blob: f5535eb64c8edf3053c0235fe89adbe28054c976 [file] [log] [blame]
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
static constexpr c10::string_view moduleInterfaceSrc = R"JIT(
class OneInterface(ModuleInterface):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
)JIT";
static const std::vector<std::string> subModuleMethodsSrc = {R"JIT(
def one(self, x: Tensor, y: Tensor) -> Tensor:
return self.attr * x + y + 1
def forward(self, x: Tensor) -> Tensor:
return self.attr + x
)JIT"};
static const std::string parentForward = R"JIT(
def forward(self, x: Tensor) -> Tensor:
return self.subMod1.one(x, x) + self.subMod2.one(x, x)
)JIT";
static void import_libs(
std::shared_ptr<CompilationUnit> cu,
const std::string& class_name,
const std::shared_ptr<Source>& src,
const std::vector<at::IValue>& tensor_table) {
SourceImporter si(
cu,
&tensor_table,
[&](const std::string& name) -> std::shared_ptr<Source> { return src; },
/*version=*/2);
si.loadType(QualifiedName(class_name));
}
TEST(ModuleAPITest, MethodRunAsync) {
// Module m("m");
// m.define(R"(
// def forward(self):
// r1 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
// r2 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
// return r1.wait() + r2.wait()
// )");
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
// borrow model file from TEST(GraphExecutorTest, runAsync_executor)
testModelFile.append("test_interpreter_async.pt");
auto m = load(testModelFile);
auto counter = 0;
std::mutex mtx;
auto launcher = [&](std::function<void()> f) {
mtx.lock();
++counter;
mtx.unlock();
at::launch(std::move(f));
};
auto method = m.get_method("forward");
std::vector<IValue> stack;
auto kwargs = std::unordered_map<std::string, at::IValue>();
auto future = method.run_async(stack, kwargs, launcher);
future->wait();
// expect 2 forks and 2 wait callbacks being excuted on provided taskLauncher
// but ivalue::Future would be marked completed and release wait before
// finishing all callbacks
ASSERT_GE(counter, 2);
}
TEST(ModuleAPITest, Clone) {
auto cu = std::make_shared<CompilationUnit>();
// creating child module
auto child = ClassType::create("child", cu, true);
auto attr_name = "attr";
child->addAttribute(attr_name, IntType::get());
Module c1(cu, child);
auto v1 = IValue(2);
c1.register_attribute(attr_name, IntType::get(), v1, false);
Module c2(cu, child);
auto v2 = IValue(3);
c2.register_attribute(attr_name, IntType::get(), v2, false);
// attach two child module instance to parent that shares
// ClassType
auto parent = ClassType::create("parent", cu, true);
Module p(cu, parent);
p.register_attribute("c1", c1.type(), c1._ivalue(), false);
p.register_attribute("c2", c2.type(), c2._ivalue(), false);
// clone parent
Module p2 = p.clone();
// check the two child module has the same ClassType
ASSERT_EQ(p2.attr("c1").type(), p2.attr("c2").type());
// but different instances
ASSERT_EQ(Module(p2.attr("c1").toObject()).attr(attr_name).toInt(), 2);
ASSERT_EQ(Module(p2.attr("c2").toObject()).attr(attr_name).toInt(), 3);
}
TEST(ModuleAPITest, CloneWithModuleInterface) {
auto cu = std::make_shared<CompilationUnit>();
// define a initial module with two submods share same interface
Module parentMod("parentMod", cu);
Module subMod1("subMod1", cu);
Module subMod2("subMod2", cu);
std::vector<at::IValue> constantTable;
import_libs(
cu,
"__torch__.OneInterface",
std::make_shared<Source>(moduleInterfaceSrc),
constantTable);
auto v1 = IValue(2);
subMod1.register_attribute("attr", IntType::get(), v1, false);
auto v2 = IValue(4);
subMod2.register_attribute("attr", IntType::get(), v2, false);
for (const std::string& method : subModuleMethodsSrc) {
subMod1.define(method, nativeResolver());
subMod2.define(method, nativeResolver());
}
parentMod.register_attribute(
"subMod1",
cu->get_interface("__torch__.OneInterface"),
subMod1._ivalue());
parentMod.register_attribute(
"subMod2",
cu->get_interface("__torch__.OneInterface"),
subMod2._ivalue());
parentMod.define(parentForward, nativeResolver());
Module clonedMod = parentMod.clone();
// clone will copy both type and data, therefore we'll have a
// different type
ASSERT_NE(clonedMod.type(), parentMod.type());
}
TEST(ModuleAPITest, Copy) {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
auto attr_name = "attr";
cls->addAttribute(attr_name, IntType::get());
Module m(cu, cls);
