blob: 5a6cab1983567471b569b77dff750e3ed6b4f006 [file] [log] [blame]
#include <torch/csrc/python_headers.h>
#include <system_error>
#include <ATen/ops/from_blob.h>
#include <c10/core/CPUAllocator.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/serialization.h>
template <class io>
Py_ssize_t doPartialRead(io fildes, void* buf, size_t nbytes);
template <class io>
Py_ssize_t doPartialWrite(io fildes, void* buf, size_t nbytes);
static Py_ssize_t doPartialPythonReadBuffered(
PyObject* fildes,
void* buf,
size_t nbytes);
static Py_ssize_t doPartialPythonReadInto(
PyObject* fildes,
void* buf,
size_t nbytes);
static Py_ssize_t doPartialPythonWrite(
PyObject* fildes,
void* buf,
size_t nbytes);
template <>
Py_ssize_t doPartialRead<int>(int fildes, void* buf, size_t nbytes) {
return read(fildes, buf, nbytes);
}
template <>
Py_ssize_t doPartialRead<PyObject*>(
PyObject* fildes,
void* buf,
size_t nbytes) {
// Try to use fildes.readinto() instead of fildes.read()
// because it is more memory efficient.
// TODO: Stop calling PyObject_HasAttrString() in a loop on our read loop
auto has_readinto = PyObject_HasAttrString(fildes, "readinto") == 1;
if (has_readinto) {
return doPartialPythonReadInto(fildes, buf, nbytes);
}
return doPartialPythonReadBuffered(fildes, buf, nbytes);
}
template <>
Py_ssize_t doPartialWrite<int>(int fildes, void* buf, size_t nbytes) {
return write(fildes, buf, nbytes);
}
template <>
Py_ssize_t doPartialWrite<PyObject*>(
PyObject* fildes,
void* buf,
size_t nbytes) {
return doPartialPythonWrite(fildes, buf, nbytes);
}
static inline bool isUnsupportedOperation() {
THPObjectPtr io(PyImport_ImportModule("io"));
if (!io)
throw python_error();
THPObjectPtr exception(PyObject_GetAttrString(io, "UnsupportedOperation"));
if (!exception)
throw python_error();
return PyErr_ExceptionMatches(exception.get());
}
// Call Python fildes.read(nbytes) and copy it to buf.
static inline Py_ssize_t doPartialPythonReadBuffered(
PyObject* fildes,
void* buf,
size_t raw_nbytes) {
// If we request a large amount of data, f.read() will internally try to
// allocate a buffer of that size. This is counterproductive, because
// it's not the buffer we ultimately want to write the data into. Read
// less than that and avoid allocating too much extra memory.
// TODO: Maybe 260 KB is a bit small...
const size_t nbytes = std::min<size_t>(raw_nbytes, 262144u); // 2^18 (~260 KB)
THPObjectPtr r(PyObject_CallMethod(fildes, "read", "i", nbytes));
if (!r)
throw python_error();
auto size = PyBytes_GET_SIZE(r.get());
const void* py_buf = PyBytes_AsString(r.get());
// we read EOF
if (size == 0) {
return 0;
}
// Slurp it into the buffer we actually want
memcpy(buf, py_buf, size);
return size;
}
// Either does fildes.readinto(buf) or fildes.write(buf)
static inline Py_ssize_t doPartialPythonIO(
PyObject* fildes,
void* buf,
size_t nbytes,
bool is_read) {
auto rw_flag = is_read ? PyBUF_WRITE : PyBUF_READ;
THPObjectPtr memview(PyMemoryView_FromMemory(
reinterpret_cast<char*>(buf), static_cast<Py_ssize_t>(nbytes), rw_flag));
if (!memview)
throw python_error();
std::string method = "write";
if (is_read) {
method = "readinto";
}
THPObjectPtr r(
PyObject_CallMethod(fildes, method.c_str(), "O", memview.get()));
if (r) {
return PyLong_AsSsize_t(r.get());
}
// fildes.readinto can return UnsupportedOperation so fall back to
// fildes.read.
if (is_read && isUnsupportedOperation()) {
PyErr_Clear();
return doPartialPythonReadBuffered(fildes, buf, nbytes);
}
throw python_error();
}
// Call Python fildes.readinto(buf)
static Py_ssize_t doPartialPythonReadInto(
PyObject* fildes,
void* buf,
size_t nbytes) {
return doPartialPythonIO(fildes, buf, nbytes, /* is_read */ true);
}
// Call Python fildes.write(buf)
static Py_ssize_t doPartialPythonWrite(
PyObject* fildes,
void* buf,
size_t nbytes) {
return doPartialPythonIO(fildes, buf, nbytes, /* is_read */ false);
}
// Requires that we read EXACTLY nbytes; fails if we don't.
