blob: e583d5706a2439ffa3a7384ae9453cbe00bb69b3 [file] [log] [blame]
#include <test/cpp/jit/test_utils.h>
#include <c10/core/TensorOptions.h>
#include <gtest/gtest.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/mobile/compatibility/backport.h>
#include <torch/csrc/jit/mobile/compatibility/backport_manager.h>
#include <torch/csrc/jit/mobile/compatibility/model_compatibility.h>
#include <torch/csrc/jit/mobile/compatibility/runtime_compatibility.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/parse_bytecode.h>
#include <torch/csrc/jit/mobile/parse_operators.h>
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/custom_class.h>
#include <torch/torch.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <unordered_set>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(LiteInterpreterTest, UpsampleNearest2d) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
inputs.emplace_back(at::Scalar(2.0));
auto ref = m.forward(inputs);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
res = bc.forward(inputs);
auto resd = res.toTensor();
auto refd = ref.toTensor();
ASSERT_TRUE(resd.equal(refd));
}
TEST(LiteInterpreterTest, CheckAttrAccess) {
Module m("m");
m.register_attribute("mobile_optimized", BoolType::get(), true);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
bool mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(mobile_optimized);
m.setattr("mobile_optimized", false);
ss = std::stringstream();
m._save_for_mobile(ss);
bc = _load_for_mobile(ss);
mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(!mobile_optimized);
}
TEST(LiteInterpreterTest, MethodInvocation) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
const int fortyTwo = 42; // (keep linter happy)
auto minput = fortyTwo * torch::ones({});
auto ref = m.run_method("test_func", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto& test_func = bc.get_method("test_func");
IValue res;
for (int i = 0; i < 3; ++i) {
res = test_func({minput});
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
}
TEST(LiteInterpreterTest, Conv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
TEST(LiteInterpreterTest, Inline) {
Module m("m");
m.define(R"JIT(
def foo1(self, x):
return x + 1
def foo2(self, x):
return self.foo1(x) + 2
def foo3(self, x):
return self.foo2(x) + 3
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("foo3")(inputs);
AT_ASSERT(output.toTensor().item<float>() == 7.0);
}
TEST(LiteInterpreterTest, Tuple) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return (1, 2, x + 3)
def forward(self, x):
tuple = self.foo(x)
return tuple
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toTupleRef().elements()[1].toInt() == 2);
}
TEST(LiteInterpreterTest, AtenFormat) {
Module m("m");
m.define(R"""(
def forward(self, fmt:str="first {} {}", num:str="abc"):
x = 2
x = x * x
return fmt.format(num, x)
)""");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs;
auto output_bc = bc.get_method("forward")(inputs);
auto output_m = m.get_method("forward")(inputs);
// std::cout << output_m.toStringRef() << "\n"
// << output_bc.toStringRef() << std::endl;
AT_ASSERT(output_m.toStringRef() == output_bc.toStringRef());
}
TEST(LiteInterpreterTest, PrimDevice) {
Module m("m");
m.define(R"""(
def forward(self, x:torch.Tensor):
return x.device
)""");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto output_bc = bc.get_method("forward")(inputs);
auto output_m = m.get_method("forward")(inputs);
AT_ASSERT(output_bc.toDevice().str() == output_m.toDevice().str());
}
TEST(LiteInterpreterTest, Dict) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return {"result": x + 1}
def forward(self, x):
d = self.foo(x)
return d
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2);
}
TEST(LiteInterpreterTest, List) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return [x + 2]
def forward(self, x):
d = self.foo(x)
return d
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
auto server_output = m.forward(inputs);
EXPECT_EQ(output.toList().get(0).toTensor().item().toInt(), 3);
EXPECT_EQ(output, server_output);
}
TEST(LiteInterpreterTest, PrimOverload) {
/*
// temporarily disabled
script::Module m("m");
m.define(R"JIT(
def forward(self, x):
result = [1, 2]
result.append(3)
return result
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toIntList()[2] == 3);
*/
}
TEST(LiteInterpreterTest, Prim) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x)
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
TEST(LiteInterpreterTest, PrimScalar) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x.item())
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
TEST(LiteInterpreterTest, LoadOrigJit) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m.save(ss);
ASSERT_THROWS_WITH_MESSAGE(_load_for_mobile(ss), "file not found");
}
TEST(LiteInterpreterTest, WrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
ASSERT_THROWS_WITH_MESSAGE(
bc.get_method("forward")(inputs), "is not defined");
}
TEST(LiteInterpreterTest, SetState) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
std::stringstream ms;
m.save(ms);
auto loaded_m = load(ms);
auto ref = loaded_m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
class TorchBindLiteInterpreterTestStruct
: public torch::jit::CustomClassHolder {
public:
std::string get(at::Tensor t) {
std::stringstream ss;
ss << "Hello! Your tensor has ";
ss << t.numel();
ss << " elements!";
return ss.str();
}
};
namespace {
struct ClassNamespaceValue : public SugaredValue {
explicit ClassNamespaceValue(c10::QualifiedName name)
: basename_(std::move(name)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
GraphFunction& m,
const std::string& name) override {
const auto fullName = c10::QualifiedName(basename_, name);
// Check to see if it is a custom class.
