| import math |
| from enum import Enum |
| from typing import List, Optional, Sequence, Tuple, Union |
| |
| import torch |
| import torch._prims_common as utils |
| from torch import SymBool, SymFloat, Tensor |
| from torch._decomp import ( |
| _add_op_to_registry, |
| _convert_out_params, |
| global_decomposition_table, |
| meta_table, |
| ) |
| from torch._ops import OpOverload |
| from torch._prims import _prim_elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND |
| from torch._prims_common import ( |
| corresponding_complex_dtype, |
| corresponding_real_dtype, |
| elementwise_dtypes, |
| ELEMENTWISE_TYPE_PROMOTION_KIND, |
| IntLike, |
| make_contiguous_strides_for, |
| TensorLike, |
| ) |
| |
| from torch._prims_common.wrappers import ( |
| _maybe_convert_to_dtype, |
| _maybe_resize_out, |
| _resize_output_check, |
| _safe_copy_out, |
| out_wrapper, |
| ) |
| from torch._refs import _broadcast_shapes, _maybe_broadcast |
| from torch.utils import _pytree as pytree |
| |
| |
| aten = torch.ops.aten |
| |
| _meta_lib_dont_use_me_use_register_meta = torch.library.Library("aten", "IMPL", "Meta") |
| |
| |
| def register_meta(op): |
| def wrapper(fn): |
| fn = _convert_out_params(fn) |
| |
| def register(op): |
| _add_op_to_registry(meta_table, op, fn) |
| |
| pytree.tree_map_(register, op) |
| return fn |
| |
| return wrapper |
| |
| |
| def elementwise_meta( |
| *args, |
| type_promotion: ELEMENTWISE_TYPE_PROMOTION_KIND, |
| ): |
| # Perform type promotion, as this is expected from prim_metafunction |
| _, result_dtype = utils.elementwise_dtypes( |
| *args, |
| type_promotion_kind=type_promotion, |
| ) |
| args = [_maybe_convert_to_dtype(x, result_dtype) for x in args] |
| |
| # Broadcast |
| args = _maybe_broadcast(*args) |
| |
| # Perform prim checks |
| return _prim_elementwise_meta( |
| *args, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| |
| |
| def toRealValueType(dtype): |
| from_complex = { |
| torch.complex32: torch.half, |
| torch.cfloat: torch.float, |
| torch.cdouble: torch.double, |
| } |
| return from_complex.get(dtype, dtype) |
| |
| |
| def check_inplace_broadcast(self_shape, *args_shape): |
| broadcasted_shape = tuple(_broadcast_shapes(self_shape, *args_shape)) |
| torch._check( |
| broadcasted_shape == self_shape, |
| lambda: f"output with shape {self_shape} doesn't match the broadcast shape {broadcasted_shape}", |
| ) |
| |
| |
| @register_meta([aten.linspace, aten.logspace]) |
| @out_wrapper() |
| def meta_linspace_logspace( |
| start, |
| end, |
| steps, |
| base=None, |
| dtype=None, |
| device=None, |
| layout=torch.strided, |
| pin_memory=False, |
| requires_grad=False, |
| ): |
| if isinstance(start, torch.Tensor): |
| torch._check( |
| start.dim() == 0, |
| lambda: "linspace only supports 0-dimensional start and end tensors", |
| ) |
| if isinstance(end, torch.Tensor): |
| torch._check( |
| end.dim() == 0, |
| lambda: "linspace only supports 0-dimensional start and end tensors", |
| ) |
| |
| if any(isinstance(arg, complex) for arg in (start, end, steps)): |
| default_complex_dtype = utils.corresponding_complex_dtype( |
| torch.get_default_dtype() |
| ) |
| if dtype is None: |
| dtype = default_complex_dtype |
| else: |
| torch._check( |
| utils.is_complex_dtype(dtype), |
| lambda: f"linspace(): inferred dtype {default_complex_dtype} can't be safely cast to passed dtype {dtype}", |
| ) |
| else: |
| dtype = dtype or torch.get_default_dtype() |
| assert isinstance(dtype, torch.dtype) |
| |
| # steps does not participate in the computation of the dtype |
| torch._check_type( |
| isinstance(steps, IntLike), |
| lambda: f"received an invalid combination of arguments - got \ |
| ({type(start).__name__}, {type(end).__name__}, {type(steps).__name__})", |
| ) |
| assert isinstance(steps, IntLike) # for mypy |
| torch._check(steps >= 0, lambda: "number of steps must be non-negative") |
| |
| return torch.empty( |
| (steps,), # type: ignore[arg-type] |
| dtype=dtype, |
| layout=layout, |
| device="meta", |
| pin_memory=pin_memory, |
| requires_grad=requires_grad, |
| ) |
| |
| |
| @register_meta([aten.take.default, aten.take.out]) |
| @out_wrapper() |
| def meta_take(self, index): |
| # Type and device checks |
| torch._check( |
| index.dtype == torch.long, |
| lambda: f"take(): Expected a long tensor for index, but got {index.dtype}", |
| ) |
| # Index checks |
| torch._check_index( |
| not (self.numel() == 0 and index.numel() != 0), |
| lambda: "take(): tried to take from an empty tensor", |
| ) |
| return self.new_empty(index.shape) |
| |
| |
| @register_meta([aten.linalg_cross.default, aten.linalg_cross.out]) |
| @out_wrapper() |
| def linalg_cross(self, other, *, dim=-1): |
| x_d = self.ndim |
| y_d = other.ndim |
| torch._check( |
| x_d == y_d, |
| lambda: "linalg.cross: inputs must have the same number of dimensions.", |
| ) |
| torch._check( |
| self.size(dim) == 3 and other.size(dim) == 3, |
| lambda: ( |
| f"linalg.cross: inputs dimension {dim} must have length 3. " |
| f"Got {self.size(dim)} and {other.size(dim)}" |
| ), |
| ) |
| out_shape = _broadcast_shapes(self.shape, other.shape) |
| return self.new_empty(out_shape) |
| |
| |
| @register_meta(aten.linalg_matrix_exp) |
| @out_wrapper() |
| def linalg_matrix_exp(self): |
| squareCheckInputs(self, "linalg.matrix_exp") |
| checkFloatingOrComplex(self, "linalg.matrix_exp") |
| return torch.empty_like(self, memory_format=torch.contiguous_format) |
| |
| |
| @register_meta( |
| [aten.cummax.default, aten.cummax.out, aten.cummin.default, aten.cummin.out] |
| ) |
| @out_wrapper("values", "indices") |
| def cummaxmin(self, dim): |
| values = torch.empty(self.shape, device=self.device, dtype=self.dtype) |
| indices = torch.empty(self.shape, device=self.device, dtype=torch.int64) |
| if self.numel() != 0 and self.ndim != 0: |
| # Checks that dim is within bounds |
| maybe_wrap_dim(dim, self.ndim) |
| return values, indices |
| |
| |
| @register_meta([aten.logcumsumexp.default, aten.logcumsumexp.out]) |
| @out_wrapper() |
| def logcumsumexp(self, dim): |
| # Checks that dim is within bounds |
| maybe_wrap_dim(dim, self.ndim) |
| return torch.empty_like(self).contiguous() |
| |
| |
| # Stride-related code from _exec_fft in aten/src/ATen/native/cuda/SpectralOps.cpp |
| def _exec_fft(out, self, out_sizes, dim, forward): |
| ndim = self.ndim |
| signal_ndim = len(dim) |
| batch_dims = ndim - signal_ndim |
| |
| # Permute dimensions so batch dimensions come first, and in stride order |
| dim_permute = list(range(ndim)) |
| |
| is_transformed_dim = [False for _ in range(ndim)] |
| for d in dim: |
| is_transformed_dim[d] = True |
| |
| # std::partition |
| left, right = [], [] |
| for d in dim_permute: |
| if not is_transformed_dim[d]: |
| left.append(d) |
| else: |
| right.append(d) |
| dim_permute = left + right |
| batch_end = len(left) |
| |
| self_strides = self.stride() |
| tmp = dim_permute[:batch_end] |
| tmp.sort(key=lambda x: self_strides[x], reverse=True) |
| dim_permute = tmp + dim_permute[batch_end:] |
| input = self.permute(dim_permute) |
| |
| # Collapse batch dimensions into a single dimension |
| batched_sizes = [-1] + list(input.shape[batch_dims:]) |
| input = input.reshape(batched_sizes) |
| |
| batch_size = input.size(0) |
| batched_sizes[0] = batch_size |
| batched_out_sizes = batched_sizes |
| for i in range(len(dim)): |
| batched_out_sizes[i + 1] = out_sizes[dim[i]] |
| out = out.reshape(batched_out_sizes) |
| |
| # Reshaping to original batch shape and inverting the dimension permutation |
| out_strides = [0 for _ in range(ndim)] |
| batch_numel = 1 |
| i = batch_dims - 1 |
| while i >= 0: |
| out_strides[dim_permute[i]] = batch_numel * out.stride(0) |
| batch_numel *= out_sizes[dim_permute[i]] |
| i -= 1 |
| for i in range(batch_dims, ndim): |
| out_strides[dim_permute[i]] = out.stride(1 + (i - batch_dims)) |
| return out.as_strided(out_sizes, out_strides, out.storage_offset()) |
| |
| |
| # See _fft_c2c_cufft in aten/src/ATen/native/cuda/SpectralOps.cpp |
| # and _fft_c2c_mkl in aten/src/ATen/native/mkl/SpectralOps.cpp |
| @register_meta([aten._fft_c2c.default, aten._fft_c2c.out]) |
| @out_wrapper() |
| def meta_fft_c2c(self, dim, normalization, forward): |
| assert self.dtype.is_complex |
| |
| out_sizes = self.shape |
| output = self.new_empty(out_sizes) |
| |
| if not dim: |
| return output |
| |
| sorted_dims = dim[:] |
| self_strides = self.stride() |
| sorted_dims.sort(key=lambda x: self_strides[x], reverse=True) |
| output = _exec_fft(output, self, out_sizes, sorted_dims, forward) |
| |
| return output |
| |
| |
| @register_meta([aten._fft_r2c.default, aten._fft_r2c.out]) |
| @out_wrapper() |
| def meta_fft_r2c(self, dim, normalization, onesided): |
| assert self.dtype.is_floating_point |
| output_sizes = list(self.size()) |
| |
| if onesided: |
| last_dim = dim[-1] |
| last_dim_halfsize = (output_sizes[last_dim] // 2) + 1 |
| output_sizes[last_dim] = last_dim_halfsize |
| |
| return self.new_empty( |
| output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype) |
| ) |
| |
| |
| @register_meta(aten.randperm.generator_out) |
| def meta_randperm(n, *, generator=None, out): |
| return _maybe_resize_out(out, torch.Size([n])) |
| |
| |
| @register_meta(aten.randperm.default) |
| def meta_randperm_default( |
| n, *, dtype=torch.long, layout=None, device=None, pin_memory=None |
| ): |
| return torch.empty( |
| n, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_meta(aten.randint.default) |
| def meta_randint( |
| high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None |
| ): |
| return torch.empty( |
| size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_meta(aten.randint.low) |
| def meta_randint_low( |
| low, |
| high, |
| size, |
| *, |
| dtype=torch.long, |
| layout=None, |
| device=None, |
| pin_memory=None, |
| ): |
| return torch.empty( |
| size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_meta(aten.rand.default) |
| def meta_rand_default(size, *, dtype=None, layout=None, device=None, pin_memory=None): |
| return torch.empty( |
| size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_meta([aten._fft_c2r.default, aten._fft_c2r.out]) |
| @out_wrapper() |
| def meta_fft_c2r(self, dim, normalization, lastdim): |
| assert self.dtype.is_complex |
| output_sizes = list(self.size()) |
| output_sizes[dim[-1]] = lastdim |
| return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype)) |
| |
| |
| @register_meta(aten.copy_.default) |
| def meta_copy_(self, src, non_blocking=False): |
| # This code simulates the original decomp from inductor, |
| # which runs most of the meta checks that we care about. |
| # In theory, we should make this more robust by carefully |
| # auditing our C++ copy_() kernel and copying the checks here. |
| |
| if torch._debug_has_internal_overlap(self) == 1: # 1 == MemOverlap::Yes |
| raise RuntimeError( |
| "more than one element of the written-to tensor refers to a single memory location" |
| ) |
| |
| if isinstance(src, Tensor): |
| intermediate = src.to(self, non_blocking) |
| if self.size() != intermediate.size(): |
| aten.expand_copy.default(intermediate, self.size()) |
| return self |
| |
| |
| def inferUnsqueezeGeometry(tensor, dim): |
| result_sizes = list(tensor.size()) |
| result_strides = list(tensor.stride()) |
| new_stride = 1 if dim >= tensor.dim() else result_sizes[dim] * result_strides[dim] |
| result_sizes.insert(dim, 1) |
| result_strides.insert(dim, new_stride) |
| return result_sizes, result_strides |
| |
| |
| @register_meta(aten.unsqueeze_.default) |
| def meta_unsqueeze_(self, dim): |
| dim = maybe_wrap_dim(dim, self.dim() + 1) |
| g_sizes, g_strides = inferUnsqueezeGeometry(self, dim) |
| self.as_strided_(g_sizes, g_strides) |
| return self |
| |
| |
| @register_meta(aten.index_reduce.default) |
| def meta_index_reduce( |
| self: Tensor, |
| dim: int, |
| index: Tensor, |
| source: torch.Tensor, |
| reduce: str, |
| *, |
| include_self: bool = True, |
| ) -> Tensor: |
| return torch.empty_like(self, memory_format=torch.contiguous_format) |
| |
| |
| @register_meta(aten.index_reduce_.default) |
| def meta_index_reduce_( |
| self: Tensor, |
| dim: int, |
| index: Tensor, |
| source: torch.Tensor, |
| reduce: str, |
| *, |
| include_self: bool = True, |
| ) -> Tensor: |
| return self |
| |
| |
| # Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py |
| @out_wrapper() |
| @register_meta(aten.index_select.default) |
| def meta_index_select(self, dim, index): |
| result_size = list(self.size()) |
| if self.dim() > 0: |
| result_size[dim] = index.numel() |
| return self.new_empty(result_size) |
| |
| |
| @register_meta(aten.segment_reduce.default) |
| def meta_segment_reduce( |
| data: Tensor, |
| reduce: str, |
| *, |
| lengths: Optional[Tensor] = None, |
| indices: Optional[Tensor] = None, |
| offsets: Optional[Tensor] = None, |
| axis: int = 0, |
| unsafe: bool = False, |
| initial=None, |
| ) -> Tensor: |
| if indices is not None: |
| raise NotImplementedError( |
| "segment_reduce(): indices based reduction is not supported yet." |
| ) |
| |
| def segment_reduce_lengths_tensor(lengths_shape): |
| return torch.empty( |
| lengths_shape + data.shape[axis + 1 :], |
| dtype=data.dtype, |
| device="meta", |
| memory_format=torch.contiguous_format, |
| ) |
| |
| if lengths is not None: |
| return segment_reduce_lengths_tensor(lengths.shape) |
| # FIXME should probably check that lengths and offset aren't both set, but |
| # the ATen implementation neglects this too |
| if offsets is not None: |
| # lengths == torch.diff(offsets) |
| lengths_shape = offsets.shape[:-1] + (offsets.shape[-1] - 1,) |
| return segment_reduce_lengths_tensor(lengths_shape) |
| raise RuntimeError("segment_reduce(): Either lengths or offsets must be defined.") |
| |
| |
| @register_meta([aten.max.default, aten.max.unary_out]) |
| @out_wrapper() |
| def meta_max(self): |
| return self.new_empty(()) |
| |
| |
| @register_meta(aten.max.dim) |
| def meta_max_dim(self, dim, keepdim=False): |
| dim = utils.reduction_dims(self.shape, (dim,)) |
| output_shape = _compute_reduction_shape(self, dim, keepdim) |
| return ( |
| self.new_empty(output_shape), |
| self.new_empty(output_shape, dtype=torch.long), |
| ) |
| |
| |
| @register_meta([aten.min.default, aten.min.unary_out]) |
| @out_wrapper() |
| def meta_min(self): |
| return self.new_empty(()) |
| |
| |
| @register_meta(aten.min.dim) |
| def meta_min_dim(self, dim, keepdim=False): |
| dim = utils.reduction_dims(self.shape, (dim,)) |
| output_shape = _compute_reduction_shape(self, dim, keepdim) |
| return ( |
| self.new_empty(output_shape), |
| self.new_empty(output_shape, dtype=torch.long), |
| ) |
| |
| |
| @register_meta(aten.angle.default) |
| def meta_angle(self): |
| if self.is_complex(): |
| result_dtype = corresponding_real_dtype(self.dtype) |
| else: |
| _, result_dtype = elementwise_dtypes( |
| self, |
| type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, |
| ) |
| return torch.empty_like(self, dtype=result_dtype) |
| |
| |
| @register_meta(aten.angle.out) |
| def meta_angle_out(self, out): |
| torch._resize_output_(out, self.size(), self.device) |
| return out.copy_(torch.angle(self)) |
| |
| |
| @register_meta(aten._assert_async.default) |
| def assert_async(val): |
| return |
| |
| |
| @register_meta(aten._assert_async.msg) |
| def assert_async_meta(val, assert_msg): |
| return |
| |
| |
| @register_meta(aten._make_dep_token.default) |
| def make_dep_token( |
| *, |
| dtype=None, |
| layout=None, |
| device=None, |
| pin_memory=None, |
| memory_format=None, |
| ): |
| return torch.empty([], device="meta") |
| |
| |
| @register_meta(aten.sym_constrain_range.default) |
| def sym_constrain_range(size, min=None, max=None): |
| # Avoid importing sympy at a module level |
| from torch.fx.experimental.symbolic_shapes import constrain_range |
| |
| if isinstance(size, (SymFloat, SymBool)): |
| raise ValueError("Constraining SymFloat or Symbool is nyi") |
| constrain_range(size, min=min, max=max) |
| |
| |
| @register_meta(aten._functional_sym_constrain_range.default) |
| def functional_sym_constrain_range(size, min=None, max=None, dep_token=None): |
| aten.sym_constrain_range(size, min=min, max=max) |
| return dep_token |
| |
| |
| @register_meta(aten.sym_constrain_range_for_size.default) |
| def sym_constrain_range_for_size(size, min=None, max=None): |
| # Avoid importing sympy at a module level |
| from torch.fx.experimental.symbolic_shapes import _constrain_range_for_size |
| |
| if isinstance(size, (SymFloat, SymBool)): |
| raise ValueError("Constraining SymFloat or Symbool is nyi") |
| _constrain_range_for_size(size, min=min, max=max) |
| |
| |
| @register_meta(aten._functional_sym_constrain_range_for_size.default) |
| def functional_sym_constrain_range_for_size(size, min, max, dep_token): |
| aten.sym_constrain_range_for_size(size, min=min, max=max) |
| return dep_token |
| |
| |
| @register_meta(aten._functional_assert_async.msg) |
| def functional_assert_async_meta(val, assert_msg, dep_token): |
| return dep_token |
| |
| |
| # From aten/src/ATen/native/LinearAlgebraUtils.h |
| def squareCheckInputs(self: Tensor, f_name: str): |
| assert ( |
| self.dim() >= 2 |
| ), f"{f_name}: The input tensor must have at least 2 dimensions." |
| assert self.size(-1) == self.size( |
| -2 |
| ), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices" |
| |
| |
| # Validates input shapes and devices |
| # for linear solve methods (solve, cholesky_solve, lu_solve, triangular_solve) |
| # From aten/src/ATen/native/LinearAlgebraUtils.h |
| def linearSolveCheckInputs( |
| self: Tensor, |
| A: Tensor, |
| name: str, |
| ): |
| torch._check( |
| self.device == A.device, |
| lambda: ( |
| f"Expected b and A to be on the same device, but found b on " |
| f"{self.device} and A on {A.device} instead." |
| ), |
| ) |
| |
| torch._check( |
| self.dtype == A.dtype, |
| lambda: ( |
| f"Expected b and A to have the same dtype, but found b of type " |
| f"{self.dtype} and A of type {A.dtype} instead." |
| ), |
| ) |
| |
| torch._check( |
| A.size(-1) == A.size(-2), |
| lambda: ( |
| f"A must be batches of square matrices, " |
| f"but they are {A.size(-2)} by {A.size(-1)} matrices" |
| ), |
| ) |
| |
| torch._check( |
| A.size(-1) == self.size(-2), |
| lambda: ( |
| f"Incompatible matrix sizes for {name}: each A " |
| f"matrix is {A.size(-1)} by {A.size(-1)}" |
| f" but each b matrix is {self.size(-2)} by {self.size(-1)}" |
| ), |
| ) |
| |
| |
| # From aten/src/ATen/native/LinearAlgebraUtils.h |
| def checkFloatingOrComplex( |
| t: Tensor, f_name: str, allow_low_precision_dtypes: bool = True |
| ): |
| dtype = t.dtype |
| torch._check( |
| t.is_floating_point() or t.is_complex(), |
| lambda: f"{f_name}: Expected a floating point or complex tensor as input. Got {dtype}", |
| ) |
| if not allow_low_precision_dtypes: |
| torch._check( |
| dtype in (torch.float, torch.double, torch.cfloat, torch.cdouble), |
| lambda: f"{f_name}: Low precision dtypes not supported. Got {dtype}", |
| ) |
| |
| |
| # From aten/src/ATen/native/LinearAlgebraUtils.h |
| def checkIsMatrix(A: Tensor, f_name: str, arg_name: str = "A"): |
| torch._check( |
| A.dim() >= 2, |
| lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.", |
| ) |
| |
| |
| def checkInputsSolver( |
| A: Tensor, |
| B: Tensor, |
| left: bool, |
| f_name: str, |
| ): |
| squareCheckInputs(A, f_name) |
| checkIsMatrix(B, f_name) |
| torch._check( |
| A.size(-2) == B.size(-2) if left else A.size(-1) == B.size(-1), |
| lambda: ( |
| f"{f_name}: Incompatible shapes of A and B for the equation " |
| f"{'AX = B' if left else 'XA = B'}" |
| f" ({A.size(-2)}x{A.size(-1)} and {B.size(-2)}x{B.size(-1)})" |
| ), |
| ) |
| |
| |
| def checkSameDevice( |
| fn_name: str, result: Tensor, input: Tensor, result_name: str = "result" |
| ): |
| torch._check( |
| result.device == input.device, |
| lambda: ( |
| f"{fn_name}: Expected {result_name} and input tensors to be on the same device, but got " |
| f"{result_name} on {result.device} and input on {input.device}" |
| ), |
| ) |
| |
| |
| def checkUplo(UPLO: str): |
| UPLO_uppercase = UPLO.upper() |
| torch._check( |
| len(UPLO) == 1 and (UPLO_uppercase == "U" or UPLO_uppercase == "L"), |
| lambda: f"Expected UPLO argument to be 'L' or 'U', but got {UPLO}", |
| ) |
| |
| |
| @register_meta([aten._linalg_eigh.default, aten._linalg_eigh.eigenvalues]) |
| @out_wrapper("eigenvalues", "eigenvectors") |
| def meta__linalg_eigh( |
| A: Tensor, |
| UPLO: str = "L", |
| compute_v: bool = True, |
| ): |
| squareCheckInputs(A, "linalg.eigh") |
| checkUplo(UPLO) |
| |
| shape = list(A.shape) |
| if compute_v: |
| vecs = A.new_empty(shape) |
| vecs.as_strided_(shape, make_contiguous_strides_for(shape, row_major=False)) |
| else: |
| vecs = A.new_empty([0]) |
| |
| shape.pop() |
| vals = A.new_empty(shape, dtype=toRealValueType(A.dtype)) |
| |
| return vals, vecs |
| |
| |
| def cloneBatchedColumnMajor(src: Tensor) -> Tensor: |
| return src.mT.clone(memory_format=torch.contiguous_format).transpose(-2, -1) |
| |
| |
| @register_meta(aten._cholesky_solve_helper) |
| @out_wrapper() |
| def _cholesky_solve_helper(self: Tensor, A: Tensor, upper: bool) -> Tensor: |
| return cloneBatchedColumnMajor(self) |
| |
| |
| @register_meta(aten.cholesky_solve) |
| @out_wrapper() |
| def cholesky_solve(self: Tensor, A: Tensor, upper: bool = False) -> Tensor: |
| torch._check( |
| self.ndim >= 2, |
| lambda: f"b should have at least 2 dimensions, but has {self.ndim} dimensions instead", |
| ) |
| torch._check( |
| A.ndim >= 2, |
| lambda: f"u should have at least 2 dimensions, but has {A.ndim} dimensions instead", |
| ) |
| self_broadcasted, A_broadcasted = _linalg_broadcast_batch_dims_name( |
| self, A, "cholesky_solve" |
| ) |
| return _cholesky_solve_helper(self_broadcasted, A_broadcasted, upper) |
| |
| |
| @register_meta(aten.cholesky) |
| @out_wrapper() |
| def cholesky(self: Tensor, upper: bool = False) -> Tensor: |
| if self.numel() == 0: |
| return torch.empty_like(self, memory_format=torch.legacy_contiguous_format) |
