqrf : {f64, c64, c128, f32},
torch.linalg.householder_product : {f64, c64, c128, f32},
torch.linalg.solve_triangular : {f64, c64, c128, f32},
torch.masked_select : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.matrix_exp : {f64, c128, c64, bf16, f32},
torch.nonzero : {f64, i32, c128, i64, i16, c32, f16, u8, c64, bf16, b8, i8, f32},
torch.Tensor.nonzero : {f64, i32, c128, i64, i16, c32, f16, u8, c64, bf16, b8, i8, f32},
torch.ormqr : {f64, c64, c128, f32},
torch.repeat_interleave : {f64, i32, c128, i64, i16, c32, f16, u8, c64, bf16, b8, i8, f32},
torch.take : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.Tensor.item : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.bincount : {i32, i64, u8, i16, i8},
torch.frexp : {f64, f16, bf16, f32},
torch.functional.unique : {f64, i32, i64, u8, i16, bf16, b8, i8, f32},
torch.functional.unique_consecutive : {f64, i32, i64, u8, i16, bf16, b8, i8, f32},
torch.histc : {f64, bf16, f32},
torch.histogram : {f64, f32},
torch.histogramdd : {f64, f32},
torch.kthvalue : {f64, i32, i64, u8, i16, bf16, i8, f32},
torch.logcumsumexp : {f64, bf16, f32},
torch.median : {f64, i32, i64, u8, i16, bf16, i8, f32},
torch.mode : {f64, i32, i64, f16, u8, i16, bf16, b8, i8, f32},
torch.multinomial : {f64, bf16, f32},
torch.nn.functional.ctc_loss : {f64, f32},
torch.nn.functional.gaussian_nll_loss : {f64, bf16, f32},
torch.nn.functional.max_pool3d : {f64, f32},
torch.nn.functional.max_pool3d_with_indices : {f64, f32},
torch.nn.functional.max_unpool1d : {f64, f32},
torch.nn.functional.max_unpool2d : {f64, f32},
torch.nn.functional.max_unpool3d : {f64, f32},
torch.nn.functional.multi_margin_loss : {f64, f32},
torch.nn.functional.multilabel_margin_loss : {f64, f32},
torch.nn.functional.one_hot : {i64},
torch.nn.functional.pdist : {f64, f32},
torch.polar : {f64, f32},
torch.segment_reduce : {f64, f16, bf16, f32},
torch.searchsorted : {f64, i32, i64, f16, u8, i16, bf16, i8, f32},
torch.symeig : {f64, f32, c128, c64},
torch.cholesky : {f64, f32, c128, c64},
torch.cholesky_inverse : {f64, f32, c128, c64},
torch.cholesky_solve : {f64, f32, c128, c64},
torch.linalg.eig : {f64, f32, c128, c64},
torch.linalg.eigvals : {f64, f32, c128, c64},
torch.linalg.lstsq : {f64, f32, c128, c64},
torch.Tensor.conj_physical_: {c128, c32, c64},
}
meta_function_expected_failures_only_outplace = {
torch.nn.functional.rrelu : {f64, bf16, f32},
}
"""
# This is some sample code for how we could dump these dicts into YAML
# file for easier reading/writing
import yaml
print(yaml.dump(
{resolve_name(k): [dtype_abbrs[d] for d in v]
for k, v in meta_function_expected_failures.items()}, default_flow_style=None))
import sys
sys.exit()
"""
meta_function_skips = {
torch.Tensor.__rmatmul__ : {bf16, c128, f64, f32, f16, c64},
torch.Tensor.matmul : {f64, f32, c128, c64},
torch.fft.fft2 : {i8, i64, u8, c128, b8, f64, i16, f32, i32, c64, c32, f16},
torch.fft.fft : {i8, i64, u8, c128, b8, f64, i16, f32, i32, c64, c32, f16},
torch.fft.fftn : {i8, i64, u8, c128, b8, f64, i16, f32, i32, c64, c32, f16},
torch.fft.ifft2 : {i8, i64, u8, c128, b8, f64, i16, f32, i32, c64, c32, f16, c32},
torch.fft.ifft : {c128, c64, c32, f16},
torch.fft.ifftn : {i8, i64, u8, c128, b8, f64, i16, f32, i32, c64, c32, f16},
torch.fft.hfft: {f16},
torch.fft.hfftn: {f16},
torch.fft.hfft2: {f16},
torch.fft.ihfft: {f16},
torch.fft.ihfft2 : {i8, i64, u8, f64, b8, f32, i32, i16, f16, c32, f16},
torch.fft.ihfftn : {i8, i64, u8, f64, b8, f32, i32, i16, c32, f16},
torch.fft.irfft2 : {f16},
torch.fft.irfft : {f16},
torch.fft.irfftn : {f16},
torch.fft.rfft2 : {i8, i64, u8, f64, b8, f32, i32, i16, c32, f16},
torch.fft.rfft : {i8, i64, u8, f64, b8, f32, i32, i16, c32, f16},
torch.fft.rfftn : {i8, i64, u8, f64, b8, f32, i32, i16, c32, f16},
torch.functional.atleast_2d : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.atleast_3d : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.cartesian_prod : {bf16, i8, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.einsum : {bf16, c128, f64, f32, f16, c64},
torch.functional.stft : {c128, f32, c64, f64},
