| /** |
| * Copyright (c) 2016-present, Facebook, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "caffe2/operators/unique_ops.h" |
| |
| #include <cmath> |
| |
| namespace caffe2 { |
| |
| template <> |
| template <typename T> |
| bool UniqueOp<CPUContext>::DoRunWithType() { |
| auto& inputTensor = Input(0); |
| // use dim32 to enforce that it's fine to have remapping of type int |
| int N = inputTensor.dim32(0); |
| CAFFE_ENFORCE_EQ(inputTensor.dim(), 1, "Input should be a vector"); |
| |
| int* remapping = nullptr; |
| if (REMAPPING < OutputSize()) { |
| auto* remappingTensor = |
| Output(REMAPPING, inputTensor.sizes(), at::dtype<int>()); |
| remapping = remappingTensor->template mutable_data<int>(); |
| } |
| |
| const T* input = inputTensor.template data<T>(); |
| // TODO(dzhulgakov): if perf becomes an issue consider doing hash table |
| // instead of sorting |
| order_.resize(N); |
| std::iota(order_.begin(), order_.end(), 0); |
| std::sort(order_.begin(), order_.end(), [input](const int x, const int y) { |
| // NOLINTNEXTLINE(clang-analyzer-core.NullDereference) |
| return input[x] < input[y]; |
| }); |
| int K = N; |
| for (int i = 1; i < N; ++i) { |
| K -= input[order_[i]] == input[order_[i - 1]]; |
| } |
| auto* uniqueTensor = Output(UNIQUE, {K}, at::dtype<T>()); |
| T* unique = uniqueTensor->template mutable_data<T>(); |
| K = 0; |
| T prev = -1; |
| for (int i = 0; i < N; ++i) { |
| if (i == 0 || prev != input[order_[i]]) { |
| prev = unique[K++] = input[order_[i]]; |
| } |
| if (remapping) { |
| remapping[order_[i]] = K - 1; |
| } |
| } |
| return true; |
| } |
| |
| REGISTER_CPU_OPERATOR(Unique, UniqueOp<CPUContext>); |
| |
| OPERATOR_SCHEMA(Unique) |
| .NumInputs(1) |
| .NumOutputs(1, 2) |
| .SetDoc(R"DOC( |
| Deduplicates input indices vector and optionally produces reverse remapping. |
| There's no guarantees on the ordering of the output indices. |
| )DOC") |
| .Input(0, "indices", "1D tensor of int32 or int64 indices.") |
| .Output(0, "unique_indices", "1D tensor of deduped entries.") |
| .Output( |
| 1, |
| "remapping", |
| "(optional) mapping from `indices` to `unique_indices`. This has the " |
| "same shape as `indices`. Its elements are the indices into " |
| "`unique_indices` such that `Gather(['unique_indices', 'remapping'])` " |
| "yields `indices`.") |
| .TensorInferenceFunction([](const OperatorDef& def, |
| const vector<TensorShape>& in) { |
| std::vector<TensorShape> out(1); |
| out[0].set_data_type(in[0].data_type()); |
| CAFFE_ENFORCE_EQ(in[0].dims_size(), 1); |
| if (in[0].dims(0) <= 1) { |
| // This special case is useful in some situation, e.g., when feeding |
| // tensor inference with empty tensor (where the first dim is the batch |
| // size) |
| out[0].add_dims(in[0].dims(0)); |
| } else { |
| out[0].set_unknown_shape(true); |
| } |
| if (def.output_size() > 1) { |
| // Remapping has the same shape as the input tensor |
| out.push_back(in[0]); |
| out.back().set_data_type(TensorProto::INT32); |
| } |
| return out; |
| }); |
| |
| SHOULD_NOT_DO_GRADIENT(Unique); |
| |
| } // namespace caffe2 |