| # Owner(s): ["module: fx.passes"] |
| |
| from dataclasses import dataclass |
| import operator |
| import logging |
| |
| import torch |
| from torch.fx._symbolic_trace import symbolic_trace |
| |
| from torch.fx.passes.infra.partitioner import CapabilityBasedPartitioner |
| from torch.fx.passes.operator_support import OperatorSupport |
| from torch.fx.passes.utils.fuser_utils import fuse_by_partitions |
| from torch.fx.passes.utils.matcher_utils import SubgraphMatcher |
| |
| from torch.testing._internal.common_utils import run_tests, parametrize, instantiate_parametrized_tests |
| from torch.testing._internal.jit_utils import JitTestCase |
| |
| logging.basicConfig(level=logging.WARNING) |
| logger = logging.getLogger(__name__) |
| |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.linear = torch.nn.Linear(4, 4) |
| self.linear2 = torch.nn.Linear(4, 4) |
| self.param = torch.nn.Parameter(torch.rand(4, 4)) |
| |
| def forward(self, a, b, c): |
| add = a + b |
| |
| linear_1 = self.linear(add) |
| |
| add_1 = add + c |
| add_2 = add_1 + self.param |
| add_3 = add_1 + linear_1 |
| add_4 = add_2 + add_3 |
| |
| linear_2 = self.linear2(add_4) |
| |
| add_5 = linear_2 + add_4 |
| add_6 = add_5 + a |
| relu = add_6.relu() |
| |
| return add_4, add_6, relu |
| |
| class TestPartitionFunctions: |
| @staticmethod |
| def forward1(a, b, c): |
| add = a + b |
| add_1 = add + b |
| add_2 = add_1 + c |
| relu_1 = add_2.relu() |
| add_3 = add_1 + add_2 |
| add_4 = add_1 + relu_1 + add_3 |
| relu_2 = add_4.relu() |
| add_5 = relu_2 + add_4 |
| add_6 = add_5 + add_4 |
| return add_4, add_6 |
| |
| @staticmethod |
| def forward2(a, b, _): |
| add = a + b |
| add_1 = add + b |
| relu_1 = add_1.relu() # blocked by this |
| add_3 = add_1 + relu_1 |
| add_4 = add_1 + add_3 |
| return add_4, add_1 |
| |
| @staticmethod |
| def forward3(a, b, c): |
| add = a + b |
| add_1 = a + c |
| add_2 = b + c |
| return add, add_1, add_2 |
| |
| @staticmethod |
| def forward4(a, b, c): |
| add = a + b |
| add_1 = a + c |
| add_2 = b + c |
| return torch.where(add > 0, add_1, add_2) |
| |
| @staticmethod |
| def forward5(a, b, c): |
| # add should be fused right branch, as left branch is not supported |
| add = a + 1 |
| # left branch |
| relu = add.relu() |
| # right branch |
| add_1 = add + 2 |
| return relu, add_1 |
| |
| @staticmethod |
| def forward6(a, b, c): |
| # add should have its own partition, as neither branchs are supported |
| add = a + 1 |
| # left branch |
| relu = add.relu() |
| # right branch |
| relu_1 = add.relu() |
| return relu, relu_1 |
| |
| @staticmethod |
| def forward7(a, b, c): |
| # both branches are supported, all adds should be fused together |
| add = a + 1 |
| # left branch |
| add_1 = add + 2 |
| # right branch is larger |
| add_2 = add + 1 |
| add_3 = add_2 + 1 |
| return add_3, add_1 |
| |
| @staticmethod |
| def forward8(a, b, c): |
| # both branches are in the same partition, add should join the same partition |
| add = a + 1 |
| # left branch |
| add_1 = add + 2 |
| # right branch |
| add_2 = add + 1 |
| # left and right branch merges |
| add_3 = add_2 + add_1 |
| |
| return add_3 |
| |
| @staticmethod |
| def forward9(a, b, c): |
| add = a + 1 |
| # branch 1 |
| add_1 = add + 1 |
| # branch 2 |
| add_2 = add + 1 |
| # branch_3 |
| add_3 = add + 1 |
| out = torch.stack([add_1, add_2, add_3]) |
| return out |
| |
| @staticmethod |
| def forward10(a, b, c): |
| add = a + 1 |
| # branch 1 |
| add_1 = add + 1 |
| # branch 2 |