if (auto custom_class = getCustomClass(fullName.qualifiedName())) {
return std::make_shared<ClassValue>(custom_class);
}
// If it's not a custom class, assume it's another namespace
// NOLINTNEXTLINE(performance-move-const-arg)
return std::make_shared<ClassNamespaceValue>(std::move(fullName));
}
std::string kind() const override {
return "Class Namespace";
}
private:
c10::QualifiedName basename_;
};
struct TestModuleResolver : public Resolver {
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
GraphFunction& m,
const SourceRange& loc) override {
if (name == "torch") {
return std::make_shared<BuiltinModule>("aten");
} else if (name == "__torch__") {
return std::make_shared<ClassNamespaceValue>(c10::QualifiedName(name));
}
return nullptr;
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return nullptr;
}
};
} // namespace
TEST(LiteInterpreterTest, BuiltinClass) {
script::Module m("m");
auto cls = getCustomClass(
"__torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest");
TORCH_INTERNAL_ASSERT(cls);
c10::intrusive_ptr<torch::CustomClassHolder> obj_holder;
m.register_attribute("my_obj", cls, IValue::make_capsule(obj_holder));
m.register_parameter("foo", torch::ones({}), false);
m.define(
R"(
def __getstate__(self):
return 1
def __setstate__(self, a):
self.my_obj = __torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest()
def forward(self, x) -> str:
return self.my_obj.get(x)
)",
std::make_shared<TestModuleResolver>());
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
const auto& str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
TEST(LiteInterpreterTest, BuiltinFunction) {
script::Module m("m");
auto custom_class_obj =
make_custom_class<TorchBindLiteInterpreterTestStruct>();
m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj);
m.define(R"(
def forward(self, x) -> str:
return self.my_obj.get(x)
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterTest, GetRuntimeByteCodeVersion) {
auto runtime_bytecode_version = _get_runtime_bytecode_version();
AT_ASSERT(
runtime_bytecode_version ==
caffe2::serialize::kMaxSupportedBytecodeVersion);
}
TEST(LiteInterpreterTest, GetRuntimeOperatorsVersion) {
auto runtime_operators_version = _get_runtime_operators_min_max_versions();
AT_ASSERT(
runtime_operators_version.first ==
caffe2::serialize::kMinSupportedFileFormatVersion &&
runtime_operators_version.second ==
caffe2::serialize::kMaxSupportedFileFormatVersion);
}
/**
* The test below is disarmed for FB internal xplat builds since
* BUCK requires us to pass in the script_module_v4.ptl file in
* as a resource dependency of the build rule for this file, and
* we would need to access it via the C++ Resources API instead
* of directly reading from disk (which is what the open source
* build/run does).
*/
TEST(LiteInterpreterTest, GetByteCodeVersion) {
std::string filePath(__FILE__);
auto test_model_file_v4 =
filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file_v4.append("script_module_v4.ptl");
auto version_v4 = _get_model_bytecode_version(test_model_file_v4);
AT_ASSERT(version_v4 == 4);
}
#endif // !defined(FB_XPLAT_BUILD)
TEST(LiteInterpreterTest, GetContainTypes) {
Module m("m");
m.define(R"(
def forward(self):
return 3
)");
std::stringstream ss;
m._save_for_mobile(ss, {}, true);
_get_mobile_model_contained_types(ss);
}
namespace {
void compareModelOutput(
c10::ArrayRef<IValue> actual_result_list,
const std::vector<IValue>& expect_result_list) {
AT_ASSERT(actual_result_list.size() == expect_result_list.size());
AT_ASSERT(
actual_result_list[0].toTensor().equal(expect_result_list[0].toTensor()));
AT_ASSERT(
actual_result_list[1].toTensor().dim() ==
expect_result_list[1].toTensor().dim());
AT_ASSERT(
actual_result_list[2].toTensor().equal(expect_result_list[2].toTensor()));
AT_ASSERT(
actual_result_list[3].toTensor().equal(expect_result_list[3].toTensor()));
ASSERT_EQ(
actual_result_list[4].toStringRef(), expect_result_list[4].toStringRef());
ASSERT_EQ(actual_result_list[5].toBool(), expect_result_list[5].toBool());
ASSERT_EQ(actual_result_list[6].toBool(), expect_result_list[6].toBool());
ASSERT_EQ(actual_result_list[7].toBool(), expect_result_list[7].toBool());
AT_ASSERT(
actual_result_list[8].toTensor().equal(expect_result_list[8].toTensor()));
ASSERT_EQ(
actual_result_list[9].toStringRef(), expect_result_list[9].toStringRef());
ASSERT_EQ(actual_result_list[10].toInt(), expect_result_list[10].toInt());
ASSERT_EQ(actual_result_list[11].toBool(), expect_result_list[11].toBool());
}
void runAndCheckTorchScriptModel(
std::stringstream& input_model_stream,
const std::vector<IValue>& input_data,
const std::vector<IValue>& expect_result_list,
const uint64_t expect_version) {
auto actual_version = _get_model_bytecode_version(input_model_stream);
AT_ASSERT(actual_version == expect_version);
// Load and run the backport model, then compare the result with expect
// result
Module m_mobile = load(input_model_stream);
auto actual_result = m_mobile.forward(input_data);
const auto& actual_result_list = actual_result.toTupleRef().elements();
compareModelOutput(actual_result_list, expect_result_list);
}
void runAndCheckBytecodeModel(
std::stringstream& input_model_stream,
const std::vector<IValue>& input_data,
const std::vector<IValue>& expect_result_list,
const uint64_t expect_version) {
auto actual_version = _get_model_bytecode_version(input_model_stream);
AT_ASSERT(actual_version == expect_version);
// Load and run the backport model, then compare the result with expect
// result
Module m_mobile = load(input_model_stream);
auto actual_result = m_mobile.forward(input_data);
const auto& actual_result_list = actual_result.toTupleRef().elements();
compareModelOutput(actual_result_list, expect_result_list);
}
void backportAllVersionCheck(
std::stringstream& test_model_file_stream,
std::vector<IValue>& input_data,
std::vector<IValue>& expect_result_list,
const uint64_t expect_from_version) {
auto from_version = _get_model_bytecode_version(test_model_file_stream);
EXPECT_EQ(from_version, expect_from_version);
AT_ASSERT(from_version > 0);
// Backport script_module_v5.ptl to an older version
constexpr int64_t minimum_to_version = 4;
auto current_to_version = from_version - 1;
// Verify all candidate to_version work as expected. All backport to version
// larger than minimum_to_version should success.
while (current_to_version >= minimum_to_version) {
// Do not declare std::stringstream oss outside of the while loop as
// oss.clear() doesn't reset the stream content, only clears out error state
// flag in stringstream causing a problematic stream. Instead, it's cleaner
// and safer to just declare a new std::stringstream one and swap them.