torch.functional.tensordot : {bf16, i8, i64, u8, c128, f64, i16, f32, i32, c64},
torch.inner : {bf16, i8, i64, u8, c128, f64, i16, f32, i32, c64},
torch.linalg.lu_solve : {c128, c64},
torch.linalg.matrix_norm : {c128, f32, c64, f64},
torch.linalg.matrix_power : {c128, c64},
torch.linalg.matrix_rank : {c128, c64},
torch.linalg.svd : {c128, c64},
torch.matmul : {bf16, c128, f64, f32, f16, c64},
torch.nanquantile : {f64, f32},
torch.narrow : {bf16, i8, i64, u8, c128, b8, f64, i16, i32, f32, f16, c32, c64},
torch.nn.functional.batch_norm : {f64, f32},
torch.nn.functional.binary_cross_entropy : {bf16, f64, f32, f16},
torch.nn.functional.dropout3d : {bf16, f64, f32, f16},
torch.nn.functional.local_response_norm : {bf16, f64, f32, f16},
torch.svd : {c128, c64},
torch.take_along_dim : {bf16, i8, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.vstack : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.aminmax : {i8, i64, u8, f64, b8, f32, i32, i16},
torch.cummax : {bf16, i8, i64, u8, f64, b8, f32, i32, i16},
torch.cummin : {bf16, i8, i64, u8, f64, b8, f32, i32, i16},
torch.diff : {b8},
torch.equal : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.cdist : {f64, f32},
torch.nanmean : {bf16, f64, f32, f16},
torch.nn.functional.cross_entropy : {bf16, f64, f32},
torch.nn.functional.interpolate : {bf16, f64, f32, u8},
torch.nn.functional.nll_loss : {bf16, f64, f32},
torch.linalg.pinv : {f64, f32},
torch.linalg.cond : {c128, c64, f32, f64},
torch.linalg.vander: {c128, c64, f32, f64, i16, i32, i64, i8, u8},
torch.linalg.vecdot : {bf16, f64, f32, f16},
torch.empty : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
# This fails for arguments dispatched to grid_sampler_3d, but succeeds
# for grid_sampler_2d, so we can't just xfail it
torch.nn.functional.grid_sample : {f64, f32},
torch.bucketize : {f64, i32, i64, f16, u8, i16, bf16, i8, f32},
torch.Tensor.addbmm_: {bf16, c128, c64, f32, f64, i16, i32, i64, i8, u8},
}
meta_function_device_expected_failures = defaultdict(dict)
meta_function_device_expected_failures_only_outplace = defaultdict(dict)
meta_function_device_skips = defaultdict(dict)
meta_function_device_expected_failures['cpu'] = {
torch.native_batch_norm: {bf16},
torch.native_layer_norm: {bf16},
}
meta_function_device_expected_failures['cuda'] = {
torch.corrcoef: {bf16, f16}, # aten::_local_scalar_dense
torch.cov: {f16}, # aten::_local_scalar_dense
torch.functional.unique: {f16}, # aten::_unique2, aten::unique_dim
torch.functional.unique_consecutive: {f16}, # aten::unique_consecutive
torch.geqrf: {f32, f64}, # aten::geqrf
torch.histc: {i16, i32, i64, i8}, # aten::histc, aten::histc.out
torch.kthvalue: {f16}, # aten::kthvalue.values
torch.linalg.householder_product: {f32, f64}, # aten::linalg_householder_product, aten::linalg_householder_product.out
torch.linalg.solve_triangular: {f32, f64}, # aten::linalg_solve_triangular, aten::linalg_solve_triangular.out
torch.logcumsumexp: {bf16, f16}, # aten::_logcumsumexp, aten::_logcumsumexp.out
torch.matrix_exp: {f16}, # aten::linalg_matrix_exp
torch.median: {f16}, # aten::median, aten::median.dim_values
torch.multinomial: {f16}, # aten::multinomial, aten::multinomial.out
torch.nn.functional.gaussian_nll_loss: {f16}, # aten::_local_scalar_dense
torch.nn.functional.max_pool3d: {bf16, f16}, # aten::max_pool3d_with_indices
torch.nn.functional.max_pool3d_with_indices: {bf16, f16}, # aten::max_pool3d_with_indices
torch.nn.functional.max_unpool1d: {f16}, # aten::max_unpool2d
torch.nn.functional.max_unpool2d: {f16}, # aten::max_unpool2d
torch.nn.functional.max_unpool3d: {f16}, # aten::max_unpool3d
torch.nn.functional.multi_margin_loss: {bf16, f16}, # aten::multi_margin_loss
torch.nn.functional.multilabel_margin_loss: {bf16, f16}, # aten::multilabel_margin_loss_forward
torch.ormqr: {f32, f64}, # aten::ormqr, aten::ormqr.out
}
meta_function_device_expected_failures_only_outplace['cuda'] = {
torch.nn.functional.rrelu: {f16}, # aten::rrelu_with_noise
}
meta_function_device_skips['cpu'] = {
torch.narrow_copy: {b8, bf16, c128, c32, c64, f16, f32, f64, i16, i32, i64, i8, u8},
