| # Owner(s): ["module: dynamo"] |
| |
| import copy |
| import math |
| import unittest |
| |
| import torch |
| |
| import torch._dynamo.test_case |
| import torch._dynamo.testing |
| import torch._dynamo.utils |
| |
| |
| class CustomFunc1(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, foo): |
| return foo + foo |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output |
| |
| |
| class CustomFunc3(torch.autograd.Function): |
| # Test there is graph break in forward function |
| @staticmethod |
| def forward(ctx, foo): |
| result = foo + foo |
| torch._dynamo.graph_break() |
| result = result + foo |
| ctx.save_for_backward(result) |
| return result |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| (result,) = ctx.saved_tensors |
| return grad_output * math.sqrt(result.numel()) |
| |
| |
| class Module1(torch.nn.Module): |
| def forward(self, foo): |
| return CustomFunc1().apply(foo) |
| |
| |
| class Module2(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.fn = CustomFunc1.apply |
| |
| def forward(self, foo): |
| return self.fn(foo) |
| |
| |
| class Module3(torch.nn.Module): |
| def forward(self, foo): |
| return CustomFunc1().apply(foo) |
| |
| |
| class Module4(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.fn = CustomFunc1.apply |
| |
| def forward(self, foo): |
| return self.fn(foo) |
| |
| |
| class Module5(torch.nn.Module): |
| def forward(self, foo): |
| return CustomFunc3().apply(foo) |
| |
| |
| class Module6(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.fn = CustomFunc3.apply |
| |
| def forward(self, foo): |
| return self.fn(foo) |
| |
| |
| class LinearFunction(torch.autograd.Function): |
| # Note that forward, setup_context, and backward are @staticmethods |
| @staticmethod |
| def forward(input, weight, bias): |
| output = input.mm(weight.t()) |
| if bias is not None: |
| output += bias.unsqueeze(0).expand_as(output) |
| return output |
| |
| @staticmethod |
| # inputs is a Tuple of all of the inputs passed to forward. |
| # output is the output of the forward(). |
| def setup_context(ctx, inputs, output): |
| input, weight, bias = inputs |
| ctx.save_for_backward(input, weight, bias) |
| |
| # This function has only a single output, so it gets only one gradient |
| @staticmethod |
| def backward(ctx, grad_output): |
| input, weight, bias = ctx.saved_tensors |
| grad_input = grad_weight = grad_bias = None |
| if ctx.needs_input_grad[0]: |
| grad_input = grad_output.mm(weight) |
| if ctx.needs_input_grad[1]: |
| grad_weight = grad_output.t().mm(input) |
| if bias is not None and ctx.needs_input_grad[2]: |
| grad_bias = grad_output.sum(0) |
| |
| return grad_input, grad_weight, grad_bias |
| |
| |
| class ModuleLinear(torch.nn.Module): |
| def forward(self, input, weight, bias=None): |
| return LinearFunction.apply(input, weight, bias) |
| |
| |
| class MaterializingGradFunction(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| ctx.set_materialize_grads(False) |
| return x.clone(), x.clone() |
| |
| @staticmethod |
| def backward(ctx, grad_out1, grad_out2): |
| return grad_out1, grad_out2 |
| |
| |
| class MaterializingGradModule(torch.nn.Module): |
| def forward(self, x): |
| return MaterializingGradFunction.apply(x) |
| |
| |
| class CustomFuncBwdPrintGraphBreak(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, foo): |
| return torch.add(foo, foo) |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| print("graph break!") |
| return grad_output |
| |
| |
| class CustomFuncBwdPrintModule(torch.nn.Module): |
| def forward(self, x): |
| return CustomFuncBwdPrintGraphBreak.apply(x) |
| |
| |
| class CustomFuncStrideBwd(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, foo): |
| return torch.add(foo, foo) |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output.stride() |
| |
| |
| class CustomFuncStrideModule(torch.nn.Module): |
| def forward(self, x): |
| return CustomFuncStrideBwd.apply(x) |
| |
| |
| class CustomFuncSaveForBwd(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, foo): |
| result = foo + foo |
| result = result + foo |
| ctx.save_for_backward(result) |
| return result |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| (result,) = ctx.saved_tensors |