| squareCheckInputs(self, "cholesky") |
| return cloneBatchedColumnMajor(self) |
| |
| |
| @register_meta(aten.cholesky_inverse) |
| @out_wrapper() |
| def cholesky_inverse(self: Tensor, upper: bool = False) -> Tensor: |
| squareCheckInputs(self, "cholesky_inverse") |
| return cloneBatchedColumnMajor(self) |
| |
| |
| # From aten/src/ATen/native/BatchLinearAlgebra.cpp |
| @register_meta(aten.linalg_cholesky_ex.default) |
| def linalg_cholesky_ex(A: Tensor, upper: bool = False, check_errors: bool = False): |
| squareCheckInputs(A, "linalg.cholesky") |
| checkFloatingOrComplex(A, "linalg.cholesky") |
| |
| A_shape = A.shape |
| ndim = len(A_shape) |
| |
| # L |
| L_strides = make_contiguous_strides_for(A_shape, False) |
| L = A.new_empty(A_shape) |
| L.as_strided_(A_shape, L_strides) |
| |
| # infos |
| infos = A.new_empty(A_shape[0 : ndim - 2], dtype=torch.int32) |
| return L, infos |
| |
| |
| @register_meta( |
| [aten.linalg_householder_product.default, aten.linalg_householder_product.out] |
| ) |
| @out_wrapper() |
| def linalg_householder_product(input: Tensor, tau: Tensor) -> Tensor: |
| torch._check( |
| input.ndim >= 2, |
| lambda: "torch.linalg.householder_product: input must have at least 2 dimensions.", |
| ) |
| torch._check( |
| input.size(-2) >= input.size(-1), |
| lambda: "torch.linalg.householder_product: input.shape[-2] must be greater than or equal to input.shape[-1]", |
| ) |
| torch._check( |
| input.size(-1) >= tau.size(-1), |
| lambda: "torch.linalg.householder_product: input.shape[-1] must be greater than or equal to tau.shape[-1]", |
| ) |
| |
| torch._check( |
| input.ndim - tau.ndim == 1, |
| lambda: ( |
| f"torch.linalg.householder_product: Expected tau to have one dimension less than input, " |
| f"but got tau.ndim equal to {tau.ndim} and input.ndim is equal to {input.ndim}" |
| ), |
| ) |
| if input.ndim > 2: |
| expected_batch_tau_shape = input.shape[:-2] |
| actual_batch_tau_shape = tau.shape[:-1] |
| torch._check( |
| actual_batch_tau_shape == expected_batch_tau_shape, |
| lambda: ( |
| f"torch.linalg.householder_product: Expected batch dimensions of tau to be " |
| f"equal to input.shape[:-2], but got {actual_batch_tau_shape}" |
| ), |
| ) |
| |
| torch._check( |
| tau.dtype == input.dtype, |
| lambda: ( |
| f"torch.linalg.householder_product: tau dtype {tau.dtype}" |
| f" does not match input dtype {input.dtype}" |
| ), |
| ) |
| checkSameDevice("torch.linalg.householder_product", tau, input, "tau") |
| |
| return torch.empty_strided( |
| size=input.shape, |
| stride=make_contiguous_strides_for(input.shape, row_major=False), |
| dtype=input.dtype, |
| device=input.device, |
| ) |
| |
| |
| # From aten/src/ATen/native/BatchLinearAlgebra.cpp |
| @register_meta(aten.linalg_inv_ex.default) |
| def linalg_inv_ex_meta(A: Tensor, check_errors: bool = False): |
| squareCheckInputs(A, "linalg.inv_ex") |
| checkFloatingOrComplex(A, "linalg.inv_ex", allow_low_precision_dtypes=False) |
| |
| L = A.new_empty(A.shape) |
| L.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) |
| |
| infos = A.new_empty(A.shape[:-2], dtype=torch.int32) |
| return L, infos |
| |
| |
| @register_meta([aten.linalg_ldl_factor_ex.default, aten.linalg_ldl_factor_ex.out]) |
| @out_wrapper("LD", "pivots", "info") |
| def linalg_ldl_factor_ex_meta( |
| self: Tensor, |
| *, |
| hermitian: bool = False, |
| check_errors: bool = False, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| squareCheckInputs(self, "torch.linalg.ldl_factor_ex") |
| checkFloatingOrComplex(self, "torch.linalg.ldl_factor_ex") |
| LD = torch.empty_strided( |
| size=self.shape, |
| stride=make_contiguous_strides_for(self.shape, row_major=False), |
| dtype=self.dtype, |
| device=self.device, |
| ) |
| pivots = self.new_empty(self.shape[:-1], dtype=torch.int) |
| info = self.new_empty(self.shape[:-2], dtype=torch.int) |
| return LD, pivots, info |
| |
| |
| @register_meta([aten.linalg_ldl_solve.default, aten.linalg_ldl_solve.out]) |
| @out_wrapper() |
| def linalg_ldl_solve_meta( |
| LD: Tensor, pivots: Tensor, B: Tensor, *, hermitian: bool = False |
| ) -> Tensor: |
| squareCheckInputs(LD, "torch.linalg.ldl_solve") |
| checkFloatingOrComplex(LD, "torch.linalg.ldl_solve") |
| linearSolveCheckInputs(B, LD, "torch.linalg.ldl_solve") |
| torch._check( |
| B.ndim >= 2, |
| lambda: ( |
| f"torch.linalg.ldl_solve: Expected B to have at least 2 dimensions, " |
| f"but it has {B.ndim} dimensions instead" |
| ), |
| ) |
| expected_pivots_shape = LD.shape[:-1] |
| torch._check( |
| expected_pivots_shape == pivots.shape, |
| lambda: ( |
| f"torch.linalg.ldl_solve: Expected LD.shape[:-1] and pivots.shape to be the same, " |
| f"but got pivots with shape {pivots.shape} instead" |
| ), |
| ) |
| torch._check( |
| utils.is_integer_dtype(pivots.dtype), |
| lambda: f"torch.linalg.ldl_solve: Expected pivots to be integers. Got {pivots.dtype}", |
| ) |
| torch._check( |
| LD.dtype == B.dtype, |
| lambda: f"torch.linalg.ldl_solve: LD dtype {LD.dtype} does not match b dtype {B.dtype}", |
| ) |
| B_broadcast_size, _ = _linalg_broadcast_batch_dims(B, LD) |
| return torch.empty_strided( |
| size=B_broadcast_size, |
| stride=make_contiguous_strides_for(B_broadcast_size, row_major=False), |
| dtype=B.dtype, |
| device=B.device, |
| ) |
| |
| |
| @register_meta([aten.linalg_lu.default, aten.linalg_lu.out]) |
| @out_wrapper("P", "L", "U") |
| def linalg_lu_meta(A: Tensor, *, pivot: bool = True) -> Tuple[Tensor, Tensor, Tensor]: |
| torch._check( |
| A.ndim >= 2, |
| lambda: f"linalg.lu: Expected tensor with 2 or more dimensions. Got size: {A.shape} instead", |
| ) |
| |
| sizes = list(A.shape) |
| m = sizes[-2] |
| n = sizes[-1] |
| k = min(m, n) |
| |
| sizes[-1] = m |
| if pivot: |
| P = A.new_empty(sizes) |
| else: |
| P = A.new_empty([0]) |
| |
| sizes[-1] = k |
| L = A.new_empty(sizes) |
| |
| sizes[-2] = k |
| sizes[-1] = n |
| U = A.new_empty(sizes) |
| return P, L, U |
| |
| |
| @register_meta([aten.linalg_lu_factor_ex.default, aten.linalg_lu_factor_ex.out]) |
| @out_wrapper("LU", "pivots", "info") |
| def linalg_lu_factor_ex_meta( |
| A: Tensor, *, pivot: bool = True, check_errors: bool = False |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| torch._check( |
| A.ndim >= 2, |
| lambda: f"torch.lu_factor: Expected tensor with 2 or more dimensions. Got size: {A.shape} instead", |
| ) |
| |
| sizes = list(A.shape) |
| m = sizes[-2] |
| n = sizes[-1] |
| |
| LU = torch.empty_strided( |
| size=sizes, |
| stride=make_contiguous_strides_for(sizes, row_major=False), |
| dtype=A.dtype, |
| device=A.device, |
| ) |
| |
| # Sets sizes to the size of pivots |
| sizes.pop() |
| sizes[-1] = min(m, n) |
| pivots = A.new_empty(sizes, dtype=torch.int) |
| |
| # Sets sizes to the size of info |
| sizes.pop() |
| info = A.new_empty(sizes, dtype=torch.int) |
| |
| return LU, pivots, info |
| |
| |
| @register_meta([aten.linalg_lu_solve.default, aten.linalg_lu_solve.out]) |
| @out_wrapper() |
| def linalg_lu_solve_meta( |
| LU: Tensor, |
| pivots: Tensor, |
| B: Tensor, |
| *, |
| left: bool = True, |
| adjoint: bool = False, |
| ) -> Tensor: |
| # dtype |
| checkFloatingOrComplex(LU, "torch.linalg.lu_solve") |
| torch._check( |
| LU.dtype == B.dtype, |
| lambda: ( |
| f"linalg.lu_solve: Expected LU and B to have the same dtype, " |
| f"but found LU of type {LU.dtype} and B of type {B.dtype} instead" |
| ), |
| ) |
| torch._check( |
| pivots.dtype == torch.int, |
| lambda: "linalg.lu_solve: pivots should be a Tensor of scalar type torch.int32", |
| ) |
| |
| # matrix shapes |
| squareCheckInputs(LU, "torch.linalg.lu_solve") |
| checkInputsSolver(LU, B, left, "linalg.lu_solve") |
| torch._check( |
| LU.size(-1) == pivots.size(-1), |
| lambda: "linalg.lu_solve: Number of pivots per batch should be same as the dimension of the matrix", |
| ) |
| |
| # batches |
| torch._check( |
| LU.shape[:-1] == pivots.shape, |
| lambda: ( |
| f"linalg.lu_solve: Expected LU.shape[:-1] and pivots.shape to be the same, " |
| f"but got pivots with shape {pivots.shape} instead" |
| ), |
| ) |
| |
| B_broadcast_size, _ = _linalg_broadcast_batch_dims(B, LU) |
| |
| result = torch.empty_strided( |
| size=B_broadcast_size, |
| stride=make_contiguous_strides_for(B_broadcast_size, row_major=not left), |
| dtype=B.dtype, |
| device=B.device, |
| ) |
| |
| if result.numel() != 0 and not left: |
| if result.is_complex(): |
| result = result.conj() |
| |
| return result |
| |
| |
| @register_meta(aten.lu_unpack) |
| @out_wrapper("P", "L", "U") |
| def lu_unpack_meta( |
| LU: Tensor, |
| pivots: Tensor, |
| unpack_data: bool = True, |
| unpack_pivots: bool = True, |
| ) -> Tuple[Tensor, Tensor, Tensor]: |
| torch._check( |
| LU.ndim >= 2, |
| lambda: f"torch.lu_unpack: Expected tensor with 2 or more dimensions. Got size: {LU.shape} instead", |
| ) |
| if unpack_pivots: |
| torch._check( |
| pivots.dtype == torch.int32, |
| lambda: ( |
| "torch.lu_unpack: LU_pivots is expected to be a contiguous tensor of torch.int32 dtype.\n" |
| "Note: this function is intended to be used with the output produced by torch.linalg.lu_factor" |
| ), |
| ) |
| sizes = list(LU.shape) |
| m = sizes[-2] |
| n = sizes[-1] |
| k = min(m, n) |
| sizes[-1] = m |
| if unpack_pivots: |
| P = LU.new_empty(sizes) |
| else: |
| P = LU.new_empty([0]) |
| if unpack_data: |
| sizes[-1] = k |
| L = LU.new_empty(sizes) |
| sizes[-2] = k |
| sizes[-1] = n |
| U = LU.new_empty(sizes) |
| else: |
| L = LU.new_empty([0]) |
| U = LU.new_empty([0]) |
| return P, L, U |
| |
| |
| # parse the "mode" param in linalg_qr: return a tuple of bools (compute_q, reduced) |
| def _parse_qr_mode(mode: str) -> Tuple[bool, bool]: |
| if mode == "reduced": |
| compute_q = True |
| reduced = True |
| elif mode == "complete": |
| compute_q = True |
| reduced = False |
| elif mode == "r": |
| compute_q = False |
| reduced = True # this is actually irrelevant in this mode |
| else: |
| torch._check( |
| False, |
| lambda: ( |
| f"qr received unrecognized mode '{mode}' " |
| f"but expected one of 'reduced' (default), 'r', or 'complete'" |
| ), |
| ) |
| return compute_q, reduced |
| |
| |
| @register_meta([aten.linalg_qr.default, aten.linalg_qr.out]) |
| @out_wrapper("Q", "R") |
| def linalg_qr_meta( |
| A: Tensor, |
| mode: str = "reduced", |
| ) -> Tuple[Tensor, Tensor]: |
| checkIsMatrix(A, "linalg.qr") |
| checkFloatingOrComplex(A, "linalg.qr") |
| |
| compute_q, reduced_mode = _parse_qr_mode(mode) |
| |
| m = A.shape[-2] |
| n = A.shape[-1] |
| k = min(m, n) |
| |
| if compute_q: |
| Q_shape = list(A.shape) |
| Q_shape[-1] = k if reduced_mode else m |
| Q = A.new_empty(Q_shape) |
| Q.as_strided_(Q_shape, make_contiguous_strides_for(Q_shape, row_major=False)) |
| else: |
| Q = A.new_empty([0]) |
| |
| # For readability |
| R_shape = list(A.shape) |
| R_shape[-2] = k if reduced_mode or not compute_q else m |
| R = A.new_empty(R_shape) |
| R.as_strided_(R_shape, make_contiguous_strides_for(R_shape, row_major=False)) |
| return Q, R |
| |
| |
| @register_meta([aten._linalg_slogdet.default, aten._linalg_slogdet.sign]) |
| @out_wrapper("sign", "logabsdet", "LU", "pivots") |
| def _linalg_slogdet(A: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]: |
| squareCheckInputs(A, "linalg.slogdet") |
| checkFloatingOrComplex(A, "linalg.slogdet", False) |
| shape = A.shape |
| sign = A.new_empty(shape[:-2]) |
| logabsdet = A.new_empty(shape[:-2], dtype=toRealValueType(A.dtype)) |
| LU = torch.empty_strided( |
| size=shape, |
| stride=make_contiguous_strides_for(shape, False), |
| dtype=A.dtype, |
| device=A.device, |
| ) |
| pivots = A.new_empty(shape[:-1], dtype=torch.int32) |
| return sign, logabsdet, LU, pivots |
| |
| |
| # From aten/src/ATen/native/BatchLinearAlgebra.cpp |
| # NOTE: matching defaults in aten/src/ATen/native/native_functions.yaml |
| @register_meta(aten._linalg_svd.default) |
| def _linalg_svd_meta( |
| A: Tensor, |
| full_matrices: bool = False, |
| compute_uv: bool = True, |
| driver: Optional[str] = None, |
| ): |
| checkIsMatrix(A, "linalg.svd") |
| checkFloatingOrComplex(A, "linalg.svd") |
| |
| batch_dims = list(A.shape[:-2]) |
| m = A.shape[-2] |
| n = A.shape[-1] |
| k = min(m, n) |
| |
| if compute_uv: |
| U_shape = batch_dims + [m, m if full_matrices else k] |
| U = A.new_empty(U_shape) |
| U.as_strided_(U_shape, make_contiguous_strides_for(U_shape, row_major=False)) |
| |
| V_shape = batch_dims + [n if full_matrices else k, n] |
| V = A.new_empty(V_shape) |
| # NB: This checks for CUDA since there is no way to check for cuSolver. |
| # Also, this might not work correctly on CPU when fake_device is not |
| # available as device_hint just defaults to CUDA in that case. See |
| # _linalg_svd meta in core. |
| is_cuda = device_hint(A) == "cuda" |
| V.as_strided_(V_shape, make_contiguous_strides_for(V_shape, row_major=is_cuda)) |
| else: |
| # doesn't matter |
| U = A.new_empty([0]) |
| V = A.new_empty([0]) |
| |
| # S is always real, even when A is complex. |
| S = A.new_empty(batch_dims + [k], dtype=toRealValueType(A.dtype)) |
| return U, S, V |
| |
| |
| def _linalg_broadcast_batch_dims( |
| arg1: Tensor, arg2: Tensor |
| ) -> Tuple[List[int], List[int]]: |
| # broadcast the batch dimensions of arg1 and arg2. |
| arg1_batch_sizes = arg1.shape[:-2] |
| arg2_batch_sizes = arg2.shape[:-2] |
| expand_batch_portion = _broadcast_shapes(arg1_batch_sizes, arg2_batch_sizes) |
| |
| arg1_expand_size = list(expand_batch_portion) |
| arg1_expand_size += [arg1.size(-2), arg1.size(-1)] |
| |
| arg2_expand_size = list(expand_batch_portion) |
| arg2_expand_size += [arg2.size(-2), arg2.size(-1)] |
| return arg1_expand_size, arg2_expand_size |
| |
| |
| def _linalg_broadcast_batch_dims_name( |
| arg1: Tensor, arg2: Tensor, name: Optional[str] |
| ) -> Tuple[Tensor, Tensor]: |
| # If there's no name we assume we don't want to check the errors |
| if name: |
| linearSolveCheckInputs(arg1, arg2, name) |
| |
| arg1_expand_size, arg2_expand_size = _linalg_broadcast_batch_dims(arg1, arg2) |
| |
| arg1_broadcasted = ( |
| arg1 if arg1_expand_size == arg1.shape else arg1.expand(arg1_expand_size) |
| ) |
| arg2_broadcasted = ( |
| arg2 if arg2_expand_size == arg2.shape else arg2.expand(arg2_expand_size) |
| ) |
| return arg1_broadcasted, arg2_broadcasted |
| |
| |
| def linalg_solve_is_vector_rhs(input: Tensor, other: Tensor) -> bool: |
| expected_batched_rhs_shape = input.shape[:-1] |
| vector_case = other.ndim == 1 or ( |
| input.ndim - 1 == other.ndim and other.shape == expected_batched_rhs_shape |
| ) |
| return vector_case |
| |
| |
| @register_meta(aten._linalg_solve_ex) |
| def _linalg_solve_ex( |
| A: Tensor, |
| B: Tensor, |
| *, |
| left: bool = True, |
| check_errors: bool = False, |
| result: Optional[Tensor] = None, |
| LU: Optional[Tensor] = None, |
| pivots: Optional[Tensor] = None, |
| info: Optional[Tensor] = None, |
| ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: |
| checkFloatingOrComplex(A, "linalg.solve") |
| torch._check( |
| A.dtype == B.dtype, |
| lambda: ( |
| f"linalg.solve: Expected A and B to have the same dtype, but found A of type " |
| f"{A.dtype} and B of type {B.dtype} instead" |
| ), |
| ) |
| vector_case = linalg_solve_is_vector_rhs(A, B) |
| B_ = B.unsqueeze(-1) if vector_case else B |
| checkInputsSolver(A, B_, left, "linalg.solve") |
| B_broad_shape, _ = _linalg_broadcast_batch_dims(B_, A) |
| torch._check( |
| left or not vector_case, |
| lambda: ( |
| "linalg.solve: Vector broadcasting of the left hand side is not supported for left=False. " |
| "In this case linalg.solve is equivalent to B / A.squeeze(-1)" |
| ), |
| ) |
| result_shape = B_broad_shape[:-1] if vector_case else B_broad_shape |
| result_ = torch.empty_strided( |
| size=result_shape, |
| stride=make_contiguous_strides_for(result_shape, not left), |
| dtype=B.dtype, |
| device=B.device, |
| ) |
| shape = A.shape |
| ndim = A.ndim |
| LU_ = torch.empty_strided( |
| size=shape, |
| stride=make_contiguous_strides_for(shape, False), |
| dtype=A.dtype, |
| device=A.device, |
| ) |
| pivots_ = A.new_empty(shape[:-1], dtype=torch.int32) |
| info_ = A.new_empty(shape[:-2], dtype=torch.int32) |
| out = (result, LU, pivots, info) |
| res = (result_, LU_, pivots_, info_) |
| if all(x is not None for x in out): |
| for r, o in zip(res, out): |
| # resize and copy operations are done in-place |
| _maybe_resize_out(o, r.shape) # type: ignore[arg-type] |
| # strides are not copied in out_wrapper |
| o.as_strided_(r.shape, r.stride()) # type: ignore[union-attr] |
| _safe_copy_out(copy_from=r, copy_to=o, exact_dtype=False) # type: ignore[arg-type] |
| return res |
| |
| |
| @register_meta([aten.linalg_solve_triangular.default, aten.linalg_solve_triangular.out]) |
| def linalg_solve_triangular_meta( |
| A: Tensor, |
| B: Tensor, |
| *, |
| upper: bool, |
| left: bool = True, |
| unitriangular: bool = False, |
| out: Optional[Tensor] = None, |
| ) -> Tensor: |
| if out is None: |
| out = A.new_empty([0]) |
| assert isinstance(out, TensorLike) |
| checkInputsSolver(A, B, left, "linalg.solve_triangular") |
| B_, A_ = _linalg_broadcast_batch_dims_name(B, A, None) |
| avoid_copy_A = A_.transpose(-2, -1).is_contiguous() and A_.is_conj() |
| if avoid_copy_A: |
| out = _maybe_resize_out(out, B_.shape) |
| else: |
| # reimplementation of resize_output with result F-contig |
| if _resize_output_check(out, B_.shape): |
| out.resize_(B_.transpose(-2, -1).shape) |
| out.transpose_(-2, -1) |
| return out # type: ignore[return-value] |
| |
| |
| @register_meta(aten.triangular_solve) |
| @out_wrapper("solution", "cloned_coefficient") |
| def triangular_solve_meta( |
| self: Tensor, |
| A: Tensor, |
| upper: bool = True, |
| transpose: bool = False, |
| unitriangular: bool = False, |
| ) -> Tuple[Tensor, Tensor]: |
| torch._check( |
| self.ndim >= 2, |
| lambda: ( |
| f"torch.triangular_solve: Expected b to have at least 2 dimensions, " |
| f"but it has {self.ndim} dimensions instead" |
| ), |
| ) |
| torch._check( |
| A.ndim >= 2, |
| lambda: ( |
| f"torch.triangular_solve: Expected A to have at least 2 dimensions, " |
| f"but it has {A.ndim} dimensions instead" |
| ), |
| ) |
| |
| linearSolveCheckInputs(self, A, "triangular_solve") |
| |
| if A.layout == torch.strided: |
| self_broadcast_size, A_broadcast_size = _linalg_broadcast_batch_dims(self, A) |
| solution = torch.empty_strided( |
| size=self_broadcast_size, |
| stride=make_contiguous_strides_for(self_broadcast_size, row_major=False), |
| dtype=self.dtype, |
| device=self.device, |
| ) |
| cloned_coefficient = torch.empty_strided( |
| size=A_broadcast_size, |
| stride=make_contiguous_strides_for(A_broadcast_size, row_major=False), |
| dtype=A.dtype, |
| device=A.device, |
| ) |
| elif A.layout == torch.sparse_csr or A.layout == torch.sparse_bsr: |
| solution = torch.empty_like(self) |
| cloned_coefficient = self.new_empty([0]) |
| else: |
| torch._check(False, lambda: "triangular_solve: Got an unexpected layout.") |
| return solution, cloned_coefficient |
| |
| |
| # From aten/src/ATen/native/LinearAlgebra.cpp |
| @register_meta(aten._linalg_det.default) |
| def _linalg_det_meta(A): |
| squareCheckInputs(A, "linalg.det") |
| checkFloatingOrComplex(A, "linalg.det") |
| |
| det = A.new_empty(A.shape[:-2]) |
| |
| LU = A.new_empty(A.shape) |
| LU.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) |
| |
| pivots = A.new_empty(A.shape[:-1], dtype=torch.int32) |
| return det, LU, pivots |
| |
| |
| @register_meta(aten.ormqr) |
| @out_wrapper() |
| def ormqr( |
| input: Tensor, |
| tau: Tensor, |
| other: Tensor, |
| left: bool = True, |
| transpose: bool = False, |
| ) -> Tensor: |
| torch._check( |
| input.ndim >= 2, lambda: "torch.ormqr: input must have at least 2 dimensions." |
| ) |
| torch._check( |
| other.ndim >= 2, lambda: "torch.ormqr: other must have at least 2 dimensions." |
| ) |
| |
| left_size_condition = -2 if left else -1 |
| torch._check( |
| other.shape[left_size_condition] >= tau.shape[-1], |
| lambda: f"torch.ormqr: other.shape[{left_size_condition}] must be greater than or equal to tau.shape[-1]", |
| ) |
| torch._check( |
| other.shape[left_size_condition] == input.shape[-2], |
| lambda: f"torch.ormqr: other.shape[{left_size_condition}] must be equal to input.shape[-2]", |
| ) |
| |
| torch._check( |
| tau.shape[-1] <= input.shape[-1], |
| lambda: "torch.ormqr: tau.shape[-1] must be less than or equal to input.shape[-1]", |
| ) |
| |
| torch._check( |
| input.ndim - tau.ndim == 1, |
| lambda: ( |
| f"torch.ormqr: Expected tau to have one dimension less than input, " |
| f"but got tau.ndim equal to {tau.ndim} and input.ndim is equal to {input.ndim}" |
| ), |
| ) |
| torch._check( |
| input.ndim == other.ndim, |
| lambda: ( |
| f"torch.ormqr: Expected other to have the same number of dimensions as input, " |
| f"but got other.ndim equal to {other.ndim} and input.ndim is equal to {input.ndim}" |
| ), |
| ) |
| |
| if input.ndim > 2: |
| expected_batch_shape = input.shape[:-2] |
| actual_batch_tau_shape = tau.shape[:-1] |
| torch._check( |
| actual_batch_tau_shape == expected_batch_shape, |
| lambda: ( |
| f"torch.ormqr: Expected batch dimensions of tau to be " |
| f"equal to input.shape[:-2], but got {actual_batch_tau_shape}" |
| ), |
| ) |
| |
| actual_batch_other_shape = other.shape[:-2] |
| torch._check( |
| actual_batch_other_shape == expected_batch_shape, |
| lambda: ( |
| f"torch.ormqr: Expected batch dimensions of other to be " |
| f"equal to input.shape[:-2], but got {actual_batch_other_shape}" |
| ), |
| ) |
| |
| torch._check( |
| tau.dtype == input.dtype, |
| lambda: ( |
| f"torch.ormqr: Expected input and tau to have the same dtype, " |
| f"but input has dtype {input.dtype} and tau has dtype {tau.dtype}" |
| ), |
| ) |
| torch._check( |
| other.dtype == input.dtype, |
| lambda: ( |
| f"torch.ormqr: Expected input and other to have the same dtype, " |
| f"but input has dtype {input.dtype} and other has dtype {other.dtype}" |
| ), |
| ) |
| |
| checkSameDevice("torch.ormqr", tau, input, "tau") |
| checkSameDevice("torch.ormqr", other, input, "other") |
| |
