blob: 037633670bf14be65e0bb579fd698ea4e03eaad9 [file] [log] [blame]
# Owner(s): ["module: functionalization"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.fx.passes.reinplace import reinplace
from torch.fx.experimental.proxy_tensor import make_fx
try:
from functorch.experimental import functionalize
HAS_FUNCTIONALIZATION = True
except Exception as e:
HAS_FUNCTIONALIZATION = False
class TestReinplacePass(TestCase):
def test_reinplace_basic(self):
# Basic test: the out-of-place add() call should be converted
# into add_()
def f(x):
a = x.clone()
b = a.add(1)
return b
inpt = torch.ones(2)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, x_1):
clone_default = torch.ops.aten.clone.default(x_1); x_1 = None
add_tensor = torch.ops.aten.add_.Tensor(clone_default, 1)
return clone_default
""")
def test_reinplace_with_view(self):
def f(x):
a = x.clone()
a_view = a.view(-1)
# We shouldn't re-inplace the first add(), because an alias of a is re-used later in the program
b = a.add(1)
# Second add() is fine to re-inplace
c = a_view.add(1)
return c
inpt = torch.ones(2)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, x_1):
clone_default = torch.ops.aten.clone.default(x_1); x_1 = None
view_default = torch.ops.aten.view.default(clone_default, [-1])
add_tensor = torch.ops.aten.add.Tensor(clone_default, 1); clone_default = None
add_tensor_1 = torch.ops.aten.add_.Tensor(view_default, 1)
return view_default
""")
# This test won't actually run in CI, because it requires functionalize() from functorch.
# I'm planning on testing more comprehensively with torchbench models,
# but we can make this testing better once functorch moves into pytorch/pytorch.
def test_reinplace_scatter_op(self):
def f(a_):
# for now, don't test mutations to inputs
a = a_.clone()
e = a.view(-1)
b = a.view(-1)
c = b[0]
d = c.view(-1)
d.add_(1)
return a + e
if not HAS_FUNCTIONALIZATION:
return
inpt = torch.ones(4)
f2 = reinplace(make_fx(functionalize(f))(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
# NOTE: one slight pessimization here is the fact that
# there are a bunch of redundant views in the graph.
# Technically, half of these views are duplicates that we could de-dup.
# This shouldn't really hurt performance though, since creating an extra view
# is effectively just moving some metadata around (and allocating a new TensorImpl).
# We can/should update the pass in the future to clean this up.
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone_default = torch.ops.aten.clone.default(a__1); a__1 = None
view_default = torch.ops.aten.view.default(clone_default, [-1])
view_default_1 = torch.ops.aten.view.default(clone_default, [-1])
select_int = torch.ops.aten.select.int(view_default_1, 0, 0); view_default_1 = None
view_default_2 = torch.ops.aten.view.default(select_int, [-1]); select_int = None
add_tensor = torch.ops.aten.add_.Tensor(view_default_2, 1)
view_default_3 = torch.ops.aten.view.default(clone_default, [-1]); clone_default = None
select_int_1 = torch.ops.aten.select.int(view_default_3, 0, 0)
view_default_4 = torch.ops.aten.view.default(view_default_2, []); view_default_2 = None
view_default_5 = torch.ops.aten.view.default(view_default_3, [4]); view_default_3 = None
view_default_6 = torch.ops.aten.view.default(view_default_5, [-1])
add_tensor_1 = torch.ops.aten.add_.Tensor(view_default_5, view_default_6); view_default_6 = None
return view_default_5
""")
def test_reinplace_scatter_twice(self):
def f(a_):
# for now, don't test mutations to inputs
a = a_.clone()
b = a[:, 1]
c = b[1]
c.add_(1)
return a
if not HAS_FUNCTIONALIZATION:
return
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(functionalize(f))(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone_default = torch.ops.aten.clone.default(a__1); a__1 = None
slice_tensor = torch.ops.aten.slice.Tensor(clone_default, 0, 0, 9223372036854775807)
select_int = torch.ops.aten.select.int(slice_tensor, 1, 1); slice_tensor = None
select_int_1 = torch.ops.aten.select.int(select_int, 0, 1); select_int = None
add_tensor = torch.ops.aten.add_.Tensor(select_int_1, 1); select_int_1 = None
slice_tensor_1 = torch.ops.aten.slice.Tensor(clone_default, 0, 0, 9223372036854775807)
select_int_2 = torch.ops.aten.select.int(slice_tensor_1, 1, 1); slice_tensor_1 = None
return clone_default
""")
def test_reinplace_scatter_twice_with_different_view_op_valid(self):
def f(a_):
a = a_.clone()
b = a[:, 1]
c = b[1]
c_updated = c.add(1)
good_mirror_of_b = a.as_strided((4,), (4,), 1)
