blob: 9e81f4e207c3523e89cef3aab77f25f01fb682d5 [file] [log] [blame]
# Owner(s): ["oncall: profiler"]
import collections
import expecttest
import gc
import io
import json
import os
import re
import tempfile
from typing import List, Optional
import unittest
from dataclasses import dataclass, field
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.utils.data.datapipes as dp
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import (
TestCase, run_tests, TEST_WITH_ASAN, TEST_WITH_ROCM, IS_WINDOWS,
TEST_WITH_CROSSREF, TemporaryFileName, TemporaryDirectoryName)
from torch.autograd import (_record_function_with_args_enter, _record_function_with_args_exit)
from torch.autograd.profiler import profile as _profile
from torch.autograd.profiler_legacy import profile as _profile_legacy
from torch.profiler import (
kineto_available, profile, record_function, supported_activities,
DeviceType, ProfilerAction, ProfilerActivity, ExecutionGraphObserver,
_utils
)
from torch.profiler._pattern_matcher import (Pattern, NamePattern,
ExtraCUDACopyPattern,
ForLoopIndexingPattern,
FP32MatMulPattern,
OptimizerSingleTensorPattern,
SynchronizedDataLoaderPattern,
GradNotSetToNonePattern,
Conv2dBiasFollowedByBatchNorm2dPattern,
MatMulDimInFP16Pattern,
report_all_anti_patterns)
from torch.testing._internal.common_device_type import skipCUDAVersionIn
try:
import psutil
HAS_PSUTIL = True
except ImportError:
HAS_PSUTIL = False
import pickle
@unittest.skipIf(not HAS_PSUTIL, "Requires psutil to run")
@unittest.skipIf(TEST_WITH_ASAN, "Cannot test with ASAN")
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
class TestProfilerCUDA(TestCase):
@skipCUDAVersionIn([(11, 5)]) # https://github.com/pytorch/pytorch/issues/69023
def test_mem_leak(self):
"""Checks that there's no memory leak when using profiler with CUDA
"""
t = torch.rand(1, 1).cuda()
p = psutil.Process()
last_rss = collections.deque(maxlen=5)
for outer_idx in range(10):
with _profile(use_cuda=True):
for _ in range(1024):
t = torch.mm(t, t)
gc.collect()
torch.cuda.empty_cache()
last_rss.append(p.memory_info().rss)
# with CUDA events leaking the increase in memory was ~7 MB between
# profiler invocations above
is_increasing = all(
[last_rss[idx] > last_rss[idx - 1] for idx in range(1, len(last_rss))])
max_diff = -1
for idx in range(1, len(last_rss)):
max_diff = max(max_diff, last_rss[idx] - last_rss[idx - 1])
self.assertTrue(not (is_increasing and max_diff > 100 * 1024),
msg='memory usage is increasing, {}'.format(str(last_rss)))
def test_custom_module_input_op_ids(self):
class MyFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gO):
x, = ctx.saved_tensors
return x
def custom_layer(input_ten):
return MyFunc.apply(input_ten)
# Only testing that emit_nvtx runs when
# record_shapes option is enabled.
with torch.autograd.profiler.emit_nvtx(record_shapes=True) as prof:
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
z = x + y
s = custom_layer(z)
q = s.sum()
q.backward()
class TestRecordFunction(TestCase):
def _record_function_with_param(self):
u = torch.randn(3, 4, 5, requires_grad=True)
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
with record_function("## TEST 1 ##", "1, 2, 3"):
rf_handle = _record_function_with_args_enter("## TEST 2 ##", 1, False, 2.5, [u, u], "hello", u)
_record_function_with_args_exit(rf_handle)
with record_function("## TEST 3 ##"):
rf_handle = _record_function_with_args_enter("## TEST 4 ##")
_record_function_with_args_exit(rf_handle)
return prof
def test_record_function(self):
prof_result = self._record_function_with_param()
found_test_1 = False
found_test_2 = False
found_test_3 = False
found_test_4 = False
for e in prof_result.function_events:
if "## TEST 1 ##" == e.name:
found_test_1 = True
self.assertTrue(e.input_shapes == [[]])
elif "## TEST 2 ##" == e.name:
found_test_2 = True
self.assertTrue(e.input_shapes == [[], [], [], [], [], [3, 4, 5]])
elif "## TEST 3 ##" == e.name:
found_test_3 = True
self.assertTrue(e.input_shapes == [])
elif "## TEST 4 ##" == e.name:
found_test_4 = True
self.assertTrue(e.input_shapes == [])
self.assertTrue(found_test_1)
self.assertTrue(found_test_2)
self.assertTrue(found_test_3)
self.assertTrue(found_test_4)
def test_datapipe_with_record_function(self):
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
input_dp1 = dp.iter.IterableWrapper(range(4))
input_dp2 = dp.iter.IterableWrapper(range(4, 8))
input_dp3 = dp.iter.IterableWrapper(range(8, 12))
output_dp = input_dp1.mux(input_dp2, input_dp3)
output = list(output_dp)
has_iter = False
has_mux = False
for e in prof.function_events:
if has_iter and has_mux:
break
if not has_iter and e.name == "enumerate(DataPipe)#IterableWrapperIterDataPipe":
has_iter = True
if not has_mux and e.name == "enumerate(DataPipe)#MultiplexerIterDataPipe":
has_mux = True
self.assertTrue(has_iter)
self.assertTrue(has_mux)
def test_datapipe_delegation_with_profiler(self):
class IDPIterator(torch.utils.data.IterDataPipe):
def __init__(self):
self.data = list(range(10))
self._idx = 0
def __iter__(self):
return self
def __next__(self):
if self._idx >= 10:
self._idx = 0
raise StopIteration
self._idx += 1
return self.data[self._idx - 1]
def get_value(self, idx):
return self.data[idx]
dp1 = IDPIterator() # The object itself is an iterator
self.assertEqual(5, dp1.get_value(5))
it_dp1 = iter(dp1) # This creates the 1st iterator
self.assertEqual(5, it_dp1.get_value(5)) # type: ignore[attr-defined]
self.assertEqual(list(range(10)), list(it_dp1))
class IDPDelegator(torch.utils.data.IterDataPipe):
def __init__(self, datapipe):
self.datapipe = datapipe
def __iter__(self):
return iter(self.datapipe)
dp2 = IDPDelegator(dp1)
it_dp2 = iter(dp2)
self.assertEqual(5, it_dp2.get_value(5))
self.assertEqual(list(range(10)), list(it_dp2))
def test_datapipe_with_record_function_fork(self):
with _profile(with_stack=True, use_kineto=kineto_available(), record_shapes=True) as prof:
input_dp = dp.iter.IterableWrapper(range(10))
dp1, dp2, dp3 = input_dp.fork(num_instances=3)
output1 = list(dp1)
has_iter = False
has_child = False
for e in prof.function_events:
if has_iter and has_child:
break
if not has_iter and e.name == "enumerate(DataPipe)#IterableWrapperIterDataPipe":
has_iter = True
if not has_child and e.name == "enumerate(DataPipe)#_ChildDataPipe":
has_child = True
self.assertTrue(has_iter)
self.assertTrue(has_child)
class TestExecutionGraph(TestCase):
def payload(self, use_cuda=False):
u = torch.randn(3, 4, 5, requires_grad=True)
with record_function("## TEST 1 ##", "1, 2, 3"):
inf_val = float("inf")
neg_inf_val = float("-inf")
nan_val = float("nan")
rf_handle = _record_function_with_args_enter("## TEST 2 ##", 1, False, 2.5, [u, u], (u, u),
"hello", u, inf_val, neg_inf_val, nan_val)
x = torch.randn(10, 10, requires_grad=True)
if use_cuda:
x = x.cuda()
y = torch.randn(10, 10, requires_grad=True)
if use_cuda:
y = y.cuda()
z = x + y + x * y + x * y
z.backward(z)
gelu = nn.GELU()
m = torch.randn(2)
_ = gelu(m)
if use_cuda:
z = z.cpu()
_record_function_with_args_exit(rf_handle)
def get_execution_graph_root(self, output_file_name):
nodes = []
with open(output_file_name, 'r') as f:
eg_graph = json.load(f)
assert "nodes" in eg_graph
nodes = eg_graph["nodes"]
return nodes
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_execution_graph_with_kineto(self):
trace_called_num = 0
def trace_handler(p):
nonlocal trace_called_num
trace_called_num += 1
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
expected_loop_events = 0
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
skip_first=3,
wait=1,
warmup=1,
active=2),
on_trace_ready=trace_handler,
) as p:
eg.start()
for idx in range(10):
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
p.step()
eg.stop()
eg.unregister_callback()
assert trace_called_num == 2
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
loop_count = 0
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_graph_alone(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
expected_loop_events = 0
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
eg.start()
for idx in range(5):
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
eg.stop()
eg.unregister_callback()
