blob: 78174d85157015eeda72c2795ab1517ea53bced1 [file] [log] [blame]
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <ATen/Parallel.h>
#include <c10/core/DeviceType.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/jit.h>
#include <torch/script.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
class TypeCheckTest : public ::testing::Test {
protected:
TypeCheckTest() : interp(makeInterp()) {}
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
InterpreterState interp;
private:
static InterpreterState makeInterp() {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%a.1 : Tensor,
%b.1 : Tensor):
%t0 : Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), %t1 : Float(3, 3, strides=[3, 1]), %type_matched : bool = prim::TypeCheck[types=[Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), Float(3, 3, strides=[3, 1])]](%a.1, %b.1)
return (%t0, %t1, %type_matched)
)IR",
&*graph,
vmap);
Code function(graph, "");
return InterpreterState(function);
}
};
TEST_F(TypeCheckTest, MatchingType) {
// TypeCheck yields to true! Shape, grad and device matches.
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_TRUE(exactlyEqual(stack[0].toTensor(), a));
ASSERT_TRUE(exactlyEqual(stack[1].toTensor(), b));
ASSERT_TRUE(stack[2].toBool());
}
TEST_F(TypeCheckTest, SizeMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({2, 2}, at::kFloat); // Size mismatch
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, GradientMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a = a.to(at::kCPU);
a.set_requires_grad(false); // Gradient mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, ScalarTypeMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a = a.to(at::kCPU);
a.set_requires_grad(true);
a = a.to(at::kInt); // Scalar type mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, DeviceMismatch_CUDA) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCUDA); // Device mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
// TODO: These tests weren't doing anything.
// TEST(TypeCheckErrorTest, EmptyCheckRaises) {
// // Test empty Typecheck raises an internal assertion
// auto graph = std::make_shared<Graph>();
// std::unordered_map<std::string, Value*> vmap;
// EXPECT_ANY_THROW(parseIR(
// R"IR(
// graph(%a.1 : Tensor,
// %b.1 : Tensor):
// %type_matched : bool = prim::TypeCheck()
// return (%type_matched)
// )IR",
// &*graph,
// vmap));
// }
// TODO: These tests weren't doing anything.
// TEST(TypeCheckErrorTest, WrongInputOutputCountRaises) {
// // Test for assertion if num_inputs + 1 != num_outputs
// auto graph = std::make_shared<Graph>();
// std::unordered_map<std::string, Value*> vmap;
// EXPECT_ANY_THROW(parseIR(
// R"IR(
// graph(%a.1 : Tensor,
// %b.1 : Tensor):
// %type_matched : bool = prim::TypeCheck(%a.1)
// return (%type_matched)
// )IR",
// &*graph,
// vmap));
// }
TEST(InterpreterTest, Basic_CUDA) {
constexpr int batch_size = 4;
constexpr int input_size = 256;
constexpr int seq_len = 32;
int hidden_size = 2 * input_size;
auto input = at::randn({seq_len, batch_size, input_size}, at::kCUDA);
auto hx = at::randn({batch_size, hidden_size}, at::kCUDA);
auto cx = at::randn({batch_size, hidden_size}, at::kCUDA);
auto w_ih = t_def(at::randn({4 * hidden_size, input_size}, at::kCUDA));
auto w_hh = t_def(at::randn({4 * hidden_size, hidden_size}, at::kCUDA));
auto lstm_g = build_lstm();
Code lstm_function(lstm_g, "");
InterpreterState lstm_interp(lstm_function);
auto outputs = run(lstm_interp, {input[0], hx, cx, w_ih, w_hh});
std::tie(hx, cx) = lstm(input[0], hx, cx, w_ih, w_hh);
ASSERT_TRUE(exactlyEqual(outputs[0], hx));
ASSERT_TRUE(exactlyEqual(outputs[1], cx));
}
TEST(InterpreterTest, IgnorableArgsInSchema) {
auto graph = build_mobile_export_analysis_graph();
MobileCode function(graph, "");
auto op_to_specified_args = function.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args.size() == 2);
ASSERT_TRUE(op_to_specified_args["aten::slice.Tensor"] == 4);
ASSERT_TRUE(op_to_specified_args["aten::slice.str"] == 4);
auto graph_vararg = build_mobile_export_analysis_graph_with_vararg();
MobileCode function_vararg(graph_vararg, "");
auto op_to_specified_args_vararg = function_vararg.op_to_num_specified_args();