| return torch.empty_strided( |
| size=other.shape, |
| stride=make_contiguous_strides_for(other.shape, row_major=False), |
| dtype=other.dtype, |
| device=other.device, |
| ) |
| |
| |
| def _padding_check_valid_input(input, padding, *, dim): |
| torch._check( |
| len(padding) == 2 * dim, |
| lambda: f"padding size is expected to be {2 * dim}, but got: {len(padding)}", |
| ) |
| |
| input_dim = input.ndim |
| |
| is_batch_mode = input_dim == (dim + 2) |
| |
| valid_batch_mode = is_batch_mode |
| valid_non_batch_mode = not is_batch_mode |
| |
| if is_batch_mode: |
| # allow batch size of 0-dim. |
| for d in range(1, input_dim): |
| valid_batch_mode = valid_batch_mode and input.size(d) != 0 |
| else: |
| for d in range(0, input_dim): |
| valid_non_batch_mode = valid_non_batch_mode and input.size(d) != 0 |
| |
| # allow empty batch size but not other dimensions. |
| torch._check( |
| valid_batch_mode or valid_non_batch_mode, |
| lambda: ( |
| f"Expected {dim + 1}D or {dim + 2}D (batch mode) tensor with possibly 0 batch size " |
| f"and other non-zero dimensions for input, but got: {input.shape}" |
| ), |
| ) |
| |
| |
| def _pad1d_common(input, padding, *, is_reflection): |
| dim_plane = 0 |
| dim_w = 1 |
| nbatch = 1 |
| |
| if input.ndim == 3: |
| nbatch = input.size(0) |
| dim_w += 1 |
| dim_plane += 1 |
| |
| _padding_check_valid_input(input, padding, dim=1) |
| |
| pad_l, pad_r = padding |
| |
| nplane = input.size(dim_plane) |
| input_w = input.size(dim_w) |
| output_w = input_w + pad_l + pad_r |
| |
| if is_reflection: |
| torch._check( |
| pad_l < input_w and pad_r < input_w, |
| lambda: ( |
| f"Argument #4: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" |
| ), |
| ) |
| |
| torch._check( |
| output_w >= 1, |
| lambda: f"input (W: {input_w}) is too small. Calculated output W: {output_w}", |
| ) |
| |
| if input.ndim == 2: |
| return input.new_empty((nplane, output_w)) |
| else: |
| return input.new_empty((nbatch, nplane, output_w)) |
| |
| |
| @register_meta(aten.reflection_pad1d) |
| @out_wrapper() |
| def meta_reflection_pad1d(input, padding): |
| return _pad1d_common(input, padding, is_reflection=True) |
| |
| |
| @register_meta(aten.replication_pad1d) |
| @out_wrapper() |
| def meta_replication_pad1d(input, padding): |
| return _pad1d_common(input, padding, is_reflection=False) |
| |
| |
| def _pad1d_backward_common(grad_output, input, padding, *, is_reflection): |
| dim_w = 1 |
| if not is_reflection: |
| torch._check(len(padding) == 2, lambda: "padding size is expected to be 2") |
| |
| if input.ndim == 3: |
| dim_w += 1 |
| |
| pad_l, pad_r = padding |
| |
| input_w = input.size(dim_w) |
| output_w = input_w + pad_l + pad_r |
| |
| if is_reflection: |
| torch._check( |
| pad_l < input_w and pad_r < input_w, |
| lambda: ( |
| f"Argument #4: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" |
| ), |
| ) |
| |
| torch._check( |
| output_w == grad_output.size(dim_w), |
| lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}", |
| ) |
| |
| return input.new_empty(input.shape) |
| |
| |
| @register_meta(aten.reflection_pad1d_backward) |
| @out_wrapper("grad_input") |
| def meta_reflection_pad1d_backward(grad_output, input, padding): |
| return _pad1d_backward_common(grad_output, input, padding, is_reflection=True) |
| |
| |
| @register_meta(aten.replication_pad1d_backward) |
| @out_wrapper("grad_input") |
| def meta_replication_pad1d_backward(grad_output, input, padding): |
| return _pad1d_backward_common(grad_output, input, padding, is_reflection=False) |
| |
| |
| def _pad2d_common(input, padding, *, is_reflection): |
| dim_w = 2 |
| dim_h = 1 |
| dim_slices = 0 |
| nbatch = 1 |
| |
| _padding_check_valid_input(input, padding, dim=2) |
| |
| ndim = input.ndim |
| if ndim == 4: |
| nbatch = input.size(0) |
| dim_w += 1 |
| dim_h += 1 |
| dim_slices += 1 |
| |
| pad_l, pad_r, pad_t, pad_b = padding |
| |
| nplane = input.size(dim_slices) |
| input_h = input.size(dim_h) |
| input_w = input.size(dim_w) |
| output_h = input_h + pad_t + pad_b |
| output_w = input_w + pad_l + pad_r |
| |
| if is_reflection: |
| torch._check( |
| pad_l < input_w and pad_r < input_w, |
| lambda: ( |
| f"Argument #4: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" |
| ), |
| ) |
| torch._check( |
| pad_t < input_h and pad_b < input_h, |
| lambda: ( |
| f"Argument #6: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_t}, {pad_b}) at dimension {dim_h} of input {input.shape}" |
| ), |
| ) |
| |
| torch._check( |
| output_w >= 1 or output_h >= 1, |
| lambda: ( |
| f"input (H: {input_h} W: {input_w}) is too small. " |
| f"Calculated output H: {output_h} W: {output_w}" |
| ), |
| ) |
| |
| if input.ndim == 3: |
| return input.new_empty((nplane, output_h, output_w)) |
| else: |
| return input.new_empty((nbatch, nplane, output_h, output_w)) |
| |
| |
| @register_meta(aten.reflection_pad2d) |
| @out_wrapper() |
| def meta_reflection_pad2d(input, padding): |
| return _pad2d_common(input, padding, is_reflection=True) |
| |
| |
| @register_meta(aten.replication_pad2d) |
| @out_wrapper() |
| def meta_replication_pad2d(input, padding): |
| return _pad2d_common(input, padding, is_reflection=False) |
| |
| |
| @register_meta( |
| [ |
| aten.reflection_pad2d_backward.default, |
| aten.reflection_pad2d_backward.grad_input, |
| aten.replication_pad2d_backward.default, |
| aten.replication_pad2d_backward.grad_input, |
| ] |
| ) |
| @out_wrapper("grad_input") |
| def meta_pad2d_backward(grad_output, self, padding): |
| dim_w = 2 |
| dim_h = 1 |
| dim_plane = 0 |
| nbatch = 1 |
| |
| self_shape = self.shape |
| if self.dim() == 4: |
| nbatch = self_shape[0] |
| dim_w += 1 |
| dim_h += 1 |
| dim_plane += 1 |
| |
| pad_l, pad_r, pad_t, pad_b = padding |
| |
| nplane = self_shape[dim_plane] |
| input_h = self_shape[dim_h] |
| input_w = self_shape[dim_w] |
| output_h = input_h + pad_t + pad_b |
| output_w = input_w + pad_l + pad_r |
| |
| torch._check( |
| output_w == grad_output.size(dim_w), |
| lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}", |
| ) |
| torch._check( |
| output_h == grad_output.size(dim_h), |
| lambda: f"grad_output height unexpected. Expected: {output_h}, Got: {grad_output.size(dim_h)}", |
| ) |
| return self.new_empty(self.shape) |
| |
| |
| def _pad3d_common(input, padding, *, is_reflection): |
| dim_w = 3 |
| dim_h = 2 |
| dim_d = 1 |
| dim_plane = 0 |
| |
| _padding_check_valid_input(input, padding, dim=3) |
| |
| batch_mode = input.ndim == 5 |
| if batch_mode: |
| nbatch = input.size(0) |
| dim_w += 1 |
| dim_h += 1 |
| dim_d += 1 |
| dim_plane += 1 |
| |
| pad_l, pad_r, pad_t, pad_b, pad_f, pad_bk = padding |
| |
| nplane = input.size(dim_plane) |
| input_d = input.size(dim_d) |
| input_h = input.size(dim_h) |
| input_w = input.size(dim_w) |
| output_d = input_d + pad_f + pad_bk |
| output_h = input_h + pad_t + pad_b |
| output_w = input_w + pad_l + pad_r |
| |
| if is_reflection: |
| torch._check( |
| pad_l < input_w and pad_r < input_w, |
| lambda: ( |
| f"Argument #4: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}" |
| ), |
| ) |
| torch._check( |
| pad_t < input_h and pad_b < input_h, |
| lambda: ( |
| f"Argument #6: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_t}, {pad_b}) at dimension {dim_h} of input {input.shape}" |
| ), |
| ) |
| torch._check( |
| pad_f < input_d and pad_bk < input_d, |
| lambda: ( |
| f"Argument #8: Padding size should be less than the corresponding input dimension, " |
| f"but got: padding ({pad_f}, {pad_bk}) at dimension {dim_d} of input {input.shape}" |
| ), |
| ) |
| |
| torch._check( |
| output_w >= 1 or output_h >= 1 or output_d >= 1, |
| lambda: ( |
| f"input (D: {input_d} H: {input_h} W: {input_w}) is too small. " |
| f"Calculated output D: {output_d} H: {output_h} W: {output_w}" |
| ), |
| ) |
| |
| if batch_mode: |
| return input.new_empty((nbatch, nplane, output_d, output_h, output_w)) |
| else: |
| return input.new_empty((nplane, output_d, output_h, output_w)) |
| |
| |
| @register_meta(aten.reflection_pad3d) |
| @out_wrapper() |
| def meta_reflection_pad3d(input, padding): |
| return _pad3d_common(input, padding, is_reflection=True) |
| |
| |
| @register_meta(aten.replication_pad3d) |
| @out_wrapper() |
| def meta_replication_pad3d(input, padding): |
| return _pad3d_common(input, padding, is_reflection=False) |
| |
| |
| @register_meta( |
| [ |
| aten.reflection_pad3d_backward.default, |
| aten.reflection_pad3d_backward.grad_input, |
| aten.replication_pad3d_backward.default, |
| aten.replication_pad3d_backward.grad_input, |
| ] |
| ) |
| @out_wrapper("grad_input") |
| def meta_pad3d_backward(grad_output, input, padding): |
| torch._check(len(padding) == 6, lambda: "padding size is expected to be 6") |
| assert input.ndim > 3 |
| assert grad_output.ndim == input.ndim |
| |
| dim_w = 3 |
| dim_h = 2 |
| dim_d = 1 |
| |
| if input.ndim == 5: |
| dim_w += 1 |
| dim_h += 1 |
| dim_d += 1 |
| |
| pad_l, pad_r, pad_t, pad_b, pad_f, pad_bk = padding |
| |
| input_d = input.size(dim_d) |
| input_h = input.size(dim_h) |
| input_w = input.size(dim_w) |
| output_d = input_d + pad_f + pad_bk |
| output_h = input_h + pad_t + pad_b |
| output_w = input_w + pad_l + pad_r |
| |
| torch._check( |
| output_w == grad_output.size(dim_w), |
| lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}", |
| ) |
| torch._check( |
| output_h == grad_output.size(dim_h), |
| lambda: f"grad_output height unexpected. Expected: {output_h}, Got: {grad_output.size(dim_h)}", |
| ) |
| torch._check( |
| output_d == grad_output.size(dim_d), |
| lambda: f"grad_output depth unexpected. Expected: {output_d}, Got: {grad_output.size(dim_d)}", |
| ) |
| |
| return input.new_empty(input.shape) |
| |
| |
| @register_meta(aten._pdist_forward) |
| @out_wrapper() |
| def meta__pdist_forward(self: Tensor, p: float = 2) -> Tensor: |
| torch._check( |
| self.is_contiguous(), lambda: "_pdist_forward requires contiguous input" |
| ) |
| n = self.size(0) |
| if n <= 1: |
| return self.new_empty([0]).to(memory_format=torch.legacy_contiguous_format) # type: ignore[call-overload] |
| else: |
| return self.new_empty((n * (n - 1) // 2,)).to( |
| memory_format=torch.legacy_contiguous_format |
| ) # type: ignore[call-overload] |
| |
| |
| @register_meta(aten._pdist_backward) |
| @out_wrapper() |
| def meta__pdist_backward(grad: Tensor, self: Tensor, p: float, pdist: Tensor) -> Tensor: |
| torch._check( |
| self.is_contiguous(), lambda: "_pdist_backward requires self to be contiguous" |
| ) |
| torch._check( |
| pdist.is_contiguous(), lambda: "_pdist_backward requires pdist to be contiguous" |
| ) |
| return torch.empty_like(self, memory_format=torch.legacy_contiguous_format) |
| |
| |
| @register_meta([aten.baddbmm.default, aten.baddbmm.out]) |
| @out_wrapper() |
| def meta_baddbmm(self, batch1, batch2, *, beta=1, alpha=1): |
| dim1 = batch1.size(0) |
| dim2 = batch1.size(1) |
| dim3 = batch2.size(2) |
| self = self.expand((dim1, dim2, dim3)) |
| torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") |
| torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") |
| torch._check( |
| self.dtype == batch1.dtype == batch2.dtype, |
| lambda: f"Input dtypes must be the same, got: input: {self.dtype}, batch1: {batch1.dtype}, batch2: {batch2.dtype}", |
| ) |
| batch1_sizes = batch1.shape |
| batch2_sizes = batch2.shape |
| bs = batch1_sizes[0] |
| contraction_size = batch1_sizes[2] |
| torch._check( |
| batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size, |
| lambda: ( |
| f"Expected size for first two dimensions of batch2 tensor to be: " |
| f"[{bs}, {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}]." |
| ), |
| ) |
| return self.new_empty(self.size()) |
| |
| |
| @register_meta([aten.bernoulli.default, aten.bernoulli.out]) |
| @out_wrapper() |
| def meta_bernoulli(self, *, generator=None): |
| # https://github.com/pytorch/pytorch/issues/88612 |
| return torch.empty_like(self).contiguous() |
| |
| |
| @register_meta(aten.bernoulli_.float) |
| def meta_bernoulli_(self, p=0.5, generator=None): |
| return self |
| |
| |
| @register_meta(aten.bernoulli.p) |
| def meta_bernoulli_p(self, p=0.5, generator=None): |
| # https://github.com/pytorch/pytorch/issues/88612 |
| return torch.empty_like(self).contiguous() |
| |
| |
| @register_meta(aten._fused_moving_avg_obs_fq_helper.default) |
| def meta__fused_moving_avg_obs_fq_helper( |
| self, |
| observer_on, |
| fake_quant_on, |
| running_min, |
| running_max, |
| scale, |
| zero_point, |
| averaging_const, |
| quant_min, |
| quant_max, |
| ch_axis, |
| per_row_fake_quant=False, |
| symmetric_quant=False, |
| ): |
| torch._check( |
| ch_axis < self.dim(), |
| lambda: "Error in fused_moving_avg_obs_fake_quant_cpu: ch_axis must be < self.dim()", |
| ) |
| mask = torch.empty_like(self, dtype=torch.bool) |
| return (torch.empty_like(self), mask) |
| |
| |
| @register_meta(aten.mm) |
| @out_wrapper() |
| def meta_mm(a, b): |
| torch._check(a.dim() == 2, lambda: "a must be 2D") |
| torch._check(b.dim() == 2, lambda: "b must be 2D") |
| N, M1 = a.shape |
| M2, P = b.shape |
| torch._check( |
| M1 == M2, |
| lambda: f"a and b must have same reduction dim, but got [{N}, {M1}] X [{M2}, {P}].", |
| ) |
| return a.new_empty(N, P) |
| |
| |
| def _compute_reduction_shape(self, dims, keepdim): |
| if keepdim: |
| return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim)) |
| |
| return utils.compute_reduction_output_shape(self.shape, dims) |
| |
| |
| # FakeTensors (meta tensors with a device) will report device as meta |
| # when running meta kernels. Here, access the "fake device" of FakeTensor if it |
| # exists so meta kernels which have diverge per device will be more |
| # accurate when run with FakeTensors |
| def device_hint(tensor) -> "str": |
| if isinstance(tensor, torch._subclasses.FakeTensor): |
| return tensor.fake_device.type |
| else: |
| return "cuda" # default to cuda |
| |
| |
| def calc_conv_nd_return_shape( |
| input_tensor: torch.Tensor, |
| weight: torch.Tensor, |
| stride: Union[List[int], int], |
| padding: Union[List[int], int], |
| dilation: Union[List[int], int], |
| is_transposed: bool, |
| groups: int, |
| output_padding: Optional[Union[List[int], int]] = None, |
| ): |
| def _formula(ln: int, p: int, d: int, k: int, s: int) -> int: |
| """ |
| Formula to apply to calculate the length of some dimension of the output |
| |
| See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html |
| |
| Args: |
| ln: length of the dimension |
| p: padding in that dim |
| d: dilation in that dim |
| k: kernel size in that dim |
| s: stride in that dim |
| Returns: |
| The output length |
| """ |
| return (ln + 2 * p - d * (k - 1) - 1) // s + 1 |
| |
| def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int: |
| """ |
| Formula to apply to calculate the length of some dimension of the output |
| if transposed convolution is used. |
| See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html |
| |
| Args: |
| ln: length of the dimension |
| p: padding in that dim |
| d: dilation in that dim |
| k: kernel size in that dim |
| s: stride in that dim |
| op: output padding in that dim |
| |
| Returns: |
| The output length |
| """ |
| return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1 |
| |
| kernel_size = weight.shape[2:] |
| dims = input_tensor.shape[2:] |
| if is_transposed: |
| out_channels = groups * weight.shape[1] |
| else: |
| out_channels = weight.shape[0] |
| if weight.shape[1] * groups != input_tensor.shape[1]: |
| raise RuntimeError("Invalid channel dimensions") |
| |
| ret_shape = [input_tensor.shape[0], out_channels] |
| if isinstance(stride, IntLike): |
| stride = [stride] * len(dims) |
| elif len(stride) == 1: |
| stride = [stride[0]] * len(dims) |
| |
| if isinstance(padding, IntLike): |
| padding = [padding] * len(dims) |
| elif len(padding) == 1: |
| padding = [padding[0]] * len(dims) |
| |
| if isinstance(dilation, IntLike): |
| dilation = [dilation] * len(dims) |
| elif len(dilation) == 1: |
| dilation = [dilation[0]] * len(dims) |
| |
| output_padding_list: Optional[List[int]] = None |
| if output_padding: |
| if isinstance(output_padding, IntLike): |
| output_padding_list = [output_padding] * len(dims) |
| elif len(output_padding) == 1: |
| output_padding_list = [output_padding[0]] * len(dims) |
| else: |
| output_padding_list = output_padding |
| |
| for i in range(len(dims)): |
| # If output_padding is present, we are dealing with a transposed convolution |
| if output_padding_list: |
| ret_shape.append( |
| _formula_transposed( |
| dims[i], |
| padding[i], |
| dilation[i], |
| kernel_size[i], |
| stride[i], |
| output_padding_list[i], |
| ) |
| ) |
| else: |
| ret_shape.append( |
| _formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i]) |
| ) |
| |
| return ret_shape |
| |
| |
| def is_channels_last(ten): |
| return torch._prims_common.suggest_memory_format(ten) == torch.channels_last |
| |
| |
| @register_meta(aten.convolution.default) |
| def meta_conv( |
| input_tensor: torch.Tensor, |
| weight: torch.Tensor, |
| bias: torch.Tensor, |
| stride: List[int], |
| padding: List[int], |
| dilation: List[int], |
| is_transposed: bool, |
| output_padding: List[int], |
| groups: int, |
| ): |
| def pick_memory_format(): |
| if device_hint(input_tensor) == "cuda": |
| if is_channels_last(input_tensor) or is_channels_last(weight): |
| return torch.channels_last |
| else: |
| if is_channels_last(input_tensor): |
| return torch.channels_last |
| if input_tensor.is_contiguous(memory_format=torch.contiguous_format): |
| return torch.contiguous_format |
| elif input_tensor.is_contiguous(memory_format=torch.preserve_format): |
| return torch.preserve_format |
| |
| shape_out = calc_conv_nd_return_shape( |
| input_tensor, |
| weight, |
| stride, |
| padding, |
| dilation, |
| is_transposed, |
| groups, |
| output_padding if is_transposed else None, |
| ) |
| |
| out = input_tensor.new_empty(shape_out) |
| out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] |
| return out |
| |
| |
| if torch._C._has_mkldnn: |
| _meta_lib_dont_use_me_use_register_meta_for_mkldnn = torch.library.Library( |
| "mkldnn", "IMPL", "Meta" |
| ) |
| |
| @register_meta(torch.ops.mkldnn._convolution_pointwise.default) |
| def meta_mkldnn_convolution_default( |
| input_tensor, |
| weight, |
| bias, |
| padding, |
| stride, |
| dilation, |
| groups, |
| attr, |
| scalars, |
| algorithm, |
| ): |
| shape_out = calc_conv_nd_return_shape( |
| input_tensor, weight, stride, padding, dilation, False, groups, [] |
| ) |
| out = input_tensor.new_empty(shape_out) |
| out_memory_format = torch.channels_last |
| out = out.to(memory_format=out_memory_format) # type: ignore[call-overload] |
| return out |
| |
| @register_meta(torch.ops.mkldnn._linear_pointwise.default) |
| def meta_linear_pointwise_default( |
| input_tensor, weight, bias, attr, scalars, algorithm |
| ): |
| return input_tensor.new_empty((*input_tensor.shape[:-1], weight.shape[0])) |
| |
| if torch._C.has_mkl: |
| _meta_lib_dont_use_me_use_register_meta_for_mkl = torch.library.Library( |
| "mkl", "IMPL", "Meta" |
| ) |
| |
| @register_meta(torch.ops.mkl._mkl_linear) |
| def meta_mkl_linear( |
| input_tensor, |
| packed_weight, |
| orig_weight, |
| bias, |
| batch_size, |
| ): |
| return input_tensor.new_empty( |
| (*input_tensor.shape[:-1], orig_weight.shape[0]) |
| ) |
| |
| _meta_lib_dont_use_me_use_register_meta_for_onednn = torch.library.Library( |
| "onednn", "IMPL", "Meta" |
| ) |
| |
| @register_meta(torch.ops.onednn.qconv2d_pointwise.default) |
| def meta_qconv2d_pointwise( |
| x, |
| x_scale, |
| x_zp, |
| w, # prepacked_weight |
| w_scale, |
| w_zp, |
| bias, |
| stride, |
| padding, |
| dilation, |
| groups, |
| output_scale, |
| output_zero_point, |
| output_dtype, |
| attr, |
| scalars, |
| algorithm, |
| ): |
| shape_out = calc_conv_nd_return_shape( |
| x, |
| w, |
| stride, |
| padding, |
| dilation, |
| False, |
| groups, |
| None, |
| ) |
| assert output_dtype in [torch.float32, torch.bfloat16] |
| out = x.new_empty(shape_out, dtype=output_dtype) |
| out = out.to(memory_format=torch.channels_last) |
| return out |
| |
| @register_meta(torch.ops.onednn.qlinear_pointwise.default) |
| def meta_qlinear_pointwise( |
| x, |
| x_scale, |
| x_zp, |
| w, |
| w_scale, |
| w_zp, |
| bias, |
| output_scale, |
| output_zero_point, |
| output_dtype, |
| post_op_name, |
| post_op_args, |
| post_op_algorithm, |
| ): |
| output_shape = list(x.shape) |
| # The weight has been transposed during the qlinear weight prepack process. |
| output_shape[-1] = w.shape[1] |
| assert output_dtype in [torch.float32, torch.bfloat16] |
| out = x.new_empty(output_shape, dtype=output_dtype) |
| return out |
| |
| _meta_lib_dont_use_me_use_register_meta_for_quantized = torch.library.Library( |
| "quantized", "IMPL", "Meta" |
| ) |
| |
| @register_meta(torch.ops.quantized.max_pool2d) |
| def meta_quantized_max_pool2d( |
| input, |
| kernel_size, |
| stride=(), |
| padding=(0,), |
| dilation=(1,), |
| ceil_mode=False, |
| ): |
| ( |
| nInputPlane, |
| outputHeight, |
| outputWidth, |
| ) = max_pool2d_checks_and_compute_shape( |
| input, kernel_size, stride, padding, dilation, ceil_mode |
| ) |
| nbatch = input.size(-4) if input.dim() == 4 else 1 |
| memory_format = torch.channels_last |
| if input.dim() == 3: |
| size = [nInputPlane, outputHeight, outputWidth] |
| else: |
| size = [nbatch, nInputPlane, outputHeight, outputWidth] |
| return torch.empty( |
| size, |
| dtype=input.dtype, |
| device=input.device, |
| memory_format=memory_format, |
| ) |
| |
| |
| # from check_dim_size() in aten/src/ATen/TensorUtils.cpp. |
| def check_dim_size(tensor, dim, dim_size, size): |
| torch._check( |
| tensor.dim() == dim and tensor.shape[dim_size] == size, |
| lambda: f"Expected a tensor of dimension {dim} and tensor.size[{dim_size}] == {size}, " |
| + f"but got : dimension {tensor.dim()} and tensor.size[{dim_size}] = {tensor.shape[dim_size]}", |
| ) |
| |
| |
| @register_meta(aten.avg_pool2d.default) |
| def meta_avg_pool2d( |
| input, |
| kernel_size, |
| stride=(), |
