| import torch |
| import torch.nn as nn |
| import torch.nn.init as init |
| |
| |
| class Fire(nn.Module): |
| def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes): |
| super().__init__() |
| self.inplanes = inplanes |
| self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) |
| self.squeeze_activation = nn.ReLU(inplace=True) |
| self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1) |
| self.expand1x1_activation = nn.ReLU(inplace=True) |
| self.expand3x3 = nn.Conv2d( |
| squeeze_planes, expand3x3_planes, kernel_size=3, padding=1 |
| ) |
| self.expand3x3_activation = nn.ReLU(inplace=True) |
| |
| def forward(self, x): |
| x = self.squeeze_activation(self.squeeze(x)) |
| return torch.cat( |
| [ |
| self.expand1x1_activation(self.expand1x1(x)), |
| self.expand3x3_activation(self.expand3x3(x)), |
| ], |
| 1, |
| ) |
| |
| |
| class SqueezeNet(nn.Module): |
| def __init__(self, version=1.0, num_classes=1000, ceil_mode=False): |
| super().__init__() |
| if version not in [1.0, 1.1]: |
| raise ValueError( |
| f"Unsupported SqueezeNet version {version}:1.0 or 1.1 expected" |
| ) |
| self.num_classes = num_classes |
| if version == 1.0: |
| self.features = nn.Sequential( |
| nn.Conv2d(3, 96, kernel_size=7, stride=2), |
| nn.ReLU(inplace=True), |
| nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), |
| Fire(96, 16, 64, 64), |
| Fire(128, 16, 64, 64), |
| Fire(128, 32, 128, 128), |
| nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), |
| Fire(256, 32, 128, 128), |
| Fire(256, 48, 192, 192), |
| Fire(384, 48, 192, 192), |
| Fire(384, 64, 256, 256), |
| nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), |
| Fire(512, 64, 256, 256), |
| ) |
| else: |
| self.features = nn.Sequential( |
| nn.Conv2d(3, 64, kernel_size=3, stride=2), |
| nn.ReLU(inplace=True), |
| nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), |
| Fire(64, 16, 64, 64), |
| Fire(128, 16, 64, 64), |
| nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), |
| Fire(128, 32, 128, 128), |
| Fire(256, 32, 128, 128), |
| nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), |
| Fire(256, 48, 192, 192), |
| Fire(384, 48, 192, 192), |
| Fire(384, 64, 256, 256), |
| Fire(512, 64, 256, 256), |
| ) |
| # Final convolution is initialized differently from the rest |
| final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1) |
| self.classifier = nn.Sequential( |
| nn.Dropout(p=0.5), final_conv, nn.ReLU(inplace=True), nn.AvgPool2d(13) |
| ) |
| |
| for m in self.modules(): |
| if isinstance(m, nn.Conv2d): |
| if m is final_conv: |
| init.normal_(m.weight.data, mean=0.0, std=0.01) |
| else: |
| init.kaiming_uniform_(m.weight.data) |
| if m.bias is not None: |
| m.bias.data.zero_() |
| |
| def forward(self, x): |
| x = self.features(x) |
| x = self.classifier(x) |
| return x.view(x.size(0), self.num_classes) |