auto v = IValue(2);
m.register_attribute(attr_name, IntType::get(), v, false);
Module m2 = m.clone();
Module m3 = m.copy();
// Make sure copy works
ASSERT_EQ(m2.attr(attr_name).toInt(), 2);
ASSERT_EQ(m3.attr(attr_name).toInt(), 2);
// clone will copy both type and data, therefore we'll have a
// different type
ASSERT_NE(m.type(), m2.type());
// copy only copies data, type is shared
ASSERT_EQ(m.type(), m3.type());
// change value of copied instance
m3.register_attribute(attr_name, IntType::get(), IValue(3), false);
// Verify value of original instance doesn't change
ASSERT_EQ(m2.attr(attr_name).toInt(), 2);
ASSERT_EQ(m3.attr(attr_name).toInt(), 3);
}
TEST(ModuleAPITest, DeepCopy) {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
auto str_attr = "str_attr";
auto int_attr = "int_attr";
auto tensor_attr = "tensor_attr";
auto tensor_list_attr = "tensor_list_attr";
cls->addAttribute(int_attr, IntType::get());
cls->addAttribute(str_attr, StringType::get());
cls->addAttribute(tensor_attr, TensorType::get());
cls->addAttribute(tensor_list_attr, ListType::ofTensors());
Module m(cu, cls);
c10::List<at::Tensor> list({at::rand(5), at::rand(5)});
m.setattr(int_attr, IValue(2));
m.setattr(str_attr, IValue("str"));
m.setattr(tensor_attr, at::randn(5));
m.setattr(tensor_list_attr, list);
Module m2 = m.deepcopy();
Module m3 = m.copy();
// Make sure copy works
ASSERT_EQ(m2.attr(int_attr).toInt(), 2);
ASSERT_EQ(m3.attr(int_attr).toInt(), 2);
// Test overlaps
ASSERT_TRUE(!IValue(m2._ivalue()).overlaps(IValue(m._ivalue())));
ASSERT_TRUE(IValue(m3._ivalue()).overlaps(IValue(m._ivalue())));
// Both deepcopy and copy will preserve the type
ASSERT_EQ(m.type(), m2.type());
ASSERT_EQ(m.type(), m3.type());
// change int value of copied instances
m2.setattr(int_attr, IValue(3));
m3.setattr(int_attr, IValue(4));
// Verify value of original instance doesn't change
ASSERT_EQ(m.attr(int_attr).toInt(), 2);
ASSERT_EQ(m2.attr(int_attr).toInt(), 3);
ASSERT_EQ(m3.attr(int_attr).toInt(), 4);
// change Tensor value of copied instances
at::Tensor t1 = m.attr(tensor_attr).toTensor();
at::Tensor t2 =
m2.attr(tensor_attr).toTensor(); // deepcopy will copy the Tensor
at::Tensor t3 =
m3.attr(tensor_attr).toTensor(); // copy will not copy the Tensor
// check copy works
ASSERT_TRUE(t1.equal(t2));
ASSERT_TRUE(t1.equal(t3));
// zero out t1
t1.zero_();
// check that t2 is not affected because it is a deep copy
ASSERT_TRUE(!t1.equal(t2));
// check that t3 is the same as t1 since it is a shallow copy
ASSERT_TRUE(t1.equal(t3));
}
TEST(ModuleAPITest, DeepCopyString) {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
auto attr1 = "attr1";
cls->addAttribute(attr1, StringType::get());
std::string str = "str";
Module m(cu, cls);
m.setattr(attr1, str);
auto copied = m.deepcopy();
auto original_str = str;
ASSERT_EQ(copied.attr(attr1).toStringRef(), original_str);
// check string mutation is not reflected in the copied module
str += "str";
ASSERT_EQ(copied.attr(attr1).toStringRef(), original_str);
}
TEST(ModuleAPITest, DeepCopyEnum) {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
auto enum_attr = "enum_attr";
auto int_enum_type = EnumType::create(
"enum_class",
IntType::get(),
{{"enum_name_1", 1}, {"enum_name_2", 2}},
cu);
cls->addAttribute(enum_attr, int_enum_type);
Module m(cu, cls);
m.setattr(
enum_attr,
IValue(c10::make_intrusive<ivalue::EnumHolder>(
int_enum_type, "enum_name_1", 1)));
Module m2 = m.deepcopy();
// Make sure deepcopy works
c10::ivalue::EnumHolder* m2_holder = m2.attr(enum_attr).toEnumHolder().get();
ASSERT_EQ(m2_holder->value().toInt(), 1);
ASSERT_EQ(m2_holder->name(), "enum_name_1");
ASSERT_EQ(m2_holder->type(), int_enum_type);
// Test overlaps
ASSERT_TRUE(!IValue(m2._ivalue()).overlaps(IValue(m._ivalue())));
// Deepcopy will preserve the type
ASSERT_EQ(m.type(), m2.type());
// Change original, should not affect deepcopy
m.setattr(
enum_attr,
IValue(c10::make_intrusive<ivalue::EnumHolder>(
int_enum_type, "enum_name_2", 2)));
ASSERT_NE(
m.attr(enum_attr).toEnumHolder().get()->value().toInt(),
m2.attr(enum_attr).toEnumHolder().get()->value().toInt());
}
TEST(ModuleAPITest, DeepCopyPreservesAliasing) {
// check deepcopy preserves aliasing
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
auto attr1 = "attr1";
auto attr2 = "attr2";
auto attr3 = "attr3";
auto attr4 = "attr4";