| padding=(0,), |
| ceil_mode=False, |
| count_include_pad=True, |
| divisor_override=None, |
| ): |
| def unpack(name, val): |
| torch._check( |
| len(val) in [1, 2], |
| lambda: f"avg_pool2d: {name} must either be a single int, or a tuple of two ints", |
| ) |
| H = val[0] |
| W = H if len(val) == 1 else val[1] |
| return H, W |
| |
| kH, kW = unpack("kernel_size", kernel_size) |
| torch._check( |
| len(stride) in [0, 1, 2], |
| lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", |
| ) |
| if len(stride) == 0: |
| dH, dW = kH, kW |
| elif len(stride) == 1: |
| dH, dW = stride[0], stride[0] |
| else: |
| dH, dW = unpack("stride", stride) |
| |
| padH, padW = unpack("padding", padding) |
| |
| torch._check( |
| divisor_override is None or divisor_override != 0, |
| lambda: "divisor must be not zero", |
| ) |
| |
| nbatch = input.size(-4) if input.dim() == 4 else 1 |
| nInputPlane = input.size(-3) |
| inputHeight = input.size(-2) |
| inputWidth = input.size(-1) |
| |
| outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) |
| outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) |
| |
| memory_format = utils.suggest_memory_format(input) |
| pool2d_shape_check( |
| input, |
| kH, |
| kW, |
| dH, |
| dW, |
| padH, |
| padW, |
| 1, |
| 1, |
| nInputPlane, |
| inputHeight, |
| inputWidth, |
| outputHeight, |
| outputWidth, |
| memory_format, |
| ) |
| |
| if input.dim() == 3: |
| size = [nInputPlane, outputHeight, outputWidth] |
| else: |
| size = [nbatch, nInputPlane, outputHeight, outputWidth] |
| return torch.empty( |
| size, |
| dtype=input.dtype, |
| device=input.device, |
| memory_format=memory_format, |
| ) |
| |
| |
| # from avg_pool2d_backward_shape_check() in aten/src/ATen/native/Pool.h. |
| def avg_pool2d_backward_shape_check( |
| input, |
| gradOutput, |
| nbatch, |
| kH, |
| kW, |
| dH, |
| dW, |
| padH, |
| padW, |
| nInputPlane, |
| inputHeight, |
| inputWidth, |
| outputHeight, |
| outputWidth, |
| mem_format, |
| ): |
| pool2d_shape_check( |
| input, |
| kH, |
| kW, |
| dH, |
| dW, |
| padH, |
| padW, |
| 1, |
| 1, |
| nInputPlane, |
| inputHeight, |
| inputWidth, |
| outputHeight, |
| outputWidth, |
| mem_format, |
| ) |
| |
| ndim = input.dim() |
| nOutputPlane = nInputPlane |
| |
| check_dim_size(gradOutput, ndim, ndim - 3, nOutputPlane) |
| check_dim_size(gradOutput, ndim, ndim - 2, outputHeight) |
| check_dim_size(gradOutput, ndim, ndim - 1, outputWidth) |
| |
| |
| # Don't override the C++ registration. |
| @register_meta(aten.avg_pool2d_backward.default) |
| def meta_avg_pool2d_backward( |
| gradOutput_, |
| input, |
| kernel_size, |
| stride, |
| padding, |
| ceil_mode, |
| count_include_pad, |
| divisor_override, |
| ): |
| # From aten/src/ATen/native/AveragePool2d.cpp structured kernel meta func. |
| torch._check( |
| len(kernel_size) == 1 or len(kernel_size) == 2, |
| lambda: "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints", |
| ) |
| kH = kernel_size[0] |
| kW = kH if len(kernel_size) == 1 else kernel_size[1] |
| torch._check( |
| len(stride) == 0 or len(stride) == 1 or len(stride) == 2, |
| lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", |
| ) |
| dH = kH if len(stride) == 0 else stride[0] |
| dW = kW if len(stride) == 0 else dH if len(stride) == 1 else stride[1] |
| torch._check( |
| len(padding) == 1 or len(padding) == 2, |
| lambda: "avg_pool2d: padding must either be a single int, or a tuple of two ints", |
| ) |
| padH = padding[0] |
| padW = padH if len(padding) == 1 else padding[1] |
| |
| torch._check( |
| divisor_override is None or divisor_override != 0, |
| lambda: "divisor must be not zero", |
| ) |
| |
| input_size = input.shape |
| nbatch = input_size[-4] if input.dim() == 4 else 1 |
| nInputPlane = input_size[-3] |
| inputHeight = input_size[-2] |
| inputWidth = input_size[-1] |
| |
| outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) |
| outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) |
| |
| mem_format = utils.suggest_memory_format(input) |
| |
| avg_pool2d_backward_shape_check( |
| input, |
| gradOutput_, |
| nbatch, |
| kH, |
| kW, |
| dH, |
| dW, |
| padH, |
| padW, |
| nInputPlane, |
| inputHeight, |
| inputWidth, |
| outputHeight, |
| outputWidth, |
| mem_format, |
| ) |
| |
| return torch.empty( |
| input_size, |
| dtype=input.dtype, |
| device=input.device, |
| memory_format=mem_format, |
| ) |
| |
| |
| @register_meta(aten.avg_pool3d) |
| @out_wrapper() |
| def meta_avg_pool3d( |
| input, |
| kernel_size, |
| stride=(), |
| padding=(0,), |
| ceil_mode=False, |
| count_include_pad=True, |
| divisor_override=None, |
| ): |
| torch._check( |
| len(kernel_size) in (1, 3), |
| lambda: "avg_pool3d: kernel_size must be a single int, or a tuple of three ints", |
| ) |
| kT = kernel_size[0] |
| kH = kT if len(kernel_size) == 1 else kernel_size[1] |
| kW = kT if len(kernel_size) == 1 else kernel_size[2] |
| |
| torch._check( |
| not stride or len(stride) in (1, 3), |
| lambda: "avg_pool3d: stride must be omitted, a single int, or a tuple of three ints", |
| ) |
| dT = kT if not stride else stride[0] |
| dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) |
| dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) |
| |
| torch._check( |
| len(padding) in (1, 3), |
| lambda: "avg_pool3d: padding must be a single int, or a tuple of three ints", |
| ) |
| padT = padding[0] |
| padH = padT if len(padding) == 1 else padding[1] |
| padW = padT if len(padding) == 1 else padding[2] |
| |
| torch._check( |
| input.ndim in (4, 5), |
| lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", |
| ) |
| |
| torch._check( |
| not divisor_override or divisor_override != 0, |
| lambda: "divisor must be not zero", |
| ) |
| |
| nbatch = input.size(0) |
| nslices = input.size(-4) |
| itime = input.size(-3) |
| iheight = input.size(-2) |
| iwidth = input.size(-1) |
| |
| otime = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode) |
| oheight = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode) |
| owidth = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode) |
| |
| pool3d_shape_check( |
| input, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| padT, |
| padH, |
| padW, |
| 1, |
| 1, |
| 1, |
| itime, |
| iheight, |
| iwidth, |
| otime, |
| oheight, |
| owidth, |
| "avg_pool3d()", |
| check_input_size=True, |
| ) |
| |
| if input.ndim == 4: |
| return input.new_empty((nslices, otime, oheight, owidth)) |
| else: |
| return input.new_empty((nbatch, nslices, otime, oheight, owidth)) |
| |
| |
| @register_meta(aten.avg_pool3d_backward) |
| @out_wrapper("grad_input") |
| def meta_avg_pool3d_backward( |
| grad_output, |
| input, |
| kernel_size, |
| stride, |
| padding, |
| ceil_mode, |
| count_include_pad, |
| divisor_override, |
| ): |
| torch._check( |
| len(kernel_size) in (1, 3), |
| lambda: "avg_pool3d: kernel_size must be a single int, or a tuple of three ints", |
| ) |
| kT = kernel_size[0] |
| kH = kT if len(kernel_size) == 1 else kernel_size[1] |
| kW = kT if len(kernel_size) == 1 else kernel_size[2] |
| |
| torch._check( |
| not stride or len(stride) in (1, 3), |
| lambda: "avg_pool3d: stride must be omitted, a single int, or a tuple of three ints", |
| ) |
| dT = kT if not stride else stride[0] |
| dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) |
| dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) |
| |
| torch._check( |
| len(padding) in (1, 3), |
| lambda: "avg_pool3d: padding must be a single int, or a tuple of three ints", |
| ) |
| padT = padding[0] |
| padH = padT if len(padding) == 1 else padding[1] |
| padW = padT if len(padding) == 1 else padding[2] |
| |
| torch._check( |
| input.ndim in (4, 5), |
| lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", |
| ) |
| |
| torch._check( |
| not divisor_override or divisor_override != 0, |
| lambda: "divisor must be not zero", |
| ) |
| |
| nslices = input.size(-4) |
| itime = input.size(-3) |
| iheight = input.size(-2) |
| iwidth = input.size(-1) |
| |
| otime_for_shape_check = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode) |
| oheight_for_shape_check = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode) |
| owidth_for_shape_check = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode) |
| |
| avg_pool3d_backward_shape_check( |
| input, |
| grad_output, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| padT, |
| padH, |
| padW, |
| itime, |
| iheight, |
| iwidth, |
| otime_for_shape_check, |
| oheight_for_shape_check, |
| owidth_for_shape_check, |
| "avg_pool3d_backward()", |
| ) |
| |
| return input.new_empty(input.shape) |
| |
| |
| @register_meta(aten._adaptive_avg_pool2d.default) |
| def meta_adaptive_avg_pool2d(self, output_size): |
| torch._check( |
| self.ndim == 3 or self.ndim == 4, |
| lambda: f"Expected 3D or 4D tensor, but got {self.shape}", |
| ) |
| output_shape = self.shape[:-2] + tuple(output_size) |
| memory_format = utils.suggest_memory_format(self) |
| # need to set memory_format to preserve the memory format of the input |
| # channel last input should have channel last output |
| return torch.empty( |
| output_shape, |
| dtype=self.dtype, |
| device=self.device, |
| memory_format=memory_format, |
| ) |
| |
| |
| @register_meta(aten._adaptive_avg_pool3d.default) |
| def meta_adaptive_avg_pool3d(self, output_size): |
| torch._check( |
| self.ndim == 4 or self.ndim == 5, |
| lambda: f"Expected 4D or 5D tensor, but got {self.shape}", |
| ) |
| return self.new_empty(self.shape[:-3] + tuple(output_size)) |
| |
| |
| @register_meta(aten._adaptive_avg_pool2d_backward.default) |
| def meta__adaptive_avg_pool2d_backward(grad_out, self): |
| ndim = grad_out.ndim |
| for i in range(1, ndim): |
| torch._check( |
| grad_out.size(i) > 0, |
| lambda: f"adaptive_avg_pool2d_backward(): Expected grad_output to have non-zero \ |
| size for non-batch dimensions, {grad_out.shape} with dimension {i} being empty", |
| ) |
| torch._check( |
| ndim == 3 or ndim == 4, |
| lambda: f"adaptive_avg_pool2d_backward(): Expected 3D or 4D tensor, but got {self.shape}", |
| ) |
| torch._check( |
| self.dtype == grad_out.dtype, |
| lambda: f"expected dtype {self.dtype} for `grad_output` but got dtype {grad_out.dtype}", |
| ) |
| memory_format = torch.contiguous_format |
| if is_channels_last(self): |
| memory_format = torch.channels_last |
| return self.new_empty(self.shape).to(memory_format=memory_format) |
| |
| |
| @register_meta(aten._adaptive_avg_pool3d_backward) |
| @out_wrapper("grad_input") |
| def meta__adaptive_avg_pool3d_backward(grad_output, self): |
| _adaptive_pool_empty_output_check(grad_output, "adaptive_avg_pool3d_backward") |
| return torch.empty_like(self, memory_format=torch.legacy_contiguous_format) |
| |
| |
| def _adaptive_pool_empty_output_check(grad_output: Tensor, arg_name: str): |
| ndim = grad_output.ndim |
| for i in range(1, ndim): |
| torch._check( |
| grad_output.size(i) > 0, |
| lambda: ( |
| f"{arg_name}(): Expected grad_output to have non-zero size for non-batch dimensions, " |
| f"but grad_output has sizes {grad_output.shape} with dimension {i} being empty" |
| ), |
| ) |
| |
| |
| @register_meta(aten.adaptive_max_pool2d) |
| @out_wrapper("out", "indices") |
| def meta_adaptive_max_pool2d(input, output_size): |
| ndim = input.ndim |
| torch._check( |
| ndim in (3, 4), |
| lambda: f"adaptive_max_pool2d(): Expected 3D or 4D tensor, but got: {input.shape}", |
| ) |
| for i in range(1, ndim): |
| torch._check( |
| input.size(i) > 0, |
| lambda: ( |
| f"adaptive_max_pool2d(): Expected input to have non-zero size for non-batch dimensions, " |
| f"but input has sizes {input.shape} with dimension {i} being empty" |
| ), |
| ) |
| |
| torch._check( |
| len(output_size) == 2, |
| lambda: "adaptive_max_pool2d(): internal error: output_size.size() must be 2", |
| ) |
| |
| dimH = 1 |
| sizeB = 1 |
| sizeD = 0 |
| |
| if input.ndim == 4: |
| sizeB = input.size(0) |
| dimH += 1 |
| |
| sizeD = input.size(dimH - 1) |
| osizeH, osizeW = output_size |
| |
| if input.ndim == 3: |
| out_shape = (sizeD, osizeH, osizeW) |
| out = input.new_empty(out_shape) |
| indices = input.new_empty(out_shape, dtype=torch.int64) |
| return out, indices |
| else: |
| out_shape = (sizeB, sizeD, osizeH, osizeW) # type: ignore[assignment] |
| memory_format = utils.suggest_memory_format(input) |
| out = input.new_empty(out_shape).to(memory_format=memory_format) |
| indices = input.new_empty(out_shape, dtype=torch.int64).to( |
| memory_format=memory_format |
| ) |
| return out, indices |
| |
| |
| @register_meta(aten.adaptive_max_pool2d_backward) |
| @out_wrapper("grad_input") |
| def meta_adaptive_max_pool2d_backward(grad_output, input, indices): |
| ndim = grad_output.ndim |
| torch._check( |
| ndim in (3, 4), |
| lambda: f"adaptive_max_pooling2d_backward(): Expected 3D or 4D grad_output, but got: {grad_output.shape}", |
| ) |
| |
| _adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool2d_backward") |
| |
| torch._check( |
| input.dtype == grad_output.dtype, |
| lambda: f"expected dtype {input.dtype} for `grad_output` but got dtype {grad_output.dtype}", |
| ) |
| |
| memory_format = utils.suggest_memory_format(input) |
| return input.new_empty(input.shape).to(memory_format=memory_format) |
| |
| |
| @register_meta(aten.adaptive_max_pool3d) |
| @out_wrapper("out", "indices") |
| def meta_adaptive_max_pool3d(input, output_size): |
| ndim = input.ndim |
| torch._check( |
| ndim in (4, 5), |
| lambda: f"adaptive_max_pool3d(): Expected 4D or 5D tensor, but got: {input.shape}", |
| ) |
| for i in range(1, ndim): |
| torch._check( |
| input.size(i) > 0, |
| lambda: ( |
| f"adaptive_max_pool3d(): Expected input to have non-zero size for non-batch dimensions, " |
| f"but input has sizes {input.shape} with dimension {i} being empty" |
| ), |
| ) |
| |
| torch._check( |
| len(output_size) == 3, |
| lambda: "adaptive_max_pool3d(): internal error: output_size.size() must be 3", |
| ) |
| |
| dimD = 0 |
| sizeB = 1 |
| sizeD = 0 |
| |
| if ndim == 5: |
| sizeB = input.size(0) |
| dimD += 1 |
| |
| sizeD = input.size(dimD) |
| osizeT, osizeH, osizeW = output_size |
| |
| if ndim == 4: |
| out_shape = (sizeD, osizeT, osizeH, osizeW) |
| else: |
| out_shape = (sizeB, sizeD, osizeT, osizeH, osizeW) # type: ignore[assignment] |
| |
| out = input.new_empty(out_shape) |
| indices = input.new_empty(out_shape, dtype=torch.int64) |
| |
| return out, indices |
| |
| |
| @register_meta(aten.adaptive_max_pool3d_backward) |
| @out_wrapper("grad_input") |
| def meta_adaptive_max_pool3d_backward(grad_output, input, indices): |
| _adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool3d_backward") |
| return input.new_empty(input.shape) |
| |
| |
| @register_meta(aten.repeat_interleave.Tensor) |
| def meta_repeat_interleave_Tensor(repeats, output_size=None): |
| if output_size is None: |
| raise RuntimeError("cannot repeat_interleave a meta tensor without output_size") |
| return repeats.new_empty(output_size) |
| |
| |
| @register_meta([aten.complex.default, aten.complex.out]) |
| @out_wrapper() |
| def meta_complex(real, imag): |
| assert real.dtype.is_floating_point |
| assert imag.dtype.is_floating_point |
| out_shape = _broadcast_shapes(real.shape, imag.shape) |
| return real.new_empty(out_shape, dtype=corresponding_complex_dtype(real.dtype)) |
| |
| |
| @register_meta([aten.nonzero_static.default, aten.nonzero_static.out]) |
| @out_wrapper() |
| def nonzero_static(self, *, size: int, fill_value: int = -1): |
| return self.new_empty((size, self.dim()), dtype=torch.long) |
| |
| |
| @register_meta([aten.index.Tensor, aten._unsafe_index.Tensor]) |
| def meta_index_Tensor(self, indices): |
| torch._check(bool(indices), lambda: "at least one index must be provided") |
| # aten::index is the internal advanced indexing implementation |
| # checkIndexTensorTypes and expandTensors |
| result: List[Optional[Tensor]] = [] |
| for i, index in enumerate(indices): |
| if index is not None: |
| torch._check( |
| index.dtype in [torch.long, torch.int, torch.int8, torch.bool], |
| lambda: "tensors used as indices must be long, int, byte or bool tensors", |
| ) |
| if index.dtype in [torch.int8, torch.bool]: |
| nonzero = index.nonzero() |
| k = len(result) |
| torch._check_index( |
| k + index.ndim <= self.ndim, |
| lambda: f"too many indices for tensor of dimension {self.ndim}", |
| ) |
| for j in range(index.ndim): |
| torch._check_index( |
| index.shape[j] == self.shape[k + j], |
| lambda: f"The shape of the mask {index.shape} at index {i} " |
| f"does not match the shape of the indexed tensor {self.shape} at index {k + j}", |
| ) |
| result.append(nonzero.select(1, j)) |
| else: |
| result.append(index) |
| else: |
| result.append(index) |
| indices = result |
| torch._check( |
| len(indices) <= self.ndim, |
| lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})", |
| ) |
| # expand_outplace |
| import torch._refs as refs # avoid import cycle in mypy |
| |
| indices = list(refs._maybe_broadcast(*indices)) |
| # add missing null tensors |
| while len(indices) < self.ndim: |
| indices.append(None) |
| |
| # hasContiguousSubspace |
| # true if all non-null tensors are adjacent |
| # See: |
| # https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing |
| # https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency |
| state = 0 |
| has_contiguous_subspace = False |
| for index in indices: |
| if state == 0: |
| if index is not None: |
| state = 1 |
| elif state == 1: |
| if index is None: |
| state = 2 |
| else: |
| if index is not None: |
| break |
| else: |
| has_contiguous_subspace = True |
| |
| # transposeToFront |
| # This is the logic that causes the newly inserted dimensions to show up |
| # at the beginning of the tensor, if they're not contiguous |
| if not has_contiguous_subspace: |
| dims = [] |
| transposed_indices = [] |
| for i, index in enumerate(indices): |
| if index is not None: |
| dims.append(i) |
| transposed_indices.append(index) |
| for i, index in enumerate(indices): |
| if index is None: |
| dims.append(i) |
| transposed_indices.append(index) |
| self = self.permute(dims) |
| indices = transposed_indices |
| |
| # AdvancedIndex::AdvancedIndex |
| # Now we can assume the indices have contiguous subspace |
| # This is simplified from AdvancedIndex which goes to more effort |
| # to put the input and indices in a form so that TensorIterator can |
| # take them. If we write a ref for this, probably that logic should |
| # get implemented |
| before_shape: List[int] = [] |
| after_shape: List[int] = [] |
| replacement_shape: List[int] = [] |
| for dim, index in enumerate(indices): |
| if index is None: |
| if replacement_shape: |
| after_shape.append(self.shape[dim]) |
| else: |
| before_shape.append(self.shape[dim]) |
| else: |
| replacement_shape = list(index.shape) |
| return self.new_empty(before_shape + replacement_shape + after_shape) |
| |
| |
| @register_meta([aten.convolution_backward.default]) |
| def meta_convolution_backward( |
| grad_output_, |
| input_, |
| weight_, |
| bias_sizes_opt, |
| stride, |
| padding, |
| dilation, |
| transposed, |
| output_padding, |
| groups, |
| output_mask, |
| ): |
| # High level logic taken from slow_conv3d_backward_cpu which should |
| # be representative of all convolution_backward impls |
| backend_grad_input = None |
| backend_grad_weight = None |
| backend_grad_bias = None |
| |
| if output_mask[0]: |
| backend_grad_input = grad_output_.new_empty(input_.size()) |
| if output_mask[1]: |
| backend_grad_weight = grad_output_.new_empty(weight_.size()) |
| if output_mask[2]: |
| backend_grad_bias = grad_output_.new_empty(bias_sizes_opt) |
| |
| return (backend_grad_input, backend_grad_weight, backend_grad_bias) |
| |
| |
| @register_meta([aten.addbmm.default, aten.addbmm.out]) |
| @out_wrapper() |
| def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): |
| dim1 = batch1.size(1) |
| dim2 = batch2.size(2) |
| self = self.expand((dim1, dim2)) |
| torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") |
| torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") |
| torch._check( |
| batch1.size(0) == batch2.size(0), |
| lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}", |
| ) |
| torch._check( |
| batch1.size(2) == batch2.size(1), |
| lambda: ( |
| f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} " |
| f"and {batch2.size(1)}x{batch2.size(2)})" |
| ), |
| ) |
| torch._check( |
| self.size(0) == dim1 and self.size(1) == dim2, |
| lambda: "self tensor does not match matmul output shape", |
| ) |
| return self.new_empty(self.size()) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_abs_.default, |
| aten._foreach_neg_.default, |
| aten._foreach_reciprocal_.default, |
| aten._foreach_sqrt_.default, |
| aten._foreach_sign_.default, |
| ] |
| ) |
| def meta__foreach_unaop_(self): |
| torch._check( |
| isinstance(self, List), |
| lambda: f"Expect List[Tensor] but got {type(self)}", |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_abs.default, |
| aten._foreach_neg.default, |
| aten._foreach_reciprocal.default, |
| aten._foreach_sqrt.default, |
| aten._foreach_sign.default, |
| ] |
| ) |
| def meta__foreach_unaop(self): |
| torch._check( |
| isinstance(self, List), |
| lambda: f"Expect List[Tensor] but got {type(self)}", |
| ) |
| return [torch.empty_like(s) for s in self] |
| |
| |
| def _check_foreach_binop_tensor_lists(self, other): |
| torch._check( |
| isinstance(self, List) and isinstance(other, List), |
| lambda: ( |
| "The first two arguments of must be List[Tensor], " |
| f"but got {type(self)} and {type(other)}." |
| ), |
| ) |
| torch._check( |
| len(self) > 0 and len(self) == len(other), |
| lambda: ( |
| "self and other must be non-empty and match in length, " |
| f"but got {len(self)} and {len(other)}." |
| ), |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_add.List, |
| aten._foreach_sub.List, |
| aten._foreach_mul.List, |
| aten._foreach_div.List, |
| aten._foreach_maximum.List, |
| aten._foreach_minimum.List, |
| aten._foreach_clamp_min.List, |
| aten._foreach_clamp_max.List, |
| ] |
| ) |