| add_2 = add + 1 |
| # branch 3: depends on branch 2 |
| add_3 = add + add_2 |
| out = torch.stack([add_1, add_2, add_3]) |
| return out |
| |
| @staticmethod |
| def forward11(a, b, c): |
| add = a + 1 |
| # branch 1 |
| add_1 = add.relu() |
| # branch 2 depends on branch 1 |
| add_2 = add + add_1 |
| # branch 3 |
| add_3 = add.relu() |
| out = torch.stack([add_1, add_2, add_3]) |
| return out |
| |
| # A mock OperatorSupport class, where only operator.add is supported |
| class MockOperatorSupport(OperatorSupport): |
| def is_node_supported(self, submodules, node: torch.fx.Node) -> bool: |
| return node.op == "call_function" and node.target in {operator.add} |
| |
| |
| @instantiate_parametrized_tests |
| class TestFXGraphPasses(JitTestCase): |
| |
| @parametrize("fn, expected_partition", [ |
| (TestPartitionFunctions.forward1, [["add_7", "add_6"], ["add_5", "add_4", "add_3"], ["add_2", "add_1", "add"]]), |
| (TestPartitionFunctions.forward2, [["add_3", "add_2"], ["add_1", "add"]]), |
| |
| # 2 branches cases |
| (TestPartitionFunctions.forward5, [["add_1", "add"]]), |
| (TestPartitionFunctions.forward6, [["add"]]), |
| (TestPartitionFunctions.forward7, [["add_3", "add_2", "add", "add_1"]]), |
| (TestPartitionFunctions.forward8, [["add_3", "add_2", "add", "add_1"]]), |
| |
| # 3 branch cases |
| (TestPartitionFunctions.forward9, [['add_3', 'add_2', 'add_1', 'add']]), |
| (TestPartitionFunctions.forward10, [['add_3', 'add_2', 'add', 'add_1']]), |
| (TestPartitionFunctions.forward11, [['add_1'], ['add']]), |
| ]) |
| def test_partitioner(self, fn, expected_partition): |
| traced = symbolic_trace(fn) |
| |
| supported_ops = MockOperatorSupport() |
| partitioner = CapabilityBasedPartitioner(traced, supported_ops, allows_single_node_partition=True) |
| partitions = partitioner.propose_partitions() |
| |
| partitions_name = [[node.name for node in partition.nodes] for partition in partitions] |
| assert len(partitions_name) == len(expected_partition) |
| for i in range(len(partitions_name)): |
| assert set(partitions_name[i]) == set(expected_partition[i]) |
| |
| fused_graph = partitioner.fuse_partitions(partitions) |
| |
| a, b, c = torch.rand(4), torch.rand(4), torch.rand(4) |
| |
| expected = fn(a, b, c) |
| result = fused_graph(a, b, c) |
| torch.testing.assert_close(expected, result) |
| |
| |
| @parametrize("fn, expected_partition", [ |
| # horizontal fusion without a common downstream node, not supported yet |
| (TestPartitionFunctions.forward3, [["add_2", "add_1", "add"]]), |
| # horizontal fusion with a common downstream node, not supported yet |
| (TestPartitionFunctions.forward4, [["add_2", "add_1", "add"]]), |
| ]) |
| def test_partitioner_xfail(self, fn, expected_partition): |
| traced = symbolic_trace(fn) |
| |
| supported_ops = MockOperatorSupport() |
| partitioner = CapabilityBasedPartitioner(traced, supported_ops, allows_single_node_partition=True) |
| partitions = partitioner.propose_partitions() |
| |
| partitions_name = [[node.name for node in partition.nodes] for partition in partitions] |
| with self.assertRaises(Exception): |
| assert len(partitions_name) == len(expected_partition) |
| |
| @parametrize("partition", [ |
| [['add', 'add_1'], ['add_5', 'add_6']], |
| [['add', 'add_1', 'add_2']], # vertical fusion |
| [['add_2', 'add_3']], # horizontal fusion |
| [['add_3', 'add_4']], |
| [['add_6', 'add_5']], # arbitray node order |
| [['add_4', 'add_1', 'add_3', 'add_2']], # arbitray node order |