| return grad_output * math.sqrt(result.numel()) |
| |
| |
| class SaveForBwdModule(torch.nn.Module): |
| def forward(self, foo): |
| return CustomFuncSaveForBwd().apply(foo) |
| |
| |
| class ContextSaveAndMark(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| with torch.no_grad(): |
| ctx.save_for_backward(x) |
| ctx.mark_non_differentiable(x) |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output |
| |
| |
| class ContextMarkAndSave(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| with torch.no_grad(): |
| ctx.mark_non_differentiable(x) |
| ctx.save_for_backward(x) |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output |
| |
| |
| class ModuleWithGradFunc(torch.nn.Module): |
| def __init__(self, func): |
| super().__init__() |
| self.f = func.apply |
| |
| def forward(self, x): |
| return self.f(x) |
| |
| |
| class AutogradFunctionTests(torch._dynamo.test_case.TestCase): |
| # Sound behaviors, tested for working capture |
| def test_autograd_function_equivalence(self): |
| for grad in [True, False]: |
| for i in range(1, 5): |
| torch._dynamo.reset() |
| model = globals()[f"Module{i}"]() |
| opt_model = torch._dynamo.optimize("eager")(model) |
| self.assertTrue( |
| torch.allclose( |
| opt_model(torch.ones(2, 3, requires_grad=grad)), |
| torch.tensor([2.0], requires_grad=grad), |
| ) |
| ) |
| |
| def test_autograd_function_has_graph_break(self): |
| for grad in [True, False]: |
| x = torch.randn(10, requires_grad=grad) |
| for model in [Module5(), Module6()]: |
| torch._dynamo.reset() |
| cnts = torch._dynamo.testing.CompileCounter() |
| opt_model = torch._dynamo.optimize(cnts)(model) |
| for _ in range(3): |
| ref = model(x) |
| res = opt_model(x) |
| self.assertTrue(torch.allclose(ref, res)) |
| self.assertEqual(cnts.frame_count, 2) |
| |
| def test_linear_setup_context(self): |
| model = ModuleLinear() |
| opt_model = torch._dynamo.optimize("eager")(model) |
| input = torch.randn(2, 2, dtype=torch.double, requires_grad=True) |
| weight = torch.randn(3, 2, dtype=torch.double, requires_grad=True) |
| optim_result = opt_model(input, weight) |
| eager_result = model(input, weight) |
| self.assertEqual(optim_result, eager_result) |
| |
| def test_materialize_grad(self): |
| model = MaterializingGradModule() |
| opt_model = torch._dynamo.optimize("eager")(model) |
| x = torch.randn(2, 2, dtype=torch.double, requires_grad=True) |
| optim_result = opt_model(x) |
| eager_result = model(x) |
| self.assertEqual(optim_result, eager_result) |
| |
| def test_print_in_bwd(self): |
| model = CustomFuncBwdPrintModule() |
| opt_model = torch._dynamo.optimize("eager", nopython=True)(model) |
| x = torch.randn(2, 2, dtype=torch.double, requires_grad=True) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.Unsupported, ".*BuiltinVariable\\(print\\).*" |
| ): |
| opt_model(x) |
| |
| def test_stride_in_bwd(self): |
| model = CustomFuncStrideModule() |
| opt_model = torch._dynamo.optimize("eager", nopython=True)(model) |
| x = torch.randn(2, 2, dtype=torch.double, requires_grad=True) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.Unsupported, |
| "Illegal getattr invocation stride in strict mod", |
| ): |
| opt_model(x) |
| |
| def test_save_for_bwd(self): |
| model = SaveForBwdModule() |
| opt_model = torch._dynamo.optimize("eager", nopython=True)(model) |
| x = torch.randn(2, 2, dtype=torch.double, requires_grad=True) |
| opt_model(x) |
| |
| def test_classmethod(self): |
| class Shake(torch.autograd.Function): |
| @classmethod |
| def forward(cls, ctx, foo): |
| return foo + foo |
| |
| @classmethod |
| def backward(cls, ctx, grad_output): |
| return grad_output |
| |
| def f(x): |
| return Shake.apply(x) |
| |
| x = torch.randn(4, 4, 4, 4, requires_grad=True) |
| opt_m = torch.compile(backend="eager")(f) |
| opt_m(x) |
| |
| def test_function_context_save_and_mark(self): |
| mod = ModuleWithGradFunc(ContextSaveAndMark) |
| args, kwargs = ([torch.rand([1])], {}) |
| before = mod(*args, **kwargs) |
| |
| torch._dynamo.reset() |
| compiled_model = torch._dynamo.optimize("eager")(mod) |
| after = compiled_model(*args, **kwargs) |
| self.assertEqual(before, after) |
| |
| def test_function_context_mark_and_save(self): |
| mod = ModuleWithGradFunc(ContextMarkAndSave) |
