| import math |
| from numbers import Number, Real |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.exp_family import ExponentialFamily |
| from torch.distributions.utils import _standard_normal, broadcast_all |
| |
| __all__ = ["Normal"] |
| |
| |
| class Normal(ExponentialFamily): |
| r""" |
| Creates a normal (also called Gaussian) distribution parameterized by |
| :attr:`loc` and :attr:`scale`. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) |
| >>> m.sample() # normally distributed with loc=0 and scale=1 |
| tensor([ 0.1046]) |
| |
| Args: |
| loc (float or Tensor): mean of the distribution (often referred to as mu) |
| scale (float or Tensor): standard deviation of the distribution |
| (often referred to as sigma) |
| """ |
| arg_constraints = {"loc": constraints.real, "scale": constraints.positive} |
| support = constraints.real |
| has_rsample = True |
| _mean_carrier_measure = 0 |
| |
| @property |
| def mean(self): |
| return self.loc |
| |
| @property |
| def mode(self): |
| return self.loc |
| |
| @property |
| def stddev(self): |
| return self.scale |
| |
| @property |
| def variance(self): |
| return self.stddev.pow(2) |
| |
| def __init__(self, loc, scale, validate_args=None): |
| self.loc, self.scale = broadcast_all(loc, scale) |
| if isinstance(loc, Number) and isinstance(scale, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self.loc.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Normal, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.loc = self.loc.expand(batch_shape) |
| new.scale = self.scale.expand(batch_shape) |
| super(Normal, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| def sample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| with torch.no_grad(): |
| return torch.normal(self.loc.expand(shape), self.scale.expand(shape)) |
| |
| def rsample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) |
| return self.loc + eps * self.scale |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| # compute the variance |
| var = self.scale**2 |
| log_scale = ( |
| math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log() |
| ) |
| return ( |
| -((value - self.loc) ** 2) / (2 * var) |
| - log_scale |
| - math.log(math.sqrt(2 * math.pi)) |
| ) |
| |
| def cdf(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return 0.5 * ( |
| 1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2)) |
| ) |
| |
| def icdf(self, value): |
| return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2) |
| |
| def entropy(self): |
| return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale) |
| |
| @property |
| def _natural_params(self): |
| return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal()) |
| |
| def _log_normalizer(self, x, y): |
| return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y) |