cls->addAttribute(attr1, ListType::ofTensors());
cls->addAttribute(attr2, ListType::ofTensors());
cls->addAttribute(attr3, TensorType::get());
cls->addAttribute(attr4, TensorType::get());
Module m(cu, cls);
auto t1 = at::rand(5);
auto t2 = at::rand(5);
auto t3 = at::rand(5);
auto t4 = at::rand({5, 2});
c10::List<at::Tensor> list1({t1, t2});
c10::List<at::Tensor> list2({t1, t3});
// first element of attr1 and attr2 are aliased
m.setattr(attr1, list1);
m.setattr(attr2, list2);
m.setattr(attr3, t4);
m.setattr(attr4, t4.view(-1));
auto copied = m.deepcopy();
// test tensor aliasing
auto copied_attr1_t1 = copied.attr(attr1).toList().get(0);
auto copied_attr2_t1 = copied.attr(attr2).toList().get(0);
ASSERT_TRUE(copied_attr1_t1.isAliasOf(copied_attr2_t1));
// test aliasing from view
auto copied_attr3 = copied.attr(attr3);
auto copied_attr4 = copied.attr(attr3);
ASSERT_TRUE(copied_attr3.isAliasOf(copied_attr4));
}
TEST(ModuleAPITest, Constants) {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
auto attr_name = "attr";
auto const_name = "const";
cls->addAttribute(attr_name, IntType::get());
cls->addConstant(const_name, IValue(3));
Module m(cu, cls);
auto v = IValue(2);
m.register_attribute(attr_name, IntType::get(), v, false);
ASSERT_TRUE(m.hasattr(attr_name));
ASSERT_TRUE(m.hasattr(const_name));
ASSERT_EQ(m.attr(attr_name).toInt(), 2);
ASSERT_EQ(m.attr(const_name).toInt(), 3);
}
TEST(ModuleAPITest, Parameters) {
auto cu = std::make_shared<CompilationUnit>();
auto cls = ClassType::create("foo.bar", cu, true);
Module m(cu, cls);
// Tensor parameter
m.register_parameter(
"tensor_param", at::empty({3}, at::kFloat), /* is_buffer */ false);
// None parameter
m.register_attribute(
"none_param", NoneType::get(), IValue(), /* is_param */ true);
m.register_attribute(
"none_param2", NoneType::get(), IValue(), /* is_param */ true);
auto param_list = m.parameters();
ASSERT_EQ(param_list.size(), 1);
ASSERT_TRUE(m.hasattr("tensor_param"));
ASSERT_TRUE(m.hasattr("none_param"));
ASSERT_TRUE(m.hasattr("none_param2"));
}
TEST(ModuleAPITest, Define) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x, b : int = 4):
return self.foo + x + b
)");
auto result = m.run_method("add_it", torch::ones({}));
AT_ASSERT(result.toTensor().item<float>() == 6);
}
TEST(ModuleAPITest, Freezing) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def forward(self, x, b : int = 4):
return self.foo + x + b
)");
m.eval();
auto forward_g = m.get_method("forward").graph();
testing::FileCheck().check("GetAttr")->run(*forward_g);
// Removal of GetAttr is done by freezing
auto frozen_mod = torch::jit::freeze(m);
forward_g = frozen_mod.get_method("forward").graph();
testing::FileCheck().check_not("GetAttr")->run(*forward_g);
// If no training mode is set, the module is NOT frozen by OFI
auto frozen_mod2 = torch::jit::optimize_for_inference(m);
forward_g = frozen_mod2.get_method("forward").graph();
testing::FileCheck().check("GetAttr")->run(*forward_g);
}
TEST(ModuleAPITest, OfiFreezesTraining) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def forward(self, x, b : int = 4):
return self.foo + x + b
)");
m.register_attribute("training", BoolType::get(), true);
m.eval();
// Before freezing, we have a GetAttr check
auto forward_g = m.get_method("forward").graph();
testing::FileCheck().check("GetAttr")->run(*forward_g);
// Demonstrate that freezing happens when OFI is called
// Removal of GetAttr is done by freezing, but only when training
// attribute is set
auto frozen_mod = torch::jit::optimize_for_inference(m);
forward_g = frozen_mod.get_method("forward").graph();
testing::FileCheck().check_not("GetAttr")->run(*forward_g);
}
TEST(ModuleAPITest, To_CUDA) {
Module m("test");
{
// test cuda to cpu for params and buffers
m.register_parameter("foo", torch::ones({}, at::kCUDA), false);
m.register_buffer("bar", torch::ones({}, at::kCUDA));
m.to(at::kCUDA);
m.to(at::kCPU);
AT_ASSERT(m.attr("foo").toTensor().device().is_cpu());
AT_ASSERT(m.attr("bar").toTensor().device().is_cpu());
}
{
// test cpu to cuda for params and buffers
m.register_parameter("foo", torch::ones({}), false);
m.register_buffer("bar", torch::ones({}));
m.to(at::kCUDA);
AT_ASSERT(m.attr("foo").toTensor().device().is_cuda());
AT_ASSERT(m.attr("bar").toTensor().device().is_cuda());
}
}
} // namespace jit
} // namespace torch