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
loop_count = 0
# Expected tensor object tuple size, in th form of:
# [tensor_id, storage_id, offset, numel, itemsize, device_str]
tensor_tuple_size = 6
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
# Check if tensor tuple representation size is correct.
if n["name"] == "## TEST 2 ##":
assert len(n["inputs"][3][0]) == tensor_tuple_size
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_graph_start_stop(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
expected_loop_events = 0
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
for idx in range(10):
if idx == 3:
eg.start()
elif idx == 5:
eg.stop()
elif idx == 8:
eg.start()
elif idx == 9:
eg.stop()
eg.unregister_callback()
if eg._execution_graph_running:
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
loop_count = 0
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_graph_repeat_in_loop(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
iter_list = {3, 4, 6, 8}
expected_loop_events = len(iter_list)
output_files = []
for idx in range(10):
if idx in iter_list:
# Create a temp file to save execution graph data.
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
output_files.append(fp.name)
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
eg.start()
with record_function(f"## LOOP {idx} ##"):
self.payload(use_cuda=use_cuda)
if idx in iter_list:
eg.stop()
eg.unregister_callback()
event_count = 0
for eg_file in output_files:
nodes = self.get_execution_graph_root(eg_file)
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
assert n["id"] == 1
found_root_node = True
if n["name"].startswith("## LOOP "):
event_count += 1
assert found_root_node
assert event_count == expected_loop_events
def test_execution_graph_no_capture(self):
fp = tempfile.NamedTemporaryFile('w+t', suffix='.json', delete=False)
fp.close()
eg = ExecutionGraphObserver()
eg.register_callback(fp.name)
eg.unregister_callback()
assert fp.name == eg.get_output_file_path()
nodes = self.get_execution_graph_root(fp.name)
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_graph|process]" in n["name"]:
found_root_node = True
assert found_root_node
class TestProfiler(TestCase):
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
def test_source(self):
"""Checks that source code attribution works for eager, TS and autograd mode
"""
# avoid automatic inlining
prev_opt = torch._C._get_graph_executor_optimize()
torch._C._set_graph_executor_optimize(False)
@torch.jit.script
def ts_method_2(x, y):
return torch.matmul(x, y)
@torch.jit.script
def ts_method_1(x, y, z):
a = x + z
w = ts_method_2(x, y) + a
return w.sum()
class DummyModule(nn.Module):
def __init__(self):
super(DummyModule, self).__init__()
self.conv = torch.nn.Conv2d(3, 2, kernel_size=1, stride=2, padding=3, bias=False)
def forward(self, x):
return self.conv(x)
mod = DummyModule()
def call_module(x):
return mod(x)
with _profile(with_stack=True, use_kineto=kineto_available()) as p:
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
z = x + y
w = ts_method_1(x, y, z)
v = 2 * w
v.backward()
a = torch.randn(2, 3, 2, 2, requires_grad=True)
b = call_module(a)
c = b.sum()
c.backward()
for e in p.function_events:
if "aten::add" in e.name or "AddBackward" in e.name:
self.assertTrue(any(["test_profiler" in entry for entry in e.stack]))
self.assertTrue(any([(
"test_source" in entry or
"ts_method_1" in entry or
"ts_method_2" in entry) for entry in e.stack]))
# TODO: https://github.com/pytorch/kineto/issues/617
if kineto_available() and not IS_WINDOWS:
with TemporaryFileName(mode="w+") as fname:
p.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
events = json.load(f)["traceEvents"]
def extract(pattern: str):
matches = [e for e in events if re.search(pattern, e["name"])]
self.assertEqual(len(matches), 1, repr([e["name"] for e in matches]))
return matches[0]
module_event = extract(r"DummyModule_0")
wrapper_event = extract(r"call_module")
self.assertEqual(module_event["args"]["Python parent id"], wrapper_event["args"]["Python id"])
torch._C._set_graph_executor_optimize(prev_opt)
def payload(self, use_cuda=False):
x = torch.randn(10, 10)
if use_cuda:
x = x.cuda()
y = torch.randn(10, 10)
if use_cuda:
y = y.cuda()
z = torch.mm(x, y)
z = z + y
if use_cuda:
z = z.cpu()
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_kineto(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with _profile(use_cuda=use_cuda, use_kineto=True):
self.payload(use_cuda=use_cuda)
# rerun to avoid initial start overhead
with _profile(use_cuda=use_cuda, use_kineto=True) as p:
self.payload(use_cuda=use_cuda)
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
found_gemm = False
found_memcpy = False
found_mm = False
for e in p.function_events:
if "aten::mm" in e.name:
found_mm = True
if "gemm" in e.name:
found_gemm = True
if "Memcpy" in e.name or "memcpy" in e.name:
found_memcpy = True
if use_cuda:
self.assertTrue(found_gemm)
self.assertTrue(found_memcpy)
else:
self.assertTrue(found_mm)
# p.export_chrome_trace("/tmp/test_trace.json")
@unittest.skipIf(not kineto_available(), "Kineto is required")
@unittest.skipIf(not TEST_MULTIGPU, "Multiple GPUs needed")
@unittest.skipIf(TEST_WITH_ROCM, "Not supported on ROCm")
def test_kineto_multigpu(self):
with profile(
activities=[
ProfilerActivity.CPU,
ProfilerActivity.CUDA]) as prof:
for gpu_id in [0, 1]:
x = torch.randn(10, 10).cuda(gpu_id)
y = torch.randn(10, 10).cuda(gpu_id)
z = x.matmul(y)
found_gemm_0 = False
found_gemm_1 = False
found_cuda = False
for evt in prof.events():
if "gemm" in evt.name.lower() and evt.device_type == DeviceType.CUDA:
if evt.device_index == 0:
found_gemm_0 = True
elif evt.device_index == 1:
found_gemm_1 = True
if "cuda" in evt.name.lower() and evt.device_type == DeviceType.CPU:
found_cuda = True
self.assertTrue(found_gemm_0)
self.assertTrue(found_gemm_1)
self.assertTrue(found_cuda)
def test_memory_profiler(self):