torch.native_batch_norm: {f32, f64},
}
meta_function_device_skips['cuda'] = {
torch.cummax: {f16},
torch.cummin: {f16},
torch.functional.tensordot: {f16},
torch.inner: {f16},
torch.linalg.matrix_power: {f32, f64},
torch.linalg.matrix_rank: {f32, f64},
torch.linalg.svd: {f32, f64},
torch.nn.functional.cross_entropy: {f16},
torch.nn.functional.interpolate: {f16},
torch.nn.functional.nll_loss: {f16},
torch.svd: {f32, f64},
# This fails for arguments dispatched to grid_sampler_3d, but succeeds
# for grid_sampler_2d, so we can't just xfail it
torch.nn.functional.grid_sample : {f16},
}
# This is a __torch_function__ mode that, when enabled, interposes every
# Torch API call and runs the operator as normal, and then reruns it
# with meta inputs, and then checks that everything about the output agrees.
# Most of the logic deals with faithfully replicating the original tensor
# as a meta tensor, which is nontrivial because there are a lot of subsystems
# that may potentially be exercised.
#
# That being said, this class is a little overkill for what it is doing in
# this test file (since I could have just inlined __torch_function__ on the
# OpInfo call, and OpInfos generally have very regular inputs), but it will be
# useful for more comprehensive testing e.g., as seen in
# https://github.com/pytorch/pytorch/pull/75994 The big benefit is it is
# A LOT more efficient that torch dispatch mode (at the cost of less coverage)
class MetaCrossRefFunctionMode(torch.overrides.TorchFunctionMode):
test_case: TestCase
device_type: str
dtype: torch.dtype
def __init__(self, test_case, *, device, dtype, inplace):
self.test_case = test_case
self.device_type = torch.device(device).type
self.dtype = dtype
self.inplace = inplace
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
if (
torch.jit.is_tracing() or isinstance(func, torch.ScriptMethod) or
# meta converter doesn't work correctly when no_dispatch() is on, so
# skip running the crossref test in this case
torch._C._dispatch_tls_local_exclude_set().has(torch._C.DispatchKey.Python)
):
return func(*args, **kwargs)
if self.dtype in meta_function_skips.get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_function_device_skips[self.device_type].get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_function_expected_failures.get(func, set()):
test_expect = TestExpect.XFAILURE
elif not self.inplace and self.dtype in meta_function_expected_failures_only_outplace.get(func, set()):
test_expect = TestExpect.XFAILURE
elif self.dtype in meta_function_device_expected_failures[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
elif not self.inplace and \
self.dtype in meta_function_device_expected_failures_only_outplace[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
else:
test_expect = TestExpect.SUCCESS
return run_meta_crossref(
self.test_case, test_expect, func, args,
kwargs, dtype=self.dtype, device_type=self.device_type, run_symbolic_meta=False
)
# these always fail
meta_dispatch_expected_failures = {
aten.allclose.default: {f16, bf16, f32, f64, c64, c128}, # NotImplementedError: 'aten::_local_scalar_dense'
aten._fft_c2c.out : {f16, c64, i8, f64, c128, i32, i64, f32, c32, b8, i16, u8},
aten._fft_r2c.out : {f16, i8, f64, i32, i64, f32, b8, i16, u8},
aten.cholesky.default : {c64, c128, f64, f32},
aten.cholesky.out : {c64, c128, f64, f32},
aten.cholesky_inverse.default : {c64, c128, f64, f32},
aten.cholesky_inverse.out : {c64, c128, f64, f32},
