| //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the SmallVector class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // ATen: modified from llvm::SmallVector. |
| // used std::is_trivially_{copy,move}_constructible |
| // replaced iterator_range constructor with inline Container&& constructor |
| // replaced LLVM_NODISCARD, LLVM_LIKELY, and LLVM_UNLIKELY with c10 equivalents |
| // removed LLVM_GSL_OWNER |
| // added SmallVector::at |
| // added operator<< for std::ostream |
| // added C10_API to export SmallVectorBase |
| |
| #pragma once |
| |
| #include <c10/macros/Macros.h> |
| #include <c10/util/AlignOf.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <cstring> |
| #include <functional> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <ostream> |
| #include <type_traits> |
| #include <utility> |
| |
| C10_CLANG_DIAGNOSTIC_PUSH() |
| #if C10_CLANG_HAS_WARNING("-Wshorten-64-to-32") |
| C10_CLANG_DIAGNOSTIC_IGNORE("-Wshorten-64-to-32") |
| #endif |
| |
| namespace c10 { |
| |
| /// This is all the stuff common to all SmallVectors. |
| /// |
| /// The template parameter specifies the type which should be used to hold the |
| /// Size and Capacity of the SmallVector, so it can be adjusted. |
| /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
| /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
| /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
| /// buffering bitcode output - which can exceed 4GB. |
| template <class Size_T> |
| class C10_API SmallVectorBase { |
| protected: |
| void* BeginX; |
| Size_T Size = 0, Capacity; |
| |
| /// The maximum value of the Size_T used. |
| static constexpr size_t SizeTypeMax() { |
| return std::numeric_limits<Size_T>::max(); |
| } |
| |
| SmallVectorBase(void* FirstEl, size_t TotalCapacity) |
| : BeginX(FirstEl), Capacity(TotalCapacity) {} |
| |
| /// This is a helper for \a grow() that's out of line to reduce code |
| /// duplication. This function will report a fatal error if it can't grow at |
| /// least to \p MinSize. |
| void* mallocForGrow(size_t MinSize, size_t TSize, size_t& NewCapacity); |
| |
| /// This is an implementation of the grow() method which only works |
| /// on POD-like data types and is out of line to reduce code duplication. |
| /// This function will report a fatal error if it cannot increase capacity. |
| void grow_pod(void* FirstEl, size_t MinSize, size_t TSize); |
| |
| public: |
| SmallVectorBase() = delete; |
| size_t size() const { |
| return Size; |
| } |
| size_t capacity() const { |
| return Capacity; |
| } |
| |
| C10_NODISCARD bool empty() const { |
| return !Size; |
| } |
| |
| /// Set the array size to \p N, which the current array must have enough |
| /// capacity for. |
| /// |
| /// This does not construct or destroy any elements in the vector. |
| /// |
| /// Clients can use this in conjunction with capacity() to write past the end |
| /// of the buffer when they know that more elements are available, and only |
| /// update the size later. This avoids the cost of value initializing elements |
| /// which will only be overwritten. |
| void set_size(size_t N) { |
| assert(N <= capacity()); |
| Size = N; |
| } |
| }; |
| |
| template <class T> |
| using SmallVectorSizeType = |
| std::conditional_t<sizeof(T) < 4 && sizeof(void*) >= 8, uint64_t, uint32_t>; |
| |
| /// Figure out the offset of the first element. |
| template <class T, typename = void> |
| struct SmallVectorAlignmentAndSize { |
| alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
| SmallVectorBase<SmallVectorSizeType<T>>)]; |
| alignas(T) char FirstEl[sizeof(T)]; |
| }; |
| |
| /// This is the part of SmallVectorTemplateBase which does not depend on whether |
| /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
| /// to avoid unnecessarily requiring T to be complete. |
| template <typename T, typename = void> |
| class SmallVectorTemplateCommon |
| : public SmallVectorBase<SmallVectorSizeType<T>> { |
| using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
| |
| /// Find the address of the first element. For this pointer math to be valid |
| /// with small-size of 0 for T with lots of alignment, it's important that |
| /// SmallVectorStorage is properly-aligned even for small-size of 0. |
| void* getFirstEl() const { |
| return const_cast<void*>(reinterpret_cast<const void*>( |
| reinterpret_cast<const char*>(this) + |
| offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); |
| } |
| // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| |
| protected: |
| SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
| |
| void grow_pod(size_t MinSize, size_t TSize) { |
| Base::grow_pod(getFirstEl(), MinSize, TSize); |
| } |
| |
| /// Return true if this is a smallvector which has not had dynamic |
| /// memory allocated for it. |
| bool isSmall() const { |
| return this->BeginX == getFirstEl(); |
| } |
| |
| /// Put this vector in a state of being small. |
| void resetToSmall() { |
| this->BeginX = getFirstEl(); |
| this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
| } |
| |
| /// Return true if V is an internal reference to the given range. |
| bool isReferenceToRange(const void* V, const void* First, const void* Last) |
| const { |
| // Use std::less to avoid UB. |
| std::less<> LessThan; |
| return !LessThan(V, First) && LessThan(V, Last); |
| } |
| |
| /// Return true if V is an internal reference to this vector. |
| bool isReferenceToStorage(const void* V) const { |
| return isReferenceToRange(V, this->begin(), this->end()); |
| } |
| |
| /// Return true if First and Last form a valid (possibly empty) range in this |
| /// vector's storage. |
| bool isRangeInStorage(const void* First, const void* Last) const { |
| // Use std::less to avoid UB. |
| std::less<> LessThan; |
| return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
| !LessThan(this->end(), Last); |
| } |
| |
| /// Return true unless Elt will be invalidated by resizing the vector to |
