| from collections import namedtuple |
| from typing import Any, List, Optional, overload, Union, TypeVar, Tuple, Sequence |
| from torch import Tensor |
| from torch.types import _dtype, _device |
| |
| PackedSequence_ = namedtuple('PackedSequence_', ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices']) |
| |
| |
| def bind(optional: Any, fn: Any): ... |
| |
| |
| T = TypeVar('T') |
| |
| |
| class PackedSequence(PackedSequence_): |
| def __new__(cls, data: Tensor, batch_sizes: Optional[Tensor] = ..., sorted_indices: Optional[Tensor] = ..., |
| unsorted_indices: Optional[Tensor] = ...) -> PackedSequence: ... |
| |
| def pin_memory(self: T) -> T: ... |
| |
| def cuda(self: T, *args: Any, **kwargs: Any) -> T: ... |
| |
| def cpu(self: T) -> T: ... |
| |
| def double(self: T) -> T: ... |
| |
| def float(self: T) -> T: ... |
| |
| def half(self: T) -> T: ... |
| |
| def long(self: T) -> T: ... |
| |
| def int(self: T) -> T: ... |
| |
| def short(self: T) -> T: ... |
| |
| def char(self: T) -> T: ... |
| |
| def byte(self: T) -> T: ... |
| |
| @overload |
| def to(self: T, dtype: _dtype, non_blocking: bool = False, copy: bool = False) -> T: ... |
| |
| @overload |
| def to(self: T, device: Optional[Union[_device, str]] = None, dtype: Optional[_dtype] = None, |
| non_blocking: bool = False, copy: bool = False) -> T: ... |
| |
| @overload |
| def to(self, other: Tensor, non_blocking: bool = False, copy: bool = False) -> T: ... |
| |
| @property |
| def is_cuda(self) -> bool: ... |
| |
| def is_pinned(self) -> bool: ... |
| |
| |
| def invert_permutation(permutation: Optional[Tensor]): ... |
| |
| |
| def pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: bool = ..., |
| enforce_sorted: bool = ...) -> PackedSequence: ... |
| |
| |
| def pad_packed_sequence(sequence: PackedSequence, batch_first: bool = ..., padding_value: float = ..., |
| total_length: Optional[int] = ...) -> Tuple[Tensor, ...]: ... |
| |
| |
| def pad_sequence(sequences: List[Tensor], batch_first: bool = False, padding_value: float = ...) -> Tensor: ... |
| |
| |
| def pack_sequence(sequences: Sequence[Tensor], enforce_sorted: bool = ...) -> PackedSequence: ... |
| |
| |
| def get_packed_sequence(data: Tensor, batch_sizes: Optional[Tensor], sorted_indices: Optional[Tensor], |
| unsorted_indices: Optional[Tensor]) -> PackedSequence: ... |