def run_profiler(tensor_creation_fn):
# collecting allocs / deallocs
with _profile(profile_memory=True, record_shapes=True, use_kineto=kineto_available()) as prof:
x = None
with record_function("test_user_scope_alloc"):
x = tensor_creation_fn()
with record_function("test_user_scope_dealloc"):
del x
return prof.key_averages(group_by_input_shape=True)
def check_metrics(stats, metric, allocs=None, deallocs=None):
stat_metrics = {}
for stat in stats:
stat_metrics[stat.key] = getattr(stat, metric)
if allocs is not None:
for alloc_fn in allocs:
self.assertTrue(alloc_fn in stat_metrics)
self.assertTrue(stat_metrics[alloc_fn] > 0)
if deallocs is not None:
for dealloc_fn in deallocs:
self.assertTrue(dealloc_fn in stat_metrics)
self.assertTrue(stat_metrics[dealloc_fn] < 0)
def create_cpu_tensor():
return torch.rand(10, 10)
def create_cuda_tensor():
return torch.rand(10, 10).cuda()
def create_mkldnn_tensor():
return torch.rand(10, 10, dtype=torch.float32).to_mkldnn()
stats = run_profiler(create_cpu_tensor)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::empty",
"aten::rand",
"test_user_scope_alloc",
],
deallocs=[
"test_user_scope_dealloc",
]
)
if kineto_available():
with TemporaryFileName(mode="w+") as fname:
with profile(profile_memory=True) as prof:
x = None
with record_function("test_user_scope_alloc"):
x = create_cpu_tensor()
with record_function("test_user_scope_dealloc"):
del x
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "traceEvents" in trace
events = trace["traceEvents"]
found_memory_events = False
for evt in events:
assert "name" in evt
if evt["name"] == "[memory]":
found_memory_events = True
assert "args" in evt
assert "Addr" in evt["args"]
assert "Device Type" in evt["args"]
assert "Device Id" in evt["args"]
assert "Bytes" in evt["args"]
# Memory should be an instantaneous event.
assert "dur" not in evt["args"]
assert "cat" not in evt["args"]
assert found_memory_events
if torch.cuda.is_available():
create_cuda_tensor()
stats = run_profiler(create_cuda_tensor)
check_metrics(
stats,
"cuda_memory_usage",
allocs=[
"test_user_scope_alloc",
"aten::to",
"aten::empty_strided",
],
deallocs=[
"test_user_scope_dealloc",
]
)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::rand",
"aten::empty",
]
)
if torch._C.has_mkldnn:
create_mkldnn_tensor()
stats = run_profiler(create_mkldnn_tensor)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"test_user_scope_alloc",
"aten::rand",
"aten::empty",
"aten::to_mkldnn",
],
deallocs=[
"test_user_scope_dealloc",
]
)
# check top-level memory events
with _profile(profile_memory=True, use_kineto=kineto_available()) as prof:
x = torch.rand(10, 10)
del x
if torch.cuda.is_available():
y = torch.rand(10, 10).cuda()
del y
gc.collect()
stats = prof.key_averages(group_by_input_shape=True)
check_metrics(
stats,
"cpu_memory_usage",
allocs=[
"aten::rand",
"aten::empty"
],
deallocs=[
"[memory]"
]
)
if torch.cuda.is_available():
check_metrics(
stats,
"cuda_memory_usage",
deallocs=[
"[memory]"
]
)
def test_oom_tracing(self):
def run_profiler(tensor_creation_fn):
with _profile(profile_memory=True, record_shapes=True) as prof:
with self.assertRaisesRegex(RuntimeError, ".*[tT]ried to allocate.*"):
x = tensor_creation_fn()
return prof
def create_cuda_tensor_oom():
device = torch.device("cuda:0")
return torch.empty(1024, 1024, 1024, 20, dtype=torch.float32, device=device)
def check_trace(fname):
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
self.assertTrue("traceEvents" in trace)
events = trace["traceEvents"]
found_out_of_memory_events = False
for evt in events:
self.assertTrue("name" in evt)
if evt["name"] == "[OutOfMemory]":
found_out_of_memory_events = True
self.assertTrue("args" in evt)
self.assertTrue("Device Type" in evt["args"])
self.assertTrue("Device Id" in evt["args"])
self.assertTrue("Bytes" in evt["args"])
# Memory should be an instantaneous event.
self.assertTrue("dur" not in evt["args"])
self.assertTrue("cat" not in evt["args"])
self.assertTrue(found_out_of_memory_events)
if torch.cuda.is_available():
with TemporaryFileName(mode="w+") as fname:
prof = run_profiler(create_cuda_tensor_oom)
check_trace(fname)
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_module_hierarchy(self):
class A(nn.Module):
def __init__(self):
super(A, self).__init__()
def my_new_method(self, x):
return x * 3
def forward_impl_(self, x, y):
return self.my_new_method(x) + y
def forward(self, x, y):
y = y - 2
return self.forward_impl_(x, y)
class B(nn.Module):
def __init__(self):
super(B, self).__init__()
def forward(self, x):
return x + 2
class C(nn.Module):
def __init__(self):
super(C, self).__init__()
self.A0 = A()
self.B0 = B()
def call_b(self, x):
return self.B0.forward(x)
def forward(self, x, y):
return self.A0.forward(x, y) + self.call_b(x)
model = C()
model = torch.jit.script(model)
input_a = torch.rand(128, 128)
input_b = torch.rand(128, 128)
op_to_module_hierarchy = {}
op_to_module_hierarchy["aten::sub"] = ["TOP(C)::forward.A0(A)::forward."]
op_to_module_hierarchy["aten::mul"] = [
"TOP(C)::forward.A0(A)::forward.SELF(A)::forward_impl_.SELF(A)::my_new_method."]
op_to_module_hierarchy["aten::add"] = [
"TOP(C)::forward.A0(A)::forward.SELF(A)::forward_impl_.",
"TOP(C)::forward.SELF(C)::call_b.B0(B)::forward.", "TOP(C)::forward."]
with TemporaryFileName(mode="w+") as fname:
with profile(activities=[torch.profiler.ProfilerActivity.CPU], with_modules=True,) as prof:
model(input_a, input_b)
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "traceEvents" in trace
events = trace["traceEvents"]
found_memory_events = False
for evt in events:
assert "name" in evt
if "args" in evt:
op_name = evt["name"]
if "Module Hierarchy" in evt["args"]:
hierarchy = evt["args"]["Module Hierarchy"]
if op_name in op_to_module_hierarchy:
assert hierarchy in op_to_module_hierarchy[op_name]
def test_high_level_trace(self):
"""Checks that python side high level events are recorded.
