| ## @package beam_search |
| # Module caffe2.python.models.seq2seq.beam_search |
| |
| |
| |
| |
| |
| from collections import namedtuple |
| from caffe2.python import core |
| import caffe2.python.models.seq2seq.seq2seq_util as seq2seq_util |
| from caffe2.python.models.seq2seq.seq2seq_model_helper import Seq2SeqModelHelper |
| |
| |
| class BeamSearchForwardOnly: |
| """ |
| Class generalizing forward beam search for seq2seq models. |
| |
| Also provides types to specify the recurrent structure of decoding: |
| |
| StateConfig: |
| initial_value: blob providing value of state at first step_model |
| state_prev_link: LinkConfig describing how recurrent step receives |
| input from global state blob in each step |
| state_link: LinkConfig describing how step writes (produces new state) |
| to global state blob in each step |
| |
| LinkConfig: |
| blob: blob connecting global state blob to step application |
| offset: offset from beginning of global blob for link in time dimension |
| window: width of global blob to read/write in time dimension |
| """ |
| |
| LinkConfig = namedtuple('LinkConfig', ['blob', 'offset', 'window']) |
| |
| StateConfig = namedtuple( |
| 'StateConfig', |
| ['initial_value', 'state_prev_link', 'state_link'], |
| ) |
| |
| def __init__( |
| self, |
| beam_size, |
| model, |
| eos_token_id, |
| go_token_id=seq2seq_util.GO_ID, |
| post_eos_penalty=None, |
| ): |
| self.beam_size = beam_size |
| self.model = model |
| self.step_model = Seq2SeqModelHelper( |
| name='step_model', |
| param_model=self.model, |
| ) |
| self.go_token_id = go_token_id |
| self.eos_token_id = eos_token_id |
| self.post_eos_penalty = post_eos_penalty |
| |
| ( |
| self.timestep, |
| self.scores_t_prev, |
| self.tokens_t_prev, |
| self.hypo_t_prev, |
| self.attention_t_prev, |
| ) = self.step_model.net.AddExternalInputs( |
| 'timestep', |
| 'scores_t_prev', |
| 'tokens_t_prev', |
| 'hypo_t_prev', |
| 'attention_t_prev', |
| ) |
| tokens_t_prev_int32 = self.step_model.net.Cast( |
| self.tokens_t_prev, |
| 'tokens_t_prev_int32', |
| to=core.DataType.INT32, |
| ) |
| self.tokens_t_prev_int32_flattened, _ = self.step_model.net.Reshape( |
| [tokens_t_prev_int32], |
| [tokens_t_prev_int32, 'input_t_int32_old_shape'], |
| shape=[1, -1], |
| ) |
| |
| def get_step_model(self): |
| return self.step_model |
| |
| def get_previous_tokens(self): |
| return self.tokens_t_prev_int32_flattened |
| |
| def get_timestep(self): |
| return self.timestep |
| |
| # TODO: make attentions a generic state |
| # data_dependencies is a list of blobs that the operator should wait for |
| # before beginning execution. This ensures that ops are run in the correct |
| # order when the RecurrentNetwork op is embedded in a DAGNet, for ex. |
| def apply( |
| self, |
| inputs, |
| length, |
| log_probs, |
| attentions, |
| state_configs, |
| data_dependencies, |
| word_rewards=None, |
| possible_translation_tokens=None, |
| go_token_id=None, |
| ): |
| ZERO = self.model.param_init_net.ConstantFill( |
| [], |
| 'ZERO', |
| shape=[1], |
| value=0, |
| dtype=core.DataType.INT32, |
| ) |
| on_initial_step = self.step_model.net.EQ( |
| [ZERO, self.timestep], |
| 'on_initial_step', |
| ) |
| |
| if self.post_eos_penalty is not None: |
| eos_token = self.model.param_init_net.ConstantFill( |
| [], |
| 'eos_token', |
| shape=[self.beam_size], |
| value=self.eos_token_id, |
| dtype=core.DataType.INT32, |
| ) |
