blob: 115982e818127b00c88b6a9eedbc505067a94490 [file] [log] [blame]
# Owner(s): ["oncall: distributed"]
import torch
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.distributed.checkpoint._nested_dict import (
flatten_state_dict,
unflatten_state_dict,
)
class TestFlattening(TestCase):
def test_flattening_round_trip(self) -> None:
state_dict = {
"key0": 1,
"key1": [1, 2],
"key2": {1: 2, 2: 3},
"key3": torch.tensor([1]),
"key4": [[torch.tensor(2), "x"], [1, 2, 3], {"key6": [44]}],
}
flatten_dict, mapping = flatten_state_dict(state_dict)
"""
flatten_dict:
{
'key0': 1,
'key1': [1, 2],
'key2': {1: 2, 2: 3},
'key3': tensor([1]),
'key4.0.0': tensor(2),
'key4.0.1': 'x',
'key4.1': [1, 2, 3],
'key4.2': {'key6': [44]}
}
"""
restored = unflatten_state_dict(flatten_dict, mapping)
self.assertEqual(state_dict, restored)
def test_mapping(self) -> None:
state_dict = {
"k0": [1],
"k2": [torch.tensor([1]), 99, [{"k3": torch.tensor(1)}]],
"k3": ["x", 99, [{"k3": "y"}]],
}
flatten_dict, mapping = flatten_state_dict(state_dict)
"""
flatten_dict:
{'k0': [1], 'k2.0': tensor([1]), 'k2.1': 99, 'k2.2.0.k3': tensor(1), 'k3': ['x', 99, [{'k3': 'y'}]]}
mapping:
{'k0': ('k0',), 'k2.0': ('k2', 0), 'k2.1': ('k2', 1), 'k2.2.0.k3': ('k2', 2, 0, 'k3'), 'k3': ('k3',)}
"""
self.assertEqual(("k0",), mapping["k0"])
self.assertEqual(("k2", 0), mapping["k2.0"])
self.assertEqual(("k2", 1), mapping["k2.1"])
self.assertEqual(("k2", 2, 0, "k3"), mapping["k2.2.0.k3"])
self.assertEqual(("k3",), mapping["k3"])
if __name__ == "__main__":
run_tests()