| def meta__foreach_binop_list(self, other, alpha=1): |
| _check_foreach_binop_tensor_lists(self, other) |
| return [torch.empty_like(s) for s in self] |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_add_.List, |
| aten._foreach_sub_.List, |
| aten._foreach_mul_.List, |
| aten._foreach_div_.List, |
| aten._foreach_maximum_.List, |
| aten._foreach_minimum_.List, |
| aten._foreach_clamp_min_.List, |
| aten._foreach_clamp_max_.List, |
| ] |
| ) |
| def meta__foreach_binop__list(self, other, alpha=1): |
| _check_foreach_binop_tensor_lists(self, other) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_add.Tensor, |
| ] |
| ) |
| def meta__foreach_binop_tensor(self, other, alpha=1): |
| torch._check( |
| isinstance(self, List), |
| lambda: f"The first argument must be List[Tensor], but got {type(self)}.", |
| ) |
| torch._check( |
| isinstance(other, torch.Tensor), |
| lambda: f"The second argument must be Tensor, but got {type(other)}.", |
| ) |
| return [torch.empty_like(s) for s in self] |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_add_.Tensor, |
| ] |
| ) |
| def meta__foreach_binop__tensor(self, other, alpha=1): |
| torch._check( |
| isinstance(self, List), |
| lambda: f"The first argument must be List[Tensor], but got {type(self)}.", |
| ) |
| torch._check( |
| isinstance(other, torch.Tensor), |
| lambda: f"The second argument must be Tensor, but got {type(other)}.", |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_add_.Scalar, |
| aten._foreach_mul_.Scalar, |
| aten._foreach_sub_.Scalar, |
| aten._foreach_div_.Scalar, |
| aten._foreach_maximum_.Scalar, |
| ] |
| ) |
| def meta__foreach_binop__scalar(self, scalar=1): |
| torch._check( |
| isinstance(self, List), |
| lambda: f"The first argument of must be List[Tensor], but got {type(self)}.", |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_add.Scalar, |
| aten._foreach_div.Scalar, |
| aten._foreach_mul.Scalar, |
| aten._foreach_sub.Scalar, |
| ] |
| ) |
| def meta__foreach_binop_scalar(self, scalar=1): |
| torch._check( |
| isinstance(self, List), |
| lambda: f"The first argument of must be List[Tensor], but got {type(self)}.", |
| ) |
| return [torch.empty_like(s) for s in self] |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_addcdiv_.Scalar, |
| aten._foreach_addcmul_.Scalar, |
| ] |
| ) |
| def meta__foreach_addcop__scalar(self, tensor1, tensor2, scalar=1): |
| torch._check( |
| all(isinstance(l, List) for l in [self, tensor1, tensor2]), |
| lambda: ( |
| "All arguments of _foreach_addc*_ must be List[Tensor], " |
| f"but got {type(self)}, {type(tensor1)}, and {type(tensor2)}" |
| ), |
| ) |
| torch._check(len(self) > 0, lambda: "input tensor list must not be empty.") |
| torch._check( |
| len(self) == len(tensor1) and len(self) == len(tensor2), |
| lambda: "All input tensor lists must have the same length", |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_lerp_.Scalar, |
| ] |
| ) |
| def meta__foreach_lerp__scalar(self, other, scalar=1): |
| _check_foreach_binop_tensor_lists(self, other) |
| |
| |
| @register_meta( |
| [ |
| aten._foreach_addcdiv.Scalar, |
| aten._foreach_addcmul.Scalar, |
| ] |
| ) |
| def meta__foreach_addcop_scalar(self, tensor1, tensor2, scalar=1): |
| torch._check( |
| all(isinstance(l, List) for l in [self, tensor1, tensor2]), |
| lambda: ( |
| "All arguments must be List[Tensor], " |
| f"but got {type(self)}, {type(tensor1)}, and {type(tensor2)}" |
| ), |
| ) |
| torch._check(len(self) > 0, lambda: "input tensor list must not be empty.") |
| torch._check( |
| len(self) == len(tensor1) and len(self) == len(tensor2), |
| lambda: "All input tensor lists must have the same length", |
| ) |
| |
| return [torch.empty_like(s) for s in self] |
| |
| |
| @register_meta([aten._foreach_pow.ScalarAndTensor]) |
| def meta__foreach_pow_scalar_and_tensor(self, exponent): |
| torch._check( |
| isinstance(exponent, List), |
| lambda: f"exponent must be a tensor list but got {type(exponent)}", |
| ) |
| return [torch.empty_like(e) for e in exponent] |
| |
| |
| @register_meta([aten._foreach_addcdiv_.Tensor, aten._foreach_addcmul_.Tensor]) |
| def meta__foreach_addcop_tensor(self, tensor1, tensor2, scalars): |
| torch._check( |
| all(isinstance(l, List) for l in [self, tensor1, tensor2]) |
| and isinstance(scalars, torch.Tensor), |
| lambda: ( |
| "_foreach_addc*_ op expects arguments of type: List[Tensor], List[Tensor], List[Tensor], tensor, " |
| f"but got: {type(self)}, {type(tensor1)}, {type(tensor2)}, and {type(scalars)}" |
| ), |
| ) |
| torch._check(len(self) > 0, lambda: "input tensor list must not be empty.") |
| torch._check( |
| len(self) == len(tensor1) and len(self) == len(tensor2), |
| lambda: "All input tensor lists must have the same length", |
| ) |
| |
| |
| @register_meta([aten._foreach_copy_]) |
| def meta__foreach_copy_inplace(self, src, non_blocking=False): |
| _check_foreach_binop_tensor_lists(self, src) |
| |
| |
| @register_meta([aten._fused_adam_.default]) |
| def meta__fused_adam_( |
| self, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| max_exp_avg_sqs, |
| state_steps, |
| *, |
| lr, |
| beta1, |
| beta2, |
| weight_decay, |
| eps, |
| amsgrad, |
| maximize, |
| grad_scale=None, |
| found_inf=None, |
| ): |
| for l in [self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]: |
| torch._check( |
| isinstance(l, List), |
| lambda: f"exponent must be a tensor list but got {type(l)}", |
| ) |
| |
| |
| @register_meta([aten._fused_adam.default]) |
| def meta__fused_adam( |
| self, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| max_exp_avg_sqs, |
| state_steps, |
| *, |
| lr, |
| beta1, |
| beta2, |
| weight_decay, |
| eps, |
| amsgrad, |
| maximize, |
| grad_scale=None, |
| found_inf=None, |
| ): |
| for l in [self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]: |
| torch._check( |
| isinstance(l, List), |
| lambda: f"exponent must be a tensor list but got {type(l)}", |
| ) |
| |
| def empty_like_list(tensor_list): |
| return [torch.empty_like(t) for t in tensor_list] |
| |
| return ( |
| empty_like_list(self), |
| empty_like_list(grads), |
| empty_like_list(exp_avgs), |
| empty_like_list(exp_avg_sqs), |
| empty_like_list(max_exp_avg_sqs), |
| ) |
| |
| |
| @register_meta([aten._int_mm]) |
| @out_wrapper() |
| def meta__int_mm(a, b): |
| torch._check(a.dim() == 2, lambda: "a must be a 2D tensor") |
| torch._check(b.dim() == 2, lambda: "b must be a 2D tensor") |
| torch._check( |
| a.dtype is torch.int8, |
| lambda: f"expected self to be int8, got {a.dtype}", |
| ) |
| torch._check( |
| b.dtype is torch.int8, |
| lambda: f"expected mat2 to be int8, got {b.dtype}", |
| ) |
| torch._check( |
| a.size(1) == b.size(0), |
| lambda: ( |
| f"Incompatible matrix sizes for _int_mm ({a.size(0)}x{a.size(1)} " |
| f"and {b.size(0)}x{b.size(1)})" |
| ), |
| ) |
| return a.new_empty((a.size(0), b.size(1)), dtype=torch.int32) |
| |
| |
| @register_meta([aten._convert_weight_to_int4pack]) |
| def meta__convert_weight_to_int4pack(w, inner_k_tiles): |
| torch._check(w.dim() == 2, lambda: "w must be a 2D tensor") |
| torch._check( |
| w.dtype is torch.int32, |
| lambda: f"expected w to be int32, got {w.dtype}", |
| ) |
| n = w.size(0) |
| k = w.size(1) |
| return w.new_empty( |
| ( |
| n // 8, |
| k // (inner_k_tiles * 16), |
| 32, |
| inner_k_tiles // 2, |
| ), |
| dtype=torch.int32, |
| ) |
| |
| |
| @register_meta([aten._weight_int4pack_mm]) |
| def meta__weight_int4pack_mm(x, w, q_group_size, q_scale_and_zeros): |
| torch._check(x.dim() == 2, lambda: "x must be a 2D tensor") |
| torch._check(w.dim() == 4, lambda: "w must be a 4D tensor") |
| torch._check( |
| x.dtype is torch.bfloat16, |
| lambda: f"expected x to be bf16, got {x.dtype}", |
| ) |
| torch._check( |
| w.dtype is torch.int32, |
| lambda: f"expected w to be int32, got {w.dtype}", |
| ) |
| return x.new_empty(x.size(0), w.size(0) * 8, dtype=x.dtype) |
| |
| |
| @register_meta(aten._cdist_forward.default) |
| def meta_cdist_forward(x1, x2, p, compute_mode): |
| torch._check( |
| x1.dim() >= 2, |
| lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D", |
| ) |
| torch._check( |
| x2.dim() >= 2, |
| lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D", |
| ) |
| torch._check( |
| x1.size(-1) == x2.size(-1), |
| lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}", |
| ) |
| torch._check( |
| utils.is_float_dtype(x1.dtype), |
| lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}", |
| ) |
| torch._check( |
| utils.is_float_dtype(x2.dtype), |
| lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}", |
| ) |
| torch._check(p >= 0, lambda: "cdist only supports non-negative p values") |
| torch._check( |
| compute_mode in (None, 1, 2), |
| lambda: f"possible modes: None, 1, 2, but was: {compute_mode}", |
| ) |
| r1 = x1.size(-2) |
| r2 = x2.size(-2) |
| batch_tensor1 = x1.shape[:-2] |
| batch_tensor2 = x2.shape[:-2] |
| output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) |
| output_shape.extend([r1, r2]) |
| return x1.new_empty(output_shape) |
| |
| |
| @register_meta(aten._cdist_backward) |
| @out_wrapper() |
| def meta_cdist_backward(grad, x1, x2, p, cdist): |
| c1 = x1.shape[-1] |
| r1 = x1.shape[-2] |
| r2 = x2.shape[-2] |
| batch_tensor1 = x1.shape[:-2] |
| batch_tensor2 = x2.shape[:-2] |
| expand_batch_portion = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) |
| tensor1_expand_size = expand_batch_portion.copy() |
| tensor1_expand_size.extend([r1, c1]) |
| batch_product = math.prod(expand_batch_portion) |
| if r1 == 0 or r2 == 0 or c1 == 0 or batch_product == 0: |
| return torch.zeros_like(x1) |
| if tensor1_expand_size != list(x1.shape): |
| x1 = x1.expand(tensor1_expand_size) |
| return torch.empty_like(x1, memory_format=torch.contiguous_format) |
| |
| |
| # NB: This meta function accepts non-meta arguments! When this behavior |
| # was originally introduced this was accidental, but it is now load bearing |
| # as people are using this so that they can conveniently test code involving |
| # embeddings (feeding CPU tensor inputs with meta device EmbeddingBag module) |
| @register_meta(aten._embedding_bag.default) |
| def meta_embedding_bag( |
| weight, |
| indices, |
| offsets, |
| scale_grad_by_freq=False, |
| mode=0, |
| sparse=False, |
| per_sample_weights=None, |
| include_last_offset=False, |
| padding_idx=-1, |
| ): |
| torch._check( |
| indices.dtype in (torch.long, torch.int), |
| lambda: f"expected indices to be long or int, got {indices.dtype}", |
| ) |
| torch._check( |
| offsets.dtype in (torch.long, torch.int), |
| lambda: f"expected offsets to be long or int, got {offsets.dtype}", |
| ) |
| torch._check( |
| utils.is_float_dtype(weight.dtype), |
| lambda: f"expected weight to be floating point type, got {weight.dtype}", |
| ) |
| |
| num_bags = offsets.size(0) |
| if include_last_offset: |
| torch._check( |
| num_bags >= 1, |
| lambda: "include_last_offset: numBags should be at least 1", |
| ) |
| num_bags -= 1 |
| |
| output = weight.new_empty(num_bags, weight.size(1)) |
| MODE_SUM, MODE_MEAN, MODE_MAX = range(3) |
| |
| if per_sample_weights is not None: |
| torch._check( |
| mode == MODE_SUM, |
| lambda: "embedding_bag: per_sample_weights only supported with mode='sum'", |
| ) |
| torch._check( |
| per_sample_weights.dtype == weight.dtype, |
| lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype", |
| ) |
| torch._check( |
| per_sample_weights.ndim == 1, |
| lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D", |
| ) |
| torch._check( |
| per_sample_weights.numel() == indices.numel(), |
| lambda: ( |
| f"expected per_sample_weights.numel() ({per_sample_weights.numel()} " |
| f"to be the same as indices.numel() ({indices.numel()})" |
| ), |
| ) |
| |
| def is_fast_path_index_select_scale(src, scale, output, padding_idx): |
| return ( |
| is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1 |
| ) |
| |
| def is_fast_path_index_select(src, output, padding_idx): |
| return ( |
| (src.dtype == torch.float or src.dtype == torch.half) |
| and src.stride(1) == 1 |
| and output.stride(1) == 1 |
| and padding_idx < 0 |
| ) |
| |
| def is_fast_path(src, scale, output, padding_idx): |
| if scale is not None: |
| return is_fast_path_index_select_scale(src, scale, output, padding_idx) |
| else: |
| return is_fast_path_index_select(src, output, padding_idx) |
| |
| if device_hint(offsets) != "cpu": |
| offset2bag = indices.new_empty(indices.size(0)) |
| bag_size = indices.new_empty(offsets.size()) |
| if mode == MODE_MAX: |
| max_indices = indices.new_empty(num_bags, weight.size(1)) |
| else: |
| max_indices = indices.new_empty(0) |
| else: |
| fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx) |
| if mode in (MODE_MEAN, MODE_MAX) or not fast_path_sum: |
| offset2bag = offsets.new_empty(indices.size(0)) |
| else: |
| offset2bag = offsets.new_empty(0) |
| bag_size = offsets.new_empty(num_bags) |
| # This part of the logic comes from make_max_indices_out in EmbeddingBag.cpp |
| numBags = offsets.shape[0] |
| if mode == MODE_MAX: |
| if include_last_offset: |
| torch._check( |
| numBags >= 1, |
| lambda: "include_last_offset: numBags should be at least 1", |
| ) |
| numBags -= 1 |
| max_indices = offsets.new_empty(numBags, weight.shape[1]) |
| else: |
| max_indices = offsets.new_empty(bag_size.size()) |
| return output, offset2bag, bag_size, max_indices |
| |
| |
| @register_meta(aten._embedding_bag_forward_only.default) |
| def meta_embedding_bag_forward_only(weight, indices, offsets, *args): |
| output, offset2bag, bag_size, max_indices = meta_embedding_bag( |
| weight, indices, offsets, *args |
| ) |
| if device_hint(offsets) == "cpu": |
| bag_size = offsets.new_empty(offsets.size()) |
| return output, offset2bag, bag_size, max_indices |
| |
| |
| def _get_reduction_dtype(input, dtype, promote_int_to_long=True): |
| # if specified, dtype takes precedence |
| if dtype: |
| return dtype |
| |
| if input.dtype.is_floating_point or input.dtype.is_complex: |
| return input.dtype |
| elif promote_int_to_long: |
| return torch.long |
| |
| return input.dtype |
| |
| |
| @register_meta([aten.nansum.default, aten.nansum.out]) |
| @out_wrapper() |
| def meta_nansum(input, dims=None, keepdim=False, *, dtype=None): |
| output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True) |
| dims = utils.reduction_dims(input.shape, dims) |
| output_shape = _compute_reduction_shape(input, dims, keepdim) |
| return input.new_empty(output_shape, dtype=output_dtype) |
| |
| |
| @register_meta([aten.median.default, aten.nanmedian.default]) |
| def meta_median(input): |
| output_shape = utils.compute_reduction_output_shape( |
| input.shape, tuple(range(input.dim())) |
| ) |
| return input.new_empty(output_shape) |
| |
| |
| @register_meta( |
| [ |
| aten.median.dim, |
| aten.median.dim_values, |
| aten.nanmedian.dim, |
| aten.nanmedian.dim_values, |
| aten.mode.default, |
| aten.mode.values, |
| ] |
| ) |
| @out_wrapper("values", "indices") |
| def meta_median_mode_dim(input, dim=-1, keepdim=False): |
| if device_hint(input) == "cuda": |
| utils.alert_not_deterministic("median CUDA with indices output") |
| dim = utils.reduction_dims(input.shape, (dim,)) |
| output_shape = _compute_reduction_shape(input, dim, keepdim) |
| return ( |
| input.new_empty(output_shape), |
| input.new_empty(output_shape, dtype=torch.long), |
| ) |
| |
| |
| @register_meta(aten.logical_not_.default) |
| def meta_logical_not_(self): |
| return self |
| |
| |
| @register_meta(aten.repeat.default) |
| def meta_repeat(self, repeats): |
| torch._check( |
| len(repeats) >= self.dim(), |
| lambda: "Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor", |
| ) |
| # Add new leading dimensions to the tensor if the |
| # number of target dimensions is larger than the |
| # number of source dimensions. |
| num_new_dimensions = len(repeats) - self.dim() |
| padded_size = (1,) * num_new_dimensions + tuple(self.shape) |
| target_size = [padded_size[i] * repeats[i] for i in range(len(repeats))] |
| return self.new_empty(target_size) |
| |
| |
| @register_meta(aten.zero_.default) |
| def meta_zero_(self): |
| return self |
| |
| |
| @register_meta( |
| [ |
| aten.mul_.Scalar, |
| aten.div_.Scalar, |
| aten.mul_.Tensor, |
| aten.div_.Tensor, |
| aten.logical_and_.default, |
| aten.logical_or_.default, |
| aten.logical_xor_.default, |
| ], |
| ) |
| def meta_binop_inplace(self, other): |
| if isinstance(other, torch.Tensor): |
| check_inplace_broadcast(self.shape, other.shape) |
| return self |
| |
| |
| @register_meta( |
| [ |
| aten.add_.Scalar, |
| aten.sub_.Scalar, |
| aten.add_.Tensor, |
| aten.sub_.Tensor, |
| ], |
| ) |
| def meta_binop_inplace_alpha(self, other, alpha=1): |
| if isinstance(other, torch.Tensor): |
| check_inplace_broadcast(self.shape, other.shape) |
| return self |
| |
| |
| @register_meta([aten.round.default, aten.round.decimals]) |
| def meta_round(self, **kwargs): |
| return elementwise_meta( |
| self, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| |
| |
| def shift_dtype_check(fn_name, self, val): |
| torch._check( |
| utils.is_integer_dtype(self.dtype), |
| lambda: f"{fn_name}: Expected input tensor to have an integral dtype. Got {self.dtype}", |
| ) |
| if isinstance(val, torch.Tensor): |
| torch._check( |
| utils.is_integer_dtype(val.dtype), |
| lambda: f"{fn_name}: Expected shift value to have an integral dtype. Got {val.dtype}", |
| ) |
| else: |
| torch._check( |
| isinstance(val, IntLike), |
| lambda: f"{fn_name}: Expected shift value to be an int. Got {val}", |
| ) |
| |
| |
| @register_meta([aten.__rshift__.Tensor, aten.__rshift__.Scalar]) |
| def meta_rshifts(self, other): |
| shift_dtype_check("rshift", self, other) |
| return elementwise_meta( |
| self, other, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| |
| |
| @register_meta([aten.__lshift__.Tensor, aten.__lshift__.Scalar]) |
| def meta_lshifts(self, other): |
| shift_dtype_check("lshift", self, other) |
| return elementwise_meta( |
| self, other, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT |
| ) |
| |
| |
| @register_meta(aten.zero.default) |
| def meta_zero(self): |
| return self.new_empty(self.shape) |
| |
| |
| @register_meta([aten.fill_.Tensor, aten.fill_.Scalar]) |
| def meta_fill_(self, val): |
| return self |
| |
| |
| @register_meta([aten.fill.Tensor, aten.fill.Scalar]) |
| def meta_fill(self, val): |
| return torch.empty_like(self) |
| |
| |
| @register_meta(aten.relu_.default) |
| def meta_relu_(self): |
| return self |
| |
| |
| @register_meta([aten.index_put.default, aten._unsafe_index_put.default]) |
| def meta_index_put(self, indices, values, accumulate=False): |
| return torch.empty_like(self) |
| |
| |
| @register_meta(aten.masked_fill_.Scalar) |
| def meta_masked_fill_(self, mask, value): |
| check_inplace_broadcast(self.shape, mask.shape) |
| return self |
| |
| |
| @register_meta(aten.masked_scatter_) |
| def meta_masked_scatter_(self, mask, source): |
| torch._check( |
| mask.dtype in (torch.bool, torch.uint8), lambda: "Mask must be bool or uint8" |
| ) |
| torch._check( |
| self.dtype == source.dtype, |
| lambda: "masked_scatter: expected self and source to have same " |
| "dtypes but got {self.dtype} and {source.dtype}", |
| ) |
| return self |
| |
| |
| @register_meta(aten.masked_scatter) |
| @out_wrapper() |
| def meta_masked_scatter(self, mask, source): |
| self, mask = _maybe_broadcast(self, mask) |
| output = torch.empty_like(self, memory_format=torch.contiguous_format) |
| return meta_masked_scatter_(output, mask, source) |
| |
| |
| @register_meta(aten.masked_scatter_backward) |
| def meta_masked_scatter_backward(self, mask, sizes): |
| return self.new_empty(sizes) |
| |
| |
| @register_meta(aten.index_put_.default) |
| def meta_index_put_(self, indices, values, accumulate=False): |
| return self |
| |
| |
| @register_meta(aten.alias.default) |
| def meta_alias(self): |
| return self.view(self.shape) |
| |
| |
| def common_meta_baddbmm_bmm(batch1, batch2, is_bmm, self_baddbmm=None): |
| torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") |
| torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") |
| |
| batch1_sizes = batch1.size() |
| batch2_sizes = batch2.size() |
| |
| bs = batch1_sizes[0] |
| contraction_size = batch1_sizes[2] |
| res_rows = batch1_sizes[1] |
| res_cols = batch2_sizes[2] |
| output_size = (bs, res_rows, res_cols) |
| |
| torch._check( |
| batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size, |
| lambda: f"Expected size for first two dimensions of batch2 tensor to be: [{bs}" |
| f", {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}].", |
| ) |
| |
| # TODO: handle out |
| |
| output = batch2.new_empty(output_size) |
| |
| if not is_bmm and self_baddbmm is not None: |
| torch._check(self_baddbmm.dim() == 3, lambda: "self must be a 3D tensor") |
| torch._check( |
| self_baddbmm.size() == output_size, |
| lambda: f"Expected an input tensor shape with shape {output_size} but got shape: {self_baddbmm.size()}", |
| ) |
| |
| return output |
| |
| |
| @register_meta(aten.bmm.default) |
| def meta_bmm(self, mat2): |
| return common_meta_baddbmm_bmm(self, mat2, True) |
| |
| |
| def div_rtn(x, y): |
| q = x // y |
| r = x % y |
| # WARNING: explicit bool conversion here is necessary; |
| # would be fixed by SymBool |
| if r != 0 and (bool(r < 0) != bool(y < 0)): |
| q -= 1 |
| return q |
| |
| |
| def pooling_output_shape_pad_lr( |
| inputSize, kernelSize, pad_l, pad_r, stride, dilation, ceil_mode |
| ): |
| outputSize = ( |
| div_rtn( |
| inputSize |
| + pad_l |
| + pad_r |
| - dilation * (kernelSize - 1) |
| - 1 |
| + (stride - 1 if ceil_mode else 0), |
| stride, |
| ) |
| + 1 |
| ) |
| if ceil_mode: |
| if (outputSize - 1) * stride >= inputSize + pad_l: |
| outputSize -= 1 |
| return outputSize |
| |
| |
| def pooling_output_shape(inputSize, kernelSize, pad, stride, dilation, ceil_mode): |
| torch._check(stride != 0, lambda: "stride should not be zero") |
| torch._check(pad >= 0, lambda: f"pad must be non-negative, but got pad: {pad}") |
| torch._check( |
| pad <= kernelSize // 2, |