| finished_penalty = self.model.param_init_net.ConstantFill( |
| [], |
| 'finished_penalty', |
| shape=[1], |
| value=float(self.post_eos_penalty), |
| dtype=core.DataType.FLOAT, |
| ) |
| ZERO_FLOAT = self.model.param_init_net.ConstantFill( |
| [], |
| 'ZERO_FLOAT', |
| shape=[1], |
| value=0.0, |
| dtype=core.DataType.FLOAT, |
| ) |
| finished_penalty = self.step_model.net.Conditional( |
| [on_initial_step, ZERO_FLOAT, finished_penalty], |
| 'possible_finished_penalty', |
| ) |
| |
| tokens_t_flat = self.step_model.net.FlattenToVec( |
| self.tokens_t_prev, |
| 'tokens_t_flat', |
| ) |
| tokens_t_flat_int = self.step_model.net.Cast( |
| tokens_t_flat, |
| 'tokens_t_flat_int', |
| to=core.DataType.INT32, |
| ) |
| |
| predecessor_is_eos = self.step_model.net.EQ( |
| [tokens_t_flat_int, eos_token], |
| 'predecessor_is_eos', |
| ) |
| predecessor_is_eos_float = self.step_model.net.Cast( |
| predecessor_is_eos, |
| 'predecessor_is_eos_float', |
| to=core.DataType.FLOAT, |
| ) |
| predecessor_is_eos_penalty = self.step_model.net.Mul( |
| [predecessor_is_eos_float, finished_penalty], |
| 'predecessor_is_eos_penalty', |
| broadcast=1, |
| ) |
| |
| log_probs = self.step_model.net.Add( |
| [log_probs, predecessor_is_eos_penalty], |
| 'log_probs_penalized', |
| broadcast=1, |
| axis=0, |
| ) |
| |
| # [beam_size, beam_size] |
| best_scores_per_hypo, best_tokens_per_hypo = self.step_model.net.TopK( |
| log_probs, |
| ['best_scores_per_hypo', 'best_tokens_per_hypo_indices'], |
| k=self.beam_size, |
| ) |
| if possible_translation_tokens: |
| # [beam_size, beam_size] |
| best_tokens_per_hypo = self.step_model.net.Gather( |
| [possible_translation_tokens, best_tokens_per_hypo], |
| ['best_tokens_per_hypo'] |
| ) |
| |
| # [beam_size] |
| scores_t_prev_squeezed, _ = self.step_model.net.Reshape( |
| self.scores_t_prev, |
| ['scores_t_prev_squeezed', 'scores_t_prev_old_shape'], |
| shape=[self.beam_size], |
| ) |
| # [beam_size, beam_size] |
| output_scores = self.step_model.net.Add( |
| [best_scores_per_hypo, scores_t_prev_squeezed], |
| 'output_scores', |
| broadcast=1, |
| axis=0, |
| ) |
| if word_rewards is not None: |
| # [beam_size, beam_size] |
| word_rewards_for_best_tokens_per_hypo = self.step_model.net.Gather( |
| [word_rewards, best_tokens_per_hypo], |
| 'word_rewards_for_best_tokens_per_hypo', |
| ) |
| # [beam_size, beam_size] |
| output_scores = self.step_model.net.Add( |
| [output_scores, word_rewards_for_best_tokens_per_hypo], |
| 'output_scores', |
| ) |
| # [beam_size * beam_size] |
| output_scores_flattened, _ = self.step_model.net.Reshape( |
| [output_scores], |
| [output_scores, 'output_scores_old_shape'], |
| shape=[-1], |
| ) |
| MINUS_ONE_INT32 = self.model.param_init_net.ConstantFill( |
| [], |
| 'MINUS_ONE_INT32', |
| value=-1, |
| shape=[1], |
| dtype=core.DataType.INT32, |
| ) |
| BEAM_SIZE = self.model.param_init_net.ConstantFill( |
| [], |
| 'beam_size', |
| shape=[1], |
| value=self.beam_size, |
| dtype=core.DataType.INT32, |
| ) |
| |
| # current_beam_size (predecessor states from previous step) |
| # is 1 on first step (so we just need beam_size scores), |
| # and beam_size subsequently (so we need all beam_size * beam_size |
| # scores) |
| slice_end = self.step_model.net.Conditional( |
| [on_initial_step, BEAM_SIZE, MINUS_ONE_INT32], |
| ['slice_end'], |
| ) |
| |
| # [current_beam_size * beam_size] |
| output_scores_flattened_slice = self.step_model.net.Slice( |
| [output_scores_flattened, ZERO, slice_end], |
