blob: 6ba2db3056be0d5914ac5a2c22e85d1974b3e7b4 [file] [log] [blame]
# Owner(s): ["module: dynamo"]
import unittest
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch.onnx.operators
from torch._dynamo.testing import EagerAndRecordGraphs, normalize_gm, same
from torch.nn import functional as F
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION
class CutomizedCtxManager:
def __init__(self, mode):
self.prev = torch.is_grad_enabled()
self.mode = mode
def __enter__(self):
torch._C._set_grad_enabled(self.mode)
def __exit__(self, exc_type, exc_value, traceback):
torch._C._set_grad_enabled(self.prev)
class CtxManagerTests(torch._dynamo.test_case.TestCase):
def test_no_grad(self):
def fn1(a, b):
x = a + 1
# redundant no_grad should get ignored
with torch.no_grad():
x = x + b
x = x + 2
return x
def fn2(a, b):
x = a + 1
with torch.set_grad_enabled(False):
x = x + b
x = x + 2
return x
def fn3(a, b):
x = a + 1
with torch.enable_grad():
x = x + b
x = x + 2
return x
def fn4(a, b):
x = a + 1
with torch.set_grad_enabled(True):
if torch.is_grad_enabled():
x = x + b
x = x + 2
return x
with torch.no_grad():
torch._dynamo.testing.standard_test(self, fn=fn1, nargs=2, expected_ops=5)
torch._dynamo.testing.standard_test(self, fn=fn2, nargs=2, expected_ops=5)
torch._dynamo.testing.standard_test(self, fn=fn3, nargs=2, expected_ops=5)
torch._dynamo.testing.standard_test(self, fn=fn4, nargs=2, expected_ops=5)
with torch.enable_grad():
torch._dynamo.testing.standard_test(self, fn=fn1, nargs=2, expected_ops=5)
torch._dynamo.testing.standard_test(self, fn=fn2, nargs=2, expected_ops=5)
torch._dynamo.testing.standard_test(self, fn=fn3, nargs=2, expected_ops=5)
torch._dynamo.testing.standard_test(self, fn=fn4, nargs=2, expected_ops=5)
def test_grad_mode_guard(self):
def fn(a, b):
prev_grad = torch.is_grad_enabled()
torch.set_grad_enabled(False)
a = a + 1
a.tolist() # graph break
ret = a + b
torch.set_grad_enabled(prev_grad)
return ret
a = torch.randn([3, 4])
b = torch.randn([3, 4])
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
for _ in range(10):
opt_fn(a, b)
self.assertEqual(cnts.frame_count, 2)
def test_nested_grad_mode_graph_break(self):
def fn(x):
before = torch.is_grad_enabled()
with torch.set_grad_enabled(False):
torch._dynamo.graph_break()
with torch.set_grad_enabled(True):
x = torch.mul(x, 5)
torch._dynamo.graph_break()
x = torch.sqrt(x)
assert torch.is_grad_enabled()
assert not torch.is_grad_enabled()
assert torch.is_grad_enabled() == before
return x
a = torch.randn([3, 4])
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
for _ in range(10):
opt_fn(a)
self.assertEqual(cnts.frame_count, 2)
def test_torch_profiler(self):
# wrap torch.profiler.* as NullContextVariable and do nothing
def fn(x):
y = x**2
with torch.profiler.profile():
y = y + 2
with torch.profiler.record_function("my_function"):
z = y**3
z.tolist() # graph break
z = z + 1
return z
x = torch.randn((2, 2), requires_grad=True)
ref = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 2)
def test_autograd_profiler(self):
# wrap torch.autograd.profiler.* as NullContextVariable and do nothing
def fn(x):
y = x**2
with torch.autograd.profiler.profile():
y = y + 2
with torch.autograd.profiler.record_function("my_function"):
z = y**3
z.tolist() # graph break
z = z + 1
return z
x = torch.randn((2, 2), requires_grad=True)
ref = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 2)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_cuda_stream_context_manager1(self):
def fn(x):
s = torch.cuda.Stream()
x = torch.mul(x, 5)
x = torch.add(x, 2)
with torch.cuda.stream(s):
x = torch.relu(x)
x = torch.add(x, 1)
x = torch.cos(x)
return x
x = torch.randn((2, 2))
ref = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(cnts.op_count, 9)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_cuda_stream_context_manager2(self):