"""
class RepeatedDataset(torch.utils.data.Dataset):
def __init__(self, N, D_in, D_out):
self.N = N
self.x = torch.randn(N, D_in)
self.y = torch.randn(N, D_out)
def __len__(self):
return self.N
def __getitem__(self, idx):
return self.x, self.y
class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(H, D_out)
def forward(self, x):
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred
class CustomSGD(torch.optim.SGD):
def __init__(self, *args, **kwargs):
super(CustomSGD, self).__init__(*args, **kwargs)
def train():
for _, data in enumerate(dataloader):
x, y = data[0], data[1]
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
N, D_in, H, D_out = 8, 10, 5, 2
model = TwoLayerNet(D_in, H, D_out)
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
ds = RepeatedDataset(N, D_in, D_out)
dataloader = torch.utils.data.DataLoader(ds, batch_size=1)
try:
train()
except Exception:
self.assertTrue(False, "Expected no exception without profiling.")
# Create multiple instances, expect each func is hooked only one time.
# Nested wrappers(repeated patching) will make following test fail.
optimizer_duplicate = torch.optim.SGD(model.parameters(), lr=1e-4)
dataloader_duplicate = torch.utils.data.DataLoader(ds, batch_size=1)
def judge(expected_event_count, prof):
actual_event_count = {}
for e in prof.function_events:
if "#" in e.name:
key = e.name
if key in expected_event_count.keys():
actual_event_count[key] = actual_event_count.setdefault(key, 0) + 1
for key, count in expected_event_count.items():
self.assertTrue((key in actual_event_count.keys()) and (count == actual_event_count[key]))
with _profile(use_kineto=kineto_available()) as prof:
train()
expected_event_count = {
# "+1" because the final iteration will enter __next__ but skip the loop body.
"enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1),
"Optimizer.step#SGD.step": N,
"Optimizer.zero_grad#SGD.zero_grad": N
}
judge(expected_event_count, prof)
# Test on pickle/unpickle. Expect to work in multi-processing.
optimizer = pickle.loads(pickle.dumps(optimizer))
with _profile(use_kineto=kineto_available()) as prof:
train()
judge(expected_event_count, prof)
# Test on customized optimizer.
optimizer = CustomSGD(model.parameters(), lr=1e-4)
with _profile(use_kineto=kineto_available()) as prof:
train()
expected_event_count = {
"enumerate(DataLoader)#_SingleProcessDataLoaderIter.__next__": (N + 1),
"Optimizer.step#CustomSGD.step": N,
"Optimizer.zero_grad#CustomSGD.zero_grad": N
}
judge(expected_event_count, prof)
def test_flops(self):
model = torch.nn.Sequential(
nn.Conv2d(16, 33, 18),
nn.ReLU(),
nn.Linear(243, 243),
nn.ReLU(),
)
inputs = torch.randn(40, 16, 18, 260)
with _profile(record_shapes=True, with_flops=True, use_kineto=kineto_available()) as prof:
model(inputs)
profiler_output = prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10)
self.assertIn("Total MFLOPs", profiler_output)
if not (kineto_available() and torch.cuda.is_available()):
return
with profile(activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],
record_shapes=True,
with_flops=True,
) as kineto_profiler:
model(inputs)
profiler_output = kineto_profiler.key_averages().table(
sort_by="self_cuda_time_total", row_limit=-1)
self.assertIn("Total MFLOPs", profiler_output)
def test_kineto_profiler_api(self):
called_num = [0]
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with profile(activities=supported_activities()):
self.payload(use_cuda=use_cuda)
def trace_handler(p):
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
# p.export_chrome_trace("/tmp/test_trace_" + str(called_num[0]) + ".json")
called_num[0] += 1
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2),
on_trace_ready=trace_handler
) as p:
for idx in range(8):
self.payload(use_cuda=use_cuda)
p.step()
self.assertEqual(called_num[0], 2)
# case without schedule
with profile(
activities=supported_activities()
) as p:
self.payload(use_cuda=use_cuda)
self.payload(use_cuda=use_cuda)
output = p.key_averages().table(
sort_by="self_cuda_time_total" if use_cuda else "self_cpu_time_total", row_limit=-1)
# print(output)
test_schedule = torch.profiler.schedule(
skip_first=2,
wait=1,
warmup=1,
active=2,
repeat=2)
test_schedule_expected_outputs = [
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.WARMUP,
ProfilerAction.RECORD,
ProfilerAction.RECORD_AND_SAVE,
ProfilerAction.NONE,
ProfilerAction.WARMUP,
ProfilerAction.RECORD,
ProfilerAction.RECORD_AND_SAVE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
ProfilerAction.NONE,
]
for step in range(len(test_schedule_expected_outputs)):
self.assertEqual(test_schedule(step), test_schedule_expected_outputs[step])
def test_export_stacks(self):
with _profile(with_stack=True, use_kineto=kineto_available()) as p:
x = torch.randn(10, 10)
y = torch.randn(10, 10)
z = torch.mm(x, y)
z = z + y
with TemporaryFileName(mode="w+") as fname:
p.export_stacks(fname)
with io.open(fname, 'r') as f:
lines = f.readlines()
assert len(lines) > 0, "Empty stacks file"
for line in lines:
is_int = False
try:
assert int(line.split(" ")[-1]) > 0, "Invalid stacks record"
is_int = True
except ValueError:
pass
assert is_int, "Invalid stacks record"
@unittest.skipIf(not kineto_available(), "Kineto is required")
@unittest.skipIf(IS_WINDOWS, "Test is flaky on Windows")
def test_tensorboard_trace_handler(self):
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
with _profile(use_cuda=use_cuda, use_kineto=True):
self.payload(use_cuda=use_cuda)
with TemporaryDirectoryName() as dname:
with profile(
activities=[
torch.profiler.ProfilerActivity.CPU
] + ([
torch.profiler.ProfilerActivity.CUDA
] if use_cuda else []),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2,
repeat=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(dname)
) as p:
for _ in range(18):
self.payload(use_cuda=use_cuda)
p.step()
self.assertTrue(os.path.exists(dname))
file_num = 0
for file_name in os.listdir(dname):
parts = file_name.split('.')
self.assertTrue(len(parts) > 4)
self.assertTrue(parts[-4].isdigit() and int(parts[-4]) > 0, "Wrong tracing file name pattern")
self.assertEqual(parts[-3:], ['pt', 'trace', 'json'])
file_num += 1
self.assertEqual(file_num, 3)
# test case for gzip file format
with TemporaryDirectoryName() as dname:
p = profile(
activities=[
torch.profiler.ProfilerActivity.CPU
] + ([
torch.profiler.ProfilerActivity.CUDA
] if use_cuda else []),
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=2,
repeat=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(dname, use_gzip=True)
)
p.start()
for _ in range(18):
self.payload(use_cuda=use_cuda)
p.step()
p.stop()
self.assertTrue(os.path.exists(dname))
file_num = 0
for file_name in os.listdir(dname):
parts = file_name.split('.')