| args, kwargs = ([torch.rand([1])], {}) |
| before = mod(*args, **kwargs) |
| |
| torch._dynamo.reset() |
| compiled_model = torch._dynamo.optimize("eager")(mod) |
| after = compiled_model(*args, **kwargs) |
| self.assertEqual(before, after) |
| |
| def test_multi_output(self): |
| torch._dynamo.utils.counters.clear() |
| cnt = torch._dynamo.testing.CompileCounter() |
| |
| class Foo(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x.clone(), x.clone() |
| |
| @staticmethod |
| def backward(ctx, grad1, grad2): |
| return grad1 + grad2 |
| |
| @torch.compile(backend=cnt) |
| def f(x): |
| return Foo.apply(x) |
| |
| x = torch.randn(3, requires_grad=True) |
| result = f(x) |
| |
| self.assertEqual(result, Foo.apply(x)) |
| self.assertEqual(cnt.frame_count, 1) |
| self.assertEqual( |
| list(torch._dynamo.utils.counters["graph_break"].values()), [1] |
| ) |
| |
| @unittest.expectedFailure |
| def test_function_with_bound_free_variable(self): |
| class LowerBound(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, inputs, bound): |
| ctx.save_for_backward(inputs, inputs.new_ones(1) * bound) |
| return inputs.clamp(min=bound) |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| inputs, bound = ctx.saved_tensors |
| return (inputs >= bound) * grad_output, None |
| |
| class MyMod(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.gamma = torch.nn.Parameter(torch.rand([4, 128, 32, 32])) |
| |
| def forward(self, x): |
| gamma = LowerBound.apply(self.gamma, 1) |
| return x + gamma |
| |
| mod = MyMod() |
| args, kwargs = ([torch.rand([4, 128, 32, 32])], {}) |
| before = mod(*args, **kwargs) |
| |
| compiled_model = torch._dynamo.optimize("eager")(mod) |
| after = compiled_model(*args, **kwargs) |
| self.assertEqual(before, after) |
| |
| # I pulled all of these test cases from test_autograd.py |
| # In the future, we should make the Dynamo test suite actually |
| # run on test_autograd.py (it's disabled right now) and delete these. |
| def test_smoke_from_test_autograd(self): |
| class Func(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| out0 = x.clone() |
| out1 = x.clone() |
| ctx.mark_non_differentiable(out1) |
| ctx._materialize_non_diff_grads = False |
| return out0, out1 |
| |
| @staticmethod |
| def backward(ctx, g0, g1): |
| assert g1 is None |
| return g0 |
| |
| def mult1(x): |
| return x.prod(dim=-1).prod(dim=-1) |
| |
| class Mult(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| y = mult1(x) |
| ctx.save_for_backward(x, y) |
| return y |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| x, y = ctx.saved_tensors |
| return (grad_output * y)[:, None, None] / x |
| |
| mult2 = Mult.apply |
| |
| class Double(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| y = x**2 |
| ctx.save_for_backward(x, y) |
| return y |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| x, _ = ctx.saved_tensors |
| return grad_output * 2 * x |
| |
| # this is equivalent, but uses the output of .forward() in .backward() |
| class Double2(Double): |
| @staticmethod |
| def backward(ctx, grad_output): |
| x, y = ctx.saved_tensors |
| return grad_output * 2 * y / x |
| |
| double = Double.apply |
| double2 = Double2.apply |
| |
| class Identity(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| return a, a + b |
| |
| @staticmethod |
| def backward(ctx, grad_a, grad_b): |
| return grad_a + grad_b, grad_b |
| |
| class MyFunc2(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, inp): |
| return inp.clone() |
| |
| @staticmethod |
| def backward(ctx, gO): |
| return torch.tensor(float("nan")).expand(10, 10) |
| |
| def run_fn(a): |
| out = MyFunc2.apply(a) |
| return out.sum() |
| |
| class MyFn(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, inp): |
| return inp.view_as(inp) |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return grad |
| |
| class MyAdder(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| a.add_(b) |
| ctx.mark_dirty(a) |
| return a |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return grad, grad |
| |
| class InplaceMul(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| result = x.mul_(2) |
| ctx.mark_dirty(result) |
| return result |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| pass |