aten.cholesky_solve.default : {c64, c128, f64, f32},
aten.cholesky_solve.out : {c64, c128, f64, f32},
aten.count_nonzero.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.count_nonzero.dim_IntList : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.geqrf.default : {c64, c128, f64, f32},
aten.linalg_eig.default : {c64, c128, f64, f32},
aten.linalg_householder_product.default : {c64, c128, f64, f32},
aten.linalg_householder_product.out : {c64, c128, f64, f32},
aten.linalg_lstsq.default : {c64, c128, f64, f32},
aten.linalg_matrix_exp.default : {c64, bf16, f32, f64, c128},
aten.linalg_solve_triangular.default : {c64, c128, f64, f32},
aten.linalg_solve_triangular.out : {c64, c128, f64, f32},
aten.masked_select.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.masked_select.out : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.nonzero.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, c32, b8, i16, u8},
aten.nonzero.out : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, c32, b8, i16, u8},
aten.ormqr.default : {c64, c128, f64, f32},
aten.ormqr.out : {c64, c128, f64, f32},
aten.polar.out : {f32, f64},
aten.symeig.default : {c64, c128, f64, f32},
aten.take.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.take.out : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.tensordot.out : {c64, i8, f64, c128, i64, bf16, f32, i32, i16, u8},
aten.to_sparse.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.to_sparse.sparse_dim : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten._ctc_loss.default : {f32, f64}, # Shape of second output depends on data.
aten._ctc_loss.Tensor : {f32, f64}, # Shape of second output depends on data.
aten._histogramdd_bin_edges.default : {f32, f64},
aten._histogramdd_from_bin_cts.default : {f32, f64},
aten._histogramdd_from_bin_tensors.default : {f32, f64},
aten._local_scalar_dense.default : {c32, c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten._pdist_forward.default : {f32, f64},
aten._unique2.default : {i8, f64, i64, bf16, f32, i32, b8, i16, u8},
aten.bincount.default : {i64, i8, i32, i16, u8},
aten.equal.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.frexp.Tensor : {bf16, f32, f16, f64},
aten.grid_sampler_3d.default : {f32, f64},
aten.histc.default : {bf16, f32, f64},
aten.histc.out : {bf16, f32, f64},
aten.histogram.bin_ct : {f32, f64},
aten.histogram.bins_tensor : {f32, f64},
aten.kthvalue.default : {i8, f64, i64, bf16, f32, i32, i16, u8},
aten.logcumsumexp.default : {bf16, f32, f64},
aten.logcumsumexp.out : {bf16, f32, f64},
aten.max_pool3d_with_indices.default : {f32, f64},
aten.max_unpool2d.default : {f32, f64},
aten.max_unpool3d.default : {f32, f64},
aten.median.default : {i8, f64, i64, bf16, f32, i32, i16, u8},
aten.median.dim : {i8, f64, i64, bf16, f32, i32, i16, u8},
aten.mode.default : {f16, i8, f64, i64, bf16, f32, i32, b8, i16, u8},
aten.multi_margin_loss.default : {f32, f64},
aten.multilabel_margin_loss_forward.default : {f32, f64},
aten.multinomial.default : {bf16, f32, f64},
aten.multinomial.out : {bf16, f32, f64},
aten.nll_loss2d_forward.default : {bf16, f32, f64},
aten.polar.default : {f32, f64},
aten.rrelu_with_noise.default : {bf16, f32, f64},
aten.searchsorted.Tensor : {f16, i8, f64, i64, bf16, f32, i32, i16, u8},
aten.searchsorted.Tensor_out : {f16, i8, f64, i64, bf16, f32, i32, i16, u8},
aten.segment_reduce.default : {bf16, f32, f16, f64},
aten.unique_consecutive.default : {i8, f64, i64, bf16, f32, i32, b8, i16, u8},