// should never register it
ASSERT_TRUE(
op_to_specified_args_vararg.find("prim::tolist") ==
op_to_specified_args_vararg.end());
auto graph_nested = build_mobile_export_analysis_graph_nested();
MobileCode function_nested(graph_nested, "");
auto op_to_specified_args_nested = function_nested.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args_nested["aten::slice.Tensor"] == 4);
ASSERT_TRUE(op_to_specified_args_nested["aten::slice.str"] == 4);
auto graph_non_const = build_mobile_export_analysis_graph_non_const();
MobileCode function_non_const(graph_non_const, "");
auto op_to_specified_args_non_const =
function_non_const.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args_non_const["aten::conv2d"] == 6);
}
TEST(InterpreterTest, IgnorableArgsInSchemaWithOut) {
auto graph = build_mobile_export_with_out();
MobileCode function(graph, "");
auto op_to_specified_args = function.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args.size() == 1);
// this should be 3 when the add_out flag is set to True
ASSERT_TRUE(op_to_specified_args["aten::add.out"] == 3);
}
TEST(InterpreterTest, runAsyncBasicTest) {
/*
TODO: there are some problem with C++ parsing script program involving
fork. Use the test module below for now.
issue about this: github.com/pytorch/pytorch/issues/46368
The test module file is generated by following:
class DemoModule(torch.nn.Module):
def forward(self):
r1 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
r2 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
return r1.wait() + r2.wait()
demo = DemoModule()
torch.jit.save(torch.jit.script(demo), 'test_interpreter_async.pt')
*/
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
testModelFile.append("test_interpreter_async.pt");
auto model = load(testModelFile);
auto graph = model.get_method("forward").graph();
Code function(graph, "");
auto asyncCounter = 0;
std::mutex mtx;
// a dummy executor which actually use at::launch, but add up a counter
auto launcher = [&](std::function<void()> f) {
mtx.lock();
++asyncCounter;
mtx.unlock();
at::launch(f);
};
std::vector<IValue> stack;
// NOLINTNEXTLINE(modernize-use-emplace)
stack.push_back(model._ivalue());
InterpreterState interp(function, launcher);
interp.runAsync(stack)->wait();
ASSERT_TRUE(asyncCounter > 0);
}
TEST(
EnableRethrowCaughtExceptionTest,
EnableRethrowCaughtExceptionTestRethrowsCaughtException) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : int = prim::Constant[value=2]()
%3 : Tensor = aten::add(%0, %1, %2)
return (%3)
)IR",
&*graph,
vmap);
Code function(graph, "");
InterpreterState interp = InterpreterState(function);
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({2, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
bool original_flag_value = FLAGS_torch_jit_enable_rethrow_caught_exception;
bool exception_handled = false;
try {
FLAGS_torch_jit_enable_rethrow_caught_exception = false;
interp.run(stack);
} catch (std::runtime_error& e) {
exception_handled = true;
std::string exception_msg = e.what();
EXPECT_THAT(
exception_msg,
::testing::HasSubstr("%3 : Tensor = aten::add(%0, %1, %2)"));
EXPECT_THAT(
exception_msg,
::testing::HasSubstr(
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1"));
}
EXPECT_TRUE(exception_handled);
exception_handled = false;
try {
FLAGS_torch_jit_enable_rethrow_caught_exception = true;
interp.run(stack);
} catch (c10::Error& e) {
exception_handled = true;
std::string exception_msg = e.what_without_backtrace();
EXPECT_STREQ(
exception_msg.c_str(),
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1");
}
EXPECT_TRUE(exception_handled);
FLAGS_torch_jit_enable_rethrow_caught_exception = true;
c10::intrusive_ptr<Future> future = interp.runAsync(stack);
future->wait();
ASSERT_TRUE(future->completed());
ASSERT_TRUE(future->hasError());
try {
std::rethrow_exception(future->exception_ptr());
} catch (c10::Error& e) {
std::string exception_msg = e.what_without_backtrace();
EXPECT_STREQ(
exception_msg.c_str(),
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1");
}
FLAGS_torch_jit_enable_rethrow_caught_exception = original_flag_value;
}
} // namespace jit
} // namespace torch