std::stringstream oss;
bool backPortSuccess =
_backport_for_mobile(test_model_file_stream, oss, current_to_version);
AT_ASSERT(backPortSuccess);
// Check backport model version
auto backport_version = _get_model_bytecode_version(oss);
backport_version = _get_model_bytecode_version(oss);
AT_ASSERT(backport_version == current_to_version);
// Load and run the backport model, then compare the result with expect
// result
runAndCheckBytecodeModel(
oss, input_data, expect_result_list, current_to_version);
oss.seekg(0, oss.beg);
runAndCheckTorchScriptModel(
oss, input_data, expect_result_list, current_to_version);
current_to_version--;
}
// backport to minimum version - 1 should fail
std::stringstream oss;
bool backPortSuccess =
_backport_for_mobile(test_model_file_stream, oss, minimum_to_version - 1);
AT_ASSERT(!backPortSuccess);
}
} // namespace
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterTest, BackPortByteCodeModelAllVersions) {
torch::jit::Module module("m");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
module.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
module.register_parameter("bias", torch::ones({20}), false);
module.define(R"(
def fn(self, x:float=1.0):
return x
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
# Add torch.add operator to cover bytecode version bump from 6 to 7
# for bytecode version 7, the main change is to support defaults arguments with out arguments
x = 2 * torch.ones(1)
h = torch.ones(1)
torch.add(x, h, out=x)
device = torch.ones(1, 1).cpu().device.type
is_cuda = x1.is_cuda
bool_val = True
check_is = [] is None
check_is_not = [1] is not None
check_not = not bool_val
num_to_tensor = torch.tensor([self.fn()])
d = {"a": "abc"}
check_dict_index = d["a"]
check_dim = x1.dim()
return (
x1, x2, x3, x, device, is_cuda, check_is,
check_is_not, num_to_tensor, check_dict_index,
check_dim, check_not
)
)");
torch::jit::Module module_freeze = freeze(module);
std::stringstream input_model_stream;
module_freeze._save_for_mobile(
input_model_stream,
/*extra_files=*/{},
/*save_mobile_debug_info=*/false,
/*use_flatbuffer=*/true);
std::vector<IValue> input_data =
std::vector<IValue>({torch::ones({1, 1, 28, 28})});
std::vector<IValue> expect_result_list;
expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float) * 0);
expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float));
expect_result_list.emplace_back(
at::ones({1, 20, 24, 24}, ScalarType::Float) * 26);
expect_result_list.emplace_back(3 * at::ones({1}));
// "cpu" False, False, True, tensor(1), "abc", 2, False)
expect_result_list.emplace_back(c10::IValue("cpu"));
expect_result_list.emplace_back(c10::IValue(false));
expect_result_list.emplace_back(c10::IValue(false));
expect_result_list.emplace_back(c10::IValue(true));
expect_result_list.emplace_back(c10::IValue(at::ones({1})));
expect_result_list.emplace_back(c10::IValue("abc"));
expect_result_list.emplace_back(c10::IValue(2));
expect_result_list.emplace_back(c10::IValue(false));
backportAllVersionCheck(
input_model_stream,
input_data,
expect_result_list,
9); // flatbuffer starts at 9
}
#endif // !defined(FB_XPLAT_BUILD)
TEST(LiteInterpreterTest, GetRuntimeOpsAndInfo) {
auto runtime_ops = _get_runtime_ops_and_info();
// Ballpark estimate of the minimal number of ops; just used to
// verify API returns a reasonably large number.
AT_ASSERT(runtime_ops.size() > 2900);
}
TEST(LiteInterpreterTest, isCompatibleSuccess) {
// test trivial success case
auto runtime_info = RuntimeCompatibilityInfo::get();
std::unordered_map<std::string, OperatorInfo> model_ops;
model_ops["aten::add.Scalar"] = OperatorInfo{2};
std::unordered_set<std::string> types = {"List", "int", "NamedTuple"};
auto model_info = ModelCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion,
model_ops,
types,
_get_runtime_bytecode_min_max_versions().first};
AT_ASSERT(
is_compatible(runtime_info, model_info).status ==
ModelCompatibilityStatus::OK);
}
TEST(LiteInterpreterTest, isCompatibleFail) {
// test trivial failure due to ops
std::unordered_map<std::string, OperatorInfo> model_ops;
model_ops["aten::add.Scalar"] = OperatorInfo{2};
auto model_info = ModelCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops};
std::unordered_map<std::string, OperatorInfo> runtime_ops;
runtime_ops["aten::add.Int"] = OperatorInfo{2};
auto runtime_info = RuntimeCompatibilityInfo{
std::pair<uint64_t, uint64_t>(
caffe2::serialize::kMinSupportedBytecodeVersion,
caffe2::serialize::kMaxSupportedBytecodeVersion),
runtime_ops,
_get_mobile_supported_types()};
auto result = is_compatible(runtime_info, model_info);
AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR);
AT_ASSERT(
result.errors[0] ==
"Operator 'aten::add.Scalar' missing from runtime (not found)");
// test trivial failure due to bytecode greater than max supported bytecode
// version
runtime_ops["aten::add.Scalar"] = OperatorInfo{2};
runtime_info = RuntimeCompatibilityInfo{
std::pair<uint64_t, uint64_t>(
caffe2::serialize::kMinSupportedBytecodeVersion,
caffe2::serialize::kMaxSupportedBytecodeVersion),
runtime_ops,
_get_mobile_supported_types()};
model_info.bytecode_version =
caffe2::serialize::kMaxSupportedBytecodeVersion + 1;
result = is_compatible(runtime_info, model_info);
AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR);
// test trivial failure due to bytecode less than min supported bytecode
// version
runtime_ops["aten::add.Scalar"] = OperatorInfo{2};
runtime_info = RuntimeCompatibilityInfo{
std::pair<uint64_t, uint64_t>(
caffe2::serialize::kMinSupportedBytecodeVersion,
caffe2::serialize::kMaxSupportedBytecodeVersion),
runtime_ops,
_get_mobile_supported_types()};
model_info.bytecode_version =
caffe2::serialize::kMinSupportedBytecodeVersion - 1;
result = is_compatible(runtime_info, model_info);
AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR);
// test trivial failure due to type
runtime_info = RuntimeCompatibilityInfo::get();
std::unordered_set<std::string> types = {"List", "int", "Sequence"};
model_info = ModelCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion,
model_ops,
types,
_get_runtime_bytecode_min_max_versions().first};
AT_ASSERT(
is_compatible(runtime_info, model_info).status ==
ModelCompatibilityStatus::ERROR);
// test trivial failure due to operator version
