| from numbers import Number |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import ( |
| broadcast_all, |
| lazy_property, |
| logits_to_probs, |
| probs_to_logits, |
| ) |
| from torch.nn.functional import binary_cross_entropy_with_logits |
| |
| __all__ = ["Geometric"] |
| |
| |
| class Geometric(Distribution): |
| r""" |
| Creates a Geometric distribution parameterized by :attr:`probs`, |
| where :attr:`probs` is the probability of success of Bernoulli trials. |
| It represents the probability that in :math:`k + 1` Bernoulli trials, the |
| first :math:`k` trials failed, before seeing a success. |
| |
| Samples are non-negative integers [0, :math:`\inf`). |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = Geometric(torch.tensor([0.3])) |
| >>> m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0 |
| tensor([ 2.]) |
| |
| Args: |
| probs (Number, Tensor): the probability of sampling `1`. Must be in range (0, 1] |
| logits (Number, Tensor): the log-odds of sampling `1`. |
| """ |
| arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} |
| support = constraints.nonnegative_integer |
| |
| def __init__(self, probs=None, logits=None, validate_args=None): |
| if (probs is None) == (logits is None): |
| raise ValueError( |
| "Either `probs` or `logits` must be specified, but not both." |
| ) |
| if probs is not None: |
| (self.probs,) = broadcast_all(probs) |
| else: |
| (self.logits,) = broadcast_all(logits) |
| probs_or_logits = probs if probs is not None else logits |
| if isinstance(probs_or_logits, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = probs_or_logits.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| if self._validate_args and probs is not None: |
| # Add an extra check beyond unit_interval |
| value = self.probs |
| valid = value > 0 |
| if not valid.all(): |
| invalid_value = value.data[~valid] |
| raise ValueError( |
| "Expected parameter probs " |
| f"({type(value).__name__} of shape {tuple(value.shape)}) " |
| f"of distribution {repr(self)} " |
| f"to be positive but found invalid values:\n{invalid_value}" |
| ) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Geometric, _instance) |
| batch_shape = torch.Size(batch_shape) |
| if "probs" in self.__dict__: |
| new.probs = self.probs.expand(batch_shape) |
| if "logits" in self.__dict__: |
| new.logits = self.logits.expand(batch_shape) |
| super(Geometric, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| @property |
| def mean(self): |
| return 1.0 / self.probs - 1.0 |
| |
| @property |
| def mode(self): |
| return torch.zeros_like(self.probs) |
| |
| @property |
| def variance(self): |
| return (1.0 / self.probs - 1.0) / self.probs |
| |
| @lazy_property |
| def logits(self): |
| return probs_to_logits(self.probs, is_binary=True) |
| |
| @lazy_property |
| def probs(self): |
| return logits_to_probs(self.logits, is_binary=True) |
| |
| def sample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| tiny = torch.finfo(self.probs.dtype).tiny |
| with torch.no_grad(): |
| if torch._C._get_tracing_state(): |
| # [JIT WORKAROUND] lack of support for .uniform_() |
| u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device) |
| u = u.clamp(min=tiny) |
| else: |
| u = self.probs.new(shape).uniform_(tiny, 1) |
| return (u.log() / (-self.probs).log1p()).floor() |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| value, probs = broadcast_all(value, self.probs) |
| probs = probs.clone(memory_format=torch.contiguous_format) |
| probs[(probs == 1) & (value == 0)] = 0 |
| return value * (-probs).log1p() + self.probs.log() |
| |
| def entropy(self): |
| return ( |
| binary_cross_entropy_with_logits(self.logits, self.probs, reduction="none") |
| / self.probs |
| ) |