| # Owner(s): ["module: fx"] |
| |
| from typing import Set, Type |
| import torch |
| import torch.fx |
| |
| from torch.testing._internal.common_utils import TestCase |
| |
| |
| class TestDCE(TestCase): |
| def _has_nodes_without_users(self, m: torch.fx.GraphModule): |
| for node in m.graph.nodes: |
| if node.is_impure(): |
| continue |
| if len(node.users) == 0: |
| return True |
| return False |
| |
| def _get_num_placeholders(self, m: torch.fx.GraphModule) -> int: |
| count = 0 |
| for node in m.graph.nodes: |
| if node.op == "placeholder": |
| count += 1 |
| return count |
| |
| def _run_dce_and_test( |
| self, |
| m: torch.nn.Module, |
| expect_dce_changes: bool, |
| modules_to_be_leafs: Set[Type] = None, |
| ): |
| class TestTracer(torch.fx.Tracer): |
| def is_leaf_module(self, m, qualname): |
| if modules_to_be_leafs and type(m) in modules_to_be_leafs: |
| return True |
| return super().trace(m, qualname) |
| |
| traced: torch.fx.GraphModule = torch.fx.GraphModule(m, TestTracer().trace(m)) |
| print(str(traced.graph)) |
| |
| # Verify there are nodes without users (if expected). |
| has_nodes_without_users = self._has_nodes_without_users(traced) |
| if expect_dce_changes: |
| self.assertTrue(has_nodes_without_users) |
| else: |
| self.assertFalse(has_nodes_without_users) |
| |
| # Get the original number of placeholders to verify it doesn't change |
| # during DCE. |
| orig_num_phs = self._get_num_placeholders(traced) |
| changed = traced.graph.eliminate_dead_code() |
| |
| self.assertTrue(changed if expect_dce_changes else not changed) |
| |
| # Verify there are no nodes without users after DCE is run. |
| self.assertFalse(self._has_nodes_without_users(traced)) |
| new_num_phs = self._get_num_placeholders(traced) |
| self.assertEqual(orig_num_phs, new_num_phs) |
| |
| traced.recompile() |
| # Make sure we run and get the same results before/after DCE. |
| inputs = [torch.tensor([1.5])] * new_num_phs |
| self.assertTrue(torch.equal(m(*inputs), traced(*inputs))) |
| |
| def test_simple(self): |
| """ |
| Tests that a single node in the graph is DCE'd correctly. |
| """ |
| |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.attr_1 = torch.nn.Parameter(torch.tensor([-0.9])) |
| |
| def forward(self, x): |
| a = x + 1 |
| return x + self.attr_1 |
| |
| self._run_dce_and_test(TestModule(), expect_dce_changes=True) |
| |
| def test_dead_chain(self): |
| """ |
| Tests that a chain of two nodes in the graph are DCE'd correctly. |
| """ |
| |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.attr_1 = torch.nn.Parameter(torch.tensor([-0.9])) |
| |
| def forward(self, x): |
| a = x + 1 |
| b = a * 7 |
| return x + self.attr_1 |
| |
| self._run_dce_and_test(TestModule(), expect_dce_changes=True) |
| |
| def test_dead_getattr(self): |
| """ |
| Tests that a getatrr in the graph is DCE'd correctly. |
| """ |
| |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.attr_1 = torch.nn.Parameter(torch.tensor([-0.9])) |
| |
| def forward(self, x): |
| a = x + 1 |
| b = a * self.attr_1 |
| return x + 11 |
| |
| self._run_dce_and_test(TestModule(), expect_dce_changes=True) |
| |
| def test_dead_placeholder(self): |
| """ |
| Tests that a placeholder in the graph is not DCE'd, as that would change |
| the function signature. |
| """ |
| |
| class TestModule(torch.nn.Module): |
| def forward(self, x, y): |
| return x + 7 |
| |
| self._run_dce_and_test(TestModule(), expect_dce_changes=False) |
| |
| def test_dead_placeholder_with_user(self): |
| """ |
| Tests that a placeholder in the graph is not DCE'd, as that would change |
| the function signature. Also verifies that a dead node that uses the |
| placeholder is DCE'd. |
| |
| """ |
| |
| class TestModule(torch.nn.Module): |
| def forward(self, x, y): |
| a = y + 2 |
| return x + 7 |
| |
| self._run_dce_and_test(TestModule(), expect_dce_changes=True) |
| |
| def test_keep_module_with_side_effects(self): |
| """ |
| Test that DCE doesn't remove a module if it's specified as having side effects. |
| """ |
| |
| class ReLUImpure(torch.nn.ReLU): |
| _is_impure = True |
| |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.relu = ReLUImpure() |
| |
| def forward(self, a: torch.Tensor) -> torch.Tensor: |
| r = self.relu(a) |
| return a * 2 |
| |
| self._run_dce_and_test( |
| TestModule(), expect_dce_changes=False, modules_to_be_leafs={ReLUImpure} |
| ) |
| |
| def test_keep_torch_assert(self): |
| """ |
| Test that DCE doesn't remove torch._assert since it has side effects. |
| """ |
| |
| class TestModule(torch.nn.Module): |
| def forward(self, a: torch.Tensor) -> torch.Tensor: |
| torch._assert(torch.equal(a, a), "a must equal a") |
| return a * 2 |
| |
| # Note: Don't need to specify torch._assert as having side effects |
| # because it's known to. |
| self._run_dce_and_test(TestModule(), expect_dce_changes=False) |