runtime_info = RuntimeCompatibilityInfo::get();
model_info = ModelCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops, {}, 0};
AT_ASSERT(
is_compatible(runtime_info, model_info).status ==
ModelCompatibilityStatus::ERROR);
}
TEST(LiteInterpreterTest, Eval) {
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.define(R"(
def __init__(self, x):
self.training = True
def forward(self, input):
return torch.dropout(input, 1.0, self.training)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
m.eval();
auto outputref = m.forward(inputs).toTensor();
// save m in training mode to make sure that mobile eval() will correctly
// change back to eval mode
m.train();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
bc.eval();
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
TEST(LiteInterpreterTest, FindWrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
ASSERT_TRUE(bc.find_method("forward") == c10::nullopt);
}
TEST(LiteInterpreterTest, FindAndRunMethod) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.get_method("add_it")(inputs);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
auto bcinputs = inputs;
auto method = bc.find_method("add_it");
AT_ASSERT(method != c10::nullopt);
res = (*method)(std::move(bcinputs));
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
TEST(LiteInterpreterTest, RunMethodVariadic) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_three(self, x, y):
return self.foo + x + y
)");
std::vector<IValue> inputs;
auto inputx = 5 * torch::ones({});
auto inputy = 4 * torch::ones({});
auto ref = m.run_method("add_three", inputx, inputy);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res = bc.run_method("add_three", inputx, inputy);
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
TEST(LiteInterpreterTest, DuplicateSetState) {
Module m("M");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
Module b("B");
b.register_module("M0", m);
b.register_module("M1", m);
b.define(R"(
def forward(self, x):
return self.M0.forward(x) + self.M1.forward(x)
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto methods = bc.get_methods();
const size_t expected_n = 3;
ASSERT_EQ(methods.size(), expected_n);
}
TEST(LiteInterpreterTest, ExtraFiles) {
const auto script = R"JIT(
def forward(self):
x = torch.rand(5, 5)
x = x.mm(x)
return x
)JIT";
auto module =
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
module->define(script);
std::ostringstream oss;
std::unordered_map<std::string, std::string> extra_files;
extra_files["metadata.json"] = "abc";
extra_files["mobile_info.json"] = "{\"key\": 23}";
module->_save_for_mobile(oss, extra_files);
std::istringstream iss(oss.str());
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
loaded_extra_files.clear();
std::vector<std::string> all_files =
caffe2::serialize::PyTorchStreamReader(&iss).getAllRecords();
for (auto& file_name : all_files) {
if (file_name.find("extra/") == 0) {
loaded_extra_files[file_name.substr(6)] = "";
}
}
iss.seekg(0, iss.beg);
torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
ASSERT_EQ(loaded_extra_files["mobile_info.json"], "{\"key\": 23}");
std::unordered_map<std::string, std::string>
loaded_extra_files_without_explicit_mapping;
iss.seekg(0, iss.beg);
torch::jit::_load_for_mobile(
iss,
torch::kCPU,
loaded_extra_files_without_explicit_mapping,
MobileModuleLoadOptions::PARSE_ALL_EXTRA_FILE_MAPS);
ASSERT_EQ(
loaded_extra_files_without_explicit_mapping["metadata.json"], "abc");
ASSERT_EQ(
loaded_extra_files_without_explicit_mapping["mobile_info.json"],
"{\"key\": 23}");
}
TEST(LiteInterpreterTest, OpNameExportFetchRootOperators) {
torch::jit::Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
return (x1, x2, x3)
)");
m.eval();
std::stringstream ss;
m._save_for_mobile(ss);
torch::jit::mobile::Module ptl_model = torch::jit::_load_for_mobile(ss);
std::set<std::string> operator_names =
torch::jit::mobile::_export_operator_list(ptl_model);
std::set<std::string> expected_operator_names = {
"aten::_convolution",
"aten::empty.memory_format",
"aten::empty_like",
"aten::zeros",
};
EXPECT_EQ(operator_names, expected_operator_names)
<< "Expected the root operator lists to be the same";
}
TEST(LiteInterpreterTest, DefaultArgsConv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch.conv2d(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], 1)
)");
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 1; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
TEST(RunTimeTest, ParseBytecode) {
// A simple example to show a simple bytecode that can be used independent of
// PyTorch TorchScript serialization (unpickler, etc) and operator library.
// It has basic control flow (if, else) and basic data orchestration (list
// construction). The original PyTorch program:
// class Module(torch.nn.Module):
//
// def __init__(self):
// super().__init__()
//
// def forward(self, x: int, h: int, xfirst: bool):
// if xfirst:
// return [x, h]
// else:
// return [h, x]
// 1. Prepare for the bytecode. In reality it can be from a customized
// deserializer.
std::vector<IValue> instructions{
to_tuple({"STOREN", 1, 4}),
to_tuple({"DROPR", 1, 0}),
to_tuple({"MOVE", 4, 0}),
to_tuple({"JF", 5, 0}),
to_tuple({"LOAD", 2, 0}),
to_tuple({"LOAD", 3, 0}),
to_tuple({"LIST_CONSTRUCT", 0, 2}),
to_tuple({"JMP", 4, 0}),
to_tuple({"LOAD", 3, 0}),
to_tuple({"LOAD", 2, 0}),
to_tuple({"LIST_CONSTRUCT", 1, 2}),
to_tuple({"STORE", 5, 0}),
to_tuple({"DROPR", 3, 0}),
to_tuple({"DROPR", 2, 0}),
to_tuple({"MOVE", 5, 0}),
to_tuple({"RET", 0, 0}),
};
std::vector<IValue> operators; // empty for this example
std::vector<IValue> constants; // empty for this example
std::vector<IValue> types{"List[int]", "List[int]"};
// 2. Parse the function
std::string function_name("test_function");
auto function = std::unique_ptr<mobile::Function>(
new mobile::Function(c10::QualifiedName(function_name)));
c10::ivalue::TupleElements debug_handles_m_tuple;
parseInstructions(
function_name,
std::move(*c10::ivalue::Tuple::create(instructions)).elements(),
debug_handles_m_tuple,
function.get());
parseTypes(c10::ivalue::Tuple::create(types)->elements(), function.get());
const size_t rsize = 5;
parseRegisterSize(rsize, function.get());
// 3. Prepare for inputs and run the function
// Note that the first input is reserved for Module object.
