blob: efadf1e2e43ffbac3da84ed264b0c5a66f2d54d4 [file] [log] [blame]
import builtins
import collections
import enum
import importlib
import itertools
import logging
import math
import os
import re
import types
import weakref
from inspect import currentframe, getframeinfo
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union
from weakref import ReferenceType
import torch
import torch.utils._device
from torch._guards import (
DuplicateInputs,
Guard,
GuardBuilderBase,
GuardEnvExpr,
GuardSource,
Source,
)
from torch.fx.experimental.symbolic_shapes import SYMPY_INTERP
from . import config, convert_frame, mutation_guard
from .eval_frame import set_guard_error_hook, set_guard_fail_hook
from .exc import unimplemented
from .types import GuardedCode, GuardFail, GuardFn # noqa: F401
from .utils import (
dict_const_keys,
dict_const_keys_repr,
dict_param_key_ids,
guard_failures,
HAS_NUMPY,
istype,
np,
orig_code_map,
tensor_always_has_static_shape,
tuple_iterator_getitem,
tuple_iterator_len,
)
log = logging.getLogger(__name__)
TensorGuards = torch._C._dynamo.guards.TensorGuards
check_obj_id = torch._C._dynamo.guards.check_obj_id
check_type_id = torch._C._dynamo.guards.check_type_id
CLOSURE_VARS = collections.OrderedDict(
[
("___check_type_id", check_type_id),
("___check_obj_id", check_obj_id),
("___is_grad_enabled", torch.is_grad_enabled),
(
"___are_deterministic_algorithms_enabled",
torch.are_deterministic_algorithms_enabled,
),
("___odict_getitem", collections.OrderedDict.__getitem__),
("___dict_param_key_ids", dict_param_key_ids),
("___dict_const_keys", dict_const_keys),
("___tuple_iterator_len", tuple_iterator_len),
("___tuple_iterator_getitem", tuple_iterator_getitem),
("__math_isnan", math.isnan),
("inf", float("inf")),
("__load_module", lambda name: importlib.import_module(name)),
("utils_device", torch.utils._device),
("device", torch.device),
]
)
def strip_function_call(name):
"""
"___odict_getitem(a, 1)" => "a"
"a.layers[slice(2)][0]._xyz" ==> "a"
"getattr(a.layers[slice(2)][0]._abc, '0')" ==> "a"
"getattr(getattr(a.x[3], '0'), '3')" ==> "a"
"a.layers[slice(None, -1, None)][0]._xyz" ==> "a"
"""
# recursively find valid object name in fuction
valid_name = re.compile("[A-Za-z_].*")
curr = ""
for char in name:
if char in " (":
curr = ""
elif char in "),[]":
if curr and curr != "None" and valid_name.match(curr):
return strip_function_call(curr)
else:
curr += char
return strip_getattr_getitem(name)
def strip_getattr_getitem(name):
"""
"a[1]" => "a"
"a.foo" => "a"
"""
return re.split(r"[.\[]", name)[0]
class GuardBuilder(GuardBuilderBase):
def __init__(
self,
id_ref: Callable[[Type[object]], str],
source_ref: Callable[[Source], str],
user_scope: Optional[Dict[str, object]],
check_fn_manager: "CheckFunctionManager",
*,
local: bool,
):
self.local = local
self.id_ref = id_ref
self.source_ref = source_ref
if user_scope:
scope = {"L" if local else "G": user_scope}
else:
scope = {"L" if local else "G": dict()}
self.scope: Dict[str, Dict[str, object]] = scope
self.scope["__builtins__"] = builtins.__dict__.copy()
for (
name,
package_module,
) in torch.package.package_importer._package_imported_modules.items():
name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_")
# Write the package module into the scope so that we can import it
self.scope["__builtins__"][name] = package_module # type: ignore[index]
# Write the demangled name to the scope so that we can use it
self.scope[name] = package_module
self.argnames: List[str] = []
# Code is python expression strings generated for each guard
self.code: List[str] = []
# shape_env_code is only used by local_builder and is used for
# shape env code. This exists only because we need to make sure
# shape env guards get run after tensor match guards (since the
# tensor match guards make sure we actually have tensors)
self.shape_env_code: List[str] = []