| lambda: f"pad should be at most half of kernel size, but got pad={pad} and kernel_size={kernelSize}", |
| ) |
| return pooling_output_shape_pad_lr( |
| inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode |
| ) |
| |
| |
| def pool2d_shape_check( |
| input, |
| kH, |
| kW, |
| dH, |
| dW, |
| padH, |
| padW, |
| dilationH, |
| dilationW, |
| nInputPlane, |
| inputHeight, |
| inputWidth, |
| outputHeight, |
| outputWidth, |
| memory_format, |
| ): |
| ndim = input.dim() |
| nOutputPlane = nInputPlane |
| |
| torch._check( |
| kW > 0 and kH > 0, |
| lambda: "kernel size should be greater than zero, but got kH: {kH}, kW: {kW}", |
| ) |
| torch._check( |
| dW > 0 and dH > 0, |
| lambda: "stride should be greater than zero, but got dH: {dH}, dW: {dW}", |
| ) |
| torch._check( |
| dilationH > 0 and dilationW > 0, |
| lambda: "dilation should be greater than zero, but got dilationH: {dilationH}, dilationW: {dilationW}", |
| ) |
| |
| valid_dims = input.size(1) != 0 and input.size(2) != 0 |
| |
| if memory_format == torch.channels_last: |
| torch._check( |
| ndim == 4 and valid_dims and input.size(3) != 0, |
| lambda: "Expected 4D (batch mode) tensor expected for input with channels_last layout" |
| " with optional 0 dim batch size for input, but got: {input.size()}", |
| ) |
| else: |
| torch._check( |
| (ndim == 3 and input.size(0) != 0 and valid_dims) |
| or (ndim == 4 and valid_dims and input.size(3) != 0), |
| lambda: f"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got: {input.size()}", |
| ) |
| |
| torch._check( |
| kW // 2 >= padW and kH // 2 >= padH, |
| lambda: "pad should be smaller than or equal to half of kernel size, but got " |
| f"padW = {padW}, padH = {padH}, kW = {kW}, kH = {kH}", |
| ) |
| |
| torch._check( |
| outputWidth >= 1 and outputHeight >= 1, |
| lambda: f"Given input size: ({nInputPlane}x{inputHeight}x{inputWidth}). " |
| f"Calculated output size: ({nOutputPlane}x{outputHeight}x{outputWidth}). " |
| "Output size is too small", |
| ) |
| |
| |
| def pool3d_shape_check( |
| input: Tensor, |
| nslices: int, |
| kT: int, |
| kH: int, |
| kW: int, |
| dT: int, |
| dH: int, |
| dW: int, |
| pT: int, |
| pH: int, |
| pW: int, |
| dilationT: int, |
| dilationH: int, |
| dilationW: int, |
| itime: int, |
| iheight: int, |
| iwidth: int, |
| otime: int, |
| oheight: int, |
| owidth: int, |
| fn_name: str, |
| check_input_size: bool = False, |
| ): |
| ndim = input.ndim |
| |
| torch._check( |
| kT > 0 and kW > 0 and kH > 0, |
| lambda: ( |
| f"kernel size should be greater than zero, but got " |
| f"kT: {kT}, kH: {kH}, kW: {kW}" |
| ), |
| ) |
| torch._check( |
| dT > 0 and dW > 0 and dH > 0, |
| lambda: ( |
| f"stride should be greater than zero, but got " |
| f"dT: {dT}, dH: {dH}, dW: {dW}" |
| ), |
| ) |
| torch._check( |
| dilationT > 0 and dilationW > 0 and dilationH > 0, |
| lambda: ( |
| f"dilation should be greater than zero, but got " |
| f"dilationT: {dilationT}, dilationH: {dilationH}, dilationW: {dilationW}" |
| ), |
| ) |
| |
| torch._check( |
| ndim in (4, 5), |
| lambda: f"{fn_name}: Expected 4D or 5D tensor for input, but got: {input.shape}", |
| ) |
| |
| for i in range(ndim): |
| if ndim == 5 and i == 0: |
| # size of batch-dim can be 0. |
| continue |
| torch._check( |
| input.size(i) > 0, |
| lambda: ( |
| f"{fn_name}: Expected input's non-batch dimensions to have positive length," |
| f" but input has a shape of {input.shape}" |
| f" and non-batch dimension {input.size(i)} has length zero!" |
| ), |
| ) |
| |
| if check_input_size: # AveragePool3d |
| torch._check( |
| itime >= kT and iheight >= kH and iwidth >= kW, |
| lambda: ( |
| f"input image (T: {itime} H: {iheight} W: {iwidth}) smaller than " |
| f"kernel size (kT: {kT} kH: {kH} kW: {kW})" |
| ), |
| ) |
| |
| torch._check( |
| kT / 2 >= pT and kW / 2 >= pW and kH / 2 >= pH, |
| lambda: ( |
| f"pad should be smaller than or equal to half of kernel size, but got " |
| f"kT: {kT} kW: {kW} kH: {kH} padT: {pT} padW: {pW} padH: {pH}" |
| ), |
| ) |
| |
| torch._check( |
| otime >= 1 and owidth >= 1 and oheight >= 1, |
| lambda: ( |
| f"Given input size: ({nslices}x{itime}x{iheight}x{iwidth}). " |
| f"Calculated output size: ({nslices}x{otime}x{oheight}x{owidth}). " |
| f"Output size is too small" |
| ), |
| ) |
| |
| |
| def max_pool3d_backward_shape_check( |
| input, |
| grad_output, |
| indices, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| pT, |
| pH, |
| pW, |
| dilationT, |
| dilationH, |
| dilationW, |
| itime, |
| iheight, |
| iwidth, |
| otime, |
| oheight, |
| owidth, |
| fn_name, |
| ): |
| ndim = input.ndim |
| |
| pool3d_shape_check( |
| input, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| pT, |
| pH, |
| pW, |
| dilationT, |
| dilationH, |
| dilationW, |
| itime, |
| iheight, |
| iwidth, |
| otime, |
| oheight, |
| owidth, |
| fn_name, |
| ) |
| |
| check_dim_size(grad_output, ndim, ndim - 4, nslices) |
| check_dim_size(grad_output, ndim, ndim - 3, otime) |
| check_dim_size(grad_output, ndim, ndim - 2, oheight) |
| check_dim_size(grad_output, ndim, ndim - 1, owidth) |
| |
| check_dim_size(indices, ndim, ndim - 4, nslices) |
| check_dim_size(indices, ndim, ndim - 3, otime) |
| check_dim_size(indices, ndim, ndim - 2, oheight) |
| check_dim_size(indices, ndim, ndim - 1, owidth) |
| |
| |
| def avg_pool3d_backward_shape_check( |
| input: Tensor, |
| grad_output: Tensor, |
| nslices: int, |
| kT: int, |
| kH: int, |
| kW: int, |
| dT: int, |
| dH: int, |
| dW: int, |
| pT: int, |
| pH: int, |
| pW: int, |
| itime: int, |
| iheight: int, |
| iwidth: int, |
| otime: int, |
| oheight: int, |
| owidth: int, |
| fn_name: str, |
| ): |
| ndim = input.ndim |
| |
| pool3d_shape_check( |
| input, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| pT, |
| pH, |
| pW, |
| 1, |
| 1, |
| 1, |
| itime, |
| iheight, |
| iwidth, |
| otime, |
| oheight, |
| owidth, |
| fn_name, |
| True, |
| ) |
| |
| check_dim_size(grad_output, ndim, ndim - 4, nslices) |
| check_dim_size(grad_output, ndim, ndim - 3, otime) |
| check_dim_size(grad_output, ndim, ndim - 2, oheight) |
| check_dim_size(grad_output, ndim, ndim - 1, owidth) |
| |
| |
| def max_pool2d_checks_and_compute_shape( |
| input, kernel_size, stride, padding, dilation, ceil_mode |
| ): |
| # Reference: aten/src/ATen/native/DilatedMaxPool2d.cpp |
| def unpack(name, val): |
| torch._check( |
| len(val) in [1, 2], |
| lambda: f"max_pool2d: {name} must either be a single int, or a tuple of two ints", |
| ) |
| H = val[0] |
| W = H if len(val) == 1 else val[1] |
| return H, W |
| |
| kH, kW = unpack("kernel_size", kernel_size) |
| |
| torch._check( |
| len(stride) in [0, 1, 2], |
| lambda: "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints", |
| ) |
| if len(stride) == 0: |
| dH, dW = kH, kW |
| else: |
| dH, dW = unpack("stride", stride) |
| |
| padH, padW = unpack("padding", padding) |
| dilationH, dilationW = unpack("dilation", dilation) |
| nInputPlane = input.size(-3) |
| inputHeight = input.size(-2) |
| inputWidth = input.size(-1) |
| |
| memory_format = utils.suggest_memory_format(input) |
| if memory_format == torch.channels_last: |
| torch._check( |
| input.dim() == 4, |
| lambda: "non-empty 4D (batch mode) tensor expected for input with channels_last layout", |
| ) |
| elif memory_format == torch.contiguous_format: |
| torch._check( |
| input.dim() in [3, 4], |
| lambda: "non-empty 3D or 4D (batch mode) tensor expected for input", |
| ) |
| else: |
| torch._check( |
| False, |
| lambda: "Unsupport memory format. Supports only ChannelsLast, Contiguous", |
| ) |
| |
| outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode) |
| outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode) |
| |
| pool2d_shape_check( |
| input, |
| kH, |
| kW, |
| dH, |
| dW, |
| padH, |
| padW, |
| dilationH, |
| dilationW, |
| nInputPlane, |
| inputHeight, |
| inputWidth, |
| outputHeight, |
| outputWidth, |
| memory_format, |
| ) |
| |
| return nInputPlane, outputHeight, outputWidth |
| |
| |
| @register_meta(aten.max_pool2d_with_indices_backward.default) |
| def meta_max_pool2d_with_indices_backward( |
| grad_output, |
| self, |
| kernel_size, |
| stride, |
| padding, |
| dilation, |
| ceil_mode, |
| indices, |
| ): |
| ( |
| nInputPlane, |
| outputHeight, |
| outputWidth, |
| ) = max_pool2d_checks_and_compute_shape( |
| self, kernel_size, stride, padding, dilation, ceil_mode |
| ) |
| |
| torch._check( |
| self.dtype == grad_output.dtype, |
| lambda: f"Expected dtype {self.dtype} for `gradOutput` but got dtype {grad_output.dtype}", |
| ) |
| |
| nOutputPlane = nInputPlane |
| ndim = self.ndim |
| |
| def _check_dim_size(t): |
| check_dim_size(t, ndim, ndim - 3, nOutputPlane) |
| check_dim_size(t, ndim, ndim - 2, outputHeight) |
| check_dim_size(t, ndim, ndim - 1, outputWidth) |
| |
| _check_dim_size(grad_output) |
| _check_dim_size(indices) |
| |
| memory_format = utils.suggest_memory_format(self) |
| return torch.empty( |
| self.shape, |
| dtype=self.dtype, |
| device=self.device, |
| memory_format=memory_format, |
| ) |
| |
| |
| @register_meta(aten.max_pool2d_with_indices.default) |
| def meta_max_pool2d_with_indices( |
| input, kernel_size, stride=(), padding=(0,), dilation=(1,), ceil_mode=False |
| ): |
| ( |
| nInputPlane, |
| outputHeight, |
| outputWidth, |
| ) = max_pool2d_checks_and_compute_shape( |
| input, kernel_size, stride, padding, dilation, ceil_mode |
| ) |
| |
| nbatch = input.size(-4) if input.dim() == 4 else 1 |
| memory_format = utils.suggest_memory_format(input) |
| if input.dim() == 3: |
| size = [nInputPlane, outputHeight, outputWidth] |
| else: |
| size = [nbatch, nInputPlane, outputHeight, outputWidth] |
| return ( |
| torch.empty( |
| size, |
| dtype=input.dtype, |
| device=input.device, |
| memory_format=memory_format, |
| ), |
| torch.empty( |
| size, |
| dtype=torch.int64, |
| device=input.device, |
| memory_format=memory_format, |
| ), |
| ) |
| |
| |
| @register_meta(aten.max_unpool2d) |
| @out_wrapper() |
| def meta_max_unpool2d(self_, indices, output_size): |
| utils.alert_not_deterministic("max_unpooling2d_forward_out") |
| |
| torch._check( |
| indices.dtype == torch.int64, |
| lambda: f"elements in indices should be type int64 but got: {indices.dtype}", |
| ) |
| torch._check( |
| len(output_size) == 2, |
| lambda: ( |
| f"There should be exactly two elements (height, width) in output_size, " |
| f"but got {len(output_size)} elements." |
| ), |
| ) |
| |
| oheight, owidth = output_size |
| |
| torch._check( |
| self_.ndim in (3, 4), |
| lambda: ( |
| f"Input to max_unpooling2d should be a 3d or 4d Tensor, " |
| f"but got a tensor with {self_.ndim} dimensions." |
| ), |
| ) |
| torch._check( |
| self_.shape == indices.shape, |
| lambda: ( |
| f"Expected shape of indices to be same as that of the input tensor ({self_.shape}) " |
| f"but got indices tensor with shape: {indices.shape}" |
| ), |
| ) |
| |
| for i in range(1, self_.ndim): |
| torch._check( |
| self_.size(i) > 0, |
| lambda: ( |
| f"max_unpooling2d(): " |
| f"Expected input to have non-zero size for non-batch dimensions, " |
| f"but got {self_.shape} with dimension {i} being empty." |
| ), |
| ) |
| |
| self = self_.contiguous() |
| |
| if self_.ndim == 3: |
| nchannels = self.size(0) |
| result = self.new_empty((nchannels, oheight, owidth)) |
| else: |
| nbatch = self.size(0) |
| nchannels = self.size(1) |
| result = self.new_empty((nbatch, nchannels, oheight, owidth)) |
| |
| return result |
| |
| |
| def _max_unpooling3d_shape_check(input, indices, output_size, stride, padding, fn_name): |
| torch._check( |
| indices.dtype == torch.int64, lambda: "elements in indices should be type int64" |
| ) |
| torch._check( |
| input.ndim in (4, 5), |
| lambda: f"Input to max_unpooling3d should be a 4d or 5d Tensor, but got a tensor with {input.ndim} dimensions.", |
| ) |
| torch._check( |
| len(output_size) == 3, |
| lambda: ( |
| f"There should be exactly three elements (depth, height, width) in output_size, " |
| f"but got {len(output_size)} elements." |
| ), |
| ) |
| torch._check( |
| len(stride) == 3, |
| lambda: f"There should be exactly three elements (depth, height, width) in stride, but got: {len(stride)} elements.", |
| ) |
| torch._check( |
| len(padding) == 3, |
| lambda: f"There should be exactly three elements (depth, height, width) in padding, but got: {len(padding)} elements.", |
| ) |
| torch._check( |
| input.shape == indices.shape, |
| lambda: ( |
| f"Expected shape of indices to be same as that of the input tensor ({input.shape}) " |
| f"but got indices tensor with shape: {indices.shape}" |
| ), |
| ) |
| |
| for i in range(1, input.ndim): |
| torch._check( |
| input.size(i) > 0, |
| lambda: ( |
| f"{fn_name}: " |
| f"Expected input to have non-zero size for non-batch dimensions, " |
| f"but got {input.shape} with dimension {i} being empty." |
| ), |
| ) |
| |
| torch._check( |
| stride[0] > 0 and stride[1] > 0 and stride[2] > 0, |
| lambda: f"strides should be greater than zero, but got stride: {stride}", |
| ) |
| |
| |
| @register_meta(aten.max_unpool3d) |
| @out_wrapper() |
| def meta_max_unpool3d(self_, indices, output_size, stride, padding): |
| utils.alert_not_deterministic("max_unpooling3d_forward_out") |
| |
| _max_unpooling3d_shape_check( |
| self_, indices, output_size, stride, padding, "max_unpooling3d()" |
| ) |
| |
| self = self_.contiguous() |
| |
| odepth, oheight, owidth = output_size |
| |
| if self_.ndim == 4: |
| nchannels = self.size(0) |
| result = self.new_empty((nchannels, odepth, oheight, owidth)) |
| else: |
| nbatch = self.size(0) |
| nchannels = self.size(1) |
| result = self.new_empty((nbatch, nchannels, odepth, oheight, owidth)) |
| |
| return result |
| |
| |
| @register_meta(aten.max_pool3d_with_indices) |
| @out_wrapper("out", "indices") |
| def meta_max_pool3d_with_indices( |
| input, |
| kernel_size, |
| stride=(), |
| padding=(0,), |
| dilation=(1,), |
| ceil_mode=False, |
| ): |
| torch._check( |
| len(kernel_size) in (1, 3), |
| lambda: "max_pool3d: kernel_size must either be a single int, or a tuple of three ints", |
| ) |
| kT = kernel_size[0] |
| kH = kT if len(kernel_size) == 1 else kernel_size[1] |
| kW = kT if len(kernel_size) == 1 else kernel_size[2] |
| |
| torch._check( |
| not stride or len(stride) in (1, 3), |
| lambda: "max_pool3d: stride must either be omitted, a single int, or a tuple of three ints", |
| ) |
| dT = kT if not stride else stride[0] |
| dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) |
| dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) |
| |
| torch._check( |
| len(padding) in (1, 3), |
| lambda: "max_pool3d: padding must either be a single int, or a tuple of three ints", |
| ) |
| pT = padding[0] |
| pH = pT if len(padding) == 1 else padding[1] |
| pW = pT if len(padding) == 1 else padding[2] |
| |
| torch._check( |
| len(dilation) in (1, 3), |
| lambda: "max_pool3d: dilation must be either a single int, or a tuple of three ints", |
| ) |
| dilationT = dilation[0] |
| dilationH = dilationT if len(dilation) == 1 else dilation[1] |
| dilationW = dilationT if len(dilation) == 1 else dilation[2] |
| |
| torch._check( |
| input.ndim in (4, 5), |
| lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", |
| ) |
| |
| nbatch = input.size(-5) if input.ndim == 5 else 1 |
| nslices = input.size(-4) |
| itime = input.size(-3) |
| iheight = input.size(-2) |
| iwidth = input.size(-1) |
| |
| otime = pooling_output_shape(itime, kT, pT, dT, dilationT, ceil_mode) |
| oheight = pooling_output_shape(iheight, kH, pH, dH, dilationH, ceil_mode) |
| owidth = pooling_output_shape(iwidth, kW, pW, dW, dilationW, ceil_mode) |
| |
| pool3d_shape_check( |
| input, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| pT, |
| pH, |
| pW, |
| dilationT, |
| dilationH, |
| dilationW, |
| itime, |
| iheight, |
| iwidth, |
| otime, |
| oheight, |
| owidth, |
| "max_pool3d_with_indices()", |
| ) |
| |
| channels_last = ( |
| input.ndim == 5 and utils.suggest_memory_format(input) == torch.channels_last_3d |
| ) |
| if input.ndim == 4: |
| input_channels_last_check = input.unsqueeze(0) |
| channels_last = ( |
| not input_channels_last_check.is_contiguous() |
| ) and input_channels_last_check.is_contiguous( |
| memory_format=torch.channels_last_3d |
| ) |
| out_shape = (nslices, otime, oheight, owidth) |
| else: |
| out_shape = (nbatch, nslices, otime, oheight, owidth) # type: ignore[assignment] |
| |
| out = input.new_empty(out_shape) |
| indices = input.new_empty(out_shape, dtype=torch.int64) |
| |
| if channels_last: |
| out = out.to(memory_format=torch.channels_last_3d) |
| indices = indices.to(memory_format=torch.channels_last_3d) |
| |
| return out, indices |
| |
| |
| @register_meta(aten.max_pool3d_with_indices_backward) |
| @out_wrapper("grad_input") |
| def meta_max_pool3d_with_indices_backward( |
| grad_output, |
| input, |
| kernel_size, |
| stride, |
| padding, |
| dilation, |
| ceil_mode, |
| indices, |
| ): |
| torch._check( |
| len(kernel_size) in (1, 3), |
| lambda: "max_pool3d: kernel_size must either be a single int, or a tuple of three ints", |
| ) |
| kT = kernel_size[0] |
| kH = kT if len(kernel_size) == 1 else kernel_size[1] |
| kW = kT if len(kernel_size) == 1 else kernel_size[2] |
| |
| torch._check( |
| not stride or len(stride) in (1, 3), |
| lambda: "max_pool3d: stride must either be omitted, a single int, or a tuple of three ints", |
| ) |
| dT = kT if not stride else stride[0] |
| dH = kH if not stride else (dT if len(stride) == 1 else stride[1]) |
| dW = kW if not stride else (dT if len(stride) == 1 else stride[2]) |
| |
| torch._check( |
| len(padding) in (1, 3), |
| lambda: "max_pool3d: padding must either be a single int, or a tuple of three ints", |
| ) |
| pT = padding[0] |
| pH = pT if len(padding) == 1 else padding[1] |
| pW = pT if len(padding) == 1 else padding[2] |
| |
| torch._check( |
| len(dilation) in (1, 3), |
| lambda: "max_pool3d: dilation must be either a single int, or a tuple of three ints", |
| ) |
| dilationT = dilation[0] |
| dilationH = dilationT if len(dilation) == 1 else dilation[1] |
| dilationW = dilationT if len(dilation) == 1 else dilation[2] |
| |
| torch._check( |
| input.ndim in (4, 5), |
| lambda: "non-empty 4D or 5D (batch mode) tensor expected for input", |
| ) |
| |
| nslices = input.size(-4) |
| itime = input.size(-3) |
| iheight = input.size(-2) |
| iwidth = input.size(-1) |
| |
| otime = grad_output.size(-3) |
| oheight = grad_output.size(-2) |
| owidth = grad_output.size(-1) |
| |
| max_pool3d_backward_shape_check( |
| input, |
| grad_output, |
| indices, |
| nslices, |
| kT, |
| kH, |
| kW, |
| dT, |
| dH, |
| dW, |
| pT, |
| pH, |
| pW, |
| dilationT, |
| dilationH, |
| dilationW, |
| itime, |
| iheight, |
| iwidth, |
| otime, |
| oheight, |
| owidth, |
| "max_pool3d_with_indices_backward()", |
| ) |
| |
| channels_last = ( |
| input.ndim == 5 and utils.suggest_memory_format(input) == torch.channels_last_3d |
| ) |
| if input.ndim == 4: |
| input_channels_last_check = input.unsqueeze(0) |
| channels_last = ( |
| not input_channels_last_check.is_contiguous() |
| ) and input_channels_last_check.is_contiguous( |
| memory_format=torch.channels_last_3d |
| ) |
| |
| grad_input = input.new_empty(input.shape) |
| |
| if channels_last: |
| grad_input = grad_input.to(memory_format=torch.channels_last_3d) |
| |
| return grad_input |
| |
| |
| def check_grid_sampler_common(input: Tensor, grid: Tensor): |
| torch._check( |
| input.device == grid.device, |
| lambda: ( |
| f"grid_sampler(): expected input and grid to be on same device, but input " |
| f"is on {input.device} and grid is on {grid.device}" |
| ), |
| ) |
| torch._check( |
| input.layout == torch.strided and grid.layout == torch.strided, |
| lambda: ( |
| f"grid_sampler(): expected input and grid to have torch.strided layout, but " |
| f"input has {input.layout} and grid has {grid.layout}" |
| ), |
| ) |
| torch._check( |
| input.shape[0] == grid.shape[0], |
| lambda: ( |
| f"grid_sampler(): expected grid and input to have same batch size, but got " |
| f"input with sizes {input.shape} and grid with sizes {grid.shape}" |
| ), |
| ) |
| torch._check( |
| grid.shape[-1] == input.ndim - 2, |
| lambda: ( |
| f"grid_sampler(): expected grid to have size {input.ndim - 2} in last " |
| f"dimension, but got grid with sizes {grid.shape}" |
| ), |
| ) |
| |
| for i in range(2, input.ndim): |
| torch._check( |
| input.shape[i] > 0, |
| lambda: ( |
| f"grid_sampler(): expected input to have non-empty spatial dimensions, " |
| f"but input has sizes {input.shape} with dimension {i} being empty" |
| ), |
| ) |
| |
| |
| class GridSamplerInterpolation(Enum): |
| BILINEAR = 0 |
| NEAREST = 1 |
| BICUBIC = 2 |
| |
| |
| def check_grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: int): |
| torch._check( |
| input.ndim == 5 and input.ndim == grid.ndim, |
| lambda: ( |
| f"grid_sampler(): expected 5D input and grid with same number of " |
| f"dimensions, but got input with sizes {input.shape}" |
| f" and grid with sizes {grid.shape}" |
| ), |
| ) |
| torch._check( |
| not ( |
| input.ndim == 5 |
| and interpolation_mode == GridSamplerInterpolation.BICUBIC.value |
| ), |
| lambda: "grid_sampler(): bicubic interpolation only supports 4D input", |
| ) |
| |
| |
| @register_meta(aten.grid_sampler_2d_backward.default) |
| def grid_sampler_2d_backward_meta( |
| grad_output, |
| input, |
| grid, |
| interpolation_mode, |
| padding_mode, |
| align_corners, |
| output_mask, |
| ): |
| input_requires_grad = output_mask[0] |
| if input_requires_grad: |
| grad_input = torch.zeros_like(input, memory_format=torch.contiguous_format) |
| else: |
| grad_input = None |
| grad_grid = torch.empty_like(grid, memory_format=torch.contiguous_format) |
| return (grad_input, grad_grid) |
| |
| |
| @register_meta(aten.grid_sampler_3d) |
| @out_wrapper() |
| def grid_sampler_3d( |
| input, |
| grid, |
| interpolation_mode, |
| padding_mode, |
| align_corners, |
| ): |
| check_grid_sampler_common(input, grid) |
| check_grid_sampler_3d(input, grid, interpolation_mode) |