// Since this is a function test and Module object is not required,
// a dummy IValue (0) is added here.
std::vector<IValue> inputs{0, 1, 2, true};
function->run(inputs);
auto output = inputs[0].toList();
ASSERT_EQ(output[0], 1);
ASSERT_EQ(output[1], 2);
std::vector<IValue> inputs1{0, 1, 2, false};
function->run(inputs1);
auto output1 = inputs1[0].toList();
ASSERT_EQ(output1[0], 2);
ASSERT_EQ(output1[1], 1);
}
TEST(RunTimeTest, ParseOperator) {
// A simple example to show a simple bytecode that can be used independent of
// PyTorch TorchScript serialization (unpickler, etc) and operator library.
// It has one operator and we should be able to register it. The original
// PyTorch program:
// class Add(torch.nn.Module):
// def __init__(self):
// super().__init__()
// def forward(self, a, b):
// return a + b
// 1. Prepare for the bytecode. In reality it can be from a customized
// deserializer.
std::vector<IValue> instructions{
to_tuple({"STOREN", 1, 3}),
to_tuple({"DROPR", 1, 0}),
to_tuple({"MOVE", 2, 0}),
to_tuple({"MOVE", 3, 0}),
to_tuple({"OP", 0, 0}),
to_tuple({"RET", 0, 0}),
};
std::vector<IValue> operators{
to_tuple({"aten::add", "Tensor", 2}),
};
std::vector<IValue> constants{
to_tuple({1}),
};
// 2. Parse the function
std::string function_name("test_function");
auto function = std::unique_ptr<mobile::Function>(
new mobile::Function(c10::QualifiedName(function_name)));
c10::ivalue::TupleElements debug_handles_m_tuple;
parseInstructions(
function_name,
std::move(*c10::ivalue::Tuple::create(instructions)).elements(),
debug_handles_m_tuple,
function.get());
parseOperators(
std::move(*c10::ivalue::Tuple::create(operators)).elements(),
1,
function.get());
const size_t rsize = 5;
parseRegisterSize(rsize, function.get());
// 3. Prepare for inputs and run the function
// Note that the first input is reserved for Module object.
// Since this is a function test and Module object is not required,
// a dummy IValue (0) is added here.
std::vector<IValue> inputs{0, at::tensor(1), at::tensor(2)};
function->run(inputs);
auto output = inputs[0];
ASSERT_EQ(output, at::tensor(3));
}
namespace {
void testLiteModuleCompareResultTensors(
Module& m,
const std::vector<torch::jit::IValue>& inputs,
const std::string& method_name = "forward") {
auto outputref = m.get_method(method_name)(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method(method_name)(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
void testDefaultArgsPinv(int num_args) {
Module m("m");
if (num_args == 1) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input)
)");
} else if (num_args == 2) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5)
)");
} else if (num_args == 3) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, True)
)");
}
std::vector<torch::jit::IValue> inputs;
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 1; // a more stable matrix
input = input.view({N, N});
inputs.push_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
} // namespace
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterTest, DefaultArgsPinv) {
// Test with different number of specified arguments.
// Arguments not specified take default value.
for (int num_args = 1; num_args <= 3; ++num_args) {
testDefaultArgsPinv(num_args);
}
// bytecode with one specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 1),)),
// ('constants', (False, 1e-15)), # default constants are not
// used
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 2 specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0), # added LOADC for specified argument
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 2),)),
// ('constants', (False, 1e-05)), # updated constant table
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 3 specified arguments:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0),
// ('LOADC', 0, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 3),)),
// ('constants', (True, 1e-05)),
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
}
TEST(LiteInterpreterTest, DefaultArgsTensorinvSpecifyDefault) {
// The second argument is specified, but the value is the same as the default
// value. It's treated as "not specified" since the value can be fetched from
// schema.
Module m("m");
m.define(R"(
def forward(self, input):
return torch.linalg_tensorinv(input, 2)
)");
torch::jit::MobileCode code(m.get_method("forward").graph(), "forward");
auto arg_nums = code.op_to_num_specified_args();
ASSERT_EQ(arg_nums.size(), 1);
ASSERT_EQ(arg_nums["aten::linalg_tensorinv"], 1);
std::vector<torch::jit::IValue> inputs;
const int N = 4;
auto input = torch::rand({N, N, N, N});
inputs.push_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
void testDefaultArgsPinvWithOutArg(int num_args) {
Module m("m");
if (num_args == 1) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, out=input)
)");
} else if (num_args == 2) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, out=input)
)");
} else if (num_args == 3) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, True, out=input)
)");
}
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 10000; // a more stable matrix
input = input.view({N, N});
auto ref = m.run_method("forward", input);
TORCH_CHECK(!input.equal(torch::range(1, N * N, 1)));
TORCH_CHECK(input.equal(ref.toTensor()));
}
TEST(LiteInterpreterTest, DefaultArgsPinvWithOutArg) {
// Test with different number of specified arguments + out arg.
