| #include "caffe2/operators/half_float_ops.h" |
| |
| #include "caffe2/core/context_gpu.h" |
| |
| #ifdef CAFFE_HAS_CUDA_FP16 |
| |
| namespace caffe2 { |
| namespace { |
| __global__ void FloatToHalfKernel(const int N, const float* X, half* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = __float2half(X[i]); |
| } |
| } |
| |
| __global__ void HalfToFloatKernel(const int N, const half* X, float* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = __half2float(X[i]); |
| } |
| } |
| } |
| |
| template <> |
| bool FloatToHalfOp<CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| |
| auto* Y = Output(0, X.sizes(), at::dtype<at::Half>()); |
| FloatToHalfKernel<<< |
| CAFFE_GET_BLOCKS(X.numel()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| X.numel(), |
| X.data<float>(), |
| reinterpret_cast<half*>(Y->template mutable_data<at::Half>())); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| template <> |
| bool HalfToFloatOp<CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| |
| auto* Y = Output(0, X.sizes(), at::dtype<float>()); |
| HalfToFloatKernel<<< |
| CAFFE_GET_BLOCKS(X.numel()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| X.numel(), |
| reinterpret_cast<const half*>(X.data<at::Half>()), |
| Y->template mutable_data<float>()); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| |
| return true; |
| } |
| |
| template <> |
| bool Float16UniformFillOp<CUDAContext>::RunOnDevice() { |
| auto* output = Output(0, shape_, at::dtype<at::Half>()); |
| at::Half* out = output->template mutable_data<at::Half>(); |
| |
| auto leading_dim_sz = output->size(0); |
| CAFFE_ENFORCE_GT(leading_dim_sz, 0, |
| "The input shape should have the first dimension greater than 0"); |
| int rowsz = output->numel() / output->size(0); |
| |
| ReinitializeTensor( |
| &temp_data_buffer_, {rowsz}, at::dtype<float>().device(CUDA)); |
| float* temp_data = temp_data_buffer_.template mutable_data<float>(); |
| |
| for (uint64_t i = 0; i < leading_dim_sz; i++) { |
| math::RandUniform<float, CUDAContext>( |
| rowsz, min_, max_, temp_data, &context_); |
| |
| FloatToHalfKernel<<< |
| CAFFE_GET_BLOCKS(rowsz), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| rowsz, |
| temp_data, |
| reinterpret_cast<half*>(out + i * rowsz)); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } |
| |
| return true; |
| } |
| |
| REGISTER_CUDA_OPERATOR(FloatToHalf, FloatToHalfOp<CUDAContext>); |
| REGISTER_CUDA_OPERATOR(HalfToFloat, HalfToFloatOp<CUDAContext>); |
| REGISTER_CUDA_OPERATOR(Float16UniformFill, Float16UniformFillOp<CUDAContext>); |
| } // namespace caffe2 |
| |
| #endif // CAFFE_HAS_CUDA_FP16 |