self.assertTrue(len(parts) > 4)
self.assertTrue(parts[-5].isdigit() and int(parts[-5]) > 0, "Wrong tracing file name pattern")
self.assertEqual(parts[-4:], ['pt', 'trace', 'json', 'gz'])
file_num += 1
self.assertEqual(file_num, 3)
@unittest.skipIf(not kineto_available(), "Kineto is required")
def test_profiler_metadata(self):
t1, t2 = torch.ones(1), torch.ones(1)
with profile() as prof:
torch.add(t1, t2)
prof.add_metadata("test_key1", "test_value1")
prof.add_metadata_json("test_key2", "[1,2,3]")
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
trace = json.load(f)
assert "test_key1" in trace
assert trace["test_key1"] == "test_value1"
assert "test_key2" in trace
assert trace["test_key2"] == [1, 2, 3]
def _test_profiler_tracing(self, use_kineto):
with _profile(use_kineto=use_kineto) as prof:
t1, t2 = torch.ones(1), torch.ones(1)
torch.add(t1, t2)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# read the trace and expect valid json
# if the JSON generated by export_chrome_trace is not valid, this will throw and fail the test.
with io.open(fname, 'r') as f:
json.load(f)
# test empty trace
with _profile(use_kineto=use_kineto) as prof:
pass
# saving an empty trace
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# Same test but for cuda.
use_cuda = torch.profiler.ProfilerActivity.CUDA in supported_activities()
if not use_cuda:
return
device = torch.device("cuda:0")
with _profile(use_cuda=True, use_kineto=use_kineto) as prof:
t1, t2 = torch.ones(1, device=device), torch.ones(1, device=device)
torch.add(t1, t2)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
# Now validate the json
with io.open(fname, 'r') as f:
json.load(f)
def test_profiler_tracing(self):
self._test_profiler_tracing(False)
if kineto_available():
self._test_profiler_tracing(True)
@unittest.skip("Disable forward->backward link to workaround profiler crash")
def test_profiler_fwd_bwd_link(self):
with _profile(use_kineto=True) as prof:
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
z = torch.add(t1, t2)
y = torch.ones(1)
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
loss.backward()
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with io.open(fname, 'r') as f:
j = json.load(f)
events = j["traceEvents"]
ts_to_name = {}
flow_s_to_ts = {}
flow_f_to_ts = {}
for e in events:
if e["ph"] == "X":
ts_to_name[e["ts"]] = e["name"]
if "cat" in e and "name" in e and e["cat"] == "forward_backward" and e["name"] == "fwd_bwd":
if e["ph"] == "s":
flow_s_to_ts[e["id"]] = e["ts"]
elif e["ph"] == "f":
flow_f_to_ts[e["id"]] = e["ts"]
self.assertTrue(len(flow_s_to_ts) == 2)
self.assertTrue(len(flow_f_to_ts) == 2)
self.assertTrue(1 in flow_s_to_ts.keys())
self.assertTrue(1 in flow_f_to_ts.keys())
self.assertTrue(2 in flow_s_to_ts.keys())
self.assertTrue(2 in flow_f_to_ts.keys())
s_ts_1 = flow_s_to_ts[1]
f_ts_1 = flow_f_to_ts[1]
s_ts_2 = flow_s_to_ts[2]
f_ts_2 = flow_f_to_ts[2]
self.assertTrue(all([ts in ts_to_name.keys() for ts in [s_ts_1, f_ts_1, s_ts_2, f_ts_2]]))
self.assertTrue(ts_to_name[s_ts_1] == "aten::binary_cross_entropy_with_logits")
self.assertTrue(ts_to_name[s_ts_2] == "aten::add")
def test_profiler_type(self):
profiler_type = torch._C._autograd._profiler_type
ActiveProfilerType = torch._C._autograd.ActiveProfilerType
self.assertEqual(profiler_type(), ActiveProfilerType.NONE)
# Autograd profiler
with _profile_legacy():
self.assertEqual(profiler_type(), ActiveProfilerType.LEGACY)
# Kineto profiler
with profile():
self.assertEqual(profiler_type(), ActiveProfilerType.KINETO)
def test_profiler_correlation_id(self):
'''
We expect the correlation_id to be unique across multiple invokation of the profiler,
So we will reuse id_uniqueness_set.
'''
id_uniqueness_set = set()
model = torch.nn.Sequential(
nn.Conv2d(16, 33, 18),
nn.ReLU(),
nn.Linear(243, 243),
nn.ReLU(),
)
inputs = torch.randn(40, 16, 18, 260)
uint32_max = 2**32 - 1
for i in range(5):
with profile() as prof:
model(inputs)
for event in prof.profiler.kineto_results.events():
corr_id = event.correlation_id()
if (corr_id):
self.assertTrue(corr_id not in id_uniqueness_set)
id_uniqueness_set.add(corr_id)
self.assertTrue(corr_id < uint32_max)
def test_nested_tensor_with_shapes(self):
a = torch.randn(4, 4)
b = torch.randn(4, 4)
c = torch.randn(4, 4)
inp = torch.nested_tensor([a, b])
with torch.profiler.profile(record_shapes=True) as prof:
torch.nn.functional.linear(inp, c, None)
for e in prof.events():
if e.name in ("aten::mm", "aten::addmm"):
# intentionally vague tests to protect against possible future changes
# of mm to addmm or other impl, or changing internal order of args
self.assertTrue(len(e.input_shapes) > 0)
self.assertTrue(len(e.input_shapes[0]) > 0)
def find_node_with_name(nodes, name):
for node in nodes:
if node.name() == name:
return node
result = find_node_with_name(node.children, name)
if result is not None:
return result
class TestTorchTidyProfiler(TestCase):
def test_extra_fields(self):
with profile(with_stack=True, profile_memory=True) as p:
_ = torch.ones((1,))
nodes = p.profiler.kineto_results.experimental_event_tree()
node = find_node_with_name(nodes, "aten::ones")
self.assertIsNotNone(node)
self.assertIsInstance(
node.extra_fields,
torch._C._autograd._ExtraFields_TorchOp)
self.assertIsInstance(
node.parent.extra_fields,
torch._C._autograd._ExtraFields_PyCCall)
self.assertEqual(node.children[0].name(), "aten::empty")
self.assertEqual(node.children[0].children[0].name(), "[memory]")
self.assertIsInstance(
node.children[0].children[0].extra_fields,
torch._C._autograd._ExtraFields_Allocation)
def test_tensor_properties(self):
x = torch.ones(10, 10).as_strided([4, 4], [12, 3])
y = torch.ones(4, 1)
with profile(with_stack=True, profile_memory=True, record_shapes=True) as p:
_ = x + y
nodes = p.profiler.kineto_results.experimental_event_tree()
node = find_node_with_name(nodes, "aten::add")
self.assertIsNotNone(node)
self.assertIsInstance(
node.extra_fields,
torch._C._autograd._ExtraFields_TorchOp)