| /// NewSize. |
| bool isSafeToReferenceAfterResize(const void* Elt, size_t NewSize) { |
| // Past the end. |
| if (C10_LIKELY(!isReferenceToStorage(Elt))) |
| return true; |
| |
| // Return false if Elt will be destroyed by shrinking. |
| if (NewSize <= this->size()) |
| return Elt < this->begin() + NewSize; |
| |
| // Return false if we need to grow. |
| return NewSize <= this->capacity(); |
| } |
| |
| /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
| void assertSafeToReferenceAfterResize(const void* Elt, size_t NewSize) { |
| (void)Elt; // Suppress unused variable warning |
| (void)NewSize; // Suppress unused variable warning |
| assert( |
| isSafeToReferenceAfterResize(Elt, NewSize) && |
| "Attempting to reference an element of the vector in an operation " |
| "that invalidates it"); |
| } |
| |
| /// Check whether Elt will be invalidated by increasing the size of the |
| /// vector by N. |
| void assertSafeToAdd(const void* Elt, size_t N = 1) { |
| this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
| } |
| |
| /// Check whether any part of the range will be invalidated by clearing. |
| void assertSafeToReferenceAfterClear(const T* From, const T* To) { |
| if (From == To) |
| return; |
| this->assertSafeToReferenceAfterResize(From, 0); |
| this->assertSafeToReferenceAfterResize(To - 1, 0); |
| } |
| template < |
| class ItTy, |
| std::enable_if_t<!std::is_same_v<std::remove_const_t<ItTy>, T*>, bool> = |
| false> |
| void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
| |
| /// Check whether any part of the range will be invalidated by growing. |
| void assertSafeToAddRange(const T* From, const T* To) { |
| if (From == To) |
| return; |
| this->assertSafeToAdd(From, To - From); |
| this->assertSafeToAdd(To - 1, To - From); |
| } |
| template < |
| class ItTy, |
| std::enable_if_t<!std::is_same_v<std::remove_const_t<ItTy>, T*>, bool> = |
| false> |
| void assertSafeToAddRange(ItTy, ItTy) {} |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| template <class U> |
| static const T* reserveForParamAndGetAddressImpl( |
| U* This, |
| const T& Elt, |
| size_t N) { |
| size_t NewSize = This->size() + N; |
| if (C10_LIKELY(NewSize <= This->capacity())) |
| return &Elt; |
| |
| bool ReferencesStorage = false; |
| int64_t Index = -1; |
| if (!U::TakesParamByValue) { |
| if (C10_UNLIKELY(This->isReferenceToStorage(&Elt))) { |
| ReferencesStorage = true; |
| Index = &Elt - This->begin(); |
| } |
| } |
| This->grow(NewSize); |
| return ReferencesStorage ? This->begin() + Index : &Elt; |
| } |
| |
| public: |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using value_type = T; |
| using iterator = T*; |
| using const_iterator = const T*; |
| |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| |
| using reference = T&; |
| using const_reference = const T&; |
| using pointer = T*; |
| using const_pointer = const T*; |
| |
| using Base::capacity; |
| using Base::empty; |
| using Base::size; |
| |
| // forward iterator creation methods. |
| iterator begin() { |
| return (iterator)this->BeginX; |
| } |
| const_iterator begin() const { |
| return (const_iterator)this->BeginX; |
| } |
| iterator end() { |
| return begin() + size(); |
| } |
| const_iterator end() const { |
| return begin() + size(); |
| } |
| |
| // reverse iterator creation methods. |
| reverse_iterator rbegin() { |
| return reverse_iterator(end()); |
| } |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| reverse_iterator rend() { |
| return reverse_iterator(begin()); |
| } |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| |
| size_type size_in_bytes() const { |
| return size() * sizeof(T); |
| } |
| size_type max_size() const { |
| return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
| } |
| |
| size_t capacity_in_bytes() const { |
| return capacity() * sizeof(T); |
| } |
| |
| /// Return a pointer to the vector's buffer, even if empty(). |
| pointer data() { |
| return pointer(begin()); |
| } |
| /// Return a pointer to the vector's buffer, even if empty(). |
| const_pointer data() const { |
| return const_pointer(begin()); |
| } |
| |
| // SmallVector::at is NOT from LLVM. |
| reference at(size_type idx) { |
| assert(idx < size()); |
| return begin()[idx]; |
| } |
| const_reference at(size_type idx) const { |
| assert(idx < size()); |
| return begin()[idx]; |
| } |
| reference operator[](size_type idx) { |
| assert(idx < size()); |
| return begin()[idx]; |
| } |
| const_reference operator[](size_type idx) const { |
| assert(idx < size()); |
| return begin()[idx]; |
| } |
| |
| reference front() { |
| assert(!empty()); |
| return begin()[0]; |
| } |
| const_reference front() const { |
| assert(!empty()); |
| return begin()[0]; |
| } |
| |
| reference back() { |
| assert(!empty()); |
| return end()[-1]; |
| } |
| const_reference back() const { |
| assert(!empty()); |
| return end()[-1]; |
| } |
| }; |
| |
| /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
| /// method implementations that are designed to work with non-trivial T's. |
| /// |
| /// We approximate is_trivially_copyable with trivial move/copy construction and |
| /// trivial destruction. While the standard doesn't specify that you're allowed |
| /// copy these types with memcpy, there is no way for the type to observe this. |
| /// This catches the important case of std::pair<POD, POD>, which is not |
| /// trivially assignable. |
| /// |
| /// XXX: if build fails here fall back to C10_IS_TRIVIALLY_COPYABLE and make a |
| /// note |
| template < |
| typename T, |
| bool = (std::is_trivially_copy_constructible_v<T>)&&( |
| std::is_trivially_move_constructible_v< |
| T>)&&std::is_trivially_destructible_v<T>> |
| class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| friend class SmallVectorTemplateCommon<T>; |
| |
| protected: |
| static constexpr bool TakesParamByValue = false; |
| using ValueParamT = const T&; |