def fn(x, s):
x = torch.mul(x, 5)
x = torch.add(x, 2)
with torch.cuda.stream(s):
x = torch.relu(x)
x = torch.add(x, 1)
x = torch.cos(x)
return x
x = torch.randn((2, 2))
s = torch.cuda.Stream()
ref = fn(x, s)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts, nopython=True)(fn)
with self.assertRaisesRegex(
torch._dynamo.exc.Unsupported,
"CUDAStreamVariable does not currently work soundly.",
):
res = opt_fn(x, s)
def test_autograd_profiler_enabled(self):
def fn(x):
if torch.autograd._profiler_enabled():
return x + 1
else:
return x - 1
x = torch.randn((2, 2), requires_grad=True)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
if torch.autograd._profiler_enabled():
torch.autograd._disable_profiler()
assert not torch.autograd._profiler_enabled()
ref = fn(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
with torch.autograd.profiler.profile():
assert torch.autograd._profiler_enabled()
ref = fn(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_autocast(self):
if not torch.cuda.is_bf16_supported():
raise unittest.SkipTest("requires bf16")
class MyModule(torch.nn.Module):
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cuda")
b_float32 = torch.rand((8, 8), device="cuda")
d_float32 = torch.rand((8, 8), device="cuda")
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
e_float16 = torch.mm(a_float32, b_float32)
f_float16 = torch.mm(d_float32, e_float16)
return f_float16
module = MyModule()
real = module(torch.tensor([0.5]))
real_device = real.device
real_dtype = real.dtype
graph, guards = torch._dynamo.export(module)(torch.tensor([[0.0, 0], [0, 0]]))
exported = graph(torch.tensor([0.5]))
self.assertEqual(exported.device, real_device)
self.assertEqual(exported.dtype, real_dtype)
self.assertEqual(exported.device.type, "cuda")
self.assertEqual(exported.device.index, 0)
self.assertEqual(exported.dtype, torch.bfloat16)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_cuda_amp_autocast(self):
class MyModule(torch.nn.Module):
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cuda")
b_float32 = torch.rand((8, 8), device="cuda")
with torch.cuda.amp.autocast(dtype=torch.torch.float64):
c_float64 = torch.mm(a_float32, b_float32)
return c_float64
module = MyModule()
real = module(torch.tensor([0.5]))
real_device = real.device
real_dtype = real.dtype
graph, _ = torch._dynamo.export(module)(torch.tensor([[0.0, 0], [0, 0]]))
exported = graph(torch.tensor([0.5]))
self.assertEqual(exported.device, real_device)
self.assertEqual(exported.dtype, real_dtype)
self.assertEqual(exported.device.type, "cuda")
self.assertEqual(exported.device.index, 0)
self.assertEqual(exported.dtype, torch.float64)
def test_is_autocast_cpu_enabled(self):
def fn(a_float32, b_float32):
with torch.cpu.amp.autocast(dtype=torch.bfloat16):
c_float16 = torch.mm(a_float32, b_float32)
if torch.is_autocast_cpu_enabled():
c_float16 = c_float16 + 1
return c_float16
a = torch.rand((8, 8))
b = torch.rand((8, 8))
ref = fn(a, b)
opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn)
res = opt_fn(a, b)
self.assertTrue(same(ref, res))
@unittest.skipIf(
not PLATFORM_SUPPORTS_FLASH_ATTENTION,
"Can't run fused SDPA on this platform",
)
def test_autocast_sdpa(self):
class MyModule(torch.nn.Module):
def forward(self, query, key, value):
with torch.autocast("cpu"):
with torch.autocast("cuda", dtype=torch.float32):
out = F.scaled_dot_product_attention(
query, key, value, None, 0.0, True
)
return out
dtype = torch.float32
seq_len_q = 1
seq_len_k = 1
head_dim = 8
query = torch.ones(
1, 8, seq_len_q, head_dim, device="cuda", dtype=dtype, requires_grad=True
)
key = torch.ones(
1, 8, seq_len_k, head_dim, device="cuda", dtype=dtype, requires_grad=True
)
value = torch.ones(
