| #include "caffe2/onnx/onnx_exporter.h" |
| #include "caffe2/core/logging.h" |
| #include "caffe2/core/memonger.h" |
| #include "caffe2/core/tensor_impl.h" |
| #include "caffe2/onnx/helper.h" |
| #include "caffe2/proto/caffe2_legacy.pb.h" |
| #include "caffe2/utils/map_utils.h" |
| #include "caffe2/utils/proto_utils.h" |
| #include "caffe2/utils/string_utils.h" |
| |
| #include <numeric> |
| #include <unordered_set> |
| |
| namespace caffe2 { |
| namespace onnx { |
| |
| namespace { |
| // rewrite padding attributes |
| void ApplyTrans( |
| std::unordered_map<std::string, AttributeProto>* attrs, |
| bool global, |
| const std::string& k, |
| int dim = 2, |
| const std::string& ks = "") { |
| std::string ks2 = ks.empty() ? (k + "s") : ks; |
| std::string k_h, k_w, k_t, k_l, k_b, k_r; |
| if (dim == 2) { |
| k_h = k + "_h"; |
| k_w = k + "_w"; |
| } else { |
| k_t = k + "_t"; |
| k_l = k + "_l"; |
| k_b = k + "_b"; |
| k_r = k + "_r"; |
| } |
| |
| std::vector<int64_t> vals; |
| if (dim == 2 && attrs->count(k_h) && attrs->count(k_w)) { |
| auto it = attrs->find(k_h); |
| vals.push_back(it->second.i()); |
| attrs->erase(it); |
| it = attrs->find(k_w); |
| vals.push_back(it->second.i()); |
| attrs->erase(it); |
| } else if ( |
| dim == 4 && attrs->count(k_t) && attrs->count(k_b) && attrs->count(k_l) && |
| attrs->count(k_r)) { |
| auto it = attrs->find(k_t); |
| vals.push_back(it->second.i()); |
| attrs->erase(it); |
| it = attrs->find(k_l); |
| vals.push_back(it->second.i()); |
| attrs->erase(it); |
| it = attrs->find(k_b); |
| vals.push_back(it->second.i()); |
| attrs->erase(it); |
| it = attrs->find(k_r); |
| vals.push_back(it->second.i()); |
| attrs->erase(it); |
| } else if (attrs->count(k)) { |
| auto it = attrs->find(k); |
| auto tmp = it->second.i(); |
| for (int i = 0; i < dim; ++i) { |
| vals.push_back(tmp); |
| } |
| attrs->erase(it); |
| } |
| |
| if (!vals.empty() && !global) { |
| attrs->emplace(ks2, MakeAttribute(ks2, vals)); |
| } |
| } |
| |
| int64_t DimProd(const caffe2::TensorShape& shape, int start, int end) { |
| int64_t acc = 1; |
| for (int i = start; i < end; ++i) { |
| acc *= shape.dims(i); |
| } |
| return acc; |
| } |
| |
| TensorProto CreateOnnxShapeTensor( |
| std::shared_ptr<DummyName> dummy, |
| const std::vector<int64_t>& shape) { |
| TensorProto tensor; |
| tensor.set_name(dummy->NewDummyName()); |
| tensor.set_data_type(TensorProto::INT64); |
| tensor.add_dims(shape.size()); |
| tensor.mutable_raw_data()->assign( |
| reinterpret_cast<const char*>(shape.data()), |
| sizeof(int64_t) * shape.size()); |
| return tensor; |
| } |
| |
| std::string SsaName(const std::string& n, int version) { |
| return c10::str(n, "_", version); |
| } |
| |
| NodeProto AddShapeNode(const std::string& input, const std::string& output) { |
| NodeProto shape_node; |
| shape_node.set_op_type("Shape"); |
| shape_node.add_input(input); |
| shape_node.add_output(output); |
| return shape_node; |
| } |
| |
| void collectExternalsFromIfOpSubnet( |
| const NetDef* net, |
| std::vector<std::string>* input, |
| std::vector<std::string>* output) { |
| std::set<std::string> in_input, in_output; |
| for (const auto& op : net->op()) { |
| for (const auto& blob : op.input()) { |
| in_input.emplace(blob); |
| } |
| for (const auto& blob : op.output()) { |
| in_output.emplace(blob); |
| } |
| } |
| |
| for (const auto& blob : in_input) { |
| if (!in_output.count(blob)) { |
| input->push_back(blob); |
| } |
| } |
| for (const auto& blob : in_output) { |
| if (!in_input.count(blob)) { |
| output->push_back(blob); |
| } |
| } |
| } |
| |
| void ssaRewriteForIfOp( |
| OperatorDef* op, |
| std::unordered_map<std::string, int>* blob_versions, |
| std::set<std::string>* is_initialized_tensor) { |
| // Get all the "external" inputs and outputs of the subnet |
| // Since then_net and else_net has same external input/output, we only collect |
| // external input/output from one of its subnet And perform the rewrite to |
| // both then_net and else_net |
| std::vector<std::string> if_external_input; |
| std::vector<std::string> if_external_output; |
| |
| std::unordered_set<std::string> if_inputs, if_outputs; |
| for (const auto& input : op->input()) { |
| if_inputs.insert(input); |
| } |
| for (const auto& output : op->output()) { |
| if_outputs.insert(output); |
| } |
| |
| ArgumentHelper helper(*op); |
| Argument *then_arg = nullptr, *else_arg = nullptr; |
| NetDef* target_net = nullptr; |
| bool has_then = false, has_else = false; |
| |
| if (helper.HasSingleArgumentOfType<NetDef>("then_net")) { |
| then_arg = GetMutableArgument("then_net", false, op); |
| target_net = then_arg->mutable_n(); |
| has_then = true; |
| } |
| if (helper.HasSingleArgumentOfType<NetDef>("else_net")) { |
| else_arg = GetMutableArgument("else_net", false, op); |
| if (!has_then) { |
| target_net = else_arg->mutable_n(); |
| } |
| has_else = true; |
| } |
| |
| if (has_then || has_else) { |
| collectExternalsFromIfOpSubnet( |
| target_net, &if_external_input, &if_external_output); |
| |
| // Add inputs/outputs of the sub_net to the inputs/outputs of the op |
| for (const auto& input : if_external_input) { |
| if (if_inputs.count(input) == 0) { |
| op->add_input(input); |
| } |
| } |
| for (const auto& output : if_external_output) { |
| if (if_outputs.count(output) == 0) { |
| op->add_output(output); |
| } |
| } |
| std::map<string, string> oldname_to_newname; |
| |
| // Build oldname_to_newname map |
| for (auto& input : if_external_input) { |
| const auto it = blob_versions->find(input); |
| if (it != blob_versions->end()) { |
| oldname_to_newname[input] = SsaName(input, it->second); |
| } |
| } |
| for (auto& output : if_external_output) { |
| auto it = blob_versions->find(output); |
| if (it != blob_versions->end()) { |
| if (is_initialized_tensor->count(output) == 0) { |
| it->second += 1; |
| } else { |
| is_initialized_tensor->erase(output); |
| } |
| oldname_to_newname[output] = SsaName(output, it->second); |