| N = input.shape[0] |
| C = input.shape[1] |
| out_D = grid.shape[1] |
| out_H = grid.shape[2] |
| out_W = grid.shape[3] |
| return input.new_empty((N, C, out_D, out_H, out_W)) |
| |
| |
| @register_meta(aten.grid_sampler_3d_backward) |
| @out_wrapper("grad_input", "grad_grid") |
| def grid_sampler_3d_backward( |
| grad_output, |
| input, |
| grid, |
| interpolation_mode, |
| padding_mode, |
| align_corners, |
| output_mask, |
| ): |
| check_grid_sampler_common(input, grid) |
| check_grid_sampler_3d(input, grid, interpolation_mode) |
| input_requires_grad = output_mask[0] |
| if input_requires_grad: |
| grad_input = torch.zeros_like( |
| input, memory_format=torch.legacy_contiguous_format |
| ) |
| else: |
| grad_input = None |
| grad_grid = torch.empty_like(grid, memory_format=torch.legacy_contiguous_format) |
| return grad_input, grad_grid |
| |
| |
| @register_meta([aten.full.default]) |
| def full(size, fill_value, *args, **kwargs): |
| dtype = kwargs.get("dtype", None) |
| if not dtype: |
| dtype = utils.get_dtype(fill_value) |
| kwargs["dtype"] = dtype |
| return torch.empty(size, *args, **kwargs) |
| |
| |
| # zeros_like is special cased to work for sparse |
| @register_meta(aten.zeros_like.default) |
| def zeros_like( |
| self, |
| dtype=None, |
| layout=None, |
| device=None, |
| pin_memory=None, |
| memory_format=None, |
| ): |
| if layout == torch.sparse_coo: |
| torch._check( |
| memory_format is None, |
| lambda: "memory format option is only supported by strided tensors", |
| ) |
| |
| res = torch.empty( |
| 0, |
| dtype=self.dtype if dtype is None else dtype, |
| layout=layout, |
| device=self.device if device is None else device, |
| pin_memory=pin_memory, |
| ) |
| |
| if self.is_sparse: |
| res.sparse_resize_and_clear_( |
| self.size(), self.sparse_dim(), self.dense_dim() |
| ) |
| else: |
| res.sparse_resize_and_clear_(self.size(), self.dim(), 0) |
| |
| res._coalesced_(True) |
| return res |
| res = aten.empty_like.default( |
| self, |
| dtype=dtype, |
| layout=layout, |
| device=device, |
| pin_memory=pin_memory, |
| memory_format=memory_format, |
| ) |
| # device can be not "meta" |
| res.fill_(0) |
| return res |
| |
| |
| @register_meta(aten.select.int) |
| def meta_select(self, dim, index): |
| ndim = self.dim() |
| torch._check_index( |
| ndim != 0, |
| lambda: "select() cannot be applied to a 0-dim tensor.", |
| ) |
| |
| dim = dim if dim >= 0 else dim + ndim |
| size = self.size(dim) |
| |
| torch._check_index( |
| not (-index > size or index >= size), |
| lambda: f"select(): index {index} out of range for tensor of size " |
| f"{self.size()} at dimension {dim}", |
| ) |
| |
| index = index if index >= 0 else index + size |
| |
| new_size = list(self.size()) |
| new_stride = list(self.stride()) |
| |
| new_storage_offset = self.storage_offset() + index * new_stride[dim] |
| del new_size[dim] |
| del new_stride[dim] |
| |
| return self.as_strided(new_size, new_stride, new_storage_offset) |
| |
| |
| @register_meta(aten.select_scatter.default) |
| def meta_select_scatter(self, src, dim, index): |
| return utils.clone_preserve_strides(self) |
| |
| |
| @register_meta(aten.slice_scatter.default) |
| def meta_slice_scatter(self, src, dim=0, start=None, end=None, step=1): |
| return utils.clone_preserve_strides(self) |
| |
| |
| # TODO: Deduplicate this with canonicalize_dim |
| def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True): |
| if dim_post_expr <= 0: |
| assert wrap_scalar |
| dim_post_expr = 1 |
| min = -dim_post_expr |
| max = dim_post_expr - 1 |
| assert not (dim < min or dim > max), f"dim {dim} out of bounds ({min}, {max})" |
| if dim < 0: |
| dim += dim_post_expr |
| return dim |
| |
| |
| def ensure_nonempty_size(t, dim): |
| return 1 if t.dim() == 0 else t.shape[dim] |
| |
| |
| # From aten/src/ATen/native/ScatterGatherChecks.h |
| def gather_shape_check(self, dim, index): |
| self_dims = max(self.dim(), 1) |
| index_dims = max(index.dim(), 1) |
| torch._check( |
| self_dims == index_dims, |
| lambda: "Index tensor must have the same number of dimensions as input tensor", |
| ) |
| for i in range(self_dims): |
| if i != dim: |
| torch._check( |
| ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i), |
| lambda: f"Size does not match at dimension {i} expected index {index.shape}" |
| + f" to be smaller than self {self.shape} apart from dimension {dim}", |
| ) |
| |
| |
| @register_meta(aten.gather.default) |
| def meta_gather(self, dim, index, sparse_grad=False): |
| wrapped_dim = maybe_wrap_dim(dim, self.dim()) |
| is_index_empty = index.numel() == 0 |
| if not is_index_empty: |
| torch._check( |
| index.dtype == torch.long, |
| lambda: f"gather(): Expected dtype int64 for index, but got {index.dtype}", |
| ) |
| gather_shape_check(self, wrapped_dim, index) |
| return self.new_empty(index.shape) |
| |
| |
| # From aten/src/ATen/native/TensorAdvancedIndexing.cpp |
| def get_operator_enum(reduce_, use_new_options=False): |
| if use_new_options: |
| if reduce_ == "sum": |
| return "REDUCE_ADD" |
| elif reduce_ == "prod": |
| return "REDUCE_MULTIPLY" |
| elif reduce_ == "mean": |
| return "REDUCE_MEAN" |
| elif reduce_ == "amax": |
| return "REDUCE_MAXIMUM" |
| elif reduce_ == "amin": |
| return "REDUCE_MINIMUM" |
| torch._check( |
| False, |
| lambda: "reduce argument must be either sum, prod, mean, amax or amin.", |
| ) |
| return |
| else: |
| if reduce_ == "add": |
| return "REDUCE_ADD" |
| elif reduce_ == "multiply": |
| return "REDUCE_MULTIPLY" |
| torch._check(False, lambda: "reduce argument must be either add or multiply.") |
| return |
| |
| |
| # From aten/src/ATen/native/ScatterGatherChecks.h |
| def scatter_gather_dtype_check(method_name, self, index, src_opt=None): |
| if index.numel() != 0: |
| torch._check( |
| index.dtype == torch.long, |
| lambda: f"{method_name}(): Expected dtype int64 for index", |
| ) |
| |
| if src_opt is not None: |
| torch._check( |
| self.dtype == src_opt.dtype, |
| lambda: f"{method_name}(): Expected self.dtype to be equal to src.dtype", |
| ) |
| |
| |
| def ensure_nonempty_dim(dim): |
| return max(dim, 1) |
| |
| |
| # From aten/src/ATen/native/ScatterGatherChecks.h |
| def scatter_shape_check(self, dim, index, src_opt=None): |
| if index.numel() == 0: |
| return |
| torch._check( |
| ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), |
| lambda: "Index tensor must have the same number of dimensions as self tensor", |
| ) |
| |
| is_wrong_shape = False |
| self_dims = ensure_nonempty_dim(self.dim()) |
| |
| # Check: index.size(d) <= self.size(d) for all d != dim |
| for d in range(self_dims): |
| index_d_size = ensure_nonempty_size(index, d) |
| if d == dim: |
| continue |
| if index_d_size > ensure_nonempty_size(self, d): |
| is_wrong_shape = True |
| break |
| |
| # Check: index.size(d) <= src.size(d) for all d if src is Tensor |
| if not is_wrong_shape and src_opt is not None: |
| for d in range(self_dims): |
| index_d_size = ensure_nonempty_size(index, d) |
| if index_d_size > ensure_nonempty_size(src_opt, d): |
| is_wrong_shape = True |
| break |
| |
| if src_opt is not None: |
| torch._check( |
| ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), |
| lambda: "Index tensor must have the same number of dimensions as self tensor", |
| ) |
| torch._check( |
| not is_wrong_shape, |
| lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" |
| + f" apart from dimension {dim} and to be smaller than src {src_opt.shape}", |
| ) |
| else: |
| torch._check( |
| not is_wrong_shape, |
| lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" |
| + f" apart from dimension {dim}", |
| ) |
| |
| |
| # From aten/src/ATen/native/TensorAdvancedIndexing.cpp |
| def scatter_meta_impl(self, dim, index, src=None, reduce_=None, use_new_options=False): |
| wrapped_dim = maybe_wrap_dim(dim, self.dim()) |
| scatter_gather_dtype_check("scatter", self, index, src) |
| scatter_shape_check(self, wrapped_dim, index, src) |
| if reduce_ is not None: |
| # Check if we have a valid reduce operator. |
| get_operator_enum(reduce_, use_new_options) |
| |
| |
| @register_meta(aten.scatter_add.default) |
| def meta_scatter_add(self, dim, index, src): |
| scatter_meta_impl(self, dim, index, src, "add") |
| return self.new_empty(self.shape) |
| |
| |
| @register_meta(aten.scatter_add_) |
| def meta_scatter_add_(self, dim, index, src): |
| scatter_meta_impl(self, dim, index, src, "add") |
| return self |
| |
| |
| @register_meta( |
| [ |
| aten.scatter.src, |
| aten.scatter.value, |
| aten.scatter.reduce, |
| aten.scatter.value_reduce, |
| ] |
| ) |
| @out_wrapper() |
| def meta_scatter(self, dim, index, src_or_value, reduce=None): |
| src = src_or_value if isinstance(src_or_value, torch.Tensor) else None |
| scatter_meta_impl(self, dim, index, src, reduce) |
| return self.new_empty(self.shape) |
| |
| |
| @register_meta( |
| [ |
| aten.scatter_.src, |
| aten.scatter_.value, |
| aten.scatter_.reduce, |
| aten.scatter_.value_reduce, |
| ] |
| ) |
| def meta_scatter_(self, dim, index, src_or_value, reduce=None): |
| src = src_or_value if isinstance(src_or_value, torch.Tensor) else None |
| scatter_meta_impl(self, dim, index, src, reduce) |
| return self |
| |
| |
| @register_meta( |
| [ |
| aten._scaled_dot_product_flash_attention, |
| ] |
| ) |
| def meta__scaled_dot_product_flash( |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| dropout_p: float = 0.0, |
| is_causal: bool = False, |
| return_debug_mask: bool = False, |
| scale: Optional[float] = None, |
| ): |
| batch_size = query.size(0) |
| num_heads = query.size(1) |
| max_seqlen_batch_q = query.size(2) |
| head_dim = query.size(3) |
| |
| max_seqlen_batch_k = key.size(2) |
| |
| if device_hint(query) == "cpu": |
| attention = torch.empty( |
| (batch_size, max_seqlen_batch_q, num_heads, head_dim), |
| dtype=query.dtype, |
| device=query.device, |
| ).transpose(1, 2) |
| logsumexp = torch.empty( |
| ( |
| batch_size, |
| max_seqlen_batch_q, |
| num_heads, |
| ), |
| dtype=torch.float, |
| device=query.device, |
| ).transpose(1, 2) |
| return ( |
| attention, |
| logsumexp, |
| torch.empty((), dtype=torch.int32, device="meta"), |
| torch.empty((), dtype=torch.int32, device="meta"), |
| 0, |
| 0, |
| torch.empty((), dtype=torch.long, device="meta"), |
| torch.empty((), dtype=torch.long, device="meta"), |
| torch.empty((), dtype=query.dtype, device=query.device), |
| ) |
| |
| # Cuda Path |
| query_t = query.transpose(1, 2) |
| attention = torch.empty_like(query_t).transpose(1, 2) |
| logsumexp = torch.empty( |
| (batch_size, num_heads, max_seqlen_batch_q), |
| dtype=torch.float, |
| device=query.device, |
| ) |
| |
| if return_debug_mask: |
| blocksize_c = 128 if head_dim > 64 else 256 |
| max_seqlen_k = math.ceil(max_seqlen_batch_q / blocksize_c) |
| if max_seqlen_batch_k <= 128: |
| max_seqlen_k = 128 |
| elif max_seqlen_batch_k <= 256: |
| max_seqlen_k = 256 |
| debug_mask = torch.empty( |
| (batch_size, num_heads, max_seqlen_batch_q, max_seqlen_k), |
| dtype=query.dtype, |
| device=query.device, |
| ) |
| else: |
| debug_mask = torch.empty(0, dtype=query.dtype, device=query.device) |
| |
| # Note [Seed and Offset]: device for seed and offset below depends on whether we are |
| # capturing or not, but at the time of tracing we don't know if we |
| # are going to use cudagraphs or not, so we return meta tensors here |
| # it's possible we'll need to have some special handling in inductor for sdpa |
| |
| return ( |
| attention, |
| logsumexp, |
| None, |
| None, |
| max_seqlen_batch_q, |
| max_seqlen_batch_k, |
| torch.empty((), dtype=torch.long, device="meta"), |
| torch.empty((), dtype=torch.long, device="meta"), |
| debug_mask, |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten._scaled_dot_product_flash_attention_backward, |
| ] |
| ) |
| def meta__scaled_dot_product_flash_backward( |
| grad_out: Tensor, |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| out: Tensor, |
| logsumexp: Tensor, |
| cum_seq_q: Tensor, |
| cum_seq_k: Tensor, |
| max_q: int, |
| max_k: int, |
| dropout_p: float, |
| is_causal: bool, |
| philox_seed: Tensor, |
| philox_offset: Tensor, |
| scale: Optional[float] = None, |
| ): |
| if device_hint(query) != "cpu": |
| grad_q = torch.empty_like(query.transpose(1, 2)).transpose(1, 2) |
| grad_k = torch.empty_like(key.transpose(1, 2)).transpose(1, 2) |
| grad_v = torch.empty_like(value.transpose(1, 2)).transpose(1, 2) |
| return grad_q, grad_k, grad_v |
| |
| batch_size = query.size(0) |
| num_heads = query.size(1) |
| head_dim = query.size(3) |
| len_q = query.size(2) if device_hint(query) == "cpu" else max_q |
| len_k = key.size(2) if device_hint(query) == "cpu" else max_k |
| |
| grad_q = torch.empty_permuted( |
| (batch_size, num_heads, len_q, head_dim), |
| (0, 2, 1, 3), |
| dtype=query.dtype, |
| device=query.device, |
| ) |
| grad_k = torch.empty_permuted( |
| (batch_size, num_heads, len_k, head_dim), |
| (0, 2, 1, 3), |
| dtype=key.dtype, |
| device=key.device, |
| ) |
| grad_v = torch.empty_permuted( |
| (batch_size, num_heads, len_k, head_dim), |
| (0, 2, 1, 3), |
| dtype=value.dtype, |
| device=value.device, |
| ) |
| |
| return grad_q, grad_k, grad_v |
| |
| |
| @register_meta( |
| [ |
| aten._scaled_dot_product_efficient_attention, |
| ] |
| ) |
| def meta__scaled_dot_product_efficient( |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| attn_bias: Optional[Tensor], |
| compute_log_sumexp: bool, |
| dropout_p=0.0, |
| is_causal: bool = False, |
| scale: Optional[float] = None, |
| ): |
| query = query.transpose(1, 2) |
| key = key.transpose(1, 2) |
| value = value.transpose(1, 2) |
| |
| B = query.size(0) |
| M = query.size(1) |
| N = key.size(1) |
| num_heads = query.size(-2) |
| K = query.size(-1) |
| Kv = value.size(-1) |
| |
| res = torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device=query.device) |
| |
| logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0 |
| logsum_exp = torch.empty( |
| (B, num_heads, logsumexp_dim), |
| dtype=torch.float, |
| device=query.device, |
| ) |
| |
| res = res.transpose(1, 2) |
| |
| # See Note [Seed and Offset]: |
| seed = torch.empty((), dtype=torch.long, device="meta") |
| offset = torch.empty((), dtype=torch.long, device="meta") |
| |
| return res, logsum_exp, seed, offset |
| |
| |
| @register_meta( |
| [ |
| aten._scaled_dot_product_efficient_attention_backward, |
| ] |
| ) |
| def meta__scaled_dot_product_efficient_backward( |
| grad_out: Tensor, |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| attn_bias: Optional[Tensor], |
| out: Tensor, |
| logsumexp: Tensor, |
| philox_seed: Tensor, |
| philox_offset: Tensor, |
| dropout_p: float, |
| grad_input_mask: List[bool], |
| is_causal: bool = False, |
| scale: Optional[float] = None, |
| ): |
| batch_size = query.size(0) |
| num_heads = query.size(1) |
| max_q = query.size(2) |
| head_dim = query.size(3) |
| head_dim_v = value.size(3) |
| |
| max_k = key.size(2) |
| |
| grad_q = torch.empty_permuted( |
| (batch_size, num_heads, max_q, head_dim), |
| (0, 2, 1, 3), |
| dtype=query.dtype, |
| device=query.device, |
| ) |
| grad_k = torch.empty_permuted( |
| (batch_size, num_heads, max_k, head_dim), |
| (0, 2, 1, 3), |
| dtype=key.dtype, |
| device=key.device, |
| ) |
| grad_v = torch.empty_permuted( |
| (batch_size, num_heads, max_k, head_dim_v), |
| (0, 2, 1, 3), |
| dtype=value.dtype, |
| device=value.device, |
| ) |
| grad_bias = None |
| if attn_bias is not None and grad_input_mask[3]: |
| grad_bias = torch.empty_strided( |
| attn_bias.size(), |
| attn_bias.stride(), |
| dtype=attn_bias.dtype, |
| device=attn_bias.device, |
| ) |
| |
| return grad_q, grad_k, grad_v, grad_bias |
| |
| |
| @register_meta( |
| [ |
| aten._efficient_attention_forward, |
| ] |
| ) |
| def meta__efficient_attention_forward( |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| bias: Optional[Tensor], |
| cu_seqlens_q: Optional[Tensor], |
| cu_seqlens_k: Optional[Tensor], |
| max_seqlen_q: Optional[int], |
| dropout_p: float, |
| custom_mask_type: int, |
| compute_log_sumexp: bool = False, |
| scale: Optional[float] = None, |
| causal_diagonal: Optional[Tensor] = None, |
| seqlen_k: Optional[Tensor] = None, |
| ): |
| B = query.size(0) |
| M = query.size(1) |
| N = key.size(1) |
| num_heads = query.size(-2) |
| K = query.size(-1) |
| Kv = value.size(-1) |
| |
| res = torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device=query.device) |
| |
| logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0 |
| logsum_exp = torch.empty( |
| (B, num_heads, logsumexp_dim), |
| dtype=torch.float, |
| device=query.device, |
| ) |
| |
| # See Note [Seed and Offset]: |
| seed = torch.empty((), dtype=torch.long, device="meta") |
| offset = torch.empty((), dtype=torch.long, device="meta") |
| |
| return res, logsum_exp, seed, offset, M, N |
| |
| |
| @register_meta( |
| [ |
| aten._efficient_attention_backward, |
| ] |
| ) |
| def meta__efficient_attention_backward( |
| grad_out: Tensor, |
| query: Tensor, |
| key: Tensor, |
| value: Tensor, |
| bias: Optional[Tensor], |
| cu_seqlens_q: Optional[Tensor], |
| cu_seqlens_k: Optional[Tensor], |
| max_seqlen_q: int, |
| max_seqlen_k: int, |
| logsumexp: Tensor, |
| dropout_p: float, |
| philox_seed: Tensor, |
| philox_offset: Tensor, |
| custom_mask_type: int, |
| bias_requires_grad: bool, |
| scale: Optional[float] = None, |
| num_splits_key: Optional[int] = None, |
| ): |
| grad_query = torch.empty_like(query) |
| grad_key = torch.empty_like(key) |
| grad_value = torch.empty_like(value) |
| |
| if bias is not None: |
| assert bias is not None |
| lastDim = bias.size(-1) |
| lastDimAligned = 16 * ((lastDim + 15) // 16) |
| new_sizes = list(bias.size()) |
| new_sizes[-1] = lastDimAligned |
| grad_bias = torch.empty(new_sizes, dtype=bias.dtype, device=bias.device) |
| else: |
| grad_bias = torch.empty((), device=query.device) |
| |
| return grad_query, grad_key, grad_value, grad_bias |
| |
| |
| @register_meta([aten._scaled_mm.default]) |
| def meta_scaled_mm( |
| self: torch.Tensor, |
| mat2: torch.Tensor, |
| bias: Optional[torch.Tensor] = None, |
| out_dtype: Optional[torch.dtype] = None, |
| scale_a: Optional[torch.Tensor] = None, |
| scale_b: Optional[torch.Tensor] = None, |
| scale_result: Optional[torch.Tensor] = None, |
| use_fast_accum: bool = False, |
| ): |
| def is_row_major(stride): |
| return stride[0] > stride[1] and stride[1] == 1 |
| |
| def is_col_major(shape, stride): |
| return stride[0] == 1 and stride[1] == shape[0] |
| |
| def is_fp8_type(dtype): |
| return dtype in (torch.float8_e4m3fn, torch.float8_e5m2) |
| |
| torch._check( |
| self.dim() == 2 and mat2.dim() == 2, |
| lambda: f"Inputs must be 2D but got self.dim()={self.dim()} and mat2.dim()={mat2.dim()}", |
| ) |
| torch._check( |
| is_row_major(self.stride()), |
| lambda: "self must be row_major", |
| ) |
| torch._check( |
| is_col_major(mat2.shape, mat2.stride()), |
| lambda: "mat2 must be col_major", |
| ) |
| torch._check( |
| self.size(1) % 16 == 0, |
| lambda: f"Expected self.size(0) to be divisible by 16, but got self.size(1)={self.size(1)}", |
| ) |
| torch._check( |
| mat2.size(0) % 16 == 0 and mat2.size(1) % 16 == 0, |
| lambda: f"Expected both dimensions of mat2 to be divisble by 16 but got {mat2.shape}", |
| ) |
| torch._check( |
| is_fp8_type(self.dtype) and is_fp8_type(mat2.dtype), |
| lambda: f"Expected both inputs to be fp8 types but got self.dtype={self.dtype} and mat2.dtype={mat2.dtype}", |
| ) |
| _out_dtype = out_dtype if out_dtype is not None else self.dtype |
| return torch.empty( |
| self.size(0), mat2.size(1), dtype=_out_dtype, device=self.device |
| ), torch.empty((), dtype=torch.float32, device=self.device) |
| |
| |
| @register_meta([aten.scatter_reduce.two, aten.scatter_reduce.two_out]) |
| @out_wrapper() |
| def meta_scatter_reduce_two(self, dim, index, src, reduce, include_self=True): |
| scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) |
| return self.new_empty(self.shape) |
| |
| |
| @register_meta(aten.scatter_reduce_.two) |
| def meta_scatter_reduce__two(self, dim, index, src, reduce, include_self=True): |
| scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) |
| return self |
| |
| |
| @register_meta([aten.multinomial.default, aten.multinomial.out]) |
| @out_wrapper() |
| def meta_multinomial(input, num_samples, replacement=False, *, generator=None): |
| torch._check( |
| 0 < input.dim() <= 2, |
| lambda: f"The probabilty distributions dimensions must be 1 or 2, but got {input.dim()}", |
| ) |
| if input.dim() == 1: |
| return torch.empty(num_samples, dtype=torch.long, device=input.device) |
| return torch.empty( |
| input.size(0), num_samples, dtype=torch.long, device=input.device |
| ) |
| |
| |
| def multiply_integers(vs): |
| r = 1 |
| for v in vs: |
| r *= v |
| return r |
| |
| |
| def upsample_common_check(input_size, output_size, num_spatial_dims): |
| torch._check( |
| len(output_size) == num_spatial_dims, |
| lambda: f"It is expected output_size equals to {num_spatial_dims}, but got size {len(output_size)}", |
| ) |
| expected_input_dims = num_spatial_dims + 2 # N, C, ... |
| torch._check( |
| len(input_size) == expected_input_dims, |
| lambda: f"It is expected input_size equals to {expected_input_dims}, but got size {len(input_size)}", |
| ) |
| |
| torch._check( |
| all(s > 0 for s in input_size[2:]) and all(s > 0 for s in output_size), |
| lambda: f"Input and output sizes should be greater than 0, but got " |
| f"input size {input_size} and output size {output_size}", |
| ) |
| |
| nbatch, channels = input_size[:2] |
| return (nbatch, channels, *output_size) |
| |
| |
| @register_meta( |
| [aten.upsample_nearest1d.default, aten._upsample_nearest_exact1d.default] |
| ) |
| def upsample_nearest1d(input, output_size, scales=None): |
| torch._check( |
| input.numel() != 0 or multiply_integers(input.size()[1:]), |
| lambda: f"Non-empty 3D data tensor expected but got a tensor with sizes {input.size()}", |
| ) |
| full_output_size = upsample_common_check( |
| input.size(), output_size, num_spatial_dims=1 |
| ) |