self.assertEqual(node.extra_fields.inputs.shapes, [[4, 4], [4, 1], []])
self.assertEqual(node.extra_fields.inputs.strides, [[12, 3], [1, 1], []])
input_info = node.extra_fields.inputs
self.assertEqual(input_info.dtypes, ['float', 'float', 'Scalar'])
layout_info = [x.layout if x else None for x in input_info.tensor_metadata]
self.assertEqual(layout_info, [torch.strided, torch.strided, None])
device_info = [x.device if x else None for x in input_info.tensor_metadata]
self.assertEqual(device_info, [torch.device("cpu"), torch.device("cpu"), None])
def test_scalar_ins(self):
x = torch.ones(5, 5)
alpha = 0.9
with profile(with_stack=True, profile_memory=True, record_shapes=True) as p:
_ = torch.add(x, 9.1, alpha=alpha)
nodes = p.profiler.kineto_results.experimental_event_tree()
node = find_node_with_name(nodes, "aten::add")
self.assertIsNotNone(node)
# The second argument to the add gets promotoed to a zerodim Tensor
input_info = node.extra_fields.inputs
self.assertEqual(input_info.dtypes, ['float', 'double', 'Scalar'])
self.assertEqual(input_info.shapes, [[5, 5], [], []])
self.assertEqual(input_info.ivalues, [None, None, alpha])
@dataclass(frozen=True)
class MockKinetoEvent():
_name: str
_start_us: int
_duration_us: int
_linked_correlation_id: int
_device_type: int
def name(self) -> str:
return self._name
def start_us(self) -> int:
return self._start_us
def duration_us(self) -> int:
return self._duration_us
def linked_correlation_id(self) -> int:
return self._linked_correlation_id
def device_type(self) -> DeviceType:
return DeviceType.CUDA if self._device_type == 1 else DeviceType.CPU
@dataclass(frozen=True)
class MockProfilerEvent():
_name: str
id: int
start_time_ns: int
duration_time_ns: int
correlation_id: int = 0
children: List["MockProfilerEvent"] = field(default_factory=list)
parent: Optional["MockProfilerEvent"] = None
@property
def end_time_ns(self):
return self.start_time_ns + self.duration_time_ns
def name(self) -> str:
return self._name
def __post__init__(self, parent, children):
object.__setattr__(self, "parent", parent)
object.__setattr__(self, "children", children)
class TestExperimentalUtils(TestCase):
@staticmethod
def generate_mock_profile():
cuda_events = [
MockKinetoEvent("cudaLaunchKernel", 400, 100, 1, 0),
MockKinetoEvent("cudaLaunchKernel", 500, 100, 2, 0),
MockKinetoEvent("cudaLaunchKernel", 600, 100, 3, 0),
MockKinetoEvent("cudaLaunchKernel", 700, 100, 4, 0),
MockKinetoEvent("cudaLaunchKernel", 800, 100, 5, 0),
MockKinetoEvent("cudaLaunchKernel", 1500, 100, 6, 0),
MockKinetoEvent("GPU", 900, 100, 1, 1),
MockKinetoEvent("GPU", 1000, 100, 2, 1),
MockKinetoEvent("GPU", 1100, 100, 3, 1),
MockKinetoEvent("GPU", 1200, 100, 4, 1),
MockKinetoEvent("GPU", 1300, 100, 5, 1),
MockKinetoEvent("GPU", 1700, 100, 6, 1)
]
cpu_events = [
MockProfilerEvent("CPU (Before cudaLaunchKernel)", 1, 0, 100000),
MockProfilerEvent("CPU (Before cudaLaunchKernel)", 2, 100000,
100000),
MockProfilerEvent("CPU (Before cudaLaunchKernel)", 3, 200000,
100000),
MockProfilerEvent("CPU (Before cudaLaunchKernel)", 4, 300000,
100000),
MockProfilerEvent("CPU (After cudaLaunchKernel)", 5, 400000,
100000),
MockProfilerEvent("CPU (After cudaLaunchKernel)", 6, 500000,
100000),
MockProfilerEvent("CPU (After cudaLaunchKernel)", 7, 600000,
100000),
MockProfilerEvent("CPU (After cudaLaunchKernel)", 8, 700000,
100000),
MockProfilerEvent("CPU (After GPU)", 9, 800000, 100000),
MockProfilerEvent("CPU (After GPU)", 10, 900000, 100000),
MockProfilerEvent("CPU (After GPU)", 11, 1100000, 100000),
MockProfilerEvent("CPU (After GPU)", 12, 1200000, 500000),
]
profiler = unittest.mock.Mock()
profiler.kineto_results = unittest.mock.Mock()
profiler.kineto_results.events = unittest.mock.Mock(
return_value=cuda_events)
profiler.kineto_results.experimental_event_tree = unittest.mock.Mock(
return_value=cpu_events)
return profiler
@staticmethod
def load_mock_profile():
accept = expecttest.ACCEPT
json_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"profiler_utils_mock_events.json")
if accept and torch.cuda.is_available():
def garbage_code(x):
for i in range(5):
x[0, i] = i
x = torch.ones((4096, 4096), device="cuda")
x = x @ x
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
record_shapes=True,
with_stack=True) as prof:
for _ in range(5):
x = x @ x
garbage_code(x)
for _ in range(5):
x = x @ x
kineto_events = [{
'_name':
e.name(),
'_start_us':
e.start_us(),
'_duration_us':
e.duration_us(),
'_linked_correlation_id':
e.linked_correlation_id(),
'_device_type':
1 if e.device_type() == DeviceType.CUDA else 0
} for e in prof.profiler.kineto_results.events()]
def EventTreeDFS(event_tree):
from collections import deque
stack = deque(event_tree)
while stack:
curr_event = stack.pop()
yield curr_event
for child_event in curr_event.children:
stack.append(child_event)
profiler_events = [{
'_name': e.name(),
'id': e.id,
'start_time_ns': e.start_time_ns,
'duration_time_ns': e.duration_time_ns,
'correlation_id': e.correlation_id,
'children': [child.id for child in e.children],
'parent': e.parent.id if e.parent else None
} for e in EventTreeDFS(
prof.profiler.kineto_results.experimental_event_tree())]
with open(json_file_path, "w") as f:
json.dump([kineto_events, profiler_events], f)
assert (os.path.exists(json_file_path))
with open(json_file_path, "r") as f:
kineto_events, profiler_events = json.load(f)
cuda_events = [
MockKinetoEvent(*event.values()) for event in kineto_events
]
cpu_events = []
id_map = {}
for e in profiler_events:
event = MockProfilerEvent(**e)
id_map[event.id] = event
cpu_events.append(event)
for event in cpu_events:
parent = None if event.parent is None else id_map[event.parent]
children = [id_map[child] for child in event.children]
event.__post__init__(parent, children)
cpu_events = [event for event in cpu_events if event.parent is None]
profiler = unittest.mock.Mock()
profiler.kineto_results = unittest.mock.Mock()
profiler.kineto_results.events = unittest.mock.Mock(