1, 8, seq_len_k, head_dim, device="cuda", dtype=dtype, requires_grad=True
)
module = MyModule()
real = module(query, key, value)
real_device = real.device
real_dtype = real.dtype
opt_mod = torch._dynamo.optimize("inductor")(module)
compiled = opt_mod(query, key, value)
self.assertEqual(compiled.device, real_device)
self.assertEqual(compiled.dtype, real_dtype)
self.assertEqual(compiled.device.type, "cuda")
self.assertEqual(compiled.device.index, 0)
self.assertEqual(compiled.dtype, torch.float32)
def test_autocast_cpu(self):
class MyModule(torch.nn.Module):
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cpu")
b_float32 = torch.rand((8, 8), device="cpu")
d_float32 = torch.rand((8, 8), device="cpu")
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
e_float16 = torch.mm(a_float32, b_float32)
f_float16 = torch.mm(d_float32, e_float16)
return f_float16
module = MyModule()
real = module(torch.tensor([0.5]))
real_device = real.device
real_dtype = real.dtype
graph, guards = torch._dynamo.export(module)(torch.tensor([[0.0, 0], [0, 0]]))
exported = graph(torch.tensor([0.5]))
self.assertEqual(exported.device, real_device)
self.assertEqual(exported.dtype, real_dtype)
self.assertEqual(exported.device.type, "cpu")
self.assertEqual(exported.dtype, torch.bfloat16)
def test_autocast_cpu_graph_break(self):
class MyModule(torch.nn.Module):
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cpu")
b_float32 = torch.rand((8, 8), device="cpu")
torch._dynamo.graph_break()
d_float32 = torch.rand((8, 8), device="cpu")
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
e_float16 = torch.mm(a_float32, b_float32)
torch._dynamo.graph_break()
f_float16 = torch.mm(d_float32, e_float16)
return f_float16
module = MyModule()
real = module(torch.tensor([0.5]))
real_device = real.device
real_dtype = real.dtype
opt = torch._dynamo.optimize("eager")(module)
res = opt(torch.tensor([0.5]))
self.assertEqual(res.device, real_device)
self.assertEqual(res.dtype, real_dtype)
self.assertEqual(res.device.type, "cpu")
self.assertEqual(res.dtype, torch.bfloat16)
def test_autocast_cpu_graph_break_2(self):
# Regression for: https://github.com/pytorch/pytorch/issues/93890
def fn(x):
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
x = torch.mm(x, x)
torch._dynamo.graph_break()
x = torch.relu(x)
return x
x = torch.rand([4, 4])
self.assertEqual(x.dtype, torch.float32)
res = fn(x)
opt_fn = torch._dynamo.optimize("eager")(fn)
opt_res = opt_fn(x)
self.assertTrue(torch.allclose(res, opt_res))
self.assertEqual(res.dtype, torch.bfloat16)
self.assertEqual(opt_res.dtype, torch.bfloat16)
def test_autocast_cpu_graph_break_inner_fn(self):
class MyModule(torch.nn.Module):
@staticmethod
def mm_breaks(x, y):
torch._dynamo.graph_break()
return torch.mm(x, y)
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cpu")
b_float32 = torch.rand((8, 8), device="cpu")
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
torch._dynamo.graph_break()
with torch.autocast(
device_type="cpu", dtype=torch.bfloat16, enabled=False
):
torch._dynamo.graph_break()
g_float32 = torch.mm(a_float32, b_float32)
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
# Check that nested with non-inlineable function with graph break
torch._dynamo.graph_break()
f_float16_1 = self.mm_breaks(a_float32, b_float32)
# We remember to exit the inner autocast correctly to outer
# even after graph breaks
f_float16 = self.mm_breaks(a_float32, b_float32)
assert f_float16.dtype == f_float16_1.dtype
return f_float16, g_float32
module = MyModule()
real_16, real_32 = module(torch.tensor([0.5]))
real_device_16 = real_16.device
real_dtype_16 = real_16.dtype
real_device_32 = real_32.device
real_dtype_32 = real_32.dtype
graph = torch._dynamo.optimize("eager")(module)
out_16, out_32 = graph(torch.tensor([0.5]))