| [['add_5', 'add_6'], ['add_1', 'add_2', 'add_3', 'add_4']], # arbitray partition order |
| [['add_5', 'linear2']], # includes call_function + call_module node |
| [['add_6', 'relu']], # includes call_function + call_module node |
| [['param', 'add_2']], # includes get_attr + call_module nodes |
| [['param', 'add_1', 'linear']], # includes get_attr + call_function + call_module nodes |
| [["add", "linear", "add_1", "param", "add_2", "add_3", "add_4", "linear2", "add_5", "add_6", "relu"]], # full graph |
| ]) |
| def test_fuser_util(self, partition): |
| m = TestModule() |
| gm = symbolic_trace(m) |
| |
| nodes_by_name = {node.name : node for node in gm.graph.nodes} |
| |
| partitions = [] |
| for node_names in partition: |
| partitions.append([nodes_by_name[name] for name in node_names]) |
| |
| fused_graph = fuse_by_partitions(gm, partitions) |
| |
| a, b, c = torch.rand(4), torch.rand(4), torch.rand(4) |
| |
| expected = m(a, b, c) |
| result = fused_graph(a, b, c) |
| |
| torch.testing.assert_close(expected, result) |
| |
| @parametrize("partition", [ |
| [['add', 'add_1'], ['add_1', 'add_5', 'add_6']], # add_1 exists in multiple partitions |
| [['add', 'add_1', 'add_3']], # invalid partition: circular dependency |
| [['add_4', 'add_5']], # invalid partition: circular dependency |
| [['relu', 'add_5']], # invalid partition: circular dependency |
| ]) |
| def test_fuser_util_xfail(self, partition): |
| m = TestModule() |
| gm = symbolic_trace(m) |
| |
| nodes_by_name = {node.name : node for node in gm.graph.nodes} |
| |
| partitions = [] |
| for node_names in partition: |
| partitions.append([nodes_by_name[name] for name in node_names]) |
| |
| with self.assertRaises(Exception): |
| fuse_by_partitions(gm, partitions) |
| |
| @dataclass |
| class TestCase: |
| match_output: bool |
| match_placeholder: bool |
| num_matches: int |
| remove_overlapping_matches: bool = True |
| |
| class SingleNodePattern: |
| @staticmethod |
| def forward(x): |
| val = torch.neg(x) |
| return torch.add(val, val) |
| |
| @staticmethod |
| def pattern(a): |
| return torch.neg(a) |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 0), |
| TestCase(False, True, 1), |
| TestCase(True, True, 0) |
| ] |
| class SimplePattern: |
| @staticmethod |
| def forward(x, w1, w2): |
| m1 = torch.cat([w1, w2]).sum() |
| m2 = torch.cat([w2, w1]).sum() |
| m3 = torch.cat([m1, m2]).sum() |
| return x + torch.max(m1) + torch.max(m2) + m3 |
| |
| @staticmethod |
| def pattern(a, b): |
| return torch.cat([a, b]).sum() |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 3), |
| TestCase(True, False, 0), |
| TestCase(False, True, 2), |
| TestCase(True, True, 0) |
| ] |
| |
| class SimpleFullGraphMatching: |
| @staticmethod |
| def forward(x): |
| a = torch.neg(x) |
| return torch.add(a, a) |
| |
| @staticmethod |
| def pattern(x): |
| a = torch.neg(x) |
| return torch.add(a, a) |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 1), |
| TestCase(False, True, 1), |
| TestCase(True, True, 1) |
| ] |
| |
| class DiamondShapePatternTestCase: |
| @staticmethod |
| def forward(x): |
| a = torch.neg(x) |
| |
| a = a.relu() |
| left = a.sigmoid() |
| right = a.relu() |
| out = left + right |
| |
| return out |
| |
| @staticmethod |
| def pattern(a): |
| a = a.relu() |
| left = a.sigmoid() |
| right = a.relu() |
| out = left + right |
| return out |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 1), |
| TestCase(False, True, 0), |
| TestCase(True, True, 0) |
| ] |
| |
| class NonFullyContainedMatches: |