| |
| SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| |
| static void destroy_range(T* S, T* E) { |
| while (S != E) { |
| --E; |
| E->~T(); |
| } |
| } |
| |
| /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
| /// constructing elements as needed. |
| template <typename It1, typename It2> |
| static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| std::uninitialized_copy( |
| std::make_move_iterator(I), std::make_move_iterator(E), Dest); |
| } |
| |
| /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
| /// constructing elements as needed. |
| template <typename It1, typename It2> |
| static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| std::uninitialized_copy(I, E, Dest); |
| } |
| |
| /// Grow the allocated memory (without initializing new elements), doubling |
| /// the size of the allocated memory. Guarantees space for at least one more |
| /// element, or MinSize more elements if specified. |
| void grow(size_t MinSize = 0); |
| |
| /// Create a new allocation big enough for \p MinSize and pass back its size |
| /// in \p NewCapacity. This is the first section of \a grow(). |
| T* mallocForGrow(size_t MinSize, size_t& NewCapacity) { |
| return static_cast<T*>( |
| SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
| MinSize, sizeof(T), NewCapacity)); |
| } |
| |
| /// Move existing elements over to the new allocation \p NewElts, the middle |
| /// section of \a grow(). |
| void moveElementsForGrow(T* NewElts); |
| |
| /// Transfer ownership of the allocation, finishing up \a grow(). |
| void takeAllocationForGrow(T* NewElts, size_t NewCapacity); |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) { |
| return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| } |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) { |
| return const_cast<T*>(this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| } |
| |
| static T&& forward_value_param(T&& V) { |
| return std::move(V); |
| } |
| static const T& forward_value_param(const T& V) { |
| return V; |
| } |
| |
| void growAndAssign(size_t NumElts, const T& Elt) { |
| // Grow manually in case Elt is an internal reference. |
| size_t NewCapacity = 0; |
| T* NewElts = mallocForGrow(NumElts, NewCapacity); |
| std::uninitialized_fill_n(NewElts, NumElts, Elt); |
| this->destroy_range(this->begin(), this->end()); |
| takeAllocationForGrow(NewElts, NewCapacity); |
| this->set_size(NumElts); |
| } |
| |
| template <typename... ArgTypes> |
| T& growAndEmplaceBack(ArgTypes&&... Args) { |
| // Grow manually in case one of Args is an internal reference. |
| size_t NewCapacity = 0; |
| T* NewElts = mallocForGrow(0, NewCapacity); |
| ::new ((void*)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
| moveElementsForGrow(NewElts); |
| takeAllocationForGrow(NewElts, NewCapacity); |
| this->set_size(this->size() + 1); |
| return this->back(); |
| } |
| |
| public: |
| void push_back(const T& Elt) { |
| const T* EltPtr = reserveForParamAndGetAddress(Elt); |
| ::new ((void*)this->end()) T(*EltPtr); |
| this->set_size(this->size() + 1); |
| } |
| |
| void push_back(T&& Elt) { |
| T* EltPtr = reserveForParamAndGetAddress(Elt); |
| ::new ((void*)this->end()) T(::std::move(*EltPtr)); |
| this->set_size(this->size() + 1); |
| } |
| |
| void pop_back() { |
| this->set_size(this->size() - 1); |
| this->end()->~T(); |
| } |
| }; |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool TriviallyCopyable> |
| void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
| size_t NewCapacity = 0; |
| T* NewElts = mallocForGrow(MinSize, NewCapacity); |
| moveElementsForGrow(NewElts); |
| takeAllocationForGrow(NewElts, NewCapacity); |
| } |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool TriviallyCopyable> |
| void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
| T* NewElts) { |
| // Move the elements over. |
| this->uninitialized_move(this->begin(), this->end(), NewElts); |
| |
| // Destroy the original elements. |
| destroy_range(this->begin(), this->end()); |
| } |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool TriviallyCopyable> |
| void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
| T* NewElts, |
| size_t NewCapacity) { |
| // If this wasn't grown from the inline copy, deallocate the old space. |
| if (!this->isSmall()) |
| free(this->begin()); |
| |
| this->BeginX = NewElts; |
| this->Capacity = NewCapacity; |
| } |
| |
| /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
| /// method implementations that are designed to work with trivially copyable |
| /// T's. This allows using memcpy in place of copy/move construction and |
| /// skipping destruction. |
| template <typename T> |
| class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| friend class SmallVectorTemplateCommon<T>; |
| |
| protected: |
| /// True if it's cheap enough to take parameters by value. Doing so avoids |
| /// overhead related to mitigations for reference invalidation. |
| static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void*); |
| |
| /// Either const T& or T, depending on whether it's cheap enough to take |
| /// parameters by value. |
| using ValueParamT = std::conditional_t<TakesParamByValue, T, const T&>; |
| |
| SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| |
| // No need to do a destroy loop for POD's. |
| static void destroy_range(T*, T*) {} |
| |
| /// Move the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template <typename It1, typename It2> |
| static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| // Just do a copy. |
| uninitialized_copy(I, E, Dest); |
| } |
| |
| /// Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template <typename It1, typename It2> |
| static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| // Arbitrary iterator types; just use the basic implementation. |
| std::uninitialized_copy(I, E, Dest); |
| } |
| |
| /// Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template <typename T1, typename T2> |