aten.unique_dim.default : {i8, f64, i64, bf16, f32, i32, b8, i16, u8},
aten.upsample_nearest3d.vec : {bf16, f32, f64, u8},
aten.conj_physical_.default: {c128, c32, c64},
}
# these sometimes pass and sometimes fail
meta_dispatch_skips = {
aten.index.Tensor: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32, c32, c64, c128}, # at::nonzero doesn't have a Meta function
aten._to_copy.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32, c32, c64, c128},
aten.aminmax.default: {i64, u8, b8, f32, i8, f64, i16, i32},
aten.cummax.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.cummin.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.linalg_lu_solve.default: {c32, c64, c128},
aten.linalg_lu_solve.out: {c32, c64, c128},
aten.linalg_pinv.atol_rtol_tensor: {f32, f64},
aten.linalg_pinv.atol_rtol_tensor_out: {f32, f64},
aten.empty.memory_format: {b8, bf16, c128, c64, c32, f16, f32, f64, i16, i32, i64, i8, u8},
aten.bucketize.Tensor : {f16, i8, f64, i64, bf16, f32, i32, i16, u8},
aten.bucketize.Tensor_out : {f16, i8, f64, i64, bf16, f32, i32, i16, u8},
aten.addbmm_.default: {bf16, c128, c64, f32, f64, i16, i32, i64, i8, u8},
}
# For CompositeImplicitAutograd functions that fail before hitting the Mode
meta_dispatch_early_skips = set({
torch.Tensor.float_power_,
})
meta_dispatch_device_expected_failures = defaultdict(dict)
meta_dispatch_device_skips = defaultdict(dict)
meta_dispatch_device_expected_failures['cpu'] = {
aten.native_batch_norm.default: {bf16},
aten.native_layer_norm.default: {bf16},
}
meta_dispatch_device_expected_failures['cuda'] = {
aten._unique2.default: {f16}, # aten::_unique2
aten._use_cudnn_ctc_loss.default: {f32, f64}, # aten::_use_cudnn_ctc_loss
aten._use_cudnn_ctc_loss.Tensor: {f32, f64}, # aten::_use_cudnn_ctc_loss.Tensor
aten.cudnn_grid_sampler.default: {f16, f32, f64}, # aten::cudnn_grid_sampler
aten.geqrf.default: {f32, f64}, # aten::geqrf
aten.grid_sampler_3d.default: {f16}, # aten::grid_sampler_3d
aten.histc.default: {i16, i32, i64, i8}, # aten::histc
aten.histc.out: {i16, i32, i64, i8}, # aten::histc.out
aten.kthvalue.default: {f16}, # aten::kthvalue.values
aten.linalg_eigvalsh.out: {f32, f64}, # aten::linalg_eigvalsh.out
aten.linalg_householder_product.default: {f32, f64}, # aten::linalg_householder_product
aten.linalg_householder_product.out: {f32, f64}, # aten::linalg_householder_product.out
aten.linalg_matrix_exp.default: {f16}, # aten::linalg_matrix_exp
aten.linalg_solve_triangular.default: {f32, f64}, # aten::linalg_solve_triangular
aten.linalg_solve_triangular.out: {f32, f64}, # aten::linalg_solve_triangular.out
aten.log_sigmoid_forward.default: {bf16, f16, f64, f32},
aten.log_sigmoid_forward.output : {bf16, f16, f64, f32}, # aten::log_sigmoid_forward.output
aten.logcumsumexp.default: {bf16, f16}, # aten::_logcumsumexp
aten.logcumsumexp.out: {bf16, f16}, # aten::_logcumsumexp.out
aten.max_pool3d_with_indices.default: {bf16, f16}, # aten::max_pool3d_with_indices
aten.max_unpool2d.default: {f16}, # aten::max_unpool2d
aten.max_unpool3d.default: {f16}, # aten::max_unpool3d
aten.median.default: {f16}, # aten::median
aten.median.dim: {f16}, # aten::median.dim_values
aten.multi_margin_loss.default: {bf16, f16}, # aten::multi_margin_loss
aten.multilabel_margin_loss_forward.default: {bf16, f16}, # aten::multilabel_margin_loss_forward
aten.multinomial.default: {f16}, # aten::multinomial
aten.multinomial.out: {f16}, # aten::multinomial.out
