| #include "caffe2/operators/negative_op.h" |
| |
| #include <string> |
| #include <vector> |
| |
| namespace caffe2 { |
| |
| REGISTER_CPU_OPERATOR( |
| Negative, |
| UnaryElementwiseOp<NumericTypes, CPUContext, NegativeFunctor<CPUContext>>); |
| |
| // Input: X, output: Y |
| OPERATOR_SCHEMA(Negative) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Computes the element-wise negative of the input. |
| |
| Github Links: |
| |
| - https://github.com/pytorch/pytorch/blob/main/caffe2/operators/negative_op.cc |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "Negative", |
| ["X"], |
| ["Y"] |
| ) |
| |
| workspace.FeedBlob("X", (np.random.rand(3,3).astype(np.float32))) |
| print("X:", workspace.FetchBlob("X")) |
| workspace.RunOperatorOnce(op) |
| print("Y:", workspace.FetchBlob("Y")) |
| ``` |
| |
| **Result** |
| |
| ``` |
| X: [[0.83296907 0.61407167 0.32562155] |
| [0.59304523 0.03111175 0.29365504] |
| [0.09478621 0.5424558 0.73940724]] |
| Y: [[-0.83296907 -0.61407167 -0.32562155] |
| [-0.59304523 -0.03111175 -0.29365504] |
| [-0.09478621 -0.5424558 -0.73940724]] |
| ``` |
| |
| </details> |
| |
| )DOC") |
| .Input(0, "X", "*(type: Tensor`<float>`)* 1D input tensor.") |
| .Output(0, "Y", "*(type: Tensor`<float>`)* 1D output tensor.") |
| .InheritOnnxSchema("Neg"); |
| |
| namespace { |
| |
| class GetNegativeGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| std::vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| "Negative", |
| "", |
| std::vector<std::string>{GO(0)}, |
| std::vector<std::string>{GI(0)}); |
| } |
| }; |
| |
| } // namespace |
| |
| REGISTER_GRADIENT(Negative, GetNegativeGradient); |
| |
| } // namespace caffe2 |