return_value=cuda_events)
profiler.kineto_results.experimental_event_tree = unittest.mock.Mock(
return_value=cpu_events)
return profiler
def test_utils_compute_self_time(self):
with profile() as prof:
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(
1, requires_grad=True)
z = torch.add(t1, t2)
y = torch.ones(1)
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
loss.backward()
basic_eval = _utils.BasicEvaluation(prof.profiler)
metrics = basic_eval.metrics
self.assertTrue(len(metrics) > 0)
for event_key, event_metrics in metrics.items():
self.assertEqual(
event_metrics.self_time_ns,
event_key.event.duration_time_ns - sum([
child.duration_time_ns
for child in event_key.event.children
]))
def test_utils_intervals_overlap(self):
event = _utils.EventKey(MockProfilerEvent("Event 1", 1, 5, 5))
intervals = [
_utils.Interval(0, 9),
_utils.Interval(1, 2),
_utils.Interval(2, 3),
_utils.Interval(3, 4),
_utils.Interval(4, 5),
_utils.Interval(8, 12),
]
print(event.intervals_overlap(intervals))
self.assertEqual(event.intervals_overlap(intervals), 5)
def test_utils_compute_queue_depth(self):
def format_queue_depth(queue_depth_list, events):
res = ""
for data, event in zip(queue_depth_list, events):
res += f"{data.queue_depth} [{event.name()}]\n"
return res
# We have to use Mock because time series data is too flaky to test
profiler = self.generate_mock_profile()
basic_evaluation = _utils.BasicEvaluation(profiler)
self.assertExpectedInline(
format_queue_depth(basic_evaluation.queue_depth_list,
basic_evaluation.cuda_events), """\
1 [cudaLaunchKernel]
2 [cudaLaunchKernel]
3 [cudaLaunchKernel]
4 [cudaLaunchKernel]
5 [cudaLaunchKernel]
4 [GPU]
3 [GPU]
2 [GPU]
1 [GPU]
0 [GPU]
1 [cudaLaunchKernel]
0 [GPU]
""")
self.assertExpectedInline(
format_queue_depth([
basic_evaluation.metrics[k]
for k in basic_evaluation.event_keys
], basic_evaluation.events), """\
0 [CPU (Before cudaLaunchKernel)]
0 [CPU (Before cudaLaunchKernel)]
0 [CPU (Before cudaLaunchKernel)]
0 [CPU (Before cudaLaunchKernel)]
1 [CPU (After cudaLaunchKernel)]
2 [CPU (After cudaLaunchKernel)]
3 [CPU (After cudaLaunchKernel)]
4 [CPU (After cudaLaunchKernel)]
5 [CPU (After GPU)]
4 [CPU (After GPU)]
2 [CPU (After GPU)]
1 [CPU (After GPU)]
""")
def test_utils_compute_queue_depth_when_no_cuda_events(self):
# For traces with only cpu events, we expect empty queue depth list
x = torch.ones((1024, 1024))
with profile() as prof:
for _ in range(5):
x = x @ x
basic_evaluation = _utils.BasicEvaluation(prof.profiler)
self.assertFalse(basic_evaluation.compute_queue_depth())
def test_utils_compute_idle_time(self):
profiler = self.generate_mock_profile()
basic_evaluation = _utils.BasicEvaluation(profiler)
expected_output = "\n".join([
f"{basic_evaluation.metrics[event_key].idle_time_ns} [{event_key.event.name()}]"
for event_key in basic_evaluation.event_keys
])
self.assertExpectedInline(
expected_output, """\
100000 [CPU (Before cudaLaunchKernel)]
100000 [CPU (Before cudaLaunchKernel)]
100000 [CPU (Before cudaLaunchKernel)]
100000 [CPU (Before cudaLaunchKernel)]
0 [CPU (After cudaLaunchKernel)]
0 [CPU (After cudaLaunchKernel)]
0 [CPU (After cudaLaunchKernel)]
0 [CPU (After cudaLaunchKernel)]
0 [CPU (After GPU)]
0 [CPU (After GPU)]
0 [CPU (After GPU)]
100000 [CPU (After GPU)]""")
def test_utils_get_optimizable_events(self):
basic_evaluation = _utils.BasicEvaluation(self.load_mock_profile())
optimizable_events = basic_evaluation.get_optimizable_events(
2, print_enable=False)
expected_output = "\n".join(
[f"{event_key.event.name()}" for event_key in optimizable_events])
self.assertExpectedInline(
expected_output, """\
<built-in function _cuda_synchronize>
aten::copy_""")
def test_profiler_name_pattern(self):
x = torch.ones((4096, 4096))
with profile() as prof:
for _ in range(5):
x = x @ x
x = x + x
matched_events = NamePattern(prof, "aten::mm").matched_events()
output = "\n".join([f"{event.name()}" for event in matched_events])
self.assertExpectedInline(output, """\
aten::mm
aten::mm
aten::mm
aten::mm
aten::mm""")
def test_profiler_pattern_match_helper(self):
x = torch.ones((100, 100))
with profile() as prof:
for _ in range(5):
x = x @ x
x = x + x
event_tree = prof.profiler.kineto_results.experimental_event_tree()
pattern = Pattern(prof)
self.assertEqual([], pattern.siblings_of(event_tree[0])[0])
self.assertEqual(event_tree[1:], pattern.siblings_of(event_tree[0])[1])
child_nodes = event_tree[0].children
self.assertEqual([], pattern.siblings_of(child_nodes[0])[0])
self.assertEqual(child_nodes[1:], pattern.siblings_of(child_nodes[0])[1])
self.assertEqual(event_tree[0],
pattern.root_of(event_tree[0].children[0].children[0]))
self.assertEqual(None, pattern.next_of(event_tree[-1]))
self.assertEqual(event_tree[1], pattern.next_of(event_tree[0]))
self.assertEqual(event_tree[0], pattern.prev_of(event_tree[1]))
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
def test_profiler_extra_cuda_copy_pattern(self):
cases = (
(0, lambda: torch.ones((100, 100), device="cuda")),
(1, lambda: torch.ones((100, 100)).to("cuda")),
(1, lambda: torch.zeros((100, 100)).to("cuda")),
(1, lambda: torch.empty((100, 100)).fill_(5).to("cuda")),
(1, lambda: torch.ones((100, 100)).cuda()),
(1, lambda: torch.zeros((100, 100)).cuda()),
(1, lambda: torch.empty((100, 100)).fill_(5).cuda()),
(1, lambda: torch.rand((100, 100)).cuda()),
(1, lambda: torch.randn((100, 100)).cuda()),
(1, lambda: torch.full((100, 100), 10).cuda()),
(0, lambda: torch.rand((100, 100)).to(dtype=torch.float16)),
(0, lambda: torch.rand((100, 100)).half()),
(0, lambda: torch.rand((100, 100), device="cuda").half()),
)
num_matched = []
for _, fn in cases:
with profile(with_stack=True, record_shapes=True) as prof:
fn()
pattern = ExtraCUDACopyPattern(prof)
num_matched.append(len(pattern.matched_events()))
self.assertEqual(num_matched, [i for i, _ in cases])
@unittest.skipIf(TEST_WITH_CROSSREF,
"crossref intercepts calls and changes the callsite.")