| static void uninitialized_copy( |
| T1* I, |
| T1* E, |
| T2* Dest, |
| std::enable_if_t<std::is_same_v<std::remove_const_t<T1>, T2>>* = |
| nullptr) { |
| // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| // use memcpy here. Note that I and E are iterators and thus might be |
| // invalid for memcpy if they are equal. |
| if (I != E) |
| memcpy(reinterpret_cast<void*>(Dest), I, (E - I) * sizeof(T)); |
| } |
| |
| /// Double the size of the allocated memory, guaranteeing space for at |
| /// least one more element or MinSize if specified. |
| void grow(size_t MinSize = 0) { |
| this->grow_pod(MinSize, sizeof(T)); |
| } |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) { |
| return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| } |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) { |
| return const_cast<T*>(this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| } |
| |
| /// Copy \p V or return a reference, depending on \a ValueParamT. |
| static ValueParamT forward_value_param(ValueParamT V) { |
| return V; |
| } |
| |
| void growAndAssign(size_t NumElts, T Elt) { |
| // Elt has been copied in case it's an internal reference, side-stepping |
| // reference invalidation problems without losing the realloc optimization. |
| this->set_size(0); |
| this->grow(NumElts); |
| std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
| this->set_size(NumElts); |
| } |
| |
| template <typename... ArgTypes> |
| T& growAndEmplaceBack(ArgTypes&&... Args) { |
| // Use push_back with a copy in case Args has an internal reference, |
| // side-stepping reference invalidation problems without losing the realloc |
| // optimization. |
| push_back(T(std::forward<ArgTypes>(Args)...)); |
| return this->back(); |
| } |
| |
| public: |
| void push_back(ValueParamT Elt) { |
| const T* EltPtr = reserveForParamAndGetAddress(Elt); |
| memcpy(reinterpret_cast<void*>(this->end()), EltPtr, sizeof(T)); |
| this->set_size(this->size() + 1); |
| } |
| |
| void pop_back() { |
| this->set_size(this->size() - 1); |
| } |
| }; |
| |
| /// This class consists of common code factored out of the SmallVector class to |
| /// reduce code duplication based on the SmallVector 'N' template parameter. |
| template <typename T> |
| class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
| using SuperClass = SmallVectorTemplateBase<T>; |
| |
| public: |
| using iterator = typename SuperClass::iterator; |
| using const_iterator = typename SuperClass::const_iterator; |
| using reference = typename SuperClass::reference; |
| using size_type = typename SuperClass::size_type; |
| |
| protected: |
| using SmallVectorTemplateBase<T>::TakesParamByValue; |
| using ValueParamT = typename SuperClass::ValueParamT; |
| |
| // Default ctor - Initialize to empty. |
| explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase<T>(N) {} |
| |
| public: |
| SmallVectorImpl(const SmallVectorImpl&) = delete; |
| |
| ~SmallVectorImpl() { |
| // Subclass has already destructed this vector's elements. |
| // If this wasn't grown from the inline copy, deallocate the old space. |
| if (!this->isSmall()) |
| free(this->begin()); |
| } |
| |
| void clear() { |
| this->destroy_range(this->begin(), this->end()); |
| this->Size = 0; |
| } |
| |
| private: |
| template <bool ForOverwrite> |
| void resizeImpl(size_type N) { |
| if (N < this->size()) { |
| this->pop_back_n(this->size() - N); |
| } else if (N > this->size()) { |
| this->reserve(N); |
| for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
| if (ForOverwrite) |
| new (&*I) T; |
| else |
| new (&*I) T(); |
| this->set_size(N); |
| } |
| } |
| |
| public: |
| void resize(size_type N) { |
| resizeImpl<false>(N); |
| } |
| |
| /// Like resize, but \ref T is POD, the new values won't be initialized. |
| void resize_for_overwrite(size_type N) { |
| resizeImpl<true>(N); |
| } |
| |
| void resize(size_type N, ValueParamT NV) { |
| if (N == this->size()) |
| return; |
| |
| if (N < this->size()) { |
| this->pop_back_n(this->size() - N); |
| return; |
| } |
| |
| // N > this->size(). Defer to append. |
| this->append(N - this->size(), NV); |
| } |
| |
| void reserve(size_type N) { |
| if (this->capacity() < N) |
| this->grow(N); |
| } |
| |
| void pop_back_n(size_type NumItems) { |
| assert(this->size() >= NumItems); |
| this->destroy_range(this->end() - NumItems, this->end()); |
| this->set_size(this->size() - NumItems); |
| } |
| |
| C10_NODISCARD T pop_back_val() { |
| T Result = ::std::move(this->back()); |
| this->pop_back(); |
| return Result; |
| } |
| |
| void swap(SmallVectorImpl& RHS) noexcept; |
| |
| /// Add the specified range to the end of the SmallVector. |
| template < |
| typename in_iter, |
| typename = std::enable_if_t<std::is_convertible_v< |
| typename std::iterator_traits<in_iter>::iterator_category, |
| std::input_iterator_tag>>> |
| void append(in_iter in_start, in_iter in_end) { |
| this->assertSafeToAddRange(in_start, in_end); |
| size_type NumInputs = std::distance(in_start, in_end); |
| this->reserve(this->size() + NumInputs); |
| this->uninitialized_copy(in_start, in_end, this->end()); |
| this->set_size(this->size() + NumInputs); |
| } |
| |
| /// Append \p NumInputs copies of \p Elt to the end. |
| void append(size_type NumInputs, ValueParamT Elt) { |
| const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
| std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
| this->set_size(this->size() + NumInputs); |
| } |
| |
| void append(std::initializer_list<T> IL) { |
| append(IL.begin(), IL.end()); |
| } |
| |
| void append(const SmallVectorImpl& RHS) { |
| append(RHS.begin(), RHS.end()); |
| } |
| |
| void assign(size_type NumElts, ValueParamT Elt) { |
| // Note that Elt could be an internal reference. |
| if (NumElts > this->capacity()) { |
| this->growAndAssign(NumElts, Elt); |
| return; |
| } |
| |
| // Assign over existing elements. |