// Arguments not specified take default value.
for (int num_args = 1; num_args <= 3; ++num_args) {
testDefaultArgsPinvWithOutArg(num_args);
}
}
TEST(LiteInterpreterTest, DefaultArgsWithOutArg) {
Module m("m");
m.define(R"(
def forward(self, x, h):
torch.add(x, h, out=x)
)");
std::vector<IValue> inputs;
auto input_x = 2 * torch::ones({});
auto input_h = torch::ones({});
auto ref = m.run_method("forward", input_x, input_h);
std::stringstream ss;
m._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
bc.run_method("forward", input_x, input_h);
AT_ASSERT(input_x.equal(4 * torch::ones({})));
auto ops = _get_model_ops_and_info(ss);
auto op = ops.find("aten::add.out");
TORCH_CHECK(
op != ops.end() && op->second.num_schema_args.has_value() &&
op->second.num_schema_args.value() == 3);
}
TEST(LiteInterpreterTest, TestExceptionStackWithTwoLevelModuleHierarchy) {
Module a("A");
a.define(R"(
def bar(self, x, y):
return x + y
)");
Module b("B");
b.register_module("A0", a);
b.define(R"(
def foo(self, x, y):
return self.A0.bar(x, y) + 2
)");
Module c("C");
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.B0.foo(x, y) + 3
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto lite_m = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.B0(B)::foo.A0(A)::bar.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.B0.foo(x, y) + 3
~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in foo
def foo(self, x, y):
return self.A0.bar(x, y) + 2
~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in bar
def bar(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(lite_m.forward(inputs), error_pattern);
}
#endif // !defined(FB_XPLAT_BUILD)
namespace {
static auto reg =
torch::class_<TorchBindLiteInterpreterTestStruct>(
"_TorchScriptTesting",
"_LiteInterpreterTest")
.def(torch::init<>())
.def("get", &TorchBindLiteInterpreterTestStruct::get)
.def_pickle(
// __getattr__
[](const c10::intrusive_ptr<TorchBindLiteInterpreterTestStruct>&
self) -> int64_t { return 0; },
// __setattr__
[](int64_t state) {
return c10::make_intrusive<TorchBindLiteInterpreterTestStruct>();
});
} // namespace
TEST(LiteInterpreterTest, OperatorCacheDifferentiatesDefaultArgs) {
// Create 3 methods:
//
// 1. forward() returns a tensor with dtype=torch.int64 (4)
// 2. forward2() returns a tensor with dtype=torch.float32 (6)
// 3. forward3() returns a tensor with dtype=torch.float32 but
// the dtype is inferred by the input tensor's dtype
//
// If caching works correctly, then the result from the full-jit
// module and the lite module will be the same. Otherwise, it
// will be different if we don't correctly ignore the cache
// entry for an operator that has a different number of
// arguments.
Module m("m");
m.define(R"(
def forward(self):
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=4)
return ret1.fill_(25)
)");
m.define(R"(
def forward2(self):
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=6)
return ret1.fill_(32.0)
)");
m.define(R"(
def forward3(self):
ret1 = torch.new_empty(torch.zeros(10), [10])
return ret1.fill_(12.0)
)");
std::vector<torch::jit::IValue> inputs;
testLiteModuleCompareResultTensors(m, inputs, "forward");
testLiteModuleCompareResultTensors(m, inputs, "forward2");
testLiteModuleCompareResultTensors(m, inputs, "forward3");
}
TEST(RunTimeTest, RuntimeCall) {
// def call(x):
// return x + x
//
// def forward(a):
// x = a + call(a)
// y = a + call(x)
// return y
std::vector<IValue> instructionsCall{
to_tuple({"STORE", 1, 0}),
to_tuple({"LOAD", 1, 0}),
to_tuple({"MOVE", 1, 0}),
to_tuple({"LOADC", 0, 0}),
to_tuple({"OP", 0, 0}),
to_tuple({"RET", 0, 0}),
};
std::vector<IValue> instructionsFoo{
to_tuple({"STORE", 1, 0}),
to_tuple({"LOAD", 1, 0}),
to_tuple({"LOAD", 1, 0}),
to_tuple({"MOVE", 1, 0}),
to_tuple({"CALL", 0, 0}),
to_tuple({"LOADC", 0, 0}),
to_tuple({"OP", 0, 0}),
to_tuple({"CALL", 0, 0}),
to_tuple({"LOADC", 0, 0}),
to_tuple({"OP", 0, 0}),
to_tuple({"RET", 0, 0}),
};
std::vector<IValue> operatorsFoo{
to_tuple({"aten::add", "Tensor", 3}),
};
std::vector<IValue> constantsFoo{
1,
};
std::vector<IValue> operatorsCall{
to_tuple({"aten::add", "Tensor", 3}),
};
std::vector<IValue> constantsCall{
1,
};
auto foo = std::make_unique<mobile::Function>(c10::QualifiedName("foo"));
c10::ivalue::TupleElements debug_handles_m_tuple;
parseInstructions(
"foo",
std::move(*c10::ivalue::Tuple::create(instructionsFoo)).elements(),
debug_handles_m_tuple,
foo.get());
parseOperators(
std::move(*c10::ivalue::Tuple::create(operatorsFoo)).elements(),
1,
foo.get());
parseConstants(
std::move(*c10::ivalue::Tuple::create(constantsFoo)).elements(),
foo.get());
const size_t rsize = 5;
parseRegisterSize(rsize, foo.get());
auto call = std::make_unique<mobile::Function>(c10::QualifiedName("call"));
parseInstructions(
"call",
std::move(*c10::ivalue::Tuple::create(instructionsCall)).elements(),
debug_handles_m_tuple,
call.get());
parseOperators(
std::move(*c10::ivalue::Tuple::create(operatorsCall)).elements(),
1,
call.get());
parseConstants(
std::move(*c10::ivalue::Tuple::create(constantsCall)).elements(),
call.get());
parseRegisterSize(rsize, call.get());
foo->append_function(*call);
std::vector<IValue> inputs{at::tensor(1)};
foo->run(inputs);
auto output = inputs[0];
ASSERT_EQ(output, at::tensor(7));
}
TEST(LiteInterpreterTest, OperatorSize1) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto& func = bc.get_method("forward").function();
ASSERT_EQ(
func.get_code().operator_input_sizes_.size(),
func.get_code().operators_.size());
}
TEST(LiteInterpreterTest, OperatorTest2) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto& func = bc.get_method("test_func").function();
ASSERT_EQ(
func.get_code().operator_input_sizes_.size(),
func.get_code().operators_.size());
}
}
#if !defined FB_XPLAT_BUILD
// The following test run in fbcode only
TEST(LiteInterpreterUpgraderTest, DivTensorV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append("upgrader_models/test_versioned_div_tensor_v2.ptl");
