blob: 0d9c5c3182e2f33611ac4dd4f089fdd0aa7c945c [file] [log] [blame]
# Owner(s): ["oncall: distributed"]
import sys
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed.distributed_c10d as c10d
import torch.distributed._tensor as dt
from torch.testing import FileCheck
from functorch import make_fx
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.testing._internal.common_distributed import (
MultiThreadedTestCase,
)
from torch.testing._internal.common_utils import (
run_tests,
TestCase
)
def new_subgroups(group_size: int, pg_tag=None):
world_size = dist.get_world_size()
subgroups = []
cur_subgroup = None
for subgroup_id in range(world_size // group_size):
start_rank = subgroup_id * group_size
end_rank = start_rank + group_size
ranks_in_subgroup = list(range(start_rank, end_rank))
subgroup = c10d._new_group_with_tag(
ranks=ranks_in_subgroup,
pg_tag=pg_tag,
)
subgroups.append(subgroup)
rank = dist.get_rank()
if rank in ranks_in_subgroup:
cur_subgroup = subgroup
return cur_subgroup, subgroups
class TestExpand(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
def test_expand_1d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3], "bla")
self.assertEqual("bla", tag)
def test_expand_2d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]], "blu")
self.assertEqual("blu", tag)
with self.assertRaisesRegex(ValueError, "group sizes must be identical"):
ft_c._expand_group([[0], [1, 2, 3]])
def test_expand_process_group(self):
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD)
self.assertEqual(c10d._get_group_tag(dist.group.WORLD), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD, "bla")
self.assertEqual("bla", tag)
my_pg, others = new_subgroups(group_size=2)
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual(c10d._get_group_tag(my_pg), tag)
self.assertEqual(dist.get_process_group_ranks(my_pg), rankset)
self.assertEqual(2, group_size)
my_pg = None
for i in range(dist.get_world_size()):
group = c10d._new_group_with_tag([i], pg_tag="my_pg")
if i == dist.get_rank():
my_pg = group
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual("my_pg", tag)
self.assertEqual([dist.get_rank()], rankset)
self.assertEqual(1, group_size)
tag, rankset, group_size = ft_c._expand_group(my_pg, "bla")
self.assertEqual("bla", tag)
def test_expand_device_mesh(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_dim_groups()[0]), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_dim_groups()[0]), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
def test_expand_device_mesh_tuple(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4).view(2, 2))
with self.assertRaisesRegex(AssertionError, "Only 1D mesh"):
tag, rankset, group_size = ft_c._expand_group(mesh)
tag, rankset, group_size = ft_c._expand_group((mesh, 0))
self.assertEqual(c10d._get_group_tag(mesh.get_dim_groups()[0]), tag)
expected_rankset = [0, 2] if dist.get_rank() in [0, 2] else [1, 3]
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group((mesh, 1))
expected_rankset = [0, 1] if dist.get_rank() in [0, 1] else [2, 3]
self.assertEqual(c10d._get_group_tag(mesh.get_dim_groups()[1]), tag)
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
class TestPgTag(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
"""
The behavior we want is as follow:
- rankset+tag will always result in the same PG.
Do we enforce this by failing creation of new PGs or returning existing ones?
Return existing one.
- default tag gives existing behavior.
This means we should create duplicates.
- _expand_group on _default-tagged pg should always resolve to it
This mean we can't depend on empty tag + rankset.
"""
def test_pg_creation_with_tag(self):
my_group, _ = new_subgroups(group_size=2, pg_tag="blu")
my_group2, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(my_group, my_group2)
my_group3, _ = new_subgroups(group_size=2, pg_tag="blu2")
self.assertNotEqual(my_group, my_group3)
my_group4, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group, my_group4)
my_group5, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group4, my_group5)
def test_pg_lookup_roundtrip(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="blu2")
pg_notag0, _ = new_subgroups(group_size=2)
pg_notag1, _ = new_subgroups(group_size=2)
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
def test_pg_lookup_with_tag(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="bla")
pg_notag0, _ = new_subgroups(group_size=2)
def roundtrip(pg, pg_tag):
tag, rankset, _ = ft_c._expand_group(pg, pg_tag)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag1, "blu"))
self.assertEqual(pg_tag0, roundtrip(pg_notag0, "blu"))
# Cannot erase the tag of a PG
self.assertEqual(pg_tag0, roundtrip(pg_tag0, ""))
def test_find_or_create_pg(self):
pg = c10d._find_or_create_pg_by_ranks_and_tag("blu", [0, 1, 2, 3], 2)
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(pg, pg_tag0)
def test_find_root_pg(self):
pg = c10d._find_pg_by_ranks_and_tag("", [0, 1, 2, 3])
self.assertEqual(dist.group.WORLD, pg)
class TestTraceableCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
def test_all_reduce_eager(self):
tensor = torch.ones([4])
mesh = dt.DeviceMesh("cpu", torch.arange(4))
res = ft_c.all_reduce(tensor, "sum", mesh)
self.assertEqual(res, torch.tensor([4, 4, 4, 4], dtype=torch.float))
mesh = dt.DeviceMesh("cpu", torch.arange(4).view(2, 2))
res2 = ft_c.all_reduce(tensor, "sum", (mesh, 1))
self.assertEqual(res2, torch.tensor([2, 2, 2, 2], dtype=torch.float))
def test_all_reduce_coalesced_eager(self):
t0 = torch.ones([4], device="cpu")
t1 = torch.ones([6], device="cpu") + 2
mesh = dt.DeviceMesh("cpu", torch.arange(4))
res = ft_c.all_reduce_coalesced([t0, t1], "sum", mesh)
self.assertEqual(res[0], t0 * 4)
self.assertEqual(res[1], t1 * 4)
class TestMetaCollectives(TestCase):
def test_all_reduce(self):
x = torch.rand((2, 3, 4), device="meta")
out = ft_c.all_reduce(x, "sum", [1])
self.assertEqual(x.size(), out.size())
class TestGradCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
self._spawn_threads()
def test_all_reduce(self):
x = torch.rand([4], requires_grad=True)
y = torch.rand([4], requires_grad=True)
out = ft_c.all_reduce(x, "sum", [0, 1])
(out + y).sum().backward()
self.assertIsNone(x.grad)
class TestMakeFx(MultiThreadedTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
self._spawn_threads()
def test_all_reduce_tracing(self):
def allred(input):
return ft_c.all_reduce(input, "sum", group=[0, 1]) + 1
graph = make_fx(allred)(torch.rand(4))
FileCheck() \
.check("all_reduce") \
.check("wait_tensor").run(str(graph.graph))
mesh = dt.DeviceMesh("cpu", torch.arange(self.world_size))
def allred_mesh(input):
return ft_c.all_reduce(input, "sum", mesh) + 1
mesh_graph = make_fx(allred_mesh)(torch.rand(4))
FileCheck() \
.check_not("get_attr") \
.check("wait_tensor").run(str(mesh_graph.graph))
def allred_mesh_dim(input):
return ft_c.all_reduce(input, "sum", (mesh, 0)) + 1
mesh_dim_graph = make_fx(allred_mesh_dim)(torch.rand(4))
FileCheck() \
.check_not("get_attr") \
.check("wait_tensor").run(str(mesh_dim_graph.graph))
if __name__ == "__main__":
run_tests()