def test_profiler_for_loop_indexing_pattern(self):
x = torch.ones((100, 100))
def case1():
for i in range(100):
x[i] = i
def case2():
y = 0
for i in range(100):
y += x[i]
def case3():
y = 1
for i in range(100):
y *= x[i]
def case4():
y = x
for _ in range(100):
y = y @ x
def case5():
for i in range(100):
x[i, :] = torch.arange(100) + i
cases = ((1, case1), (1, case2), (1, case3), (0, case4), (1, case5))
num_matched = []
for _, fn in cases:
with profile(with_stack=True) as prof:
fn()
pattern = ForLoopIndexingPattern(prof)
num_matched.append(len(pattern.matched_events()))
self.assertEqual(num_matched, [i for i, _ in cases])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
def test_profiler_fp32_matmul_pattern(self):
x = torch.ones((100, 100), device="cuda")
with profile(with_stack=True) as prof:
x = x @ x
pattern = FP32MatMulPattern(prof)
has_tf32 = 0 if pattern.skip else 1
num_matched = len(pattern.matched_events())
self.assertEqual(num_matched, has_tf32)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
def test_profiler_extra_cuda_copy_pattern_benchmark(self):
with profile(with_stack=True, record_shapes=True) as prof:
x = torch.ones((100, 100)).to("cuda")
x = torch.ones((50, 50)).to("cuda")
pattern = ExtraCUDACopyPattern(prof)
shapes_factor_map = pattern.benchmark(pattern.matched_events())
self.assertEqual(len(shapes_factor_map), 2)
def test_profiler_optimizer_single_tensor_pattern(self):
x = torch.ones((100, 100))
cases = (
(1, lambda: torch.optim.Adam(model.parameters())),
(1, lambda: torch.optim.SGD(model.parameters(), lr=0.01)),
(1, lambda: torch.optim.AdamW(model.parameters())),
(0, lambda: torch.optim.Adam(model.parameters(), foreach=True)),
(0, lambda: torch.optim.SGD(model.parameters(), lr=0.01, foreach=True)),
(0, lambda: torch.optim.AdamW(model.parameters(), foreach=True)),
)
num_matched = []
for _, fn in cases:
with profile(with_stack=True) as prof:
model = nn.Sequential(
nn.Linear(100, 100),
nn.ReLU(),
nn.Linear(100, 10),
)
optimizer = fn()
optimizer.zero_grad()
y_hat = model(x)
loss = torch.nn.functional.cross_entropy(y_hat, torch.randint(0, 10, (100,)))
loss.backward()
optimizer.step()
pattern = OptimizerSingleTensorPattern(prof)
num_matched.append(len(pattern.matched_events()))
self.assertEqual(num_matched, [i for i, _ in cases])
def test_profiler_synchronized_dataloader_pattern(self):
dataset = torch.rand((100, 100))
sync_dataloader = torch.utils.data.DataLoader(dataset, batch_size=10)
async_dataloader = torch.utils.data.DataLoader(dataset, batch_size=10, num_workers=4)
with profile(with_stack=True) as prof:
next(iter(sync_dataloader))
next(iter(async_dataloader))
pattern = SynchronizedDataLoaderPattern(prof)
num_matched = len(pattern.matched_events())
self.assertEqual(num_matched, 1)
def test_profiler_grad_not_set_to_none_pattern(self):
x = torch.ones((100, 100))
model = nn.Sequential(
nn.Linear(100, 100),
nn.ReLU(),
nn.Linear(100, 10),
)
optimizer = torch.optim.Adam(model.parameters())
cases = (
(1, lambda: optimizer.zero_grad()),
(1, lambda: model.zero_grad()),
(0, lambda: optimizer.zero_grad(set_to_none=True)),
(0, lambda: model.zero_grad(set_to_none=True))
)
num_matched = []
for _, fn in cases:
with profile(with_stack=True) as prof:
y_hat = model(x)
loss = torch.nn.functional.cross_entropy(y_hat, torch.randint(0, 10, (100,)))
loss.backward()
optimizer.step()
fn()
pattern = GradNotSetToNonePattern(prof)
num_matched.append(len(pattern.matched_events()))
self.assertEqual(num_matched, [i for i, _ in cases])
def test_profiler_conv2d_bias_followed_by_batchnorm2d_pattern(self):
x = torch.randn((1, 3, 32, 32))
cases = (
(1, nn.Sequential(nn.Conv2d(3, 3, 3, 1, 1), nn.BatchNorm2d(3))),
(0, nn.Sequential(nn.Conv2d(3, 3, 3, 1, 1, bias=False), nn.BatchNorm2d(3))),
(0, nn.Sequential(nn.Conv2d(3, 3, 3, 1, 1)))
)
num_matched = []
for _, model in cases:
with profile(with_stack=True, record_shapes=True) as prof:
model(x)
pattern = Conv2dBiasFollowedByBatchNorm2dPattern(prof)
num_matched.append(len(pattern.matched_events()))
self.assertEqual(num_matched, [i for i, _ in cases])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is required")
def test_profiler_matmul_dim_fp16_pattern(self):
cases = (
(1, torch.randn((201, 201), device='cuda', dtype=torch.float16)),
(1, torch.randn((3, 97, 97), device='cuda', dtype=torch.float16)),
(0, torch.randn((200, 200), device='cuda', dtype=torch.float16)),
(0, torch.randn((3, 200, 200), device='cuda', dtype=torch.float16))
)
num_matched = []
for _, x in cases:
with profile(with_stack=True, record_shapes=True) as prof:
x @ x
pattern = MatMulDimInFP16Pattern(prof)
num_matched.append(len(pattern.matched_events()))
self.assertEqual(num_matched, [i for i, _ in cases])
def test_profiler_pattern_matcher_json_report(self):
x = torch.ones((100, 100))
model = nn.Sequential(
nn.Linear(100, 100),
nn.ReLU(),
nn.Linear(100, 10),
)
optimizer = torch.optim.Adam(model.parameters())
with profile(with_stack=True, record_shapes=True) as prof:
y_hat = model(x)
loss = torch.nn.functional.cross_entropy(y_hat, torch.randint(0, 10, (100,)))
loss.backward()
optimizer.step()
optimizer.zero_grad()
report_all_anti_patterns(prof, json_report_dir=".", print_enable=False)
try:
with open("./torchtidy_report.json") as f:
report = json.load(f)
self.assertTrue("test_profiler.py" in report)
self.assertTrue(len(report["test_profiler.py"]) > 0)
expected_fields = sorted(["line_number", "name", "url", "message"])
for event in report["test_profiler.py"]:
actual_fields = sorted(event.keys())
self.assertEqual(expected_fields, actual_fields)
finally:
os.remove("torchtidy_report.json")
if __name__ == '__main__':
run_tests()