| } else { |
| blob_versions->emplace(output, 0); |
| oldname_to_newname[output] = SsaName(output, 0); |
| } |
| } |
| |
| if (has_then) { |
| rewriteSubnet(then_arg, oldname_to_newname); |
| } |
| if (has_else) { |
| rewriteSubnet(else_arg, oldname_to_newname); |
| } |
| } |
| } |
| |
| void revertRenamedExternalOutput( |
| OperatorDef* op, |
| const std::unordered_map<std::string, std::string>& |
| renamed_external_outputs) { |
| for (auto& input : *(op->mutable_input())) { |
| const auto it = renamed_external_outputs.find(input); |
| if (it != renamed_external_outputs.end()) { |
| input = it->second; |
| } |
| } |
| for (auto& output : *(op->mutable_output())) { |
| const auto it = renamed_external_outputs.find(output); |
| if (it != renamed_external_outputs.end()) { |
| output = it->second; |
| } |
| } |
| } |
| |
| void revertRenamedExternalOutputForIfOp( |
| OperatorDef* if_op, |
| const std::unordered_map<std::string, std::string>& |
| renamed_external_outputs) { |
| ArgumentHelper helper(*if_op); |
| Argument *then_arg = nullptr, *else_arg = nullptr; |
| |
| revertRenamedExternalOutput(if_op, renamed_external_outputs); |
| |
| if (helper.HasSingleArgumentOfType<NetDef>("then_net")) { |
| then_arg = GetMutableArgument("then_net", false, if_op); |
| NetDef* net = then_arg->mutable_n(); |
| for (auto& op : *(net->mutable_op())) { |
| revertRenamedExternalOutput(&op, renamed_external_outputs); |
| } |
| } |
| if (helper.HasSingleArgumentOfType<NetDef>("else_net")) { |
| else_arg = GetMutableArgument("else_net", false, if_op); |
| NetDef* net = else_arg->mutable_n(); |
| for (auto& op : *(net->mutable_op())) { |
| revertRenamedExternalOutput(&op, renamed_external_outputs); |
| } |
| } |
| } |
| } // namespace |
| |
| ::ONNX_NAMESPACE::TensorProto::DataType Caffe2TypeToOnnxType( |
| caffe2::TensorProto::DataType t) { |
| #define CAFFE2_TO_ONNX_TYPE(x) \ |
| case (caffe2::TensorProto::x): \ |
| return ::ONNX_NAMESPACE::TensorProto::x |
| switch (t) { |
| CAFFE2_TO_ONNX_TYPE(FLOAT); |
| CAFFE2_TO_ONNX_TYPE(BOOL); |
| CAFFE2_TO_ONNX_TYPE(INT8); |
| CAFFE2_TO_ONNX_TYPE(UINT8); |
| CAFFE2_TO_ONNX_TYPE(UINT16); |
| CAFFE2_TO_ONNX_TYPE(INT16); |
| CAFFE2_TO_ONNX_TYPE(INT32); |
| CAFFE2_TO_ONNX_TYPE(INT64); |
| CAFFE2_TO_ONNX_TYPE(FLOAT16); |
| default: |
| LOG(WARNING) << "Unsupported Caffe2 tensor type: " << t |
| << ", fallback to FLOAT"; |
| return ::ONNX_NAMESPACE::TensorProto::FLOAT; |
| } |
| #undef CAFFE2_TO_ONNX_TYPE |
| } |
| |
| void rewriteSubnet( |
| Argument* arg, |
| std::map<std::string, std::string> oldname_to_newname) { |
| NetDef* net = arg->mutable_n(); |
| // clear external inputs and outputs since they're no longer valid |
| net->mutable_external_input()->Clear(); |
| net->mutable_external_output()->Clear(); |
| for (auto& op : *(net->mutable_op())) { |
| for (auto& input : *(op.mutable_input())) { |
| if (oldname_to_newname.find(input) != oldname_to_newname.end()) { |
| input = oldname_to_newname[input]; |
| } |
| } |
| for (auto& output : *(op.mutable_output())) { |
| if (oldname_to_newname.find(output) != oldname_to_newname.end()) { |
| output = oldname_to_newname[output]; |
| } |
| } |
| } |
| } |
| |
| std::unordered_map<std::string, std::string> SsaRewrite( |
| caffe2::NetDef* init_net, |
| caffe2::NetDef* pred_net, |
| bool PreserveInPlaceOps) { |
| std::unordered_map<std::string, std::string> input_mapping; |
| std::unordered_map<std::string, int> blob_versions; |
| |
| if (init_net) { |
| // No ssa rewrite is done for init net. The reason being that the output |
| // blobs of init net are what becomes the input blobs of pred_net. Since |
| // inputs of pred_net are not renamed we are not renaming the output of |
| // init_net. Furthermore, the assumption made is that init_net is simple net |
| // with each operator producing the one output and thus not renaming |
| // translates to not renaming the outputs of the init_net. Create identical |
| // mapping for now. This shall be removed eventually. |
| for (const auto& name : init_net->external_input()) { |
| input_mapping.emplace(name, name); |
| } |
| blob_versions.clear(); |
| } |
| |
| std::set<std::string> is_initialized_tensor; |
| if (pred_net) { |
| // Ssa rewriting modifies the net, check if the net passes schema check |
| run_schema_check(*pred_net); |
| |
| std::unordered_set<std::string> external_outputs; |
| for (const auto& input : pred_net->external_input()) { |
| // Create identical mapping for now. This shall be removed eventually. |
| input_mapping.emplace(input, input); |
| } |
| for (const auto& output : pred_net->external_output()) { |
| external_outputs.emplace(output); |
| } |
| for (auto& op : *pred_net->mutable_op()) { |
| // Special SSA Rewrite for subnet of If Operator |
| // This needs to happen first because the inputs/outputs of If/AsyncIf |
| // may get modified inside ssaRewriteForIfOp |
| if (op.type() == "If" || op.type() == "AsyncIf") { |
| ssaRewriteForIfOp(&op, &blob_versions, &is_initialized_tensor); |
| } |
| |
| for (auto& input : *op.mutable_input()) { |
| const auto it = blob_versions.find(input); |
| if (it != blob_versions.end()) { |
| input = SsaName(input, it->second); |
| } else { |
| // Input blob is not versioned yet. |
| // If it is not versioned yet, it is assumed to be primary input, |
| // Thus skip renaming it. |
| continue; |
| } |
| } |
| |
| for (int out_idx = 0; out_idx < op.output_size(); out_idx++) { |
| auto& output = *op.mutable_output(out_idx); |
| |
| // restore in-place settings |
| bool is_inplace = false; |
| if (PreserveInPlaceOps) { |
| for (int in_idx = 0; in_idx < op.input_size(); in_idx++) { |
| auto* schema = OpSchemaRegistry::Schema(op.type()); |
| if (schema && schema->inplace_enforced(in_idx, out_idx)) { |
| output = op.input(in_idx); |
| is_inplace = true; |
| break; |
| } |
| } |
| } |
| if (is_inplace) { |
| continue; |
| } |
| |
| auto it = blob_versions.find(output); |
| if (it != blob_versions.end()) { |