template <typename io>
void doRead(io fildes, void* raw_buf, size_t nbytes) {
char* buf = static_cast<char*>(raw_buf);
while (nbytes > 0) {
errno = 0; // doPartialRead may not set errno
// we read in 1GB blocks to avoid bugs on Mac OS X Lion
// see https://github.com/pytorch/pytorch/issues/1031 for more details
Py_ssize_t r =
doPartialRead(fildes, buf, std::min<size_t>(nbytes, 1073741824));
if (r < 0) {
int err = errno;
TORCH_INTERNAL_ASSERT(
err != 0, "read(): impossible! r < 0, but no errno was set");
TORCH_INTERNAL_ASSERT(
err != EAGAIN,
"read(): non-blocking fd ",
fildes,
" read EAGAIN; cowardly refusing to spin-wait");
if (err == EINTR) {
continue;
} else {
AT_ERROR("read(): fd ", fildes, " failed with ", strerror(err));
}
} else if (r == 0) {
break;
}
buf += r;
// This is guaranteed by POSIX, but I just want to be double-sure
// to not underflow a signed integer.
AT_ASSERT(static_cast<size_t>(r) <= nbytes);
nbytes -= r;
}
if (nbytes != 0) {
AT_ERROR(
"unexpected EOF, expected ",
nbytes,
" more bytes. The file might be corrupted.");
}
}
template <typename io>
void doWrite(io fildes, void* raw_buf, size_t nbytes) {
char* buf = static_cast<char*>(raw_buf);
while (nbytes > 0) {
errno = 0; // doPartialWrite may not set errno
// we write in 1GB blocks to avoid bugs on Mac OS X Lion
// see https://github.com/pytorch/pytorch/issues/1031 for more details
Py_ssize_t r =
doPartialWrite(fildes, buf, std::min<size_t>(nbytes, 1073741824));
if (r < 0) {
int err = errno;
TORCH_INTERNAL_ASSERT(
err != 0, "write(): impossible! r < 0, but no errno was set");
TORCH_INTERNAL_ASSERT(
err != EAGAIN,
"write(): non-blocking fd ",
fildes,
" read EAGAIN; cowardly refusing to spin-wait");
if (err == EINTR) {
continue;
} else {
AT_ERROR("write(): fd ", fildes, " failed with ", strerror(err));
}
}
buf += r;
AT_ASSERT(static_cast<size_t>(r) <= nbytes);
nbytes -= r;
}
}
// save_save is necessary since the old eager format saved storages as
// [size + data], but the v1.5 eager format removes this since size is saved in
// the filesize.
template <class io>
void THPStorage_writeFileRaw(
c10::StorageImpl* self,
io fd,
bool save_size,
uint64_t element_size) {
c10::DeviceGuard guard(self->device());
uint8_t* data{};
at::Tensor cpu_tensor;
size_t size_bytes = self->nbytes();
size_t numel = size_bytes / element_size;
if (self->device_type() == at::kCPU) {
// We are using a mutable pointer here because we're ultimately
// calling into a Python API that requires that, even though it
// won't mutate the data.
data = static_cast<uint8_t*>(self->mutable_data());
} else {
// Here we use a tensor.to() to impl D2H for all non-CPU device.