| std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
| if (NumElts > this->size()) |
| std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
| else if (NumElts < this->size()) |
| this->destroy_range(this->begin() + NumElts, this->end()); |
| this->set_size(NumElts); |
| } |
| |
| // FIXME: Consider assigning over existing elements, rather than clearing & |
| // re-initializing them - for all assign(...) variants. |
| |
| template < |
| typename in_iter, |
| typename = std::enable_if_t<std::is_convertible_v< |
| typename std::iterator_traits<in_iter>::iterator_category, |
| std::input_iterator_tag>>> |
| void assign(in_iter in_start, in_iter in_end) { |
| this->assertSafeToReferenceAfterClear(in_start, in_end); |
| clear(); |
| append(in_start, in_end); |
| } |
| |
| void assign(std::initializer_list<T> IL) { |
| clear(); |
| append(IL); |
| } |
| |
| void assign(const SmallVectorImpl& RHS) { |
| assign(RHS.begin(), RHS.end()); |
| } |
| |
| iterator erase(const_iterator CI) { |
| // Just cast away constness because this is a non-const member function. |
| iterator I = const_cast<iterator>(CI); |
| |
| assert( |
| this->isReferenceToStorage(CI) && |
| "Iterator to erase is out of bounds."); |
| |
| iterator N = I; |
| // Shift all elts down one. |
| std::move(I + 1, this->end(), I); |
| // Drop the last elt. |
| this->pop_back(); |
| return (N); |
| } |
| |
| iterator erase(const_iterator CS, const_iterator CE) { |
| // Just cast away constness because this is a non-const member function. |
| iterator S = const_cast<iterator>(CS); |
| iterator E = const_cast<iterator>(CE); |
| |
| assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); |
| |
| iterator N = S; |
| // Shift all elts down. |
| iterator I = std::move(E, this->end(), S); |
| // Drop the last elts. |
| this->destroy_range(I, this->end()); |
| this->set_size(I - this->begin()); |
| return (N); |
| } |
| |
| private: |
| template <class ArgType> |
| iterator insert_one_impl(iterator I, ArgType&& Elt) { |
| // Callers ensure that ArgType is derived from T. |
| static_assert( |
| std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, T>:: |
| value, |
| "ArgType must be derived from T!"); |
| |
| if (I == this->end()) { // Important special case for empty vector. |
| this->push_back(::std::forward<ArgType>(Elt)); |
| return this->end() - 1; |
| } |
| |
| assert( |
| this->isReferenceToStorage(I) && |
| "Insertion iterator is out of bounds."); |
| |
| // Grow if necessary. |
| size_t Index = I - this->begin(); |
| std::remove_reference_t<ArgType>* EltPtr = |
| this->reserveForParamAndGetAddress(Elt); |
| I = this->begin() + Index; |
| |
| ::new ((void*)this->end()) T(::std::move(this->back())); |
| // Push everything else over. |
| std::move_backward(I, this->end() - 1, this->end()); |
| this->set_size(this->size() + 1); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference (never happens if TakesParamByValue). |
| static_assert( |
| !TakesParamByValue || std::is_same<ArgType, T>::value, |
| "ArgType must be 'T' when taking by value!"); |
| if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
| ++EltPtr; |
| |
| *I = ::std::forward<ArgType>(*EltPtr); |
| return I; |
| } |
| |
| public: |
| iterator insert(iterator I, T&& Elt) { |
| return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
| } |
| |
| iterator insert(iterator I, const T& Elt) { |
| return insert_one_impl(I, this->forward_value_param(Elt)); |
| } |
| |
| iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
| // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| size_t InsertElt = I - this->begin(); |
| |
| if (I == this->end()) { // Important special case for empty vector. |
| append(NumToInsert, Elt); |
| return this->begin() + InsertElt; |
| } |
| |
| assert( |
| this->isReferenceToStorage(I) && |
| "Insertion iterator is out of bounds."); |
| |
| // Ensure there is enough space, and get the (maybe updated) address of |
| // Elt. |
| const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
| |
| // Uninvalidate the iterator. |
| I = this->begin() + InsertElt; |
| |
| // If there are more elements between the insertion point and the end of the |
| // range than there are being inserted, we can use a simple approach to |
| // insertion. Since we already reserved space, we know that this won't |
| // reallocate the vector. |
| if (size_t(this->end() - I) >= NumToInsert) { |
| T* OldEnd = this->end(); |
| append( |
| std::move_iterator<iterator>(this->end() - NumToInsert), |
| std::move_iterator<iterator>(this->end())); |
| |
| // Copy the existing elements that get replaced. |
| std::move_backward(I, OldEnd - NumToInsert, OldEnd); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference (never happens if TakesParamByValue). |
| if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| EltPtr += NumToInsert; |
| |
| std::fill_n(I, NumToInsert, *EltPtr); |
| return I; |
| } |
| |
| // Otherwise, we're inserting more elements than exist already, and we're |
| // not inserting at the end. |
| |
| // Move over the elements that we're about to overwrite. |
| T* OldEnd = this->end(); |
| this->set_size(this->size() + NumToInsert); |
| size_t NumOverwritten = OldEnd - I; |
| this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference (never happens if TakesParamByValue). |
| if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| EltPtr += NumToInsert; |
| |
| // Replace the overwritten part. |
| std::fill_n(I, NumOverwritten, *EltPtr); |
| |
| // Insert the non-overwritten middle part. |
| std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
| return I; |
| } |
| |
| template < |
| typename ItTy, |
| typename = std::enable_if_t<std::is_convertible_v< |
| typename std::iterator_traits<ItTy>::iterator_category, |
| std::input_iterator_tag>>> |
| iterator insert(iterator I, ItTy From, ItTy To) { |
| // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| size_t InsertElt = I - this->begin(); |