| @staticmethod |
| def forward(x, w1, w2, b1, b2): |
| # fully contained matched subgraph |
| m1 = torch.cat([w1, w2]) |
| m2 = torch.cat([x, b2]) |
| t0 = torch.addmm(b1, m1, m2.t()) |
| t0_sum = torch.sum(t0) # use of t0 is not leaking |
| |
| # leaking matched subgraph, m3 is leaked |
| m3 = torch.cat([w1, w2]) |
| m4 = torch.cat([x, b2]) |
| t1 = torch.addmm(b1, m3, m4.t()) |
| m3_sum = torch.sum(m3) |
| |
| return t0_sum, m3_sum |
| |
| @staticmethod |
| def pattern(x, w1, w2, b1, b2): |
| m1 = torch.cat([w1, w2]) |
| m2 = torch.cat([x, b2]) |
| return torch.addmm(b1, m1, m2.t()) |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| |
| TestCase(True, False, 0), |
| |
| TestCase(False, True, 1), # leaked used of placeholder is not leaking |
| ] |
| |
| class ChainRepeatedPattern: |
| @staticmethod |
| def forward(x): |
| x = torch.sigmoid(x) |
| x = torch.sigmoid(x) |
| x = torch.sigmoid(x) |
| return torch.sigmoid(x) |
| |
| @staticmethod |
| def pattern(x): |
| return torch.sigmoid(torch.sigmoid(x)) |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 3, remove_overlapping_matches=False), |
| TestCase(False, False, 2, remove_overlapping_matches=True), |
| TestCase(True, False, 1), |
| TestCase(False, True, 1), |
| TestCase(True, True, 0) |
| ] |
| |
| class QuantizationModel: |
| @staticmethod |
| def forward(x): |
| x += 3 |
| x = x.dequantize() |
| x = torch.sigmoid(x) |
| x = x.to(torch.float16) |
| return x |
| |
| @staticmethod |
| def pattern(x): |
| x = x.dequantize() |
| x = torch.sigmoid(x) |
| x = x.to(torch.float16) |
| return x |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 1), |
| TestCase(False, True, 0), |
| TestCase(True, True, 0) |
| ] |
| |
| class MultipleOutputsWithDependency: |
| @staticmethod |
| def forward(x): |
| y = x.relu() |
| z = y.sigmoid() |
| return z, y |
| |
| @staticmethod |
| def pattern(a): |
| b = a.relu() |
| c = b.sigmoid() |
| return b, c # outputs have data dependency |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 0), |
| TestCase(False, True, 1), |
| TestCase(True, True, 0) |
| ] |
| |
| class MultipleOutputsWithoutDependency: |
| @staticmethod |
| def forward(x): |
| x = x + 1 |
| |
| # target subgraph to match |
| x = x.relu() |
| z = x.sum() |
| y = x.sigmoid() |
| |
| out = y.sigmoid() + z.sum() |
| return out |
| |
| @staticmethod |
| def pattern(a): |
| a = a.relu() |
| b = a.sigmoid() |
| c = a.sum() |
| return b, c |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 0), |
| TestCase(False, True, 0), |
| TestCase(True, True, 0) |
| ] |
| |
| class MultipleOutputsMultipleOverlappingMatches: |
| @staticmethod |
| def forward(x): |
| x = x + 1 |
| |
| # target subgraph to match |
| x = x.relu() |
| z = x.sum() |
| z1 = x.sum() |
| y = x.sigmoid() |
| y1 = x.sigmoid() |
| |
| return z + z1 + y + y1 |
| |
| @staticmethod |
| def pattern(a): |
| a = a.relu() |
| b = a.sigmoid() |
| c = a.sum() |
| return a, b, c |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 4, remove_overlapping_matches=False), |
| TestCase(False, False, 1, remove_overlapping_matches=True), |
| ] |
| |
| class MultipleOutputsMultipleNonOverlappingMatches: |
| @staticmethod |
| def forward(x): |
| x = x + 1 |
| |
| # target subgraph to match |
| x = x.relu() |
| z = x.sum() |
| y = x.sigmoid() |
| |
| x = x.relu() |
| z1 = x.sum() |
| y1 = x.sigmoid() |
| |
| return z + z1 + y + y1 |
| |
| @staticmethod |
| def pattern(a): |
| a = a.relu() |
| b = a.sigmoid() |
| c = a.sum() |
