blob: 2c1c6c97e4a5ebb5568009f741af56445b4bceca [file] [log] [blame]
from collections import namedtuple
from typing import Any, List, Optional, overload, Union, TypeVar, Tuple, Sequence
from torch import Tensor
from torch.types import _dtype, _device
PackedSequence_ = namedtuple('PackedSequence_', ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices'])
def bind(optional: Any, fn: Any): ...
T = TypeVar('T')
class PackedSequence(PackedSequence_):
def __new__(cls, data: Tensor, batch_sizes: Optional[Tensor] = ..., sorted_indices: Optional[Tensor] = ...,
unsorted_indices: Optional[Tensor] = ...) -> PackedSequence: ...
def pin_memory(self: T) -> T: ...
def cuda(self: T, *args: Any, **kwargs: Any) -> T: ...
def cpu(self: T) -> T: ...
def double(self: T) -> T: ...
def float(self: T) -> T: ...
def half(self: T) -> T: ...
def long(self: T) -> T: ...
def int(self: T) -> T: ...
def short(self: T) -> T: ...
def char(self: T) -> T: ...
def byte(self: T) -> T: ...
@overload
def to(self: T, dtype: _dtype, non_blocking: bool = False, copy: bool = False) -> T: ...
@overload
def to(self: T, device: Optional[Union[_device, str]] = None, dtype: Optional[_dtype] = None,
non_blocking: bool = False, copy: bool = False) -> T: ...
@overload
def to(self, other: Tensor, non_blocking: bool = False, copy: bool = False) -> T: ...
@property
def is_cuda(self) -> bool: ...
def is_pinned(self) -> bool: ...
def invert_permutation(permutation: Optional[Tensor]): ...
def pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: bool = ...,
enforce_sorted: bool = ...) -> PackedSequence: ...
def pad_packed_sequence(sequence: PackedSequence, batch_first: bool = ..., padding_value: float = ...,
total_length: Optional[int] = ...) -> Tuple[Tensor, ...]: ...
def pad_sequence(sequences: List[Tensor], batch_first: bool = False, padding_value: float = ...) -> Tensor: ...
def pack_sequence(sequences: Sequence[Tensor], enforce_sorted: bool = ...) -> PackedSequence: ...
def get_packed_sequence(data: Tensor, batch_sizes: Optional[Tensor], sorted_indices: Optional[Tensor],
unsorted_indices: Optional[Tensor]) -> PackedSequence: ...