| if (op.type() != "If" && op.type() != "AsyncIf") { |
| if (is_initialized_tensor.count(output) == 0) { |
| it->second += 1; |
| } else { |
| is_initialized_tensor.erase(output); |
| } |
| } |
| output = SsaName(output, it->second); |
| |
| } else { |
| blob_versions.emplace(output, 0); |
| // These filling ops are designed for a by-default value for the |
| // tensors generated by ops like If. For example, if an If op's |
| // condition is not satisfied, and it does not have else_net, then it |
| // will not generate any output blob, which may cause some error in |
| // the future. Here we would like to ensure these tensors only been |
| // ssa re-write once but not twice. (One in the filling operator, one |
| // in If op) |
| if ((caffe2::StartsWith(op.type(), "GivenTensor") && |
| caffe2::EndsWith(op.type(), "Fill")) || |
| op.type() == "ConstantFill" || |
| op.type() == "Int8GivenTensorFill" || |
| op.type() == "Int8GivenIntTensorFill") { |
| is_initialized_tensor.insert(output); |
| } |
| output = SsaName(output, 0); |
| } |
| } |
| } |
| |
| // For all the renamed blobs find if the blob is one of the external |
| // output. If so add a mapping from it's latest renamed version to its |
| // original name. |
| std::unordered_map<std::string, std::string> renamed_external_outputs; |
| for (const auto& it : blob_versions) { |
| if (external_outputs.count(it.first)) { |
| renamed_external_outputs.emplace( |
| SsaName(it.first, it.second), it.first); |
| } |
| } |
| |
| // Use the mapping to find if the input or output of an op was a renamed |
| // external output. If so replace it with its original name. |
| for (auto& op : *pred_net->mutable_op()) { |
| // If/AsyncIf needs special handling |
| if (op.type() == "If" || op.type() == "AsyncIf") { |
| revertRenamedExternalOutputForIfOp(&op, renamed_external_outputs); |
| } else { |
| revertRenamedExternalOutput(&op, renamed_external_outputs); |
| } |
| } |
| } |
| // run schema check again |
| // NOLINTNEXTLINE(clang-analyzer-core.NonNullParamChecker) |
| run_schema_check(*pred_net); |
| |
| return input_mapping; |
| } |
| |
| const std::unordered_map<std::string, std::string>& |
| OnnxExporter::get_renamed_operators() const { |
| const static std::unordered_map<std::string, std::string> kRenamedOperators{ |
| {"SpatialBN", "BatchNormalization"}, |
| {"Conv1D", "Conv"}, |
| {"Conv2D", "Conv"}, |
| {"Conv3D", "Conv"}, |
| {"ConvTranspose1D", "ConvTranspose"}, |
| {"ConvTranspose2D", "ConvTranspose"}, |
| {"ConvTranspose3D", "ConvTranspose"}, |
| {"MaxPool1D", "MaxPool"}, |
| {"MaxPool2D", "MaxPool"}, |
| {"MaxPool3D", "MaxPool"}, |
| {"AveragePool1D", "AveragePool"}, |
| {"AveragePool2D", "AveragePool"}, |
| {"AveragePool3D", "AveragePool"}, |
| {"Copy", "Identity"}}; |
| return kRenamedOperators; |
| } |
| |
| const std::unordered_map<std::string, std::string>& |
| OnnxExporter::get_renamed_attrs() const { |
| const static std::unordered_map<std::string, std::string> kRenamedAttrs{ |
| {"kernels", "kernel_shape"}}; |
| return kRenamedAttrs; |
| } |
| |
| const std:: |
| unordered_map<std::string, std::unordered_map<std::string, std::string>>& |
| OnnxExporter::get_per_op_renamed_attrs() const { |
| const static std:: |
| unordered_map<std::string, std::unordered_map<std::string, std::string>> |
| kPerOpRenamedAttrs = { |
| {"Squeeze", {{"dims", "axes"}}}, |
| {"Unsqueeze", {{"dims", "axes"}}}, |
| {"Transpose", {{"axes", "perm"}}}, |
| {"ConvTranspose", {{"adjs", "output_padding"}}}, |
| {"Selu", {{"scale", "gamma"}}}}; |
| |
| return kPerOpRenamedAttrs; |
| } |
| |
| const std::unordered_map<std::string, OnnxExporter::SpecialOpConverter>& |
| OnnxExporter::get_special_operators() const { |
| const static std::unordered_map<std::string, OnnxExporter::SpecialOpConverter> |
| kSpecialOperators = { |
| {"ArgMax", &OnnxExporter::CreateArgMaxMinOpNodes}, |
| {"ArgMin", &OnnxExporter::CreateArgMaxMinOpNodes}, |
| {"Add", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Sub", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Mul", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Div", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Pow", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"And", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Or", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Xor", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Equal", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Greater", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Less", &OnnxExporter::CreateBinaryElementwiseOpNodes}, |
| {"Cast", &OnnxExporter::CreateCastNodes}, |
| {"ElementwiseLinear", &OnnxExporter::CreateElementwiseLinearNodes}, |
| {"Conv", &OnnxExporter::CreateConvPoolNodes}, |
| {"ConvTranspose", &OnnxExporter::CreateConvPoolNodes}, |
| {"MaxPool", &OnnxExporter::CreateConvPoolNodes}, |
| {"AveragePool", &OnnxExporter::CreateConvPoolNodes}, |
| {"FC", &OnnxExporter::CreateGemmNodes}, |
| {"Concat", &OnnxExporter::CreateConcatNodes}, |
| {"MergeDim", &OnnxExporter::CreateMergeDimNodes}, |
| {"LRN", &OnnxExporter::CreateLrnNodes}, |
| {"Reshape", &OnnxExporter::CreateReshapeNodes}, |
| {"Slice", &OnnxExporter::CreateSliceNodes}, |
| {"ChannelShuffle", &OnnxExporter::CreateChannelShuffleNodes}, |
| {"ReduceMean", &OnnxExporter::CreateReduceMeanNodes}, |
| {"ReduceFrontMean", &OnnxExporter::CreateReduceMeanNodes}, |
| {"ReduceBackMean", &OnnxExporter::CreateReduceMeanNodes}, |
| {"ResizeNearest", &OnnxExporter::CreateUpsampleNodes}}; |
| return kSpecialOperators; |
| } |
| |
| void OnnxExporter::CopyCaffe2ArgToOnnxAttr( |
| AttributeProto* attr, |
| const std::string& op_type, |
| const caffe2::Argument& arg) { |
| std::string name = |
| caffe2::get_default(get_renamed_attrs(), arg.name(), arg.name()); |
| const auto& per_op_renamed_attr_lut = get_per_op_renamed_attrs(); |
| const auto it = per_op_renamed_attr_lut.find(op_type); |
| if (it != per_op_renamed_attr_lut.end()) { |
| // Per-op attribute renames override the global attribute renames |