# [Note - On Eager Tensor Guards]
# Most of the time, we generate Python code in a guard to directly
# check various properties. However, tensors are a bit special;
# it is too slow to check their properties one-by-one in Python.
# Instead, there is a C++ function TensorGuards.check which takes
# all of the tensor arguments and checks them all against compile-time
# examples entirely in C++. Thus, every time we process a
# TENSOR_MATCH guard, we just add another entry to
# tensor_check_names/tensor_check_examples, saying "for this local,
# check it against this example", and it all ends up getting
# swept up into a single call to ___check_tensors. Invariant:
# len(tensor_check_names) == len(tensor_check_examples).
self.tensor_check_names: List[str] = []
self.tensor_check_examples: List[torch.Tensor] = []
self.check_fn_manager: CheckFunctionManager = check_fn_manager
# Warning: use this with care! This lets you access what the current
# value of the value you are guarding on is. You probably don't want
# to actually durably save this value though (because it's specific
# to this frame!) Instead, you should be reading out some property
# (like its type) which is what you permanently install into the
# guard code.
def get(self, name: str) -> Any:
return eval(name, self.scope, CLOSURE_VARS)
# Registers the usage of the source name referenced by the
# string (or stored in the Guard) as being guarded upon. It's important
# to call this before generating some code that makes use of 'guard',
# because without this call, we won't actually bind the variable
# you reference in the actual guard closure (oops!)
def arg_ref(self, guard: Union[str, Guard]) -> str:
name: str
if isinstance(guard, str):
name = guard
else:
name = guard.name
base = strip_getattr_getitem(strip_function_call(name))
if base not in self.argnames:
if re.match(r"[a-zA-Z0-9_]+", base):
if re.match(r"^\d+$", base):
log.warning("invalid var name: %s", guard)
self.argnames.append(base)
return name
def TYPE_MATCH(self, guard: Guard):
# ___check_type_id is same as `id(type(x)) == y`
t = type(self.get(guard.name))
obj_id = self.id_ref(t)
code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})"
self._produce_guard_code(guard, [code])
def BOOL_FALSE(self, guard: Guard):