| return b, c |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| ] |
| |
| class MultipleOutputsIdenticalAnchor: |
| @staticmethod |
| def forward(x): |
| x = x + 1 |
| |
| # target subgraph to match |
| x = x.relu() |
| y = x.sigmoid() |
| y1 = x.sigmoid() |
| |
| return y, y1 |
| |
| @staticmethod |
| def pattern(a): |
| a = a.relu() |
| b = a.sigmoid() |
| b1 = a.sigmoid() |
| return b, b1 |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| # (False, False, 2), # FIXME: currently still matches to 2, should fix to 1 |
| TestCase(True, False, 1), |
| TestCase(False, True, 0), |
| ] |
| |
| class MultipleOutputsHorizontalPattern: |
| @staticmethod |
| def forward(x): |
| x = x + 1 |
| |
| # target subgraph to match |
| y1 = x.relu() |
| y2 = x.sigmoid() |
| |
| return y1, y2 |
| |
| @staticmethod |
| def pattern(a): |
| b1 = a.relu() |
| b2 = a.sigmoid() |
| |
| return b1, b2 |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 1), |
| TestCase(True, False, 1), |
| TestCase(False, True, 0), |
| TestCase(True, True, 0) |
| ] |
| |
| class PatternWithPseudoAny: |
| @staticmethod |
| def forward(x): |
| x = x.relu() |
| x = x.sigmoid() |
| |
| y = x.relu() |
| y = y + 1 |
| |
| z = y.relu() |
| z = z.relu() |
| |
| return z |
| |
| @staticmethod |
| def pattern(a): |
| y = a.relu() |
| z = torch.ops.pseudo.any(y) |
| return z |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 3), |
| TestCase(True, False, 1), |
| TestCase(False, True, 1), |
| TestCase(True, True, 0) |
| ] |
| |
| class PatternWithPseudoOneof: |
| @staticmethod |
| def forward(x): |
| x = x.relu() |
| x = torch.sigmoid(x) |
| |
| z = x.relu() |
| z = torch.relu(z) |
| |
| y = x.relu() |
| y = y + 1 |
| |
| return y |
| |
| @staticmethod |
| def pattern(a): |
| y = a.relu() |
| z = torch.ops.pseudo.oneof(y, targets=["torch.sigmoid", "operator.add"]) |
| return z |
| |
| test_cases = [ |
| # match_output, match_placeholder, num_matches |
| TestCase(False, False, 2), |
| TestCase(True, False, 1), |
| TestCase(False, True, 1), |
| TestCase(True, True, 0) |
| ] |
| |
| @instantiate_parametrized_tests |
| class TestFXMatcherUtils(JitTestCase): |
| |
| @parametrize("test_model", [ |
| SingleNodePattern, |
| SimplePattern, |
| SimpleFullGraphMatching, |
| DiamondShapePatternTestCase, |
| NonFullyContainedMatches, |
| ChainRepeatedPattern, |
| QuantizationModel, |
| MultipleOutputsWithDependency, |
| MultipleOutputsWithoutDependency, |
| MultipleOutputsMultipleOverlappingMatches, |
| MultipleOutputsMultipleNonOverlappingMatches, |
| MultipleOutputsIdenticalAnchor, |
| MultipleOutputsHorizontalPattern, |
| PatternWithPseudoAny, |
| PatternWithPseudoOneof, |
| ]) |
| def test_subgraph_matcher(self, test_model): |
| traced = symbolic_trace(test_model.forward) |
| pattern_traced = symbolic_trace(test_model.pattern) |
| |
| for test_case in test_model.test_cases: |
| |
| matcher = SubgraphMatcher(pattern_traced.graph, |
| match_output=test_case.match_output, |
| match_placeholder=test_case.match_placeholder, |
| remove_overlapping_matches=test_case.remove_overlapping_matches) |
| matches = matcher.match(traced.graph) |
| |
| assert len(matches) == test_case.num_matches |
| |
| for match in matches: |
| for node in pattern_traced.graph.nodes: |
| if not test_case.match_placeholder and node.op == "placeholder": |
| continue |
| if not test_case.match_output and node.op == "output": |
| continue |
| assert node in match.nodes_map |
| |
| |
| if __name__ == "__main__": |
| run_tests() |