/*
(('__torch__.MyModule.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('LOAD', 2, 0),
('LOAD', 3, 0),
('OP', 0, 0),
('LOAD', 2, 0),
('LOAD', 3, 0),
('OP', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('OP', 2, 0),
('TUPLE_CONSTRUCT', 3, 0),
('RET', 0, 0))),
('operators',
(('aten::div', 'Tensor'),
('aten::div', 'Tensor'),
('aten::div', 'Tensor'))),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// 3 operators will use upgrader
ASSERT_EQ(number_of_call_instruction, 3);
std::vector<IValue> inputs = {
IValue(6 * torch::ones({1})), IValue(3 * torch::ones({1}))};
auto actual_output = m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output_list = actual_output.toTuple()->elements();
ASSERT_TRUE(actual_output_list[0].toTensor().equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivTensorOutV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_tensor_out_v2.ptl");
/*
(('__torch__.MyModule.forward',
(('instructions',
(('STOREN', 1, 4),
('DROPR', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('MOVE', 4, 0),
('OP', 0, 0),
('RET', 0, 0))),
('operators', (('aten::div', 'out'),)),
('constants', ()),
('types', ()),
('register_size', 4))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// One operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 1);
std::vector<IValue> inputs{
IValue(6 * torch::ones({1})),
IValue(3 * torch::ones({1})),
IValue(torch::empty({1}))};
m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output = inputs[2].toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivTensorInplaceV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_tensor_inplace_v2.ptl");
/*
(('__torch__.MyModule.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('OP', 0, 0),
('RET', 0, 0))),
('operators', (('aten::div_', 'Tensor'),)),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// One operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 1);
std::vector<IValue> inputs{
IValue(6 * torch::ones({1})), IValue(3 * torch::ones({1}))};
m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output = inputs[0].toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivScalarFloatV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_float_v2.ptl");
/*
(('__torch__.MyModuleFloat.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('OP', 0, 0),
('RET', 0, 0))),
('operators', (('aten::div', 'Scalar'),)),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// One operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 1);
std::vector<IValue> inputs{IValue(6 * torch::ones({1})), IValue(3.0)};
auto output = m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output = output.toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivScalarReciprocalFloatV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_reciprocal_float_v2.ptl");
/*
(('__torch__.MyModuleFloat.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('OP', 0, 0),
('MOVE', 3, 0),
('OP', 1, 0),
('RET', 0, 0))),
('operators', (('aten::reciprocal', ''), ('aten::mul', 'Scalar'))),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// No operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 0);
std::vector<IValue> inputs{IValue(6 * torch::ones({1})), IValue(3.0)};
auto output = m_module.forward(inputs);
auto expect_output = 0.5 * torch::ones({1});
auto actual_output = output.toTensor();
std::cout << "expect output: " << expect_output;
std::cout << "actual output: " << actual_output;
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivScalarReciprocalIntV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_reciprocal_int_v2.ptl");
/*
(('__torch__.MyModuleInt.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('OP', 0, 0),
('MOVE', 3, 0),
('OP', 1, 0),
('RET', 0, 0))),
('operators', (('aten::reciprocal', ''), ('aten::mul', 'Scalar'))),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// No operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 0);
std::vector<IValue> inputs{IValue(6 * torch::ones({1})), IValue(3.0)};
auto output = m_module.forward(inputs);
auto expect_output = 0.5 * torch::ones({1});
auto actual_output = output.toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivScalarScalarV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_scalar_v2.ptl");
/*
(('__torch__.MyModule.forward',
(('instructions',
(('STOREN', 1, 5),
('DROPR', 1, 0),
('LOAD', 2, 0),
('LOAD', 3, 0),
('OP', 0, 0),
('MOVE', 2, 0),
('LOAD', 4, 0),
('OP', 1, 0),
('LOAD', 3, 0),
('MOVE', 4, 0),
('OP', 2, 0),
('MOVE', 3, 0),
('MOVE', 5, 0),
('OP', 3, 0),
('TUPLE_CONSTRUCT', 4, 0),
('RET', 0, 0))),
('operators',
(('aten::div', ''),
('aten::div', 'float'),
('aten::div', ''),
('aten::div', 'int'))),
('constants', ()),
('types', ()),
('register_size', 5))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// No operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 0);
std::vector<IValue> inputs{IValue(20.0), IValue(10), IValue(2.0), IValue(5)};
auto output = m_module.forward(inputs);
auto output_list = output.toTupleRef().elements();
auto expect_output = std::vector<IValue>(
{IValue(2.0), IValue(10.0), IValue(5.0), IValue(2.0)});
// auto actual_output = output.toTensor();
for (size_t i = 0; i < expect_output.size(); i++) {
ASSERT_EQ(output_list[i], expect_output[i]);
}
}
TEST(LiteInterpreterUpgraderTest, DivScalarIntV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_int_v2.ptl");
/*
(('__torch__.MyModuleInt.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('OP', 0, 0),
('RET', 0, 0))),
('operators', (('aten::div', 'Scalar'),)),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// One operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 1);
std::vector<IValue> inputs{IValue(6 * torch::ones({1})), IValue(3)};
auto output = m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output = output.toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivScalarInplaceFloatV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_inplace_float_v2.ptl");
/*