# Guard on the runtime value being 'False',
# can be faster than seemingly equivalent checks like DICT_KEYS for empty dict
#
# WARNING: this guard is not safe to use generally. It only works if the runtime
# value is of a type that supports bool(), and some types e.g. Tensor do not.
# Only use this guard in cases you can guarantee the runtime type will be friendly.
# (e.g. Specialized NNModule with mutation protection via setattr)
#
# Why not simply check the runtime type inside this guard? It's slow enough to defeat
# the purpose of using this guard, which itself is supposed to be a faster alternative
# to DICT_KEYS.
ref = self.arg_ref(guard)
code = f"not {ref}"
self._produce_guard_code(guard, [code])
def ID_MATCH(self, guard: Guard):
# ___check_obj_id is same as `id(x) == y`
m = re.match(r"^type\((.+)\)$", guard.name)
if m:
# optional optimization to produce cleaner/faster guard code
return self.TYPE_MATCH(
Guard(m.group(1), guard.source, GuardBuilder.TYPE_MATCH)
)
code = f"___check_obj_id({self.arg_ref(guard)}, {self.id_ref(self.get(guard.name))})"
self._produce_guard_code(guard, [code])
def NAME_MATCH(self, guard: Guard):
obj = self.get(guard.name)
code = f"{self.arg_ref(guard)}.__name__ == '{obj.__name__}'"
self._produce_guard_code(guard, [code])
def HASATTR(self, guard: Guard):
m = re.match(r"^(.*)[.]([a-zA-Z0-9_]+)$", guard.name)
assert m, f"invalid hasattr check {guard.name}"
base, attr = m.group(1, 2)
ref = self.arg_ref(base)
val = hasattr(self.get(base), attr)
code = None
if val:
code = f"hasattr({ref}, {attr!r})"
else:
code = f"not hasattr({ref}, {attr!r})"
self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base))
def EQUALS_MATCH(self, guard: Guard):
ref = self.arg_ref(guard)
val = self.get(guard.name)
t = type(val)
np_types = (
(
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
np.float16,
np.float32,
np.float64,
)
if HAS_NUMPY
else ()
)
ok_types = (
int,
float,
bool,
type(None),
str,
type,
list,
tuple,
set,
slice,
frozenset,
range,
torch.Size,
torch.device,
torch.dtype,
*np_types,
)
if istype(val, dict):
assert all(
istype(x, ok_types) for x in itertools.chain(val.keys(), val.values())
)
else:
assert istype(
val,
ok_types,
), t.__name__
if istype(val, (torch.device, torch.dtype)):
# TODO(jansel): is this slow? perhaps optimize it
code = [f"str({ref}) == {str(val)!r}"]
self._produce_guard_code(guard, code)
return
# Special case for nan because float("nan") == float("nan") evaluates to False
if istype(val, float) and math.isnan(val):
code = list()
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
code.append(f"__math_isnan({ref})")
self._produce_guard_code(guard, code)
return
code = list()
# If matching equality against list/tuple, we must also check that
# the internal types match. (TODO: what about nested lists?)
if istype(val, (list, tuple)):
# NB: LIST_LENGTH takes care of the outer __check_type_id test
self.LIST_LENGTH(guard)
for idx, elem in enumerate(val):
code.append(
f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})"
)
else:
# Add type check to prevent equality check between tensor and non-tensor.
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
if istype(val, torch.Size):
val = tuple(val)
# TODO: It feels like it would be better to just implement our own
# equality test in C that handles all of the necessary type checking
# and NaN tests
code.append(f"{ref} == {val!r}")
self._produce_guard_code(guard, code)
def CONSTANT_MATCH(self, guard: Guard):
val = self.get(guard.name)
if istype(val, (bool, type(None))):
self.ID_MATCH(guard)
else:
self.EQUALS_MATCH(guard)
def NN_MODULE(self, guard: Guard):
self.ID_MATCH(guard)
ref = self.arg_ref(guard)
val = self.get(guard.name)
def setup_guard():
assert istype(val.training, bool)
self.code.append(f"{ref}.training == {val.training}")
if hasattr(val, "training"):
# There are cases where a monkeypatched object has a guard made between __new__ and __init__
setup_guard()
else:
unimplemented(f"Guard setup for uninitialized class {type(val)}")
def FUNCTION_MATCH(self, guard: Guard):
"""things like torch.add and user defined functions"""
if guard.is_local():
return self.ID_MATCH(guard)
def BUILTIN_MATCH(self, guard: Guard):
return self.FUNCTION_MATCH(guard)
def PYMODULE_MATCH(self, guard: Guard):
return self.FUNCTION_MATCH(guard)
def LIST_LENGTH(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
code = list()
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
code.append(f"len({ref}) == {len(value)}")
self._produce_guard_code(guard, code)
def TUPLE_ITERATOR_LEN(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
code = list()
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}")
self._produce_guard_code(guard, code)
def DICT_KEYS(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