| |
| @staticmethod |
| def jvp(ctx, x_t): |
| if jvp_err: |
| return x_t |
| else: |
| return x_t.mul_(2) |
| |
| class MyFn2(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x, y): |
| return x + y, x |
| |
| @staticmethod |
| def vjp(ctx, gO1, gO2): |
| return gO1 + gO2, gO1 |
| |
| @staticmethod |
| def jvp(ctx, x_t, y_t): |
| return x_t + y_t, fn(x_t) |
| |
| class MyFn3(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, inp, inplace): |
| view = inp.clone()[:3] |
| if inplace: |
| view += 2 |
| return view |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return grad, None |
| |
| def test(): |
| a = torch.tensor(1.0, requires_grad=True) |
| out = Func.apply(a)[0] |
| out.backward() |
| |
| x = torch.ones(2, 4, 4).requires_grad_() |
| mult2(x) |
| |
| x = torch.tensor(2).double().requires_grad_() |
| double(x) |
| double2(x) |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=True) |
| q, p = Identity.apply(x, y) |
| |
| a = torch.rand(1, 2) |
| b = torch.rand(1, requires_grad=True) |
| view_a = MyFn.apply(a) |
| |
| a = torch.ones(2, requires_grad=True) |
| b = torch.ones(2, requires_grad=True) |
| c = MyAdder.apply(a.clone(), b) |
| c.sum().backward() |
| |
| z = torch.tensor(1.0, requires_grad=True) |
| x = z.clone() |
| y = InplaceMul.apply(x) |
| |
| a = torch.tensor(1.0, dtype=torch.double, requires_grad=True) |
| b = torch.tensor(1.0, dtype=torch.double, requires_grad=True) |
| c = torch.tensor(1.0, dtype=torch.double) |
| d = torch.tensor(1.0, dtype=torch.double) |
| MyFn2.apply(a, b) |
| MyFn2.apply(c, d) |
| |
| base = torch.rand(10, requires_grad=True) |
| foo = MyFn3.apply(base, False) |
| |
| test() |
| opt_test = torch._dynamo.optimize("eager")(test) |
| opt_test() |
| |
| def test_tensor_subclass_intermediary_input(self): |
| class FooTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, config, scale): |
| self = torch.Tensor._make_wrapper_subclass( |
| cls, |
| config[0], |
| strides=config[1], |
| storage_offset=config[2], |
| dtype=config[3], |
| layout=config[4], |
| requires_grad=config[5], |
| device=data.device, |
| ) |
| self._data = data |
| self._config = config |
| self._scale = scale |
| return self |
| |
| def __repr__(self): |
| return "FooTensor" |
| |
| def __tensor_flatten__(self): |
| return ("_data",), ( |
| self._config, |
| self._scale, |
| ) |
| |
| @staticmethod |
| def __tensor_unflatten__(tensors, metadatas): |
| return FooTensor(tensors["_data"], metadatas[0], metadatas[1]) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs=None): |
| # handling clone and view is so dynamo fakefication passes, it's not |
| # intended to be handling user code |
| if func == torch.ops.aten.clone.default: |
| return FooTensor( |
| args[0]._data.clone(), args[0]._config, args[0]._scale |
| ) |
| elif func == torch.ops.aten.view.default: |
| new_data = args[0]._data.view(*args[1:]) |
| return FooTensor(new_data, args[0]._config, args[0]._scale) |
| |
| raise NotImplementedError() |
| |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| class foo_autograd_fn(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| # access some data from `x`, where `x` is a tensor subclass |
| x2 = x._data + 1.0 |
| # create and return a tensor subclass from within a torch.autograd.Function |
| x3 = FooTensor(x2, x._config, x._scale) |
| return x3._data |
| |
| @staticmethod |
| def backward(ctx, g): |
| return g |
| |
| x_ref = torch.randn(4, 4).requires_grad_(True) |
| x = copy.deepcopy(x_ref) |
| scale = torch.tensor(1.0) |
| # Weird that this is needed, but not having this breaks a lot of things |
| torch._dynamo.allow_in_graph(FooTensor) |
| |
| def foo(x, scale): |
| config = ( |
| x.size(), |
| x.stride(), |
| x.storage_offset(), |
| x.dtype, |
| x.layout, |
| x.requires_grad, |
| ) |
| x = FooTensor(x, config, scale) |
| x = foo_autograd_fn.apply(x) |
| return x |
| |
| y_ref = foo(x_ref, scale) |
| y_ref.sum().backward() |
| |
| foo_opt = torch.compile(foo, backend="eager") |
| y = foo_opt(x, scale) |
| y.sum().backward() |
| |
| self.assertEqual(y, y_ref) |
| self.assertEqual(x.grad, x_ref.grad) |
| |
| |
| if __name__ == "__main__": |
| from torch._dynamo.test_case import run_tests |
| |
| run_tests() |