aten.nll_loss2d_forward.default: {f16}, # aten::nll_loss2d_forward
aten.ormqr.default: {f32, f64}, # aten::ormqr
aten.ormqr.out: {f32, f64}, # aten::ormqr.out
aten.rrelu_with_noise.default: {f16}, # aten::rrelu_with_noise
aten.tensordot.out: {f16}, # aten::tensordot.out
aten.unique_consecutive.default: {f16}, # aten::unique_consecutive
aten.unique_dim.default: {f16}, # aten::unique_dim
aten.upsample_nearest3d.vec: {f16}, # aten::upsample_nearest3d.vec
}
meta_dispatch_device_skips['cpu'] = {
aten._embedding_bag_forward_only.default: {f16, f32, f64},
aten.native_batch_norm.default: {f32, f64},
}
meta_dispatch_device_skips['cuda'] = {
aten._conj.default: {c32, f16}, # file issue
aten._linalg_svd.default: {c64, c128}, # aten::linalg_eigvalsh.out
aten.cudnn_batch_norm.default: {f32, f64},
aten.log_softmax.int : {c32, c64},
aten.softmax.int : {c32, c64},
aten.softmax.int : {c32, c64},
aten.cummax.default: {f16},
aten.cummin.default: {f16},
# ROCm stuff; technically this should be expected failure but it's
# not worth it; these should get unified anyway
aten.miopen_batch_norm.default: {f32},
}
def get_strided_args(args):
def get_strided_variants(t, include_storage_offset=False):
variants = []
# contiguous
variants.append(t)
# transposed
if t.ndim > 1:
perm = list(reversed(range(t.ndim)))
transposed = torch.empty(
t.shape[::-1], device=t.device, dtype=t.dtype, requires_grad=t.requires_grad
).permute(perm).copy_(t)
variants.append(transposed)
# nondense
if t.ndim > 0:
nondense = torch.repeat_interleave(t, 2, dim=-1)[..., ::2]
variants.append(nondense)
# channel_last
if t.ndim == 4:
variants.append(t.contiguous(memory_format=torch.channels_last))
# channel_last_3d
if t.ndim == 5:
variants.append(t.contiguous(memory_format=torch.channels_last_3d))
# storage_offset
if include_storage_offset:
buffer = torch.empty(t.numel() + 1, device=t.device, dtype=t.dtype, requires_grad=t.requires_grad)
buffer = buffer.as_strided(t.shape, t.stride(), storage_offset=1)
buffer.copy_(t)
variants.append(buffer)
return variants
strided_args = []
for arg in args:
if isinstance(arg, torch.Tensor) and not arg.is_sparse_csr and arg.is_contiguous():
strided_arg_variants = get_strided_variants(arg)
else:
strided_arg_variants = [arg]
strided_args.append(strided_arg_variants)
for result in itertools.product(*strided_args):
yield result
class MetaCrossRefDispatchMode(torch.utils._python_dispatch.TorchDispatchMode):
test_case: TestCase
device: torch.device
dtype: torch.dtype
def __init__(self, test_case, *, device, dtype, symbolic_meta: bool):
self.test_case = test_case
# save TLS
self.precision = test_case.precision
self.rel_tol = test_case.rel_tol
self.device_type = torch.device(device).type
self.dtype = dtype
self.symbolic_meta = symbolic_meta
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
self.test_case.precision = self.precision
self.test_case.rel_tol = self.rel_tol
if self.dtype in meta_dispatch_skips.get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_dispatch_device_skips[self.device_type].get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_dispatch_expected_failures.get(func, set()):
test_expect = TestExpect.XFAILURE
elif self.dtype in meta_dispatch_device_expected_failures[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
else:
test_expect = TestExpect.SUCCESS
return run_meta_crossref(
self.test_case,
test_expect,
func,
args,
kwargs,
dtype=self.dtype,
device_type=self.device_type,
run_symbolic_meta=self.symbolic_meta,
)