code = list()
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
param_key_ids = set(dict_param_key_ids(value))
const_keys = set(dict_const_keys(value))
const_keys_repr = dict_const_keys_repr(const_keys, local=self.local)
if param_key_ids:
code.append(f"___dict_param_key_ids({ref}) == {param_key_ids!r}")
code.append(f"___dict_const_keys({ref}) == {const_keys_repr}")
else:
code.append(f"set({ref}.keys()) == {const_keys_repr}")
self._produce_guard_code(guard, code)
def WEAKREF_ALIVE(self, guard):
self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"])
def NN_MODULE_PARAM_NAMES(self, guard):
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
keys = {k for k, v in value.named_parameters()}
code = list()
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}")
self._produce_guard_code(guard, code)
def ODICT_KEYS(self, guard):
"""OrderedDict keys match"""
ref = self.arg_ref(guard)
value = self.get(guard.name)
t = type(value)
code = list()
code.append(f"___check_type_id({ref}, {self.id_ref(t)})")
code.append(f"str({ref}.keys()) == {str(value.keys())!r}")
self._produce_guard_code(guard, code)
def OBJECT_MUTATION(self, guard: Guard):
mutation_guard.watch(self.get(guard.name), self.check_fn_manager)
def GRAD_MODE(self, guard: Guard):
"""Guard on the initial grad state"""
assert guard.name == ""
assert guard.source is GuardSource.GLOBAL
code = None
if convert_frame.initial_grad_state:
code = "___is_grad_enabled()"
else:
code = "not ___is_grad_enabled()"
self._produce_guard_code(guard, [code])
def DETERMINISTIC_ALGORITHMS(self, guard: Guard):
"""Guard on the initial determinism algorithms state"""
assert guard.source is GuardSource.GLOBAL
code = None
if convert_frame.initial_deterministic_algorithms_state:
code = "___are_deterministic_algorithms_enabled()"
else:
code = "not ___are_deterministic_algorithms_enabled()"
self._produce_guard_code(guard, [code])
def DEFAULT_DEVICE(self, guard: Guard):
"""Guard on CURRENT_DEVICE per torch.utils._device"""
assert guard.source is GuardSource.GLOBAL
import torch.utils._device as m
self._produce_guard_code(
guard, [f"utils_device.CURRENT_DEVICE == {m.CURRENT_DEVICE!r}"]
)
def SHAPE_ENV(self, guard: Guard):
# Let's handle ShapeEnv guards. To do this, we will resolve
# shape variables to sources from tracked_fakes. This must happen after
# tensor checks.
assert guard.name == ""
output_graph = self.check_fn_manager.output_graph
# NB: self.output_graph can be None in the debug_nops tests
fs = output_graph.tracked_fakes
constraint_inputs = [a.constraint_dims for a in fs]
guards = output_graph.shape_env.produce_guards(
[a.fake for a in fs],
[a.source for a in fs],
constraint_inputs=constraint_inputs,
source_ref=self.source_ref,
)
output_graph.shape_env.freeze()
for shape_guard in guards:
self._produce_guard_code(guard, [shape_guard], shape_env=True)
def TENSOR_MATCH(self, guard: Guard):
if guard.is_nn_module():
self.ID_MATCH(guard)
else:
value = self.get(guard.name)
assert isinstance(value, torch.Tensor)
tensor_name = self.arg_ref(guard)
# [Note - On Export Tensor Guards]
#
# In eager mode, tensor guards are evaluated through C++, in guards.cpp
# see [Note - On Eager Tensor Guards] for more info.
#
# In export mode, we instead maintain parallel logic between C++ and python
# here, with an exception of checking the dispatch key - with the idea that a dispatch key
# is an entirely runtime notion that would make no sense to keep in an exported graph.
#
# Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although
# not entirely true.
# For example, suppose one of the input tensors had the negative dispatch key.
# You should end up with a graph that is specialized for tensors that have a negative dispatch key.
# If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated.
# Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't
# support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key.
# TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported
# subset of keys during export.
#
# The list of tensor fields and calls we care about can be found in `terms` below.
# TODO(voz): We are missing storage offset in all our tensor guards?
code: List[str] = list()
if self.check_fn_manager.output_graph.export:
self.TYPE_MATCH(guard)
terms = [
"dtype",
"device.type",
"device.index",
"requires_grad",
"ndimension()",
]
if not config.dynamic_shapes:
terms.append("stride()")
# We need to do this to avoid the torch.Size type in guards
code.append(f"{tensor_name}.shape == {tuple(value.shape)}")
for term in terms:
real_value = self.get(tensor_name + "." + term)
code.append(f"{tensor_name}.{term} == {real_value}")
else:
self.tensor_check_names.append(tensor_name)
self.tensor_check_examples.append(value)