(('__torch__.MyModuleFloat.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('OP', 0, 0),
('RET', 0, 0))),
('operators', (('aten::div_', 'Scalar'),)),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// One operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 1);
std::vector<IValue> inputs{IValue(6 * torch::ones({1})), IValue(3.0)};
auto output = m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output = output.toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
TEST(LiteInterpreterUpgraderTest, DivScalarInplaceIntV2) {
std::string filePath(__FILE__);
auto test_model_file = filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file.append(
"upgrader_models/test_versioned_div_scalar_inplace_int_v2.ptl");
/*
(('__torch__.MyModuleInt.forward',
(('instructions',
(('STOREN', 1, 3),
('DROPR', 1, 0),
('MOVE', 2, 0),
('MOVE', 3, 0),
('OP', 0, 0),
('RET', 0, 0))),
('operators', (('aten::div_', 'Scalar'),)),
('constants', ()),
('types', ()),
('register_size', 3))),)
*/
mobile::Module m_module = _load_for_mobile(test_model_file);
auto intrsuction_list =
m_module.get_method("forward").function().get_code().instructions_;
uint64_t number_of_call_instruction = 0;
for (auto& instruction : intrsuction_list) {
number_of_call_instruction += (instruction.op == OpCode::CALL);
}
// One operator will use upgrader
ASSERT_EQ(number_of_call_instruction, 1);
std::vector<IValue> inputs{IValue(6 * torch::ones({1})), IValue(3)};
auto output = m_module.forward(inputs);
auto expect_output = 2.0 * torch::ones({1});
auto actual_output = output.toTensor();
// The out argument will be overwritten with the output
ASSERT_TRUE(actual_output.equal(expect_output));
}
#endif // !defined(FB_XPLAT_BUILD)
TEST(LiteInterpreterUpgraderTest, Upgrader) {
std::vector<mobile::Function> upgrader_functions;
for (auto& byteCodeFunctionWithOperator : getUpgraderBytecodeList()) {
byteCodeFunctionWithOperator.function.initialize_operators(true);
ASSERT_EQ(
byteCodeFunctionWithOperator.function.get_code().operators_.size(),
byteCodeFunctionWithOperator.function.get_code().op_names_.size());
if (byteCodeFunctionWithOperator.function.get_code().operators_.empty()) {
for (const auto& op : byteCodeFunctionWithOperator.operators) {
byteCodeFunctionWithOperator.function.append_operator(
op.name, op.overload_name, op.num_specified_args);
}
}
upgrader_functions.push_back(byteCodeFunctionWithOperator.function);
}
ASSERT_EQ(getUpgraderBytecodeList().size(), upgrader_functions.size());
}
void enumerateTupleType(
size_t depth,
std::vector<TypePtr>& current,
const std::vector<TypePtr>& candidates,
std::vector<TypePtr>& out) {
static std::vector<std::string> fieldNames;
if (depth > fieldNames.size()) {
fieldNames.reserve(depth);
for (size_t i = fieldNames.size(); i < depth; i++) {
fieldNames.push_back("field" + std::to_string(i));
}
}
if (depth == 0) {
out.push_back(TupleType::create(current));
while (fieldNames.size() > current.size()) {
fieldNames.pop_back();
}
out.push_back(TupleType::createNamed("NamedTuple", fieldNames, current));
return;
}
for (const auto& type : candidates) {
if (containsAnyType(type)) {
continue;
}
current.push_back(type);
enumerateTupleType(depth - 1, current, candidates, out);
current.pop_back();
}
}
class LiteInterpreterDynamicTypeTestFixture
: public ::testing::TestWithParam<size_t> {
protected:
void SetUp() override {
cu = std::make_shared<CompilationUnit>();
std::vector<TypePtr> keyTypes = {
AnyType::get(),
IntType::get(),
BoolType::get(),
FloatType::get(),
ComplexType::get(),
StringType::get(),
TensorType::get(),
DeviceObjType::get(),
};
types = {
NoneType::get(),
NumberType::get(),
ClassType::create("__torch__.TestClass1", cu),
ClassType::create("__torch__.TestClass2", cu),
AnyListType::get(),
AnyTupleType::get(),
StreamObjType::get(),
CapsuleType::get(),
GeneratorType::get(),
StorageType::get(),
VarType::create("t"),
VarType::create("v"),
AnyClassType::get()};
std::copy(keyTypes.begin(), keyTypes.end(), back_inserter(types));
auto expandTypes = [&](size_t tupleSize) {
std::vector<TypePtr> nested;
for (const auto& type : types) {
if (!(type == AnyType::get())) {
nested.emplace_back(ListType::create(type));
if (!(type == NoneType::get() ||
type->kind() == OptionalType::Kind)) {
nested.emplace_back(OptionalType::create(type));
}
}
for (const auto& keyType : keyTypes) {
nested.emplace_back(DictType::create(keyType, type));
}
}
std::vector<TypePtr> tmp;
enumerateTupleType(tupleSize, tmp, types, nested);
std::move(
std::begin(nested), std::end(nested), std::back_inserter(types));
};
expandTypes(1);
expandTypes(1);
}
std::shared_ptr<CompilationUnit> cu;
std::vector<TypePtr> types;
public:
static constexpr size_t kNumSplits = 10;
};
constexpr size_t LiteInterpreterDynamicTypeTestFixture::kNumSplits;
/**
* Enumerate all possible JIT types appearing in mobile runtime, and test
* whether subtyping relation is preserved after one of the JIT types is
* converted to DynamicType.
*
* We firstly enumerate all "base" types in a vector, and implement
* expandTypes() to enumerate container types one "level" up for a given set
* of types. We call expandTypes() twice to test types nested less or equal
* to two levels. e.g. List[Optional[Tensor]], Optional[Dict[Int, Bool]], etc.
*/
TEST_P(LiteInterpreterDynamicTypeTestFixture, Conformance) {
size_t num = types.size() / LiteInterpreterDynamicTypeTestFixture::kNumSplits;
size_t begin = num * GetParam();
size_t end = std::min(types.size(), begin + num);
for (const auto& a : types) {
auto da = DynamicType::create(*a);
for (size_t i = begin; i < end; i++) {
const auto& b = types[i];
bool result = a->isSubtypeOf(*b);
EXPECT_EQ(result, da->isSubtypeOf(*b));
result = b->isSubtypeOf(*a);
EXPECT_EQ(result, b->isSubtypeOf(*da));
}
}
}
INSTANTIATE_TEST_SUITE_P(
PyTorch,
LiteInterpreterDynamicTypeTestFixture,
::testing::Range(
static_cast<size_t>(0),
LiteInterpreterDynamicTypeTestFixture::kNumSplits));
} // namespace jit
} // namespace torch