| OUTFILE=spmm-no-mkl-test.txt |
| PYTORCH_HOME=$1 |
| |
| cd $PYTORCH_HOME |
| |
| echo "" >> $OUTFILE |
| echo "----- USE_MKL=1 -----" >> $OUTFILE |
| rm -rf build |
| |
| export USE_MKL=1 |
| export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"} |
| python setup.py build --cmake-only |
| ccmake build # or cmake-gui build |
| |
| python setup.py install |
| |
| cd benchmarks |
| echo "!! SPARSE SPMM TIME BENCHMARK!! " >> $OUTFILE |
| for dim0 in 1000 5000 10000; do |
| for nnzr in 0.01 0.05 0.1 0.3; do |
| python -m sparse.spmm --format csr --m $dim0 --n $dim0 --k $dim0 --nnz_ratio $nnzr --outfile $OUTFILE |
| # python -m sparse.spmm --format coo --m $dim0 --n $dim0 --k $dim0 --nnz_ratio $nnzr --outfile $OUTFILE |
| done |
| done |
| echo "----------------------" >> $OUTFILE |
| |
| cd $PYTORCH_HOME |
| echo "----- USE_MKL=0 ------" >> $OUTFILE |
| rm -rf build |
| |
| export USE_MKL=0 |
| python setup.py install |
| |
| cd benchmarks |
| for dim0 in 1000 5000 10000; do |
| for nnzr in 0.01 0.05 0.1 0.3; do |
| python -m sparse.spmv --format csr --m $dim0 --nnz_ratio $nnzr --outfile $OUTFILE |
| python -m sparse.spmv --format coo --m $dim0 --nnz_ratio $nnzr --outfile $OUTFILE |
| done |
| done |
| echo "----------------------" >> $OUTFILE |