# A frame is valid for reuse with dynamic dimensions if the new dynamic dimensions are a
# strict subset of the old.
#
# The logic here is as follows:
#
# Every mark_dynamic directive is a user-knows-best command, which can incur a raise at tracing
# time if we find guards that run counter to the user directive.
# If compiling a frame with explicit dynamic dims X could cause an exception, we MUST NOT skip compiling.
#
# If the frame is compiled with any marked dynamic indices, let's call that set of indices X.
# When we evaluated inputs against the guards, given the same tensor with potentially new dynamic indices,
# let's call that set Y.
#
# When X is a strict subset of Y, the potential new raises introduced during compilation are a strict subset
# of the raises we
# could have encountered. The frame compiled under Y is safe to reuse with X.
# When X is not a strict subset of Y, the non-overlapping new elements of X may cause new raises, and the
# frame is no longer fit for reuse.
#
# This is the case because any newly introduced mark_dynamic directives have a chance of
# raising, failing compilation. Any existing mark_dynamic indices that we lost are safe to lose
# as all it means is that we have gotten rid of a user directive which could incur a raise at compile time.
# In the case of when there is no Y, that is, there are no dynamic indices marked at all, the frame is safe
# to reuse
# as an empty set is a safe degeneration - that is, a strictly static tensor is always valid for a frame
# compiled with that same
# tensor + more onerous user directives.
assert guard.source is not None
static, reason = tensor_always_has_static_shape(
value, is_tensor=True, guard_source=guard.source
)
if not static:
if hasattr(value, "_dynamo_dynamic_indices"):
code.append(
f"({tensor_name}._dynamo_dynamic_indices.issubset({value._dynamo_dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True" # noqa: B950
)
# In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of
# raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled.
else:
code.append(
f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False"
)
if len(code) > 0:
self._produce_guard_code(guard, code)
# A util that appends guarded code, or, in the case of export, adds data onto guards
def _produce_guard_code(
self, guard, code_list, provided_guarded_object=None, shape_env=False
):
# WARNING: It is important that cur_frame/caller do NOT stay in
# the current frame, because they will keep things live longer
# than they should. See TestMisc.test_release_module_memory
cur_frame = currentframe()
assert cur_frame is not None
caller = cur_frame.f_back
del cur_frame
assert caller is not None
func_name = getframeinfo(caller)[2]
del caller
# We use func_name for export, so might as well get a nice defensive check out of it
assert func_name in dir(
self.__class__
), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}"
if shape_env:
self.shape_env_code.extend(code_list)
else:
self.code.extend(code_list)
# Not all guards have names, some can be installed globally (see asserts on HAS_GRAD)
if provided_guarded_object is None:
name_valid = guard.name is not None and guard.name != ""
guarded_object = self.get(guard.name) if name_valid else None
else:
guarded_object = provided_guarded_object
guarded_object_type = (
weakref.ref(type(guarded_object)) if guarded_object is not None else None
)
obj_ref = None
# Not necessary to have weakref for Enum type, but there is a bug that
# makes hasattr(guarded_object.__class__, "__weakref__") return True.
if hasattr(guarded_object.__class__, "__weakref__") and not isinstance(
guarded_object, enum.Enum
):
obj_ref = weakref.ref(guarded_object)
guard.set_export_info(
func_name,
guarded_object_type,
code_list,
obj_ref,
)