| 'output_scores_flattened_slice', |
| ) |
| # [1, current_beam_size * beam_size] |
| output_scores_flattened_slice, _ = self.step_model.net.Reshape( |
| output_scores_flattened_slice, |
| [ |
| output_scores_flattened_slice, |
| 'output_scores_flattened_slice_old_shape', |
| ], |
| shape=[1, -1], |
| ) |
| # [1, beam_size] |
| scores_t, best_indices = self.step_model.net.TopK( |
| output_scores_flattened_slice, |
| ['scores_t', 'best_indices'], |
| k=self.beam_size, |
| ) |
| BEAM_SIZE_64 = self.model.param_init_net.Cast( |
| BEAM_SIZE, |
| 'BEAM_SIZE_64', |
| to=core.DataType.INT64, |
| ) |
| # [1, beam_size] |
| hypo_t_int32 = self.step_model.net.Div( |
| [best_indices, BEAM_SIZE_64], |
| 'hypo_t_int32', |
| broadcast=1, |
| ) |
| hypo_t = self.step_model.net.Cast( |
| hypo_t_int32, |
| 'hypo_t', |
| to=core.DataType.FLOAT, |
| ) |
| |
| # [beam_size, encoder_length, 1] |
| attention_t = self.step_model.net.Gather( |
| [attentions, hypo_t_int32], |
| 'attention_t', |
| ) |
| # [1, beam_size, encoder_length] |
| attention_t, _ = self.step_model.net.Reshape( |
| attention_t, |
| [attention_t, 'attention_t_old_shape'], |
| shape=[1, self.beam_size, -1], |
| ) |
| # [beam_size * beam_size] |
| best_tokens_per_hypo_flatten, _ = self.step_model.net.Reshape( |
| best_tokens_per_hypo, |
| [ |
| 'best_tokens_per_hypo_flatten', |
| 'best_tokens_per_hypo_old_shape', |
| ], |
| shape=[-1], |
| ) |
| tokens_t_int32 = self.step_model.net.Gather( |
| [best_tokens_per_hypo_flatten, best_indices], |
| 'tokens_t_int32', |
| ) |
| tokens_t = self.step_model.net.Cast( |
| tokens_t_int32, |
| 'tokens_t', |
| to=core.DataType.FLOAT, |
| ) |
| |
| def choose_state_per_hypo(state_config): |
| state_flattened, _ = self.step_model.net.Reshape( |
| state_config.state_link.blob, |
| [ |
| state_config.state_link.blob, |
| state_config.state_link.blob + '_old_shape', |
| ], |
| shape=[self.beam_size, -1], |
| ) |
| state_chosen_per_hypo = self.step_model.net.Gather( |
| [state_flattened, hypo_t_int32], |
| str(state_config.state_link.blob) + '_chosen_per_hypo', |
| ) |
| return self.StateConfig( |
| initial_value=state_config.initial_value, |
| state_prev_link=state_config.state_prev_link, |
| state_link=self.LinkConfig( |
| blob=state_chosen_per_hypo, |
| offset=state_config.state_link.offset, |
| window=state_config.state_link.window, |
| ) |
| ) |
| state_configs = [choose_state_per_hypo(c) for c in state_configs] |
| initial_scores = self.model.param_init_net.ConstantFill( |
| [], |
| 'initial_scores', |
| shape=[1], |
| value=0.0, |
| dtype=core.DataType.FLOAT, |
| ) |
| if go_token_id: |
| initial_tokens = self.model.net.Copy( |
| [go_token_id], |
| 'initial_tokens', |
| ) |
| else: |
| initial_tokens = self.model.param_init_net.ConstantFill( |
| [], |
| 'initial_tokens', |
| shape=[1], |
| value=float(self.go_token_id), |
| dtype=core.DataType.FLOAT, |
| ) |
| |
| initial_hypo = self.model.param_init_net.ConstantFill( |
| [], |
| 'initial_hypo', |
| shape=[1], |
| value=0.0, |
| dtype=core.DataType.FLOAT, |
| ) |
| encoder_inputs_flattened, _ = self.model.net.Reshape( |
| inputs, |
| ['encoder_inputs_flattened', 'encoder_inputs_old_shape'], |
| shape=[-1], |
| ) |
| init_attention = self.model.net.ConstantFill( |
| encoder_inputs_flattened, |
| 'init_attention', |
| value=0.0, |
| dtype=core.DataType.FLOAT, |
| ) |
| state_configs = state_configs + [ |
| self.StateConfig( |