auto device_tensor = at::from_blob(
self->mutable_data(),
{static_cast<int64_t>(size_bytes)},
{1},
nullptr,
at::device(self->device()).dtype(c10::kByte),
{self->device()});
cpu_tensor = device_tensor.to(at::kCPU);
data = (uint8_t*)cpu_tensor.data_ptr();
}
if (save_size) {
if (torch::utils::THP_nativeByteOrder() ==
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN)
doWrite(fd, &numel, sizeof(int64_t));
else {
int64_t nsize{}; // convert big endian cpu to little endian storage
torch::utils::THP_encodeInt64Buffer(
(uint8_t*)&nsize,
(const int64_t*)&numel,
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
1);
doWrite(fd, &nsize, sizeof(int64_t));
}
}
// fast track for bytes and little endian
if (element_size == 1 ||
torch::utils::THP_nativeByteOrder() ==
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN) {
doWrite(fd, data, size_bytes);
} else {
size_t buffer_size = std::min(numel, (size_t)5000);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
std::unique_ptr<uint8_t[]> le_buffer(
new uint8_t[buffer_size * element_size]);
for (size_t i = 0; i < numel; i += buffer_size) {
size_t to_convert = std::min(numel - i, buffer_size);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (element_size == 2) {
torch::utils::THP_encodeInt16Buffer(
(uint8_t*)le_buffer.get(),
(const int16_t*)data + i,
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
} else if (element_size == 4) {
torch::utils::THP_encodeInt32Buffer(
(uint8_t*)le_buffer.get(),
(const int32_t*)data + i,
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
} else if (element_size == 8) {
torch::utils::THP_encodeInt64Buffer(
(uint8_t*)le_buffer.get(),
(const int64_t*)data + i,
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
}
doWrite(fd, le_buffer.get(), to_convert * element_size);
}
}
}
template void THPStorage_writeFileRaw<int>(
c10::StorageImpl* self,
int fd,
bool save_size,
uint64_t element_size);
template void THPStorage_writeFileRaw<PyObject*>(
c10::StorageImpl* self,
PyObject* fd,
bool save_size,
uint64_t element_size);
template <class io>
c10::intrusive_ptr<c10::StorageImpl> THPStorage_readFileRaw(
io file,
c10::intrusive_ptr<c10::StorageImpl> storage,
uint64_t element_size) {
c10::OptionalDeviceGuard guard;
if (storage.defined()) {
guard.reset_device(storage->device());
}
int64_t size{};
doRead(file, &size, sizeof(int64_t));
if (torch::utils::THP_nativeByteOrder() ==
torch::utils::THPByteOrder::THP_BIG_ENDIAN) {
int64_t tsize = size; // convert little endian storage to big endian cpu
torch::utils::THP_decodeInt64Buffer(&size, (const uint8_t*)&tsize, true, 1);
}
size_t nbytes = element_size * size;
if (!storage.defined()) {
storage = c10::make_intrusive<at::StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
nbytes,
c10::GetDefaultCPUAllocator(),
/*resizable=*/true);
} else {
size_t _storage_nbytes = storage->nbytes();
TORCH_CHECK(
_storage_nbytes == nbytes,
"storage has wrong byte size: expected %ld got %ld",
nbytes,
_storage_nbytes);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
std::unique_ptr<char[]> cpu_data;
uint8_t* data{};
if (storage->device_type() == at::kCPU) {
data = static_cast<uint8_t*>(storage->mutable_data());
} else {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
cpu_data = std::unique_ptr<char[]>(new char[nbytes]);
data = (uint8_t*)cpu_data.get();
}
// fast track for bytes and little endian
if (element_size == 1 ||
torch::utils::THP_nativeByteOrder() ==
torch::utils::THPByteOrder::THP_LITTLE_ENDIAN) {
doRead(file, data, storage->nbytes());
} else {
int64_t buffer_size = std::min(size, (int64_t)5000);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
std::unique_ptr<uint8_t[]> le_buffer(
new uint8_t[buffer_size * element_size]);
for (int64_t i = 0; i < size; i += buffer_size) {
size_t to_convert = std::min(size - i, buffer_size);
doRead(file, le_buffer.get(), element_size * to_convert);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (element_size == 2) {
torch::utils::THP_decodeInt16Buffer(
(int16_t*)data + i, le_buffer.get(), true, to_convert);
} else if (element_size == 4) {
torch::utils::THP_decodeInt32Buffer(
(int32_t*)data + i, le_buffer.get(), true, to_convert);
} else if (element_size == 8) {
torch::utils::THP_decodeInt64Buffer(
(int64_t*)data + i, le_buffer.get(), true, to_convert);
}
}
}
if (storage->device_type() != at::kCPU) {
// Here we use a tensor.copy_() to impl H2D for all non-CPU device.
auto cpu_tensor = at::from_blob(
(void*)data,
{static_cast<int64_t>(nbytes)},
at::device(at::kCPU).dtype(c10::kByte));
auto device_tensor = at::from_blob(
storage->mutable_data(),
{static_cast<int64_t>(nbytes)},
{1},
nullptr,
at::device(storage->device()).dtype(c10::kByte),
{storage->device()});
device_tensor.copy_(cpu_tensor);
}
return storage;
}
template c10::intrusive_ptr<c10::StorageImpl> THPStorage_readFileRaw<int>(
int fd,
c10::intrusive_ptr<c10::StorageImpl> storage,
uint64_t element_size);
template c10::intrusive_ptr<c10::StorageImpl> THPStorage_readFileRaw<PyObject*>(
PyObject* fd,
c10::intrusive_ptr<c10::StorageImpl> storage,
uint64_t element_size);