| name = caffe2::get_default(it->second, arg.name(), name); |
| } |
| attr->set_name(name); |
| |
| if (arg.has_f()) { |
| attr->set_f(arg.f()); |
| attr->set_type(AttributeProto::FLOAT); |
| } else if (arg.has_i()) { |
| attr->set_i(arg.i()); |
| attr->set_type(AttributeProto::INT); |
| } else if (arg.has_s()) { |
| attr->set_s(arg.s()); |
| attr->set_type(AttributeProto::STRING); |
| } else if (arg.floats_size()) { |
| attr->mutable_floats()->CopyFrom(arg.floats()); |
| attr->set_type(AttributeProto::STRINGS); |
| } else if (arg.ints_size()) { |
| attr->mutable_ints()->CopyFrom(arg.ints()); |
| attr->set_type(AttributeProto::INTS); |
| } else if (arg.strings_size()) { |
| attr->mutable_strings()->CopyFrom(arg.strings()); |
| attr->set_type(AttributeProto::STRINGS); |
| } else { |
| CAFFE_THROW(c10::str("Unsupported Caffe2 argument: ", arg.name())); |
| } |
| } |
| |
| bool OnnxExporter::IsBlockListed(const caffe2::Argument& arg) { |
| const static std::unordered_map<std::string, std::unordered_set<std::string>> |
| kBlockListString = {{"order", {"NCHW"}}}; |
| const static std::unordered_map<std::string, std::unordered_set<int64_t>> |
| kBlockListInt = { |
| {"cudnn_exhaustive_search", {0, 1}}, |
| {"use_cudnn", {0, 1}}, |
| {"exhaustive_search", {0, 1}}, |
| {"is_test", {0, 1}}, |
| {"broadcast", {0, 1}}}; |
| |
| if (arg.has_i()) { |
| const auto it = kBlockListInt.find(arg.name()); |
| if (it != kBlockListInt.end()) { |
| return it->second.count(arg.i()); |
| } |
| } else if (arg.has_s()) { |
| const auto it = kBlockListString.find(arg.name()); |
| if (it != kBlockListString.end()) { |
| return it->second.count(arg.s()); |
| } |
| } |
| |
| return false; |
| } |
| |
| ConvertedResult OnnxExporter::Caffe2OpToOnnxNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| std::string type = def.type(); |
| const auto& renamed_op_lut = get_renamed_operators(); |
| const auto it = renamed_op_lut.find(type); |
| if (it != renamed_op_lut.end()) { |
| type = it->second; |
| } |
| const auto& special_op_lut = get_special_operators(); |
| const auto it_op = get_special_operators().find(type); |
| if (it_op != special_op_lut.end()) { |
| return (this->*(it_op->second))(def, shapes); |
| } else { |
| return CommonCaffe2OpToOnnxNodes(def); |
| } |
| } |
| |
| ConvertedResult OnnxExporter::CommonCaffe2OpToOnnxNodes( |
| const caffe2::OperatorDef& def) { |
| ConvertedResult result; |
| auto& nodes = result.first; |
| nodes.emplace_back(); |
| NodeProto& node = nodes.back(); |
| node.set_name(def.name()); |
| node.set_op_type( |
| caffe2::get_default(get_renamed_operators(), def.type(), def.type())); |
| for (const auto& i : def.input()) { |
| node.add_input(i); |
| } |
| for (const auto& o : def.output()) { |
| node.add_output(o); |
| } |
| for (const auto& a : def.arg()) { |
| if (!IsBlockListed(a)) { |
| auto* attr = node.add_attribute(); |
| CopyCaffe2ArgToOnnxAttr(attr, def.type(), a); |
| } |
| } |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateArgMaxMinOpNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| auto result = CommonCaffe2OpToOnnxNodes(def); |
| auto& nodes = result.first; |
| |
| CAFFE_ENFORCE_EQ(nodes.size(), 1); |
| auto& node = nodes.back(); |
| |
| if (!ArgumentHelper::HasArgument(def, "axis")) { |
| const auto& x = def.input(0); |
| const auto& x_shape = shapes.at(x); |
| node.add_attribute()->CopyFrom( |
| MakeAttribute("axis", x_shape.dims().size() - 1)); |
| } |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateBinaryElementwiseOpNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| caffe2::OperatorDef mdef(def); // The modified def without broadcast and axis |
| const auto& x = mdef.input(0); |
| const auto& y = def.input(1); // Refer to the old def, later won't change it. |
| const auto& x_shape = shapes.at(x); |
| const auto& y_shape = shapes.at(y); |
| for (int i = 0; i < mdef.arg_size(); ++i) { |
| const auto& arg = mdef.arg(i); |
| if (arg.name() == "broadcast") { |
| ArgumentHelper::RemoveArgument(mdef, i); |
| break; |
| } |
| } |
| std::vector<int64_t> axes; |
| for (int i = 0; i < mdef.arg_size(); ++i) { |
| const auto& arg = mdef.arg(i); |
| if (arg.name() == "axis") { |
| int64_t axis = arg.i(); |
| if (x_shape.dims().size() - axis != y_shape.dims().size()) { |
| // The upper bound (excluded) of expanded y. |
| int64_t end_dim = |
| y_shape.dims().size() - 1 - axis + x_shape.dims().size(); |
| axes.resize(end_dim - y_shape.dims().size()); |
| std::iota(axes.begin(), axes.end(), y_shape.dims().size()); |
| mdef.set_input(1, dummy_->NewDummyName()); |
| } |
| ArgumentHelper::RemoveArgument(mdef, i); |
| break; |
| } |
| } |
| |
| auto result = CommonCaffe2OpToOnnxNodes(mdef); |
| if (axes.size() != 0) { |
| result.first.insert( |
| result.first.begin(), |
| MakeNode( |
| "Unsqueeze", {y}, {mdef.input(1)}, {MakeAttribute("axes", axes)})); |
| } |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateCastNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| auto result = CommonCaffe2OpToOnnxNodes(def); |
| auto* attr = result.first[0].mutable_attribute(0); |
| auto onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UNDEFINED; |
| const auto& arg = def.arg(0); |
| if (arg.has_s()) { |
| auto c2_dtype = arg.s(); |
| std::transform( |
| c2_dtype.begin(), c2_dtype.end(), c2_dtype.begin(), ::toupper); |
| if (c2_dtype == "FLOAT") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::FLOAT; |
| } else if (c2_dtype == "INT32") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT32; |
| } else if (c2_dtype == "BOOL") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::BOOL; |
| } else if (c2_dtype == "UINT8") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UINT8; |
| } else if (c2_dtype == "INT8") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT8; |
| } else if (c2_dtype == "UINT16") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UINT16; |
| } else if (c2_dtype == "INT16") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT16; |