# good_mirror_of_b points to the same region of memory as b.
# and this scatter op below tries to scatter c_updated into the same region
# that c currently takes up.
# reinplacing logic checks this by confirming that:
# c_updated
# good_mirror_of_b.select(0, 1)
# have the same size/stride/storage_offset.
b_updated = torch.select_scatter(good_mirror_of_b, c_updated, 0, 1)
return b_updated
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone_default = torch.ops.aten.clone.default(a__1); a__1 = None
slice_tensor = torch.ops.aten.slice.Tensor(clone_default, 0, 0, 9223372036854775807)
select_int = torch.ops.aten.select.int(slice_tensor, 1, 1); slice_tensor = None
select_int_1 = torch.ops.aten.select.int(select_int, 0, 1); select_int = None
add_tensor = torch.ops.aten.add_.Tensor(select_int_1, 1); select_int_1 = None
as_strided_default = torch.ops.aten.as_strided.default(clone_default, [4], [4], 1); clone_default = None
return as_strided_default
""")
# Test example where we have a scatter op, where the base tensor
# has the same size/stride/storage offset (even though it is a different view),
# making it valid to re-inplace
def test_reinplace_scatter_twice_with_different_view_op_invalid(self):
def f(a_):
a = a_.clone()
b = a[:, 1]
c = b[1]
c_updated = c.add(1)
good_mirror_of_b = a.as_strided((4,), (4,), 1)
# The first arg to select_scatter is an equivalent view to b.
# However, the select_scatter call below tries to put c_updated
# into a different slice of "b" than what "c" currently occupies.
#
b_updated = torch.select_scatter(good_mirror_of_b, c_updated, 0, 0)
return b_updated
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone_default = torch.ops.aten.clone.default(a__1); a__1 = None
slice_tensor = torch.ops.aten.slice.Tensor(clone_default, 0, 0, 9223372036854775807)
select_int = torch.ops.aten.select.int(slice_tensor, 1, 1); slice_tensor = None
select_int_1 = torch.ops.aten.select.int(select_int, 0, 1); select_int = None
add_tensor = torch.ops.aten.add.Tensor(select_int_1, 1); select_int_1 = None
as_strided_default = torch.ops.aten.as_strided.default(clone_default, [4], [4], 1); clone_default = None
select_scatter_default = torch.ops.aten.select_scatter.default(as_strided_default, add_tensor, 0, 0); as_strided_default = add_tensor = None
return select_scatter_default
""") # noqa: B950
def test_reinplace_scatter_twice_with_different_view_op_invalid2(self):
def f(a_):
a = a_.clone()
b = a[:, 1]
c = b[1]
c_updated = c.add(1)
bad_mirror_of_b = a.as_strided((4,), (4,), 0)
# The first arg to select_scatter points to a different than c's base.
# This makes it invalid to re-inplace.
b_updated = torch.select_scatter(bad_mirror_of_b, c_updated, 0, 1)
return b_updated
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
# self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone_default = torch.ops.aten.clone.default(a__1); a__1 = None
slice_tensor = torch.ops.aten.slice.Tensor(clone_default, 0, 0, 9223372036854775807)
select_int = torch.ops.aten.select.int(slice_tensor, 1, 1); slice_tensor = None
select_int_1 = torch.ops.aten.select.int(select_int, 0, 1); select_int = None
add_tensor = torch.ops.aten.add.Tensor(select_int_1, 1); select_int_1 = None
as_strided_default = torch.ops.aten.as_strided.default(clone_default, [4], [4], 0); clone_default = None
select_scatter_default = torch.ops.aten.select_scatter.default(as_strided_default, add_tensor, 0, 1); as_strided_default = add_tensor = None
return select_scatter_default
""") # noqa: B950
if __name__ == '__main__':
run_tests()