blob: 3864eca829c9b753a4830319d27e63984ed579bf [file] [log] [blame]
# Owner(s): ["module: fx"]
import os
import sys
import unittest
import torch
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch._dynamo.eval_frame import is_dynamo_supported
from torch.fx.passes.utils.source_matcher_utils import get_source_partitions, check_subgraphs_connected
from torch.testing._internal.jit_utils import JitTestCase
class TestSourceMatcher(JitTestCase):
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
def test_module_partitioner_linear_relu_linear(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(3, 3)
self.relu = torch.nn.ReLU()
self.linear2 = torch.nn.Linear(3, 5)
def forward(self, x):
x = self.linear1(x)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
return x
inputs = (torch.randn(3, 3),)
gm, _ = torch._dynamo.export(M(), aten_graph=True)(*inputs)
gm.graph.eliminate_dead_code()
module_partitions = get_source_partitions(gm.graph, [torch.nn.Linear, torch.nn.ReLU])
self.assertEqual(len(module_partitions), 2)
self.assertEqual(len(module_partitions[torch.nn.Linear]), 3)
self.assertEqual(len(module_partitions[torch.nn.ReLU]), 1)
self.assertFalse(check_subgraphs_connected(module_partitions[torch.nn.Linear][0], module_partitions[torch.nn.ReLU][0]))
self.assertTrue(check_subgraphs_connected(module_partitions[torch.nn.Linear][1], module_partitions[torch.nn.ReLU][0]))
self.assertFalse(check_subgraphs_connected(module_partitions[torch.nn.Linear][2], module_partitions[torch.nn.ReLU][0]))
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
def test_module_partitioner_conv_relu_maxpool(self):
class M(torch.nn.Module):
def __init__(self, constant_tensor: torch.Tensor) -> None:
super().__init__()
self.constant_tensor = constant_tensor
self.conv1 = torch.nn.Conv2d(
in_channels=3, out_channels=16, kernel_size=3, padding=1
)
self.conv2 = torch.nn.Conv2d(
in_channels=16, out_channels=16, kernel_size=3, padding=1
)
self.conv3 = torch.nn.Conv2d(
in_channels=16, out_channels=16, kernel_size=3, padding=1
)
self.relu = torch.nn.ReLU()
self.maxpool = torch.nn.MaxPool2d(kernel_size=3)
def forward(self, x: torch.Tensor) -> torch.Tensor:
a = self.conv1(x)
b = self.conv2(a)
c = a + self.constant_tensor
z = self.conv3(b + c)
return self.maxpool(self.relu(z))
inputs = (torch.randn(1, 3, 256, 256),)
gm, _ = torch._dynamo.export(M(torch.ones(1, 16, 256, 256)), aten_graph=True)(*inputs)
gm.graph.eliminate_dead_code()
module_partitions = get_source_partitions(gm.graph, [torch.nn.Conv2d, torch.nn.ReLU, torch.nn.MaxPool2d])
self.assertEqual(len(module_partitions), 3)
self.assertEqual(len(module_partitions[torch.nn.Conv2d]), 3)
self.assertEqual(len(module_partitions[torch.nn.ReLU]), 1)
self.assertEqual(len(module_partitions[torch.nn.MaxPool2d]), 1)
self.assertFalse(check_subgraphs_connected(module_partitions[torch.nn.Conv2d][0], module_partitions[torch.nn.ReLU][0]))
self.assertFalse(check_subgraphs_connected(module_partitions[torch.nn.Conv2d][1], module_partitions[torch.nn.ReLU][0]))
self.assertTrue(check_subgraphs_connected(module_partitions[torch.nn.Conv2d][2], module_partitions[torch.nn.ReLU][0]))
self.assertFalse(check_subgraphs_connected(module_partitions[torch.nn.MaxPool2d][0], module_partitions[torch.nn.ReLU][0]))
self.assertTrue(check_subgraphs_connected(module_partitions[torch.nn.ReLU][0], module_partitions[torch.nn.MaxPool2d][0]))
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
def test_module_partitioner_functional_conv_relu_conv(self):
class FunctionalConv2d(torch.nn.Module):
def __init__(self):
super().__init__()
self.stride = (1, 1)
self.padding = (0, 0)
self.dilation = (1, 1)
self.groups = 1
def forward(self, x, weight, bias):
return torch.nn.functional.conv2d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = FunctionalConv2d()
self.conv2 = FunctionalConv2d()
def forward(self, x, weight, bias):
x = self.conv1(x, weight, bias)
x = torch.nn.functional.relu(x)
x = self.conv2(x, weight, bias)
return x
inputs = (torch.randn(1, 3, 5, 5), torch.rand(3, 3, 3, 3), torch.rand(3))
gm, _ = torch._dynamo.export(M(), aten_graph=True)(*inputs)
gm.graph.eliminate_dead_code()
module_partitions = get_source_partitions(gm.graph, [torch.nn.functional.conv2d])
self.assertEqual(len(module_partitions), 1)
self.assertEqual(len(module_partitions[torch.nn.functional.conv2d]), 2)
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
def test_module_partitioner_functional_linear_relu_linear(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, weight, bias):
x = torch.nn.functional.linear(x, weight, bias)
x = torch.nn.functional.linear(x, weight, bias)
x = torch.nn.functional.relu(x)
x = torch.nn.functional.linear(x, weight, bias)
x = torch.nn.functional.linear(x, weight, bias)
x = torch.nn.functional.relu(x)
return x
inputs = (torch.randn(1, 5), torch.rand((5, 5)), torch.zeros(5))
gm, _ = torch._dynamo.export(M(), aten_graph=True)(*inputs)
gm.graph.eliminate_dead_code()
module_partitions = get_source_partitions(gm.graph, [torch.nn.functional.linear, torch.nn.functional.relu])
self.assertEqual(len(module_partitions), 2)
self.assertEqual(len(module_partitions[torch.nn.functional.linear]), 4)
self.assertEqual(len(module_partitions[torch.nn.functional.relu]), 2)