| |
| if (I == this->end()) { // Important special case for empty vector. |
| append(From, To); |
| return this->begin() + InsertElt; |
| } |
| |
| assert( |
| this->isReferenceToStorage(I) && |
| "Insertion iterator is out of bounds."); |
| |
| // Check that the reserve that follows doesn't invalidate the iterators. |
| this->assertSafeToAddRange(From, To); |
| |
| size_t NumToInsert = std::distance(From, To); |
| |
| // Ensure there is enough space. |
| reserve(this->size() + NumToInsert); |
| |
| // Uninvalidate the iterator. |
| I = this->begin() + InsertElt; |
| |
| // If there are more elements between the insertion point and the end of the |
| // range than there are being inserted, we can use a simple approach to |
| // insertion. Since we already reserved space, we know that this won't |
| // reallocate the vector. |
| if (size_t(this->end() - I) >= NumToInsert) { |
| T* OldEnd = this->end(); |
| append( |
| std::move_iterator<iterator>(this->end() - NumToInsert), |
| std::move_iterator<iterator>(this->end())); |
| |
| // Copy the existing elements that get replaced. |
| std::move_backward(I, OldEnd - NumToInsert, OldEnd); |
| |
| std::copy(From, To, I); |
| return I; |
| } |
| |
| // Otherwise, we're inserting more elements than exist already, and we're |
| // not inserting at the end. |
| |
| // Move over the elements that we're about to overwrite. |
| T* OldEnd = this->end(); |
| this->set_size(this->size() + NumToInsert); |
| size_t NumOverwritten = OldEnd - I; |
| this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); |
| |
| // Replace the overwritten part. |
| for (T* J = I; NumOverwritten > 0; --NumOverwritten) { |
| *J = *From; |
| ++J; |
| ++From; |
| } |
| |
| // Insert the non-overwritten middle part. |
| this->uninitialized_copy(From, To, OldEnd); |
| return I; |
| } |
| |
| void insert(iterator I, std::initializer_list<T> IL) { |
| insert(I, IL.begin(), IL.end()); |
| } |
| |
| template <typename... ArgTypes> |
| reference emplace_back(ArgTypes&&... Args) { |
| if (C10_UNLIKELY(this->size() >= this->capacity())) |
| return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
| |
| ::new ((void*)this->end()) T(std::forward<ArgTypes>(Args)...); |
| this->set_size(this->size() + 1); |
| return this->back(); |
| } |
| |
| SmallVectorImpl& operator=(const SmallVectorImpl& RHS); |
| |
| SmallVectorImpl& operator=(SmallVectorImpl&& RHS) noexcept( |
| std::is_nothrow_move_constructible_v<T> && |
| std::is_nothrow_destructible_v<T>); |
| |
| bool operator==(const SmallVectorImpl& RHS) const { |
| if (this->size() != RHS.size()) |
| return false; |
| return std::equal(this->begin(), this->end(), RHS.begin()); |
| } |
| bool operator!=(const SmallVectorImpl& RHS) const { |
| return !(*this == RHS); |
| } |
| |
| bool operator<(const SmallVectorImpl& RHS) const { |
| return std::lexicographical_compare( |
| this->begin(), this->end(), RHS.begin(), RHS.end()); |
| } |
| }; |
| |
| template <typename T> |
| void SmallVectorImpl<T>::swap(SmallVectorImpl<T>& RHS) noexcept { |
| if (this == &RHS) |
| return; |
| |
| // We can only avoid copying elements if neither vector is small. |
| if (!this->isSmall() && !RHS.isSmall()) { |
| std::swap(this->BeginX, RHS.BeginX); |
| std::swap(this->Size, RHS.Size); |
| std::swap(this->Capacity, RHS.Capacity); |
| return; |
| } |
| this->reserve(RHS.size()); |
| RHS.reserve(this->size()); |
| |
| // Swap the shared elements. |
| size_t NumShared = this->size(); |
| if (NumShared > RHS.size()) |
| NumShared = RHS.size(); |
| for (size_type i = 0; i != NumShared; ++i) |
| std::swap((*this)[i], RHS[i]); |
| |
| // Copy over the extra elts. |
| if (this->size() > RHS.size()) { |
| size_t EltDiff = this->size() - RHS.size(); |
| this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end()); |
| RHS.set_size(RHS.size() + EltDiff); |
| this->destroy_range(this->begin() + NumShared, this->end()); |
| this->set_size(NumShared); |
| } else if (RHS.size() > this->size()) { |
| size_t EltDiff = RHS.size() - this->size(); |
| this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end()); |
| this->set_size(this->size() + EltDiff); |
| this->destroy_range(RHS.begin() + NumShared, RHS.end()); |
| RHS.set_size(NumShared); |
| } |
| } |
| |
| template <typename T> |
| SmallVectorImpl<T>& SmallVectorImpl<T>::operator=( |
| const SmallVectorImpl<T>& RHS) { |
| // Avoid self-assignment. |
| if (this == &RHS) |
| return *this; |
| |
| // If we already have sufficient space, assign the common elements, then |
| // destroy any excess. |
| size_t RHSSize = RHS.size(); |
| size_t CurSize = this->size(); |
| if (CurSize >= RHSSize) { |
| // Assign common elements. |
| iterator NewEnd; |
| if (RHSSize) |
| NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin()); |
| else |
| NewEnd = this->begin(); |
| |
| // Destroy excess elements. |
| this->destroy_range(NewEnd, this->end()); |
| |
| // Trim. |
| this->set_size(RHSSize); |
| return *this; |
| } |
| |
| // If we have to grow to have enough elements, destroy the current elements. |
| // This allows us to avoid copying them during the grow. |
| // FIXME: don't do this if they're efficiently moveable. |
| if (this->capacity() < RHSSize) { |
| // Destroy current elements. |
| this->clear(); |
| CurSize = 0; |
| this->grow(RHSSize); |
| } else if (CurSize) { |
| // Otherwise, use assignment for the already-constructed elements. |
| std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin()); |
| } |
| |
| // Copy construct the new elements in place. |
| this->uninitialized_copy( |
| RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); |
| |
| // Set end. |
| this->set_size(RHSSize); |
| return *this; |
| } |
| |
| template <typename T> |
| SmallVectorImpl<T>& SmallVectorImpl<T>:: |
| operator=(SmallVectorImpl<T>&& RHS) noexcept( |
| std::is_nothrow_move_constructible_v<T> && |
| std::is_nothrow_destructible_v<T>) { |