# NB: we're running these tests only on CUDA because there are some
# inconsistencies between CUDA and CPU, and running on CUDA makes it easier
# to ignore the CPU case when inconsistencies arise. Ideally we deal
# with the inconsistencies but this takes time.
@skipIfSlowGradcheckEnv
class TestMeta(TestCase):
# Copies inputs to inplace operations to avoid inplace modifications
# to leaves requiring gradient
def _get_safe_inplace(self, inplace_variant):
@wraps(inplace_variant)
def _fn(t, *args, **kwargs):
return inplace_variant(t.clone(), *args, **kwargs)
return _fn
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_meta_outplace(self, device, dtype, op):
# run the OpInfo sample inputs, cross-referencing them with the
# meta implementation and check the results are the same. All
# the heavy lifting happens in MetaCrossRefFunctionMode
func = op.get_op()
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with MetaCrossRefFunctionMode(self, dtype=dtype, device=device, inplace=False):
expected = func(*args, **kwargs)
if isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_meta_inplace(self, device, dtype, op):
func = op.get_inplace()
if not func:
self.skipTest("No inplace variable for this op")
func = self._get_safe_inplace(func)
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
if sample_input.broadcasts_input:
continue
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with MetaCrossRefFunctionMode(self, dtype=dtype, device=device, inplace=True):
expected = func(*args, **kwargs)
def _run_dispatch_meta_test(self, device, dtype, op, symbolic_meta, inplace, all_stride_variants=False):
if inplace:
func = op.get_inplace()
if not func:
self.skipTest("No inplace variable for this op")
else:
func = op.get_op()
if func in meta_dispatch_early_skips:
self.skipTest("Function is in dispatch early skips")
if inplace:
func = self._get_safe_inplace(func)
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
if inplace and sample_input.broadcasts_input:
continue
sample_args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
if all_stride_variants and sum(isinstance(arg, torch.Tensor) for arg in sample_args) <= 5:
# test inputs <= 5 tensors to avoid combinatorial explosion
strided_args = get_strided_args(sample_args)
else:
strided_args = [sample_args]
for args in strided_args:
with MetaCrossRefDispatchMode.push(self, dtype=dtype, device=device, symbolic_meta=symbolic_meta):
expected = func(*args, **kwargs)
if not inplace and isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_meta_outplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=False, inplace=False)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_meta_inplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=False, inplace=True)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_symbolic_meta_outplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=False)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_symbolic_meta_inplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=True)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
# only test one dtype, as output stride behavior is the same for all dtypes
@ops(op_db, dtypes=OpDTypes.any_common_cpu_cuda_one)
# Only test on CUDA, as CUDA kernel's stride is the reference
@onlyCUDA
def test_dispatch_symbolic_meta_outplace_all_strides(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=False, all_stride_variants=True)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
# only test one dtype, as output stride behavior is the same for all dtypes
@ops(op_db, dtypes=OpDTypes.any_common_cpu_cuda_one)
# Only test on CUDA, as CUDA kernel's stride is the reference
@onlyCUDA
def test_dispatch_symbolic_meta_inplace_all_strides(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=True, all_stride_variants=True)