self.assertEqual(out_16.device, real_device_16)
self.assertEqual(out_16.dtype, real_dtype_16)
self.assertEqual(out_32.device, real_device_32)
self.assertEqual(out_32.dtype, real_dtype_32)
self.assertEqual(out_16.device.type, "cpu")
self.assertEqual(out_16.dtype, torch.bfloat16)
self.assertEqual(out_32.device.type, "cpu")
self.assertEqual(out_32.dtype, torch.float32)
def test_autocast_graph_break_method(self):
class MyModule(torch.nn.Module):
def __init__(self, bias):
super().__init__()
self.bias = bias
def mm_not_break(self, x, y):
return torch.mm(x, y) + self.bias
def mm_breaks(self, x, y):
torch._dynamo.graph_break()
return torch.mm(x, y) + self.bias
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cpu")
b_float32 = torch.rand((8, 8), device="cpu")
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
with torch.autocast(
device_type="cpu", dtype=torch.bfloat16, enabled=False
):
g_float32 = torch.mm(a_float32, b_float32)
f_float16 = self.mm_breaks(a_float32, b_float32)
assert (
f_float16[0][0] == self.mm_not_break(a_float32, b_float32)[0][0]
)
return f_float16, g_float32
module = MyModule(bias=torch.rand((8, 8), device="cpu", dtype=torch.bfloat16))
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
# Autocast doesn't work on addition, so we need the bias to be `bfloat16`
res = torch.rand((8, 8), device="cpu", dtype=torch.float32) + torch.rand(
(8, 8), device="cpu", dtype=torch.bfloat16
)
self.assertEqual(res.dtype, torch.float32)
real_16, real_32 = module(torch.tensor([0.5]))
real_device_16 = real_16.device
real_dtype_16 = real_16.dtype
real_device_32 = real_32.device
real_dtype_32 = real_32.dtype
graph = torch._dynamo.optimize("eager")(module)
out_16, out_32 = graph(torch.tensor([0.5]))
self.assertEqual(out_16.device, real_device_16)
self.assertEqual(out_16.dtype, real_dtype_16)
self.assertEqual(out_32.device, real_device_32)
self.assertEqual(out_32.dtype, real_dtype_32)
self.assertEqual(out_16.device.type, "cpu")
self.assertEqual(out_16.dtype, torch.bfloat16)
self.assertEqual(out_32.device.type, "cpu")
self.assertEqual(out_32.dtype, torch.float32)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_autocast_float64(self):
class MyModule(torch.nn.Module):
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cuda")
b_float32 = torch.rand((8, 8), device="cuda")
d_float32 = torch.rand((8, 8), device="cuda")
with torch.autocast(device_type="cuda", dtype=torch.float64):
e_float64 = torch.mm(a_float32, b_float32)
f_float64 = torch.mm(d_float32, e_float64)
return f_float64
module = MyModule()
real = module(torch.tensor([0.5]))
real_device = real.device
real_dtype = real.dtype
graph, guards = torch._dynamo.export(module)(torch.tensor([[0.0, 0], [0, 0]]))
exported = graph(torch.tensor([0.5]))
self.assertEqual(exported.device, real_device)
self.assertEqual(exported.dtype, real_dtype)
self.assertEqual(exported.device.index, 0)
self.assertEqual(exported.dtype, torch.float64)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_autocast_device(self):
class MyModule(torch.nn.Module):
def forward(self, x):
a_float32 = torch.rand((8, 8), device="cuda")
b_float32 = torch.rand((8, 8), device="cuda")
d_float32 = torch.rand((8, 8), device="cuda")
with torch.autocast("cuda"):
e_float64 = torch.mm(a_float32, b_float32)
f_float64 = torch.mm(d_float32, e_float64)
return f_float64
module = MyModule()
real = module(torch.tensor([0.5]))
real_device = real.device
real_dtype = real.dtype
graph, guards = torch._dynamo.export(module)(torch.tensor([[0.0, 0], [0, 0]]))
exported = graph(torch.tensor([0.5]))
self.assertEqual(exported.device, real_device)
self.assertEqual(exported.dtype, real_dtype)
self.assertEqual(exported.device.index, 0)
self.assertEqual(exported.dtype, torch.torch.float16)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_autocast_arguments_binding(self):