| initial_value=initial_scores, |
| state_prev_link=self.LinkConfig(self.scores_t_prev, 0, 1), |
| state_link=self.LinkConfig(scores_t, 1, 1), |
| ), |
| self.StateConfig( |
| initial_value=initial_tokens, |
| state_prev_link=self.LinkConfig(self.tokens_t_prev, 0, 1), |
| state_link=self.LinkConfig(tokens_t, 1, 1), |
| ), |
| self.StateConfig( |
| initial_value=initial_hypo, |
| state_prev_link=self.LinkConfig(self.hypo_t_prev, 0, 1), |
| state_link=self.LinkConfig(hypo_t, 1, 1), |
| ), |
| self.StateConfig( |
| initial_value=init_attention, |
| state_prev_link=self.LinkConfig(self.attention_t_prev, 0, 1), |
| state_link=self.LinkConfig(attention_t, 1, 1), |
| ), |
| ] |
| fake_input = self.model.net.ConstantFill( |
| length, |
| 'beam_search_fake_input', |
| input_as_shape=True, |
| extra_shape=[self.beam_size, 1], |
| value=0.0, |
| dtype=core.DataType.FLOAT, |
| ) |
| all_inputs = ( |
| [fake_input] + |
| self.step_model.params + |
| [state_config.initial_value for state_config in state_configs] + |
| data_dependencies |
| ) |
| forward_links = [] |
| recurrent_states = [] |
| for state_config in state_configs: |
| state_name = str(state_config.state_prev_link.blob) + '_states' |
| recurrent_states.append(state_name) |
| forward_links.append(( |
| state_config.state_prev_link.blob, |
| state_name, |
| state_config.state_prev_link.offset, |
| state_config.state_prev_link.window, |
| )) |
| forward_links.append(( |
| state_config.state_link.blob, |
| state_name, |
| state_config.state_link.offset, |
| state_config.state_link.window, |
| )) |
| link_internal, link_external, link_offset, link_window = ( |
| zip(*forward_links) |
| ) |
| all_outputs = [ |
| str(s) + '_all' |
| for s in [scores_t, tokens_t, hypo_t, attention_t] |
| ] |
| results = self.model.net.RecurrentNetwork( |
| all_inputs, |
| all_outputs + ['step_workspaces'], |
| param=[all_inputs.index(p) for p in self.step_model.params], |
| alias_src=[ |
| str(s) + '_states' |
| for s in [ |
| self.scores_t_prev, |
| self.tokens_t_prev, |
| self.hypo_t_prev, |
| self.attention_t_prev, |
| ] |
| ], |
| alias_dst=all_outputs, |
| alias_offset=[0] * 4, |
| recurrent_states=recurrent_states, |
| initial_recurrent_state_ids=[ |
| all_inputs.index(state_config.initial_value) |
| for state_config in state_configs |
| ], |
| link_internal=[str(l) for l in link_internal], |
| link_external=[str(l) for l in link_external], |
| link_offset=link_offset, |
| link_window=link_window, |
| backward_link_internal=[], |
| backward_link_external=[], |
| backward_link_offset=[], |
| step_net=self.step_model.net.Proto(), |
| timestep=str(self.timestep), |
| outputs_with_grads=[], |
| enable_rnn_executor=1, |
| rnn_executor_debug=0 |
| ) |
| score_t_all, tokens_t_all, hypo_t_all, attention_t_all = results[:4] |
| |
| output_token_beam_list = self.model.net.Cast( |
| tokens_t_all, |
| 'output_token_beam_list', |
| to=core.DataType.INT32, |
| ) |
| output_prev_index_beam_list = self.model.net.Cast( |
| hypo_t_all, |
| 'output_prev_index_beam_list', |
| to=core.DataType.INT32, |
| ) |
| output_score_beam_list = self.model.net.Alias( |
| score_t_all, |
| 'output_score_beam_list', |
| ) |
| output_attention_weights_beam_list = self.model.net.Alias( |
| attention_t_all, |
| 'output_attention_weights_beam_list', |
| ) |
| |
| return ( |
| output_token_beam_list, |
| output_prev_index_beam_list, |
| output_score_beam_list, |
| output_attention_weights_beam_list, |
| ) |