| return input.new_empty(full_output_size).to( |
| memory_format=utils.suggest_memory_format(input) |
| ) |
| |
| |
| @register_meta( |
| [aten.upsample_nearest2d.default, aten._upsample_nearest_exact2d.default] |
| ) |
| def upsample_nearest2d(input, output_size, scales_h=None, scales_w=None): |
| torch._check( |
| input.numel() != 0 or multiply_integers(input.size()[1:]), |
| lambda: f"Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}", |
| ) |
| full_output_size = upsample_common_check( |
| input.size(), output_size, num_spatial_dims=2 |
| ) |
| output = input.new_empty(full_output_size) |
| |
| # convert output to correct memory format, if necessary |
| memory_format = utils.suggest_memory_format(input) |
| |
| # following "heuristic: only use channels_last path when it's faster than the contiguous path" |
| _, n_channels, _, _ = input.shape |
| if input.device.type == "cuda" and n_channels < 4: |
| memory_format = torch.contiguous_format |
| |
| output = output.contiguous(memory_format=memory_format) |
| |
| return output |
| |
| |
| @register_meta( |
| [ |
| aten.upsample_nearest2d_backward.default, |
| aten._upsample_nearest_exact2d_backward.default, |
| ] |
| ) |
| def upsample_nearest2d_backward( |
| grad_output: Tensor, |
| output_size: Sequence[Union[int, torch.SymInt]], |
| input_size: Sequence[Union[int, torch.SymInt]], |
| scales_h: Optional[float] = None, |
| scales_w: Optional[float] = None, |
| ): |
| full_output_size = upsample_common_check( |
| input_size, output_size, num_spatial_dims=2 |
| ) |
| torch._check( |
| grad_output.ndim == 4, |
| lambda: f"Expected grad_output to be a tensor of dimension 4 but got: dimension {grad_output.ndim}", |
| ) |
| for i in range(4): |
| torch._check( |
| grad_output.size(i) == full_output_size[i], |
| lambda: ( |
| f"Expected grad_output to have the same shape as output;" |
| f" output.size({i}) = {full_output_size[i]}" |
| f" but got grad_output.size({i}) = {grad_output.size(i)}" |
| ), |
| ) |
| |
| return grad_output.new_empty(input_size).to( |
| memory_format=utils.suggest_memory_format(grad_output) |
| ) # type: ignore[call-overload] |
| |
| |
| @register_meta( |
| [aten.upsample_nearest3d.default, aten._upsample_nearest_exact3d.default] |
| ) |
| def upsample_nearest3d(input, output_size, scales_d=None, scales_h=None, scales_w=None): |
| torch._check( |
| input.numel() != 0 or multiply_integers(input.size()[1:]), |
| lambda: f"Non-empty 5D data tensor expected but got a tensor with sizes {input.size()}", |
| ) |
| full_output_size = upsample_common_check( |
| input.size(), output_size, num_spatial_dims=3 |
| ) |
| return input.new_empty(full_output_size).to( |
| memory_format=utils.suggest_memory_format(input) |
| ) |
| |
| |
| @register_meta( |
| [ |
| aten.sort.default, |
| aten.sort.stable, |
| aten.sort.values, |
| aten.sort.values_stable, |
| ] |
| ) |
| def meta_sort(self, stable=None, dim=-1, descending=False, values=None, indices=None): |
| v, i = torch.empty_like(self), torch.empty_like(self, dtype=torch.int64) |
| if values is not None and indices is not None: |
| assert isinstance(values, TensorLike) |
| assert isinstance(indices, TensorLike) |
| # Makes sure values and indices have the same strides. For cases where |
| # these have different shapes, like (5, 10, 5) and (0) in msort. |
| out_shape = v.shape |
| out_stride = v.stride() |
| values = _maybe_resize_out(values, out_shape) |
| indices = _maybe_resize_out(indices, out_shape) |
| values.as_strided_(out_shape, out_stride) |
| indices.as_strided_(out_shape, out_stride) |
| _safe_copy_out(copy_from=v, copy_to=values) # type: ignore[arg-type] |
| _safe_copy_out(copy_from=i, copy_to=indices) # type: ignore[arg-type] |
| return values, indices |
| return v, i |
| |
| |
| @register_meta(aten.argsort.stable) |
| def meta_argsort(self, *, stable, dim=-1, descending=False): |
| return meta_sort(self, stable=stable, dim=dim, descending=descending)[1] |
| |
| |
| def rnn_cell_checkSizes( |
| input_gates, hidden_gates, input_bias, hidden_bias, factor, prev_hidden |
| ): |
| torch._check(input_gates.ndim == 2, lambda: f"{input_gates.ndim} != 2") |
| torch._check( |
| input_gates.shape == hidden_gates.shape, |
| lambda: f"{input_gates.shape} != {hidden_gates.shape}", |
| ) |
| gates_size = input_gates.size(1) |
| if input_bias is not None: |
| torch._check(input_bias.ndim == 1, lambda: f"{input_bias.ndim} != 1") |
| torch._check( |
| input_bias.numel() == gates_size, |
| lambda: f"{input_bias.numel()} != {gates_size}", |
| ) |
| torch._check( |
| input_bias.shape == hidden_bias.shape, |
| lambda: f"{input_bias.shape} != {hidden_bias.shape}", |
| ) |
| torch._check(prev_hidden.ndim == 2, lambda: f"{prev_hidden.ndim} != 2") |
| expected_prev_hidden_numel = input_gates.size(0) * gates_size // factor |
| torch._check( |
| prev_hidden.numel() == expected_prev_hidden_numel, |
| lambda: f"{prev_hidden.numel()} != {input_gates.size(0)} * {gates_size} // {factor} (aka {expected_prev_hidden_numel})", |
| ) |
| torch._check( |
| all( |
| x.device == input_gates.device |
| for x in [hidden_gates, input_bias, hidden_bias, prev_hidden] |
| ), |
| lambda: "expected all inputs to be same device", |
| ) |
| |
| |
| @register_meta(aten._thnn_fused_lstm_cell.default) |
| def _thnn_fused_lstm_cell_meta( |
| input_gates, hidden_gates, cx, input_bias=None, hidden_bias=None |
| ): |
| rnn_cell_checkSizes(input_gates, hidden_gates, input_bias, hidden_bias, 4, cx) |
| workspace = torch.empty_like(input_gates, memory_format=torch.contiguous_format) |
| hy = torch.empty_like(cx, memory_format=torch.contiguous_format) |
| cy = torch.empty_like(cx, memory_format=torch.contiguous_format) |
| return (hy, cy, workspace) |
| |
| |
| @register_meta(aten._cudnn_rnn.default) |
| def _cudnn_rnn( |
| input, |
| weight, |
| weight_stride0, |
| weight_buf, |
| hx, |
| cx, |
| mode, |
| hidden_size, |
| proj_size, |
| num_layers, |
| batch_first, |
| dropout, |
| train, |
| bidirectional, |
| batch_sizes, |
| dropout_state, |
| ): |
| is_input_packed = len(batch_sizes) != 0 |
| if is_input_packed: |
| seq_length = len(batch_sizes) |
| mini_batch = batch_sizes[0] |
| batch_sizes_sum = input.shape[0] |
| else: |
| seq_length = input.shape[1] if batch_first else input.shape[0] |
| mini_batch = input.shape[0] if batch_first else input.shape[1] |
| batch_sizes_sum = -1 |
| |
| num_directions = 2 if bidirectional else 1 |
| out_size = proj_size if proj_size != 0 else hidden_size |
| if is_input_packed: |
| out_shape = [batch_sizes_sum, out_size * num_directions] |
| else: |
| out_shape = ( |
| [mini_batch, seq_length, out_size * num_directions] |
| if batch_first |
| else [seq_length, mini_batch, out_size * num_directions] |
| ) |
| output = input.new_empty(out_shape) |
| |
| cell_shape = [num_layers * num_directions, mini_batch, hidden_size] |
| if cx is None: |
| cy = torch.empty(0, device=input.device) |
| else: |
| cy = cx.new_empty(cell_shape) |
| |
| hy = hx.new_empty([num_layers * num_directions, mini_batch, out_size]) |
| |
| # TODO: Query cudnnGetRNNTrainingReserveSize (expose to python) |
| reserve_shape = 0 if train else 0 |
| reserve = input.new_empty(reserve_shape, dtype=torch.uint8) |
| |
| return output, hy, cy, reserve, weight_buf |
| |
| |
| @register_meta(aten.mkldnn_rnn_layer.default) |
| def mkldnn_rnn_layer( |
| input, |
| w0, |
| w1, |
| w2, |
| w3, |
| hx_, |
| cx_, |
| reverse, |
| batch_sizes, |
| mode, |
| hidden_size, |
| num_layers, |
| has_biases, |
| bidirectional, |
| batch_first, |
| train, |
| ): |
| seq_length = input.shape[1] if batch_first else input.shape[0] |
| mini_batch = input.shape[0] if batch_first else input.shape[1] |
| output_chanels = hidden_size |
| out_shape = ( |
| [mini_batch, seq_length, output_chanels] |
| if batch_first |
| else [seq_length, mini_batch, output_chanels] |
| ) |
| output = input.new_empty(out_shape) |
| if hx_ is None: |
| hy = torch.empty(0, device=input.device) |
| else: |
| hy = hx_.new_empty(hx_.shape) |
| if cx_ is None: |
| cy = torch.empty(0, device=input.device) |
| else: |
| cy = cx_.new_empty(cx_.shape) |
| workspace = torch.empty(0, device=input.device, dtype=torch.uint8) |
| return output, hy, cy, workspace |
| |
| |
| def zero_numel_check_dims(self, dim, fn_name): |
| if self.ndim == 0: |
| torch._check_index( |
| dim == 0 or dim == -1, |
| lambda: f"{fn_name}: Expected reduction dim -1 or 0 for scalar but got {dim}", |
| ) |
| else: |
| torch._check_index( |
| self.size(dim) != 0, |
| lambda: f"{fn_name}: Expected reduction dim {dim} to have non-zero size.", |
| ) |
| |
| |
| # From aten/src/ATen/native/ReduceOps.cpp |
| def check_argmax_argmin(name, self, dim): |
| if dim is not None: |
| dim = maybe_wrap_dim(dim, self.dim()) |
| zero_numel_check_dims(self, dim, name) |
| else: |
| torch._check( |
| self.numel() != 0, |
| lambda: f"{name}: Expected reduction dim to be specified for input.numel() == 0.", |
| ) |
| |
| |
| @register_meta([aten.argmax.default, aten.argmin.default]) |
| def argmax_argmin_meta(self, dim=None, keepdim=False): |
| check_argmax_argmin("argmax", self, dim) |
| dims = utils.reduction_dims(self.shape, (dim,) if dim is not None else None) |
| shape = _compute_reduction_shape(self, dims, keepdim) |
| return self.new_empty(shape, dtype=torch.int64) |
| |
| |
| @register_meta(aten.scalar_tensor.default) |
| def scalar_tensor(s, dtype=None, layout=None, device=None, pin_memory=None): |
| return torch.empty( |
| (), dtype=dtype, layout=layout, device=device, pin_memory=pin_memory |
| ) |
| |
| |
| @register_meta(aten.topk.default) |
| def topk_meta(self, k, dim=-1, largest=True, sorted=True): |
| # From aten/src/ATen/native/Sorting.cpp |
| dim = maybe_wrap_dim(dim, self.dim(), wrap_scalar=True) |
| torch._check( |
| k >= 0 and k <= (self.size(dim) if self.dim() > 0 else 1), |
| lambda: "selected index k out of range", |
| ) |
| sliceSize = 1 if self.dim() == 0 else self.size(dim) |
| torch._check(k >= 0 and k <= sliceSize, lambda: "k not in range for dimension") |
| |
| topKSize = list(self.shape) |
| if len(topKSize) > 0: |
| topKSize[dim] = k |
| return self.new_empty(topKSize), self.new_empty(topKSize, dtype=torch.int64) |
| |
| |
| legacy_contiguous_memory_format = torch.contiguous_format |
| |
| |
| # From aten/src/ATen/native/cuda/RNN.cu |
| def checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace): |
| defined_grad = grad_hy if grad_hy is not None else grad_cy |
| torch._check(defined_grad.dim() == 2, lambda: "") |
| exp_size = defined_grad.size() |
| if grad_hy is not None: |
| torch._check(grad_hy.size() == exp_size, lambda: "") |
| if grad_cy is not None: |
| torch._check(grad_cy.size() == exp_size, lambda: "") |
| torch._check(cx.size() == exp_size, lambda: "") |
| torch._check(cy.size() == exp_size, lambda: "") |
| torch._check(workspace.dim() == 2, lambda: "") |
| torch._check(workspace.numel() == exp_size[0] * exp_size[1] * 4, lambda: "") |
| |
| |
| # From aten/src/ATen/native/cuda/RNN.cu |
| @register_meta(aten._thnn_fused_lstm_cell_backward_impl.default) |
| def _thnn_fused_lstm_cell_backward_impl(grad_hy, grad_cy, cx, cy, workspace, has_bias): |
| if grad_hy is None and grad_cy is None: |
| return None, None, None |
| checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace) |
| grad_gates = torch.empty_like( |
| workspace, memory_format=legacy_contiguous_memory_format |
| ) |
| grad_cx = torch.empty_like(cx, memory_format=legacy_contiguous_memory_format) |
| grad_bias = grad_gates.sum(0, keepdim=False) if has_bias else None |
| return grad_gates, grad_cx, grad_bias |
| |
| |
| @register_meta(aten.pixel_shuffle.default) |
| def meta_pixel_shuffle(self, upscale_factor): |
| assert ( |
| len(self.shape) > 2 and self.shape[-3] % (upscale_factor * upscale_factor) == 0 |
| ), f"Invalid input shape for pixel_shuffle: {self.shape} with upscale_factor = {upscale_factor}" |
| |
| def is_channels_last(ten): |
| return torch._prims_common.suggest_memory_format(ten) == torch.channels_last |
| |
| def pick_memory_format(): |
| if is_channels_last(self): |
| if device_hint(self) == "cuda": |
| return torch.contiguous_format |
| else: |
| return torch.channels_last |
| elif self.is_contiguous(memory_format=torch.contiguous_format): |
| return torch.contiguous_format |
| elif self.is_contiguous(memory_format=torch.preserve_format): |
| return torch.preserve_format |
| |
| C = self.shape[-3] // (upscale_factor * upscale_factor) |
| Hr = self.shape[-2] * upscale_factor |
| Wr = self.shape[-1] * upscale_factor |
| out_shape = (*self.shape[:-3], C, Hr, Wr) |
| |
| out = self.new_empty(out_shape) |
| out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] |
| return out |
| |
| |
| @register_meta(aten.mkldnn_rnn_layer_backward.default) |
| def mkldnn_rnn_layer_backward( |
| input, |
| weight0, |
| weight1, |
| weight2, |
| weight3, |
| hx_, |
| cx_tmp, |
| output, |
| hy_, |
| cy_, |
| grad_output_r_opt, |
| grad_hy_r_opt, |
| grad_cy_r_opt, |
| reverse, |
| mode, |
| hidden_size, |
| num_layers, |
| has_biases, |
| train, |
| bidirectional, |
| batch_sizes, |
| batch_first, |
| workspace, |
| ): |
| diff_x = input.new_empty(input.shape) |
| diff_hx = hx_.new_empty(hx_.shape) |
| diff_cx = cx_tmp.new_empty(cx_tmp.shape) |
| diff_w1 = weight0.new_empty(weight0.shape) |
| diff_w2 = weight1.new_empty(weight1.shape) |
| diff_b = weight2.new_empty(weight2.shape) |
| return diff_x, diff_w1, diff_w2, diff_b, diff_b, diff_hx, diff_cx |
| |
| |
| @register_meta([aten.bucketize.Tensor, aten.bucketize.Tensor_out]) |
| @out_wrapper() |
| def meta_bucketize(self, boundaries, *, out_int32=False, right=False): |
| return torch.empty_like( |
| self, dtype=torch.int32 if out_int32 else torch.int64 |
| ).contiguous() |
| |
| |
| @register_meta(aten._upsample_bilinear2d_aa.default) |
| def meta_upsample_bilinear2d_aa( |
| input, output_size, align_corners, scales_h=None, scales_w=None |
| ): |
| full_output_size = upsample_common_check( |
| input.size(), output_size, num_spatial_dims=2 |
| ) |
| torch._check( |
| input.numel() != 0 or all(size > 0 for size in input.size()[1:]), |
| lambda: f"Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}", |
| ) |
| return input.new_empty(full_output_size).to( |
| memory_format=utils.suggest_memory_format(input) |
| ) |
| |
| |
| # From aten/src/ATen/native/cuda/AmpKernels.cu |
| @register_meta(aten._amp_foreach_non_finite_check_and_unscale_.default) |
| def _amp_foreach_non_finite_check_and_unscale_(self, found_inf, inv_scale): |
| torch._check( |
| found_inf.numel() == 1, lambda: "found_inf must be a 1-element tensor." |
| ) |
| torch._check( |
| inv_scale.numel() == 1, lambda: "inv_scale must be a 1-element tensor." |
| ) |
| torch._check( |
| found_inf.dtype.is_floating_point, |
| lambda: "found_inf must be a float tensor.", |
| ) |
| torch._check( |
| inv_scale.dtype.is_floating_point, |
| lambda: "inv_scale must be a float tensor.", |
| ) |
| |
| |
| # From aten/src/ATen/native/UnaryOps.cpp |
| @register_meta([aten.nan_to_num.default, aten.nan_to_num.out]) |
| @out_wrapper() |
| def nan_to_num(self, nan=None, posinf=None, neginf=None): |
| result_size = list(self.size()) |
| return self.new_empty(result_size) |
| |
| |
| @register_meta(torch.ops.aten.transpose_) |
| def transpose_(self, dim0, dim1): |
| assert self.layout not in { |
| torch.sparse_csr, |
| torch.sparse_csc, |
| torch.sparse_bsr, |
| torch.sparse_bsc, |
| }, f"torch.transpose_: in-place transposition is not supported for {self.layout} layout" |
| |
| ndims = self.ndim |
| |
| dim0 = maybe_wrap_dim(dim0, ndims) |
| dim1 = maybe_wrap_dim(dim1, ndims) |
| |
| if dim0 == dim1: |
| return self |
| |
| size = list(self.size()) |
| stride = list(self.stride()) |
| |
| stride[dim0], stride[dim1] = stride[dim1], stride[dim0] |
| size[dim0], size[dim1] = size[dim1], size[dim0] |
| |
| self.as_strided_(size, stride) |
| return self |
| |
| |
| @register_meta(torch.ops.aten.t_) |
| def t_(self): |
| ndims = self.ndim |
| |
| if self.is_sparse: |
| sparse_dim = self.sparse_dim() |
| dense_dim = self.dense_dim() |
| assert ( |
| sparse_dim <= 2 and dense_dim == 0 |
| ), f"t_ expects a tensor with <= 2 sparse and 0 dense dimensions, but got {sparse_dim} sparse and {dense_dim} dense dimensions" # noqa: B950 |
| else: |
| assert ( |
| self.dim() <= 2 |
| ), f"t_ expects a tensor with <= 2 dimensions, but self is {ndims}D" |
| |
| return transpose_(self, 0, 0 if ndims < 2 else 1) |
| |
| |
| @register_meta(aten.searchsorted) |
| @out_wrapper() |
| def meta_searchsorted( |
| sorted_sequence, self, *, out_int32=False, right=False, side=None, sorter=None |
| ): |
| dtype = torch.int32 if out_int32 else torch.int64 |
| if isinstance(self, torch.Tensor): |
| return torch.empty_like(self, dtype=dtype).contiguous() |
| else: # Scalar |
| return torch.empty((), dtype=dtype, device=sorted_sequence.device) |
| |
| |
| @register_meta(aten.polygamma) |
| @out_wrapper() |
| def meta_polygamma(n: int, self: Tensor) -> Tensor: |
| torch._check(n >= 0, lambda: "polygamma(n, x) does not support negative n.") |
| _, result_dtype = elementwise_dtypes( |
| self, |
| type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, |
| ) |
| return torch.empty_like(self, dtype=result_dtype) |
| |
| |
| def _create_unary_float_meta_func(func): |
| @register_meta(func) |
| @out_wrapper() |
| def _f(x): |
| return elementwise_meta( |
| x, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT |
| ) |
| |
| return _f |
| |
| |
| def _create_binary_float_meta_func(func): |
| @register_meta(func) |
| @out_wrapper() |
| def _f(x, y): |
| return elementwise_meta( |
| x, y, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT |
| ) |
| |
| return _f |
| |
| |
| _create_unary_float_meta_func(aten.special_airy_ai) |
| _create_unary_float_meta_func(aten.special_bessel_y0) |
| _create_unary_float_meta_func(aten.special_bessel_y1) |
| _create_unary_float_meta_func(aten.special_modified_bessel_i0) |
| _create_unary_float_meta_func(aten.special_modified_bessel_i1) |
| _create_unary_float_meta_func(aten.special_modified_bessel_k0) |
| _create_unary_float_meta_func(aten.special_modified_bessel_k1) |
| _create_unary_float_meta_func(aten.special_scaled_modified_bessel_k0) |
| _create_unary_float_meta_func(aten.special_scaled_modified_bessel_k1) |
| |
| |
| _create_binary_float_meta_func(aten.special_chebyshev_polynomial_t) |
| _create_binary_float_meta_func(aten.special_chebyshev_polynomial_u) |
| _create_binary_float_meta_func(aten.special_hermite_polynomial_h) |
| _create_binary_float_meta_func(aten.special_hermite_polynomial_he) |
| _create_binary_float_meta_func(aten.special_laguerre_polynomial_l) |
| |
| |
| # We must also trigger meta registrations from PrimTorch ref |
| # decompositions |
| import torch._refs |
| import torch._refs.nn.functional |
| import torch._refs.special |
| |
| |
| def activate_meta(): |
| activate_meta_table = {} |
| |
| # For a given op, we pick the most specific decomp function from |
| # global_decomp_table in the precedence order of meta > post_autograd > pre_autograd |
| for type in ["meta", "post_autograd", "pre_autograd"]: |
| registry = global_decomposition_table[type] |
| |
| for opo in registry: |
| if opo not in activate_meta_table: |
| activate_meta_table[opo] = registry[opo] |
| |
| for op_overload, fn in activate_meta_table.items(): |
| # Don't register meta for HigherOrderOp's decomp. |
| # We can reconsider this in the future, but in general, |
| # the way you do a meta for a HigherOrderOp is different from |
| # OpOverload. |
| if isinstance(op_overload, torch._ops.HigherOrderOperator): |
| continue |
| assert isinstance(op_overload, OpOverload) |
| |
| op_overload.py_impl(torch._C.DispatchKey.Meta)(fn) |
| |
| if torch._C._dispatch_has_kernel_for_dispatch_key( |
| op_overload.name(), "CompositeImplicitAutograd" |
| ): |
| # Internally, we shouldn't be registering meta kernels for any operators that |
| # have CompositeImplicitAutograd kernels. |
| # Instead, we should be letting those decompositions run, and writing meta kernels |
| # only for the base operators. |
| if op_overload in global_decomposition_table["meta"]: |
| raise RuntimeError( |
| f"{op_overload} is a CompositeImplicitAutograd op, we shouldn't " |
| "register meta function for it. Instead, we should let the decomposition run and write " |
| "meta kernels for the base operators." |
| ) |
| pass |
| elif op_overload.is_view: |
| # Attempting to register a python meta kernel for a view operator. |
| # We shouldn't do this, because the output will report as not having aliased storages. |
| # All view ops have meta kernels in C++ today, so we should use those instead. |
| pass |
| elif op_overload.name() in { |
| "aten::empty_strided", # causing infinite recursion, test_meta.py |
| "aten::clone", # causing infinite recursion |
| "aten::_to_copy", # causing infinite recursion, test_serialization.py -k test_tensor_subclass_getstate_overwrite # noqa: B950 |
| "aten::copy_", # Exception not raised, test_torch.py -k test_storage_meta_errors_cpu_int64 # noqa: B950 |
| "aten::constant_pad_nd", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_amp_istft_cuda_float32 # noqa: B950 |
| "aten::rot90", # requires_grad mismatch! test_ops.py -k test_fake_crossref_backward_amp_rot90_cuda_float32 # noqa: B950 |
| "aten::as_strided_scatter", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_no_amp_as_strided_scatter_cuda_float32 # noqa: B950 |
| }: |
| pass |
| else: |
| if "mkldnn::" in op_overload.name(): |
| _meta_lib_dont_use_me_use_register_meta_for_mkldnn.impl(op_overload, fn) |
| elif "mkl::" in op_overload.name(): |
| _meta_lib_dont_use_me_use_register_meta_for_mkl.impl(op_overload, fn) |
| elif "onednn::" in op_overload.name(): |
| _meta_lib_dont_use_me_use_register_meta_for_onednn.impl(op_overload, fn) |
| elif "quantized::" in op_overload.name(): |
| _meta_lib_dont_use_me_use_register_meta_for_quantized.impl( |
| op_overload, fn |
| ) |
| else: |
| _meta_lib_dont_use_me_use_register_meta.impl(op_overload, fn) |
| |
| |
| activate_meta() |