def f1(x):
with torch.cuda.amp.autocast(False):
x = torch.sin(x + 1)
return x
def f2(x):
with torch.cpu.amp.autocast(False):
x = torch.cos(x + 1)
return x
x = torch.rand([2, 3])
ref1 = f1(x)
ref2 = f2(x)
opt_f1 = torch.compile(backend="eager")(f1)
opt_f2 = torch.compile(backend="eager")(f2)
res1 = opt_f1(x)
res2 = opt_f2(x)
self.assertTrue(same(ref1, res1))
self.assertTrue(same(ref2, res2))
def test_generic_context_manager(self):
def fn(x):
with CutomizedCtxManager(True):
x = x + 1
if torch.is_grad_enabled():
x = x * 2
x = torch.relu(x)
return x - 1
with torch.no_grad():
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=6)
with torch.enable_grad():
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=6)
def test_nested_generic_context_manager(self):
def fn(x):
with CutomizedCtxManager(True):
x = x + 1
if torch.is_grad_enabled():
x = x * 2
with CutomizedCtxManager(False):
if torch.is_grad_enabled():
x = x - 3
x = x * 1.5
x = torch.relu(x)
return x - 1
with torch.no_grad():
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=9)
with torch.enable_grad():
torch._dynamo.testing.standard_test(self, fn=fn, nargs=1, expected_ops=9)
def test_generic_context_manager_with_graph_break(self):
def fn(x):
with CutomizedCtxManager(True):
x = x + 1
if torch.is_grad_enabled():
x = x * 2
torch._dynamo.graph_break()
x = torch.relu(x)
return x - 1
x = torch.rand(2, 3)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(backend=cnts, fullgraph=False)(fn)
with torch.no_grad():
ref = fn(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 2)
self.assertEqual(cnts.op_count, 2)
with torch.enable_grad():
ref = fn(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 4)
self.assertEqual(cnts.op_count, 4)
def test_nested_generic_context_manager_with_graph_break(self):
def fn(x):
with CutomizedCtxManager(True):
x = x + 1
if torch.is_grad_enabled():
x = x * 2
with CutomizedCtxManager(False):
if torch.is_grad_enabled():
x = x - 3
torch._dynamo.graph_break()
x = x * 1.5
x = torch.relu(x)
return x - 1
x = torch.rand(2, 3)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(backend=cnts, fullgraph=False)(fn)
with torch.no_grad():
ref = fn(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 4)
self.assertEqual(cnts.op_count, 4)
torch._dynamo.reset()
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts, nopython=False)(fn)
with torch.enable_grad():
ref = fn(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
self.assertEqual(cnts.frame_count, 4)
self.assertEqual(cnts.op_count, 4)
def test_graph_break_inlining_grad(self):
def gn(z):
with torch.no_grad():
torch._dynamo.graph_break()
return torch.sin(z)
def fn(x, y, z):
a = torch.mm(x, y)
z = gn(z)
return a
torch._dynamo.reset()
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts, nopython=False)(fn)
x = torch.randn(4, 4, requires_grad=True)
y = torch.randn(4, 4, requires_grad=True)
z = torch.randn(4)
opt_fn(x, y, z).sum().backward()
self.assertEqual(cnts.frame_count, 2)
def _graph_break_inlining_autocast_test_helper(self, device):
def gn(x, y):
with torch.autocast(device_type=device, dtype=torch.bfloat16):
z = torch.mm(x, y)
torch._dynamo.graph_break()
return torch.sin(z)
def fn(x, y):
z = torch.mm(x, y)
z = z + gn(x, y)
return z
x = torch.rand(3, 3).to(device)
y = torch.rand(3, 3).to(device)
opt_fn = torch.compile(backend="eager")(fn)
ref = fn(x, y)
res = opt_fn(x, y)
self.assertEqual(ref, res)
def test_graph_break_inlining_autocast(self):
for device in ["cuda", "cpu"]:
if device == "cuda" and not (
torch.cuda.is_available() and torch.cuda.is_bf16_supported()
):
continue
self._graph_break_inlining_autocast_test_helper(device)
def test_disable_saved_tensors_hooks(self):
def fn(z):
@torch.autograd.graph.disable_saved_tensors_hooks("This is not supported")