def test_empty_quantized(self):
r = torch.empty(2 ** 52, device='meta', dtype=torch.qint8)
self.assertEqual(r.device.type, 'meta')
def test_huber_loss_backward(self):
inps = [torch.rand(2**52, device='meta') for _ in range(3)]
r = torch.ops.aten.huber_loss_backward(*inps, 0, 1.0)
self.assertEqual(r.device.type, 'meta')
self.assertEqual(r.shape, inps[0].shape)
def test_fill__alias_relationship(self):
inps = torch.rand(2**52, device='meta')
r = torch.ops.aten.fill_(inps, 1.0)
# aten.fill_ returns an aliase
self.assertEqual(id(inps), id(r))
# aten.fill returns a new tensor
r2 = torch.ops.aten.fill(inps, 1.0)
self.assertNotEqual(id(inps), id(r2))
def test_meta__fused_moving_avg_obs_fq_helper(self, device):
from torch.ao.quantization import FusedMovingAvgObsFakeQuantize
to_meta = MetaConverter()
x = torch.randn(5, 5, device=device)
running_min_op = torch.tensor(float("inf"), device=device)
running_max_op = torch.tensor(float("-inf"), device=device)
avg_const = 0.01
scale = torch.tensor([1.0], device=device)
zero_point = torch.tensor([0], dtype=torch.int, device=device)
mod = FusedMovingAvgObsFakeQuantize()
torch.ao.quantization.enable_fake_quant(mod)
torch.ao.quantization.enable_observer(mod)
mod.to(device)
meta_x = to_meta(x)
args = [
x,
mod.observer_enabled,
mod.fake_quant_enabled,
running_min_op,
running_max_op,
scale,
zero_point,
avg_const,
0,
255,
0,
]
meta_args = args.copy()
meta_args[0] = meta_x
kwargss = [
{},
{"per_row_fake_quant": False, "symmetric_quant": False},
{"per_row_fake_quant": False, "symmetric_quant": True},
]
for kwargs in kwargss:
ref_out = aten._fused_moving_avg_obs_fq_helper.default(*args, **kwargs)
meta_out = aten._fused_moving_avg_obs_fq_helper.default(*meta_args, **kwargs)
self.assertEqual(ref_out[0].size(), meta_out[0].size())
self.assertEqual(ref_out[0].stride(), meta_out[0].stride())
self.assertEqual(ref_out[1].size(), meta_out[1].size())
self.assertEqual(ref_out[1].stride(), meta_out[1].stride())
# opinfo test is using aten.fill_, it's not testing aten.fill
@onlyCUDA
def test_fill_stride(self):
to_meta = MetaConverter()
sample_args = [torch.rand(2, 2, 2, 2), 1.0]
for args in get_strided_args(sample_args):
meta_args = to_meta(args)
ref_out = torch.ops.aten.fill(*args)
meta_out = torch.ops.aten.fill(*meta_args)
self.assertEqual(ref_out.size(), meta_out.size())
self.assertEqual(ref_out.stride(), meta_out.stride())
def test_map_location_deserialize(self):
import io
t = torch.rand(10)
b = io.BytesIO()
torch.save(t, b)
b.seek(0)
r = torch.load(b, map_location=torch.device("meta"))
self.assertEqual(r.device.type, 'meta')
self.assertEqual(r.shape, t.shape)
self.assertEqual(r.dtype, t.dtype)
self.assertEqual(r.storage().data_ptr(), 0)
instantiate_device_type_tests(TestMeta, globals())
def print_op_str_if_not_supported(op_str):
op = OperatorName.parse(op_str)
packet = getattr(torch.ops.aten, str(op.name))
overload = getattr(packet, op.overload_name if op.overload_name else "default")
if any(overload in d for d in [meta_dispatch_skips, meta_dispatch_device_skips['cuda']]):
print(f"{overload} # SKIP")
if any(overload in d for d in [meta_dispatch_expected_failures, meta_dispatch_device_expected_failures['cuda']]):
print(overload)
if __name__ == "__main__":
COMPARE_XLA = os.getenv('PYTORCH_COMPARE_XLA', None)
if COMPARE_XLA is not None:
with open(COMPARE_XLA, "r") as f:
d = yaml.load(f, Loader=YamlLoader)
ops = d.get("full_codegen", []) + d.get("supported", []) + d.get("autograd", [])
for op_str in ops:
print_op_str_if_not_supported(op_str)
sys.exit(0)
COMPARE_TEXT = os.getenv('PYTORCH_COMPARE_TEXT', None)
if COMPARE_TEXT is not None:
with open(COMPARE_TEXT, "r") as f:
for op_str in f:
print_op_str_if_not_supported(op_str.strip())
sys.exit(0)
run_tests()