| } else if (c2_dtype == "INT64") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT64; |
| } else if (c2_dtype == "FLOAT16") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::FLOAT16; |
| } else if (c2_dtype == "DOUBLE") { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::DOUBLE; |
| } else { |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UNDEFINED; |
| } |
| CAFFE_ENFORCE_NE( |
| onnx_dtype, |
| ::ONNX_NAMESPACE::TensorProto::UNDEFINED, |
| "Casting to '", |
| c2_dtype, |
| "' dtype is not supported"); |
| attr->clear_s(); |
| attr->set_type(AttributeProto::INT); |
| } else if (arg.has_i()) { |
| const auto& c2_dtype = arg.i(); |
| switch (c2_dtype) { |
| case caffe2::TensorProto::FLOAT: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::FLOAT; |
| break; |
| case caffe2::TensorProto::INT32: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT32; |
| break; |
| case caffe2::TensorProto::BOOL: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::BOOL; |
| break; |
| case caffe2::TensorProto::UINT8: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UINT8; |
| break; |
| case caffe2::TensorProto::INT8: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT8; |
| break; |
| case caffe2::TensorProto::UINT16: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UINT16; |
| break; |
| case caffe2::TensorProto::INT16: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT16; |
| break; |
| case caffe2::TensorProto::INT64: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::INT64; |
| break; |
| case caffe2::TensorProto::FLOAT16: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::FLOAT16; |
| break; |
| case caffe2::TensorProto::DOUBLE: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::DOUBLE; |
| break; |
| |
| case caffe2::TensorProto::STRING: |
| case caffe2::TensorProto::BYTE: |
| case caffe2::TensorProto::UNDEFINED: |
| onnx_dtype = ::ONNX_NAMESPACE::TensorProto::UNDEFINED; |
| break; |
| } |
| CAFFE_ENFORCE_NE( |
| onnx_dtype, |
| ::ONNX_NAMESPACE::TensorProto::UNDEFINED, |
| "Casting to '", |
| c2_dtype, |
| "' dtype is not supported"); |
| } |
| attr->set_i(onnx_dtype); |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateElementwiseLinearNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| CAFFE_ENFORCE_EQ(def.input_size(), 3); |
| CAFFE_ENFORCE_GE(def.output_size(), 1); |
| const auto& x = def.input(0); |
| const auto& w = def.input(1); |
| const auto& b = def.input(2); |
| const auto& y = def.output(0); |
| CAFFE_ENFORCE_EQ(shapes.at(w).dims().size(), 1); |
| CAFFE_ENFORCE_EQ(shapes.at(b).dims().size(), 1); |
| |
| ConvertedResult result; |
| auto& nodes = result.first; |
| auto& const_tensors = result.second; |
| std::unordered_map<std::string, const caffe2::Argument*> args; |
| for (const auto& a : def.arg()) { |
| args.emplace(a.name(), &a); |
| } |
| |
| const auto& x_shape = shapes.at(x); |
| const auto it = args.find("axis"); |
| const int64_t axis = it == args.end() ? 1 : it->second->i(); |
| const bool need_reshape = axis + 1 != x_shape.dims().size(); |
| |
| auto fma_x_input = x; |
| if (need_reshape) { |
| const auto inner = DimProd(x_shape, axis, x_shape.dims().size()); |
| CAFFE_ENFORCE_EQ(shapes.at(w).dims(0), inner); |
| CAFFE_ENFORCE_EQ(shapes.at(b).dims(0), inner); |
| |
| fma_x_input = dummy_->NewDummyName(); |
| const_tensors.emplace_back(CreateOnnxShapeTensor( |
| dummy_, std::vector<int64_t>{-1, shapes.at(w).dims(0)})); |
| nodes.emplace_back( |
| MakeNode("Reshape", {x, const_tensors.back().name()}, {fma_x_input})); |
| } |
| |
| const auto& mul_output = dummy_->NewDummyName(); |
| nodes.emplace_back( |
| MakeNode("Mul", {fma_x_input, w}, {mul_output}, def.name())); |
| |
| const auto& fma_y_output = need_reshape ? dummy_->NewDummyName() : y; |
| nodes.emplace_back( |
| MakeNode("Add", {mul_output, b}, {fma_y_output}, def.name())); |
| |
| if (need_reshape) { |
| const auto shape = dummy_->NewDummyName(); |
| nodes.emplace_back(MakeNode("Shape", {x}, {shape})); |
| nodes.emplace_back(MakeNode("Reshape", {fma_y_output, shape}, {y})); |
| } |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateConvPoolNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| auto result = CommonCaffe2OpToOnnxNodes(def); |
| auto& nodes = result.first; |
| auto& node = nodes.back(); |
| |
| std::unordered_map<std::string, AttributeProto> attrs; |
| for (const auto& attr : node.attribute()) { |
| attrs.emplace(attr.name(), attr); |
| } |
| |
| // Handle global pooling |
| bool global = false; |
| if (node.op_type() == "MaxPool" || node.op_type() == "AveragePool") { |
| auto it = attrs.find("global_pooling"); |
| if (it != attrs.end() && it->second.has_i() && it->second.i()) { |
| node.set_op_type("Global" + node.op_type()); |
| global = true; |
| attrs.erase(it); |
| } |
| } |
| |
| ApplyTrans(&attrs, global, "kernel", 2, "kernel_shape"); |
| ApplyTrans(&attrs, global, "stride"); |
| ApplyTrans(&attrs, global, "dilation"); |
| ApplyTrans(&attrs, global, "adj"); |
| ApplyTrans(&attrs, global, "pad", 4); |
| |
| // Fix legacy pad attr |
| auto it = attrs.find("legacy_pad"); |
| if (it != attrs.end()) { |
| auto legacy_pad_attr = it->second; |
| attrs.erase(it); |
| CAFFE_ENFORCE( |
| node.op_type().size() >= 4 && |
| (node.op_type().rfind("Pool") == node.op_type().size() - 4)); |
| const auto& input_size = shapes.at(node.input(0)); |
| const auto& output_size = shapes.at(node.output(0)); |
| CAFFE_ENFORCE_EQ(output_size.dims().size(), 4); |
| if (!global && // global pool does not care about legacy pad |
| legacy_pad_attr.i() != |
| static_cast<int64_t>(caffe2::LegacyPadding::NOTSET)) { |
| if (legacy_pad_attr.i() == |
| static_cast<int64_t>(caffe2::LegacyPadding::VALID)) { |
| CAFFE_ENFORCE(!attrs.count("pads")); |
| attrs.emplace("auto_pad", MakeAttribute("auto_pad", "VALID")); |
| } else if ( |
| legacy_pad_attr.i() == |
| static_cast<int64_t>(caffe2::LegacyPadding::SAME)) { |