def f(x, y):
return x + y
x, y = torch.ones(
1,
), torch.zeros(
1,
)
return f(x, y)
eager = EagerAndRecordGraphs()
torch.compile(fn, backend=eager, fullgraph=True)(torch.randn(()))
graph = eager.graphs[0]
actual = normalize_gm(graph.print_readable(False))
expected = """\
class GraphModule(torch.nn.Module):
def forward(self):
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
x = torch.ones(1)
y = torch.zeros(1)
add = x + y; x = y = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable()
return (add,)
"""
self.assertExpectedInline(actual, expected)
def test_disable_saved_tensors_hooks_prev_disabled(self):
def fn(z):
@torch.autograd.graph.disable_saved_tensors_hooks("This is not supported")
def f(x, y):
return x + y
x, y = torch.ones(
1,
), torch.zeros(
1,
)
return f(x, y)
eager = EagerAndRecordGraphs()
with torch.autograd.graph.disable_saved_tensors_hooks(
"Previously disabled message"
):
torch.compile(fn, backend=eager, fullgraph=True)(torch.randn(()))
graph = eager.graphs[0]
actual = normalize_gm(graph.print_readable(False))
expected = """\
class GraphModule(torch.nn.Module):
def forward(self):
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
x = torch.ones(1)
y = torch.zeros(1)
add = x + y; x = y = None
_saved_tensors_hooks_disable_1 = torch._C._autograd._saved_tensors_hooks_disable('Previously disabled message')
return (add,)
"""
self.assertExpectedInline(actual, expected)
def test_disable_saved_tensors_hooks_prev_disabled_nested(self):
def fn(z):
@torch.autograd.graph.disable_saved_tensors_hooks("This is not supported")
def f(x, y):
@torch.autograd.graph.disable_saved_tensors_hooks(
"This is not supported inner"
)
def inner_fn(x, y):
return x + y
return inner_fn(x, y) + x
x, y = torch.ones(
1,
), torch.zeros(
1,
)
return f(x, y)
eager = EagerAndRecordGraphs()
with torch.autograd.graph.disable_saved_tensors_hooks(
"Previously disabled message"
):
torch.compile(fn, backend=eager, fullgraph=True)(torch.randn(()))
graph = eager.graphs[0]
actual = normalize_gm(graph.print_readable(False))
expected = """\
class GraphModule(torch.nn.Module):
def forward(self):
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
x = torch.ones(1)
y = torch.zeros(1)
_saved_tensors_hooks_disable_1 = torch._C._autograd._saved_tensors_hooks_disable('This is not supported inner')
add = x + y; y = None
_saved_tensors_hooks_disable_2 = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
add_1 = add + x; add = x = None
_saved_tensors_hooks_disable_3 = torch._C._autograd._saved_tensors_hooks_disable('Previously disabled message')
return (add_1,)
"""
self.assertExpectedInline(actual, expected)
def test_disable_saved_tensors_hooks_graph_break(self):
def fn(x):
with torch.autograd.graph.disable_saved_tensors_hooks(
"This is not supported"
):
y = x + 1
torch._dynamo.graph_break()
return y * 2
eager = EagerAndRecordGraphs()
torch.compile(fn, backend=eager, fullgraph=False)(torch.randn(()))
def check_graph(actual, expected):
self.assertExpectedInline(actual, expected)
expected = """\
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
y = l_x_ + 1; l_x_ = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable()
return (y,)
"""
graph = eager.graphs[0]
actual = normalize_gm(graph.print_readable(False))
check_graph(actual, expected)
expected = """\
class GraphModule(torch.nn.Module):
def forward(self, L_y_ : torch.Tensor):
l_y_ = L_y_
_saved_tensors_hooks_disable = torch._C._autograd._saved_tensors_hooks_disable('This is not supported')
mul = l_y_ * 2; l_y_ = None
_saved_tensors_hooks_enable = torch._C._autograd._saved_tensors_hooks_enable()
return (mul,)
"""
graph = eager.graphs[1]
actual = normalize_gm(graph.print_readable(False))
check_graph(actual, expected)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()