# NB: Naively, you'd expect this to only be a function that produces
# the callable that constitutes the guard. However, there is some
# delicate handling for invalidating this check function when the
# locals/globals get invalidated, so there's some extra state
# we have to hold in this manager class.
#
# TODO: this object has reference cycle with itself, via check_fn which
# references back to CheckFunction via ___guarded_code in closure_vars.
# Ideally, there shouldn't be any ref cycle so that guards are
# promptly disposed of.
class CheckFunctionManager:
def __init__(
self,
output_graph=None,
f_locals: Optional[Dict[str, object]] = None,
f_globals: Optional[Dict[str, object]] = None,
guard_fail_fn: Optional[Callable[[Tuple[str, str]], None]] = None,
):
guards = output_graph.guards if output_graph else None
self.valid = True
self._weakrefs: List["ReferenceType[object]"] = []
self._seen_ids: Set[int] = set()
self.output_graph = output_graph
# Note: right overrides left
def combine_scopes(left, right):
if left is None:
return right
if right is None:
return left
return {**left, **right}
def source_ref(source):
guard_source = source.guard_source()
if guard_source is GuardSource.CONSTANT:
# No need to track constants
return source.name()
builder = guard_source.select(w_local(), w_global())
assert builder is not None
return builder.arg_ref(source.name())
local_builder = GuardBuilder(
self.id_ref,
source_ref,
combine_scopes(f_globals, f_locals),
self,
local=True,
)
global_builder = GuardBuilder(
self.id_ref, source_ref, f_globals, self, local=False
)
# We need to transplant a copy here, because some guards
# might get a cross ref between local and global, like L['mod_name'][G['some_key']]
# the inverse is illegal.
if "G" in global_builder.scope:
local_builder.scope["G"] = global_builder.scope["G"]
# source_ref can cause a cycle, make sure we break it with weakref
w_local = weakref.ref(local_builder)
w_global = weakref.ref(global_builder)
for guard in sorted(guards or [], key=Guard.sort_key):
if (
not config.guard_nn_modules
and guard.is_nn_module()
# Default func args must be guarded on.
# TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API
and "__defaults__" not in guard.name
and "__kwdefaults__" not in guard.name
and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name)
):
continue
guard.create(local_builder, global_builder)
self.check_fn = self.compile_check_fn(
local_builder, global_builder, guards, guard_fail_fn
)
self._seen_ids.clear()
def compile_check_fn(
self, local_builder, global_builder, guards_out, guard_fail_fn
):
assert not (set(local_builder.argnames) & set(global_builder.argnames))
# see parallel handling of ".0" / "___implicit0" in _eval_frame.c
largs = local_builder.argnames
largs += ["**___kwargs_ignored"]
args = ",".join(largs)
code_parts = (
["___guarded_code.valid"] + local_builder.code + global_builder.code
)
# TODO(whc) maybe only the 'check_tensors' one is ambiguous? if so we can be less general..
verbose_code_parts = (
["___guarded_code.valid"] + local_builder.code + global_builder.code
)
tensor_check_names = (
local_builder.tensor_check_names + global_builder.tensor_check_names
)
check_tensors_fn = None
check_tensors_verbose_fn = None
if tensor_check_names:
assert (
not self.output_graph.export
), "Illegal to set tensor_check_names in export."
tensor_check_examples = (
local_builder.tensor_check_examples
+ global_builder.tensor_check_examples
)
tensor_guards = TensorGuards(
*tensor_check_examples, dynamic_shapes=config.dynamic_shapes
)
check_tensors_fn = tensor_guards.check
check_tensors_verbose_fn = tensor_guards.check_verbose
code_parts.append(f"___check_tensors({', '.join(tensor_check_names)})")
verbose_args = ", ".join(
tensor_check_names + ["tensor_check_names=tensor_check_names"]
)
verbose_code_parts.append(f"___check_tensors_verbose({verbose_args})")
aotautograd_guards: List[GuardEnvExpr] = (
self.output_graph.tracing_context.guards_context.aotautograd_guards
if self.output_graph
else []
)
for guard in aotautograd_guards:
if isinstance(guard, DuplicateInputs):
source_a = guard.input_source_a