| // Avoid self-assignment. |
| if (this == &RHS) |
| return *this; |
| |
| // If the RHS isn't small, clear this vector and then steal its buffer. |
| if (!RHS.isSmall()) { |
| this->destroy_range(this->begin(), this->end()); |
| if (!this->isSmall()) |
| free(this->begin()); |
| this->BeginX = RHS.BeginX; |
| this->Size = RHS.Size; |
| this->Capacity = RHS.Capacity; |
| RHS.resetToSmall(); |
| return *this; |
| } |
| |
| // If we already have sufficient space, assign the common elements, then |
| // destroy any excess. |
| size_t RHSSize = RHS.size(); |
| size_t CurSize = this->size(); |
| if (CurSize >= RHSSize) { |
| // Assign common elements. |
| iterator NewEnd = this->begin(); |
| if (RHSSize) |
| NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
| |
| // Destroy excess elements and trim the bounds. |
| this->destroy_range(NewEnd, this->end()); |
| this->set_size(RHSSize); |
| |
| // Clear the RHS. |
| RHS.clear(); |
| |
| return *this; |
| } |
| |
| // If we have to grow to have enough elements, destroy the current elements. |
| // This allows us to avoid copying them during the grow. |
| // FIXME: this may not actually make any sense if we can efficiently move |
| // elements. |
| if (this->capacity() < RHSSize) { |
| // Destroy current elements. |
| this->clear(); |
| CurSize = 0; |
| this->grow(RHSSize); |
| } else if (CurSize) { |
| // Otherwise, use assignment for the already-constructed elements. |
| std::move(RHS.begin(), RHS.begin() + CurSize, this->begin()); |
| } |
| |
| // Move-construct the new elements in place. |
| this->uninitialized_move( |
| RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); |
| |
| // Set end. |
| this->set_size(RHSSize); |
| |
| RHS.clear(); |
| return *this; |
| } |
| |
| /// Storage for the SmallVector elements. This is specialized for the N=0 case |
| /// to avoid allocating unnecessary storage. |
| template <typename T, unsigned N> |
| struct SmallVectorStorage { |
| alignas(T) char InlineElts[N * sizeof(T)]; |
| }; |
| |
| /// We need the storage to be properly aligned even for small-size of 0 so that |
| /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
| /// well-defined. |
| template <typename T> |
| struct alignas(T) SmallVectorStorage<T, 0> {}; |
| |
| /// Forward declaration of SmallVector so that |
| /// calculateSmallVectorDefaultInlinedElements can reference |
| /// `sizeof(SmallVector<T, 0>)`. |
| template <typename T, unsigned N> |
| class /* LLVM_GSL_OWNER */ SmallVector; |
| |
| /// Helper class for calculating the default number of inline elements for |
| /// `SmallVector<T>`. |
| /// |
| /// This should be migrated to a constexpr function when our minimum |
| /// compiler support is enough for multi-statement constexpr functions. |
| template <typename T> |
| struct CalculateSmallVectorDefaultInlinedElements { |
| // Parameter controlling the default number of inlined elements |
| // for `SmallVector<T>`. |
| // |
| // The default number of inlined elements ensures that |
| // 1. There is at least one inlined element. |
| // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
| // it contradicts 1. |
| static constexpr size_t kPreferredSmallVectorSizeof = 64; |
| |
| // static_assert that sizeof(T) is not "too big". |
| // |
| // Because our policy guarantees at least one inlined element, it is possible |
| // for an arbitrarily large inlined element to allocate an arbitrarily large |
| // amount of inline storage. We generally consider it an antipattern for a |
| // SmallVector to allocate an excessive amount of inline storage, so we want |
| // to call attention to these cases and make sure that users are making an |
| // intentional decision if they request a lot of inline storage. |
| // |
| // We want this assertion to trigger in pathological cases, but otherwise |
| // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
| // larger than kPreferredSmallVectorSizeof (otherwise, |
| // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
| // pattern seems useful in practice). |
| // |
| // One wrinkle is that this assertion is in theory non-portable, since |
| // sizeof(T) is in general platform-dependent. However, we don't expect this |
| // to be much of an issue, because most LLVM development happens on 64-bit |
| // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
| // 32-bit hosts, dodging the issue. The reverse situation, where development |
| // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
| // 64-bit host, is expected to be very rare. |
| static_assert( |
| sizeof(T) <= 256, |
| "You are trying to use a default number of inlined elements for " |
| "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
| "explicit number of inlined elements with `SmallVector<T, N>` to make " |
| "sure you really want that much inline storage."); |
| |
| // Discount the size of the header itself when calculating the maximum inline |
| // bytes. |
| static constexpr size_t PreferredInlineBytes = |
| kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
| static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
| static constexpr size_t value = |
| NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
| }; |
| |
| /// This is a 'vector' (really, a variable-sized array), optimized |
| /// for the case when the array is small. It contains some number of elements |
| /// in-place, which allows it to avoid heap allocation when the actual number of |
| /// elements is below that threshold. This allows normal "small" cases to be |
| /// fast without losing generality for large inputs. |
| /// |
| /// \note |
| /// In the absence of a well-motivated choice for the number of inlined |
| /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
| /// omitting the \p N). This will choose a default number of inlined elements |
| /// reasonable for allocation on the stack (for example, trying to keep \c |
| /// sizeof(SmallVector<T>) around 64 bytes). |