| CAFFE_ENFORCE(!attrs.count("pads")); |
| // default behavior in Caffe2 is SAME_UPPER |
| // https://github.com/caffe2/caffe2/blob/master/caffe2/operators/conv_pool_op_base.h#L39 |
| attrs.emplace("auto_pad", MakeAttribute("auto_pad", "SAME_UPPER")); |
| } else if ( |
| legacy_pad_attr.i() == |
| static_cast<int64_t>(caffe2::LegacyPadding::CAFFE_LEGACY_POOLING)) { |
| // The problem here is that, Pool op in Caffe may add an additional |
| // pixel, if the last part is smaller than stride. So we use the |
| // explicit padding to replace legacy_pad. pad[end] = output_size[start |
| // + 2] * stride[start] - pad[start] - 1 + kernel[start] - input[start + |
| // 2]; end = start + len(pad) / 2 |
| LOG(WARNING) << "Converting legacy padding to explicit padding."; |
| auto* pads_attr = attrs.at("pads").mutable_ints(); |
| auto& strides_attr = attrs.at("strides").ints(); |
| auto& kernel_shape_attr = attrs.at("kernel_shape").ints(); |
| for (int i = 0; i < 2; ++i) { |
| int64_t tmp_pad = output_size.dims(i + 2) * strides_attr.Get(i) - |
| pads_attr->Get(i) - 1 + kernel_shape_attr.Get(i) - |
| input_size.dims(i + 2); |
| pads_attr->Set(i + 2, tmp_pad); |
| } |
| } else { |
| LOG(ERROR) << "Don't know how to handle the legacy_pad:" |
| << legacy_pad_attr.i(); |
| CAFFE_THROW("Failed to handle legacy padding in pool operator!"); |
| } |
| } |
| } |
| |
| node.clear_attribute(); |
| for (const auto& kv : attrs) { |
| auto* attr = node.add_attribute(); |
| attr->CopyFrom(kv.second); |
| } |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateLrnNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| auto result = CommonCaffe2OpToOnnxNodes(def); |
| auto& nodes = result.first; |
| |
| CAFFE_ENFORCE_EQ(nodes.size(), 1); |
| auto& node = nodes.back(); |
| if (node.output_size() == 2) { |
| node.mutable_output()->RemoveLast(); |
| } |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateConcatNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| caffe2::OperatorDef mdef(def); // The modified def without add_axis |
| // In caffe2, we can optionally add an axis specified by `add_axis` |
| int add_axis = 0; |
| for (int i = 0; i < mdef.arg_size(); ++i) { |
| const auto& arg = mdef.arg(i); |
| if (arg.name() == "add_axis") { |
| add_axis = arg.i(); |
| ArgumentHelper::RemoveArgument(mdef, i); |
| break; |
| } |
| } |
| |
| auto result = CommonCaffe2OpToOnnxNodes(mdef); |
| auto& nodes = result.first; |
| nodes.reserve(nodes.size() + 3); |
| auto& const_tensors = result.second; |
| |
| CAFFE_ENFORCE_EQ(nodes.size(), 1); |
| auto& node = nodes.back(); |
| bool explicit_axis = false; |
| int axis = -1; |
| if (ArgumentHelper::HasArgument(mdef, "axis")) { |
| axis = ArgumentHelper::GetSingleArgument(mdef, "axis", -1); |
| explicit_axis = true; |
| } |
| if (!explicit_axis) { |
| node.add_attribute()->CopyFrom(MakeAttribute("axis", 1)); |
| } |
| |
| // If we have add_axis, we need to add a reshape node |
| auto final_output = node.output(0); |
| if (add_axis > 0) { |
| CAFFE_ENFORCE_GE(axis, 0); |
| std::vector<int64_t> dims; |
| const auto& shape0 = shapes.at(mdef.input(0)); |
| for (int i = 1; i < mdef.input_size(); ++i) { |
| const auto& shape = shapes.at(mdef.input(i)); |
| CAFFE_ENFORCE_EQ(shape.dims(axis), shape0.dims(axis)); |
| } |
| for (const auto d : shape0.dims()) { |
| dims.push_back(d); |
| } |
| dims.insert(dims.begin() + axis, mdef.input_size()); |
| |
| auto concat_output = dummy_->NewDummyName(); |
| *node.mutable_output(0) = concat_output; |
| const_tensors.emplace_back(CreateOnnxShapeTensor(dummy_, dims)); |
| nodes.emplace_back(MakeNode( |
| "Reshape", |
| {concat_output, const_tensors.back().name()}, |
| {final_output})); |
| } |
| |
| // If we have two output, we need to output the split_info, which can be |
| // statically inferred from the input shapes |
| if (node.output_size() == 2) { |
| std::string second_output = node.output(1); |
| node.mutable_output()->RemoveLast(); |
| std::vector<int32_t> split_info; |
| int adj_size = shapes.at(mdef.input(0)).dims_size() + (add_axis ? 1 : 0); |
| int canonical_axis = canonical_axis_index_(axis, adj_size); |
| CAFFE_ENFORCE_LT(canonical_axis, adj_size, "Axis not in input ndim range."); |
| for (int i = 0; i < mdef.input_size(); ++i) { |
| // NOLINTNEXTLINE(performance-inefficient-vector-operation) |
| split_info.push_back( |
| add_axis ? 1 : shapes.at(mdef.input(i)).dims(canonical_axis)); |
| } |
| auto split_info_tensor = |
| MakeTensor("split_info", split_info, TensorProto::INT32); |
| auto cnode = MakeNode("Constant", {}, {second_output}); |
| cnode.add_attribute()->CopyFrom(MakeAttribute("value", split_info_tensor)); |
| nodes.emplace_back(std::move(cnode)); |
| } |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateMergeDimNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| const auto& x = def.input(0); |
| const auto& y = def.output(0); |
| |
| ConvertedResult result; |
| auto& nodes = result.first; |
| auto& const_tensors = result.second; |
| |
| { |
| const auto ndim = shapes.at(x).dims().size(); |
| CAFFE_ENFORCE_GE(ndim, 2, "No enough dims to merge."); |
| std::vector<int64_t> dims(ndim); |
| dims[0] = 1; |
| dims[1] = -1; |
| const_tensors.emplace_back(CreateOnnxShapeTensor(dummy_, dims)); |
| } |
| |
| const auto reshaped = dummy_->NewDummyName(); |
| nodes.emplace_back( |
| MakeNode("Reshape", {x, const_tensors.back().name()}, {reshaped})); |
| |
| nodes.emplace_back(MakeNode( |
| "Squeeze", |
| {reshaped}, |
| {y}, |
| std::vector<AttributeProto>{ |
| MakeAttribute("axes", std::vector<int64_t>{0}), |
| })); |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateChannelShuffleNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| const auto& x = def.input(0); |
| const auto& y = def.output(0); |
| const auto& x_shape = shapes.at(x); |
| CAFFE_ENFORCE_EQ( |
| x_shape.dims().size(), |
| 4, |
| "Input shape of ChannelShuffle needs to be in NCHW format"); |
| auto n = x_shape.dims(0); |
| auto c = x_shape.dims(1); |