source_b = guard.input_source_b
code_part = f"{source_a.name()} is {source_b.name()}"
code_parts.append(code_part)
verbose_code_parts.append(code_part)
else:
raise RuntimeError(f"Unknown GuardEnvExpr: {guard}")
code_parts.extend(local_builder.shape_env_code)
verbose_code_parts.extend(local_builder.shape_env_code)
assert not global_builder.shape_env_code
code = " and ".join(unique(code_parts))
closure_vars = collections.OrderedDict(
[
("___guarded_code", self),
("___check_tensors", check_tensors_fn),
("___check_tensors_verbose", check_tensors_verbose_fn),
("tensor_check_names", tensor_check_names),
]
+ list(SYMPY_INTERP.items())
)
closure_vars.update(CLOSURE_VARS)
py_code = f"""\
def ___make_guard_fn({','.join(closure_vars.keys())}):
return lambda L: {code}
"""
if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1":
print("GUARDS", code)
set_guard_fail_hook(guard_fail_hook)
out: Dict[str, Any] = dict()
exec(py_code, global_builder.scope, out)
guard_fn = out["___make_guard_fn"](*closure_vars.values())
guard_fn.closure_vars = closure_vars
# TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both
guard_fn.args = largs
guard_fn.code_parts = code_parts
guard_fn.verbose_code_parts = verbose_code_parts
# Grab only G, but preserve "G" because guards access it as "G"
guard_fn.global_scope = {"G": global_builder.scope["G"]}
guard_fn.guard_fail_fn = guard_fail_fn
return guard_fn
def invalidate(self, ref):
# A weakref is no longer valid, self.check_fn should return false
self.valid = False
def id_ref(self, obj):
"""add a weakref, return the id"""
try:
if id(obj) not in self._seen_ids:
self._weakrefs.append(weakref.ref(obj, self.invalidate))
self._seen_ids.add(id(obj))
except TypeError:
pass # cannot weakref bool object
return id(obj)
stashed_first_fail_reason = None
def guard_fail_hook(
guard_fn: GuardFn,
code: types.CodeType,
f_locals: Dict[str, object],
index: int,
last: bool,
) -> None:
"""
called whenever a guard fails.
"""
first = index == 0
global stashed_first_fail_reason
# Don't waste time computing the fail reason for guards we aren't going to report out.
if not guard_fn.guard_fail_fn and not (first or last):
return
scope = {"L": f_locals, "G": guard_fn.global_scope["G"]}
scope.update(guard_fn.closure_vars)
reason = None
for part in guard_fn.verbose_code_parts:
fail_reason = eval(part, guard_fn.global_scope, scope)
# TODO(whc) hacky for now as not every 'part' in guard_fn.verbose_code_parts
# is updated to return a string explaining the failure.
if isinstance(fail_reason, str):
reason = fail_reason
break
elif isinstance(fail_reason, bool) and not fail_reason:
reason = part
break
if first:
stashed_first_fail_reason = reason
if not last:
return
# Technically, we're failing our last guard, which is our oldest guard due to the
# eval_frame.c logic that moves newest frames to head, but for logging purposes
# it's more useful to see the 'first' failure (if we never got a hit) since it's
# likely not yet been logged as a failure reason in a case of repeating failures.
assert stashed_first_fail_reason
guard_failures[orig_code_map[code]].append(stashed_first_fail_reason)
stashed_first_fail_reason = None
# TODO should we GuardFail our stashed_first_fail_reason too?
try:
if guard_fn.guard_fail_fn is not None:
guard_fn.guard_fail_fn(
GuardFail(reason or "unknown reason", orig_code_map[code])
)
except Exception as e:
log.error(
"Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval",
exc_info=True,
)
def guard_error_hook(
guard_fn: GuardFn,
code: types.CodeType,
f_locals: Dict[str, object],
index: int,
last: bool,
):
print(
f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}"
)
# TODO: If we passed in the exception here, we could get a precise
# column number of which subexpression failed. But that would also
# require us to have the TRUE code that was eval'ed, not a shoddy
# reconstruction (like is done here)
print("lambda " + ", ".join(guard_fn.args) + ":")
print(" ", " and\n ".join(guard_fn.code_parts))
set_guard_error_hook(guard_error_hook)
def unique(seq):
seen = set()
for x in seq:
if x not in seen:
yield x
seen.add(x)