| /// |
| /// \warning This does not attempt to be exception safe. |
| /// |
| /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
| template < |
| typename T, |
| unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
| class /* LLVM_GSL_OWNER */ SmallVector : public SmallVectorImpl<T>, |
| SmallVectorStorage<T, N> { |
| public: |
| SmallVector() : SmallVectorImpl<T>(N) {} |
| |
| ~SmallVector() { |
| // Destroy the constructed elements in the vector. |
| this->destroy_range(this->begin(), this->end()); |
| } |
| |
| explicit SmallVector(size_t Size, const T& Value = T()) |
| : SmallVectorImpl<T>(N) { |
| this->assign(Size, Value); |
| } |
| |
| template < |
| typename ItTy, |
| typename = std::enable_if_t<std::is_convertible_v< |
| typename std::iterator_traits<ItTy>::iterator_category, |
| std::input_iterator_tag>>> |
| SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
| this->append(S, E); |
| } |
| |
| // note: The enable_if restricts Container to types that have a .begin() and |
| // .end() that return valid input iterators. |
| template < |
| typename Container, |
| std::enable_if_t< |
| std::is_convertible_v< |
| typename std::iterator_traits< |
| decltype(std::declval<Container>() |
| .begin())>::iterator_category, |
| std::input_iterator_tag> && |
| std::is_convertible_v< |
| typename std::iterator_traits< |
| decltype(std::declval<Container>() |
| .end())>::iterator_category, |
| std::input_iterator_tag>, |
| int> = 0> |
| explicit SmallVector(Container&& c) : SmallVectorImpl<T>(N) { |
| this->append(c.begin(), c.end()); |
| } |
| |
| SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
| this->assign(IL); |
| } |
| |
| SmallVector(const SmallVector& RHS) : SmallVectorImpl<T>(N) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(RHS); |
| } |
| |
| SmallVector& operator=(const SmallVector& RHS) { |
| SmallVectorImpl<T>::operator=(RHS); |
| return *this; |
| } |
| |
| SmallVector(SmallVector&& RHS) noexcept( |
| std::is_nothrow_move_assignable_v<SmallVectorImpl<T>>) |
| : SmallVectorImpl<T>(N) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| } |
| |
| // note: The enable_if restricts Container to types that have a .begin() and |
| // .end() that return valid input iterators. |
| template < |
| typename Container, |
| std::enable_if_t< |
| std::is_convertible_v< |
| typename std::iterator_traits< |
| decltype(std::declval<Container>() |
| .begin())>::iterator_category, |
| std::input_iterator_tag> && |
| std::is_convertible_v< |
| typename std::iterator_traits< |
| decltype(std::declval<Container>() |
| .end())>::iterator_category, |
| std::input_iterator_tag>, |
| int> = 0> |
| SmallVector& operator=(const Container& RHS) { |
| this->assign(RHS.begin(), RHS.end()); |
| return *this; |
| } |
| |
| SmallVector(SmallVectorImpl<T>&& RHS) noexcept( |
| std::is_nothrow_move_assignable_v<SmallVectorImpl<T>>) |
| : SmallVectorImpl<T>(N) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| } |
| |
| SmallVector& operator=(SmallVector&& RHS) noexcept( |
| std::is_nothrow_move_assignable_v<SmallVectorImpl<T>>) { |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| return *this; |
| } |
| |
| SmallVector& operator=(SmallVectorImpl<T>&& RHS) noexcept( |
| std::is_nothrow_move_constructible_v<SmallVectorImpl<T>>) { |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| return *this; |
| } |
| |
| // note: The enable_if restricts Container to types that have a .begin() and |
| // .end() that return valid input iterators. |
| template < |
| typename Container, |
| std::enable_if_t< |
| std::is_convertible_v< |
| typename std::iterator_traits< |
| decltype(std::declval<Container>() |
| .begin())>::iterator_category, |
| std::input_iterator_tag> && |
| std::is_convertible_v< |
| typename std::iterator_traits< |
| decltype(std::declval<Container>() |
| .end())>::iterator_category, |
| std::input_iterator_tag>, |
| int> = 0> |
| SmallVector& operator=(Container&& C) { |
| this->assign(C.begin(), C.end()); |
| return *this; |
| } |
| |
| SmallVector& operator=(std::initializer_list<T> IL) { |
| this->assign(IL); |
| return *this; |
| } |
| }; |
| |
| template <typename T, unsigned N> |
| inline size_t capacity_in_bytes(const SmallVector<T, N>& X) { |
| return X.capacity_in_bytes(); |
| } |
| |
| template <typename T, unsigned N> |
| std::ostream& operator<<(std::ostream& out, const SmallVector<T, N>& list) { |
| int i = 0; |
| out << "["; |
| for (auto e : list) { |
| if (i++ > 0) |
| out << ", "; |
| out << e; |
| } |
| out << "]"; |
| return out; |
| } |
| |
| template <typename RangeType> |
| using ValueTypeFromRangeType = std::remove_const_t< |
| std::remove_reference_t<decltype(*std::begin(std::declval<RangeType&>()))>>; |
| |
| /// Given a range of type R, iterate the entire range and return a |
| /// SmallVector with elements of the vector. This is useful, for example, |
| /// when you want to iterate a range and then sort the results. |
| template <unsigned Size, typename R> |
| SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R&& Range) { |
| return {std::begin(Range), std::end(Range)}; |
| } |
| template <typename R> |
| SmallVector< |
| ValueTypeFromRangeType<R>, |
| CalculateSmallVectorDefaultInlinedElements< |
| ValueTypeFromRangeType<R>>::value> |
| to_vector(R&& Range) { |
| return {std::begin(Range), std::end(Range)}; |
| } |
| |
| } // end namespace c10 |
| |
| namespace std { |
| |
| /// Implement std::swap in terms of SmallVector swap. |
| template <typename T> |
| inline void swap( |
| c10::SmallVectorImpl<T>& LHS, |
| c10::SmallVectorImpl<T>& RHS) noexcept { |
| LHS.swap(RHS); |
| } |
| |
| /// Implement std::swap in terms of SmallVector swap. |
| template <typename T, unsigned N> |
| inline void swap( |
| c10::SmallVector<T, N>& LHS, |
| c10::SmallVector<T, N>& RHS) noexcept { |
| LHS.swap(RHS); |
| } |
| |
| } // end namespace std |
| |
| C10_CLANG_DIAGNOSTIC_POP() |