| auto h = x_shape.dims(2); |
| auto w = x_shape.dims(3); |
| int64_t g = 0; |
| for (const auto& arg : def.arg()) { |
| if (arg.name() == "group") { |
| g = arg.i(); |
| break; |
| } |
| } |
| CAFFE_ENFORCE(g && c % g == 0); |
| ConvertedResult result; |
| auto& nodes = result.first; |
| auto& const_tensors = result.second; |
| |
| const auto reshape_output = dummy_->NewDummyName(); |
| std::vector<int64_t> dims = {n, g, c / g, h, w}; |
| const_tensors.emplace_back(CreateOnnxShapeTensor(dummy_, dims)); |
| nodes.emplace_back( |
| MakeNode("Reshape", {x, const_tensors.back().name()}, {reshape_output})); |
| |
| const auto transpose_output = dummy_->NewDummyName(); |
| dims = {0, 2, 1, 3, 4}; |
| nodes.emplace_back(MakeNode( |
| "Transpose", |
| {reshape_output}, |
| {transpose_output}, |
| {MakeAttribute("perm", dims)})); |
| |
| dims = {n, c, h, w}; |
| const_tensors.emplace_back(CreateOnnxShapeTensor(dummy_, dims)); |
| nodes.emplace_back(MakeNode( |
| "Reshape", {transpose_output, const_tensors.back().name()}, {y})); |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateReduceMeanNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| CAFFE_ENFORCE_GE(def.input_size(), 1); |
| CAFFE_ENFORCE_LE(def.input_size(), 2); |
| CAFFE_ENFORCE_EQ(def.input_size(), 1, "Input \"lengths\" is not supported."); |
| CAFFE_ENFORCE_GE(def.output_size(), 1); |
| const auto& x = def.input(0); |
| const auto& y = def.output(0); |
| const auto& dims = shapes.at(x).dims(); |
| |
| ConvertedResult result; |
| auto& nodes = result.first; |
| std::unordered_map<std::string, const caffe2::Argument*> args; |
| for (const auto& a : def.arg()) { |
| args.emplace(a.name(), &a); |
| } |
| |
| std::vector<int64_t> axes; |
| int64_t keepdims = 1; |
| |
| if (def.type() == "ReduceMean") { |
| // axes |
| auto it = args.find("axes"); |
| if (it == args.end()) { |
| axes.resize(dims.size()); |
| std::iota(axes.begin(), axes.end(), 0); |
| } else { |
| axes.assign(it->second->ints().begin(), it->second->ints().end()); |
| } |
| |
| // keepdims |
| it = args.find("keepdims"); |
| if (it != args.end()) { |
| keepdims = it->second->i(); |
| } |
| } else { |
| // num_reduce_dim |
| auto it = args.find("num_reduce_dim"); |
| const int64_t num_reduce_dim = it == args.end() ? 1 : it->second->i(); |
| CAFFE_ENFORCE_LE(num_reduce_dim, dims.size()); |
| axes.resize(num_reduce_dim); |
| |
| int64_t start_dim = 0; |
| if (def.type() == "ReduceFrontMean") { |
| start_dim = 0; |
| } else if (def.type() == "ReduceBackMean") { |
| start_dim = dims.size() - axes.size(); |
| } |
| std::iota(axes.begin(), axes.end(), start_dim); |
| |
| keepdims = 0; |
| } |
| |
| nodes.emplace_back(MakeNode( |
| "ReduceMean", |
| {x}, |
| {y}, |
| { |
| MakeAttribute("axes", axes), |
| MakeAttribute("keepdims", keepdims), |
| }, |
| def.name())); |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateUpsampleNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| ConvertedResult result; |
| //{H, W} => {1, 1, H, W} |
| auto& nodes = result.first; |
| auto resolved_scale = dummy_->NewDummyName(); |
| if (def.input_size() == 1) { |
| float width_scale = 1.0; |
| float height_scale = 1.0; |
| for (const auto& a : def.arg()) { |
| if (a.name() == "width_scale") { |
| width_scale = a.f(); |
| } else if (a.name() == "height_scale") { |
| height_scale = a.f(); |
| } |
| } |
| CAFFE_ENFORCE_GT(width_scale, 0); |
| CAFFE_ENFORCE_GT(height_scale, 0); |
| std::vector<float> tmp_vector = {1, 1, height_scale, width_scale}; |
| auto resolved_scale_tensor = |
| MakeTensor("resolved scale tensor", tmp_vector, TensorProto::FLOAT); |
| |
| auto node = MakeNode("Constant", {}, {resolved_scale}); |
| node.add_attribute()->CopyFrom( |
| MakeAttribute("value", resolved_scale_tensor)); |
| nodes.emplace_back(node); |
| |
| } else { |
| CAFFE_ENFORCE_EQ(def.input_size(), 2); |
| std::vector<float> tmp_vector = {1, 1}; |
| auto scale_pads_tensor = |
| MakeTensor("scale pads", tmp_vector, TensorProto::FLOAT); |
| auto unresolved_scale_pads = dummy_->NewDummyName(); |
| |
| auto node = MakeNode("Constant", {}, {unresolved_scale_pads}); |
| node.add_attribute()->CopyFrom(MakeAttribute("value", scale_pads_tensor)); |
| nodes.emplace_back(node); |
| |
| node = MakeNode( |
| "Concat", {unresolved_scale_pads, def.input(1)}, {resolved_scale}); |
| node.add_attribute()->CopyFrom(MakeAttribute("axis", 0)); |
| nodes.emplace_back(node); |
| } |
| std::vector<std::string> inputs = {def.input(0), resolved_scale}; |
| std::vector<std::string> outputs(def.output().begin(), def.output().end()); |
| auto node = MakeNode("Upsample", inputs, outputs, def.name()); |
| node.add_attribute()->CopyFrom(MakeAttribute("mode", "nearest")); |
| nodes.emplace_back(node); |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateSliceNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| CAFFE_ENFORCE_EQ( |
| def.input_size(), |
| 1, |
| "ONNX Slice operator does not support dynamic slice."); |
| auto result = CommonCaffe2OpToOnnxNodes(def); |
| auto& nodes = result.first; |
| CAFFE_ENFORCE_EQ(nodes.size(), 1); |
| auto& node = nodes.back(); |
| const auto& shape = shapes.at(node.input(0)); |
| |
| std::vector<int64_t> dims; |
| for (auto& attr : *node.mutable_attribute()) { |
| if (attr.name() == "starts") { |
| auto len = attr.ints_size(); |
| if (len) { |
| dims.resize(len); |
| std::iota(dims.begin(), dims.end(), 0); |
| } |
| } else if (attr.name() == "ends") { |
| for (int i = 0; i < attr.ints_size(); ++i) { |
| auto end = attr.ints(i); |
| if (end >= 0) { |
| continue; |
| } |
| if (end == -1) { |
| end = shape.dims(i); |
| } else { |
| ++end; |
| } |
| attr.set_ints(i, end); |
| } |
| } |
| } |
| if (!dims.empty()) { |
| node.add_attribute()->CopyFrom(MakeAttribute("axes", dims)); |
| } |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateReshapeNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| auto result = CommonCaffe2OpToOnnxNodes(def); |
| auto& nodes = result.first; |
| auto& const_tensors = result.second; |
| CAFFE_ENFORCE_EQ(nodes.size(), 1); |
| auto& node = nodes.back(); |
| |
| int i = 0; |
| int attr_size = node.attribute_size(); |
| for (; i < attr_size; ++i) { |
| const auto& attr = node.attribute(i); |
| if (attr.name() == "shape") { |
| std::vector<int64_t> shape; |
| for (const auto k : attr.ints()) { |
| shape.push_back(k); |
| } |
| const_tensors.emplace_back(CreateOnnxShapeTensor(dummy_, shape)); |
| node.add_input(const_tensors.back().name()); |
| break; |
| } |
| } |
| if (i != attr_size) { |
| if (i != attr_size - 1) { |
| node.mutable_attribute()->SwapElements(i, attr_size - 1); |
| } |
| node.mutable_attribute()->RemoveLast(); |
| } |
| |
| if (node.output_size() == 2) { |
| std::string shape_input = node.output(0); |
| std::string shape_output = node.output(1); |
| node.mutable_output()->RemoveLast(); |
| nodes.emplace_back(AddShapeNode(shape_input, shape_output)); |
| } |
| |
| return result; |
| } |
| |
| ConvertedResult OnnxExporter::CreateGemmNodes( |
| const caffe2::OperatorDef& def, |
| const std::unordered_map<std::string, caffe2::TensorShape>& shapes) { |
| CAFFE_ENFORCE_EQ(def.input_size(), 3); |
| CAFFE_ENFORCE_GE(def.output_size(), 1); |
| // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) |
| auto x = def.input(0); |
| auto w = def.input(1); |
| const auto& b = def.input(2); |
| const auto& y = def.output(0); |
| const auto& x_shape = shapes.at(x); |
| const auto& w_shape = shapes.at(w); |
| CAFFE_ENFORCE_GE(x_shape.dims().size(), 2); |
| CAFFE_ENFORCE_GE(w_shape.dims().size(), 2); |
| |
| ConvertedResult result; |
| auto& nodes = result.first; |
| auto& const_tensors = result.second; |
| std::unordered_map<std::string, const caffe2::Argument*> args; |
| for (const auto& a : def.arg()) { |
| args.emplace(a.name(), &a); |
| } |
| |
| auto it = args.find("axis"); |
| int64_t axis = 1; |
| bool has_axis = (it != args.end()); |
| if (has_axis) { |
| axis = it->second->i(); |
| } |
| |
| auto gemm_x_input = x; |
| if (x_shape.dims().size() > 2) { |
| // we need to reshape only when dimension is higher than 2 |
| const auto inner = DimProd(x_shape, axis, x_shape.dims().size()); |
| |
| gemm_x_input = dummy_->NewDummyName(); |
| const_tensors.emplace_back( |
| CreateOnnxShapeTensor(dummy_, std::vector<int64_t>{-1, inner})); |
| nodes.emplace_back( |
| MakeNode("Reshape", {x, const_tensors.back().name()}, {gemm_x_input})); |
| } |
| |
| it = args.find("axis_w"); |
| int64_t axis_w = 1; |
| if (it != args.end()) { |
| axis_w = it->second->i(); |
| } |
| if (w_shape.dims().size() > 2) { |
| // we need to reshape only when dimension is higher than 2 |
| auto outer = DimProd(w_shape, 0, axis_w); |
| auto inner = DimProd(w_shape, axis_w, w_shape.dims().size()); |
| auto reshaped_w = dummy_->NewDummyName(); |
| const_tensors.emplace_back( |
| CreateOnnxShapeTensor(dummy_, std::vector<int64_t>{outer, inner})); |
| nodes.emplace_back( |
| MakeNode("Reshape", {w, const_tensors.back().name()}, {reshaped_w})); |
| w = reshaped_w; |
| } |
| |
| auto gemm_y_output = axis > 1 ? dummy_->NewDummyName() : y; |
| nodes.emplace_back(MakeNode( |
| "Gemm", |
| {gemm_x_input, w, b}, |
| {gemm_y_output}, |
| {MakeAttribute("transB", 1L)}, |
| def.name())); |
| |
| // capture the outer shape if needed. |
| if (axis > 1) { |
| const auto x_shape = dummy_->NewDummyName(); |
| nodes.emplace_back(MakeNode("Shape", {x}, {x_shape})); |
| |
| const auto x_shape_outer = dummy_->NewDummyName(); |
| nodes.emplace_back(MakeNode( |
| "Slice", |
| {x_shape}, |
| {x_shape_outer}, |
| std::vector<AttributeProto>{ |
| MakeAttribute("starts", std::vector<int64_t>{0}), |
| MakeAttribute("ends", std::vector<int64_t>{axis}), |
| })); |
| |
| const auto y_shape = dummy_->NewDummyName(); |
| const_tensors.emplace_back(CreateOnnxShapeTensor(dummy_, {-1})); |
| nodes.emplace_back(MakeNode( |
| "Concat", |
| {x_shape_outer, const_tensors.back().name()}, |
| {y_shape}, |
| std::vector<AttributeProto>{ |
| MakeAttribute("axis", static_cast<int64_t>(0)), |
| })); |
| |
| nodes.emplace_back(MakeNode("Reshape", {gemm_y_output, y_shape}, {y})); |
| } |
| |
| return result; |
| } |
| |
| void OnnxExporter::InitOpToTensorProto( |
| const caffe2::OperatorDef& op, |
| TensorProto* tensor) { |
| CAFFE_ENFORCE_EQ(op.input_size(), 0); |
| CAFFE_ENFORCE_EQ(op.output_size(), 1); |
| |
| // Set name |
| tensor->set_name(op.output(0)); |
| |
| const Argument* values = nullptr; |
| const Argument* shape = nullptr; |
| for (const auto& arg : op.arg()) { |
| if (arg.name() == "values") { |
| values = &arg; |
| } else if (arg.name() == "shape") { |
| shape = &arg; |
| } |
| } |
| |
| CAFFE_ENFORCE(values); |
| CAFFE_ENFORCE(shape); |
| |
| // Set dims |
| for (const auto i : shape->ints()) { |
| tensor->add_dims(i); |
| } |
| |
| // Set value |
| if (op.type() == "GivenTensorFill") { |
| tensor->set_data_type(TensorProto::FLOAT); |
| for (const auto i : values->floats()) { |
| tensor->add_float_data(i); |
| } |
| } else if (op.type() == "GivenTensorInt64Fill") { |
| tensor->set_data_type(TensorProto::INT64); |
| for (const auto i : values->ints()) { |
| tensor->add_int64_data(i); |
| } |
| } else if (op.type() == "GivenTensorIntFill") { |
| tensor->set_data_type(TensorProto::INT32); |
| for (const auto i : values->ints()) { |
| tensor->add_int32_data(i); |
| } |
| } else if (op.type() == "GivenTensorBoolFill") { |
| tensor->set_data_type(TensorProto::INT32); |
| for (const auto i : values->ints()) { |
| tensor->add_int32_data(i); |
| } |
| } else if (op.type() == "GivenTensorStringFill") { |
| tensor->set_data_type(TensorProto::STRING); |
| // TODO: we might need to do two pass to avoid adverse memory allocations |
| for (const auto& s : values->strings()) { |
| tensor->mutable_raw_data()->append(s); |
| } |
| } else { |
| CAFFE_THROW( |
| c10::str("Cannot convert C2 op ", op.type(), "to ONNX TensorProto")); |
| } |
| } |
| |
